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Chemical reactions can be controlled by applying a laser pulse designed in such a way 

that increases the population in the reactive region of the phase space. 

 

 

Synopsis 

The question of what initial conditions or what kinds of laser fields can effectively carry a 

system to the desired products is one of the most intriguing subjects in chemistry. In this paper, 

a scheme for designing a laser field to guide a chemical reaction system into the product is 

presented on the basis of the phase space structure of the reaction with an illustrative simple 

example. The method exploits recent findings [Kawai et al., J. Chem. Phys. 2011, 134, 024317] 

that have revealed the existence of a rigorous reactivity boundary separating the reactive and 

non-reactive trajectories in the phase space (more precisely, the semi-classical phase space 

representation of the quantum system). Referring to the time propagation of the system, the 

method designs an electric field that actively shifts this reactivity boundary so that it catches 

more the system in the reactant and releases the system in the product. The success of this 

scheme for designing of the field gives a further support to the interpretation for the laser 

control of chemical reactions. 
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Controlling chemical reactions is one of the major goals of the fundamental study of 

chemistry. In the last decades there have been extensive studies on the controllability of 

reactions by using laser fields1–5 in both theoretical formulations6–15 and experimental 

demonstrations.16–18 Theories for calculating the optimal pulse shape designed for obtaining the 

target state (desired products of chemical reactions) are called Optimal Control Theory (OCT). 

The basic formulation of OCT is done by first setting up a functional of the laser field F(t), 

time-dependent electric field, to measure the “success” of control and then maximizing it with 

respect to F(t).6 The functional, called the cost, usually includes the population in the target 

quantum state at the final time tfin > 0, where t = 0 is the initial time, and penalty factors to limit 

the energy of the pulse. The penalty factor can be proportional to the integration of the laser 

power |F(t)|2 over time t, or be in the form of the Lagrange multiplier. It is also suggested to 

introduce a time-dependent penalty factor10 to make the laser power zero at the initial (t = 0) and 

final (t = tfin) times and exert the pulse only in the middle times. One can also put frequency 

constraints11,12 in order to make a laser pulse containing only the frequencies available in 

specific experimental apparatus and to exploit pre-knowledge about relative importance of each 

frequency to accelerate the convergence. There is a mathematical proof that the optimization of 

the cost functional converges monotonically7,8 in the absence of frequency constraints. When 

the frequency constraints are used, one needs an additional technique to ensure the monotonic 

convergence.13 An extension of the theory into nonlinear interaction between the system and the 

electric field has also been given.13 The global OCT performs iterative calculations to improve 

the pulse field until it converges. Each iteration step needs a numerical solution of the 

Schrödinger equation and therefore requires significant computational power. On the other hand, 

the local OCT14 optimizes the field at each time step so that only one time propagation is needed. 

Finally, geometric analysis has been provided15 about the landscape of the control. The electric 

field F(t), being a function of time t in 0 ≤ t ≤ tfin, forms an infinite dimensional space. The 

optimal field is given by a global minimum of the cost functional in this infinite dimensional 

space. For an N-level quantum system, the analysis of the curvatures of the landscape found that 

at the global minimum, the cost functional is minimum along at most N2 directions and the 

curvature is zero along the other directions.  

 

After the optimal field is obtained by these algorithms, it can be asked, from the 

viewpoint of fundamental study, why the particular pulse shape leads to the target state. It is 

desired to obtain basic physical insights on what is taking place in the system under the 

optimally designed pulse output from the “black-box” numerical algorithm. In previous 
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papers,19,20 we have applied a recently developed theory of the saddle region dynamics21–44 to 

laser-controlled reaction systems. A saddle point is a point on the potential energy surface where 

the potential energy is maximum along one direction corresponding to the reaction and 

minimum along the others. Such a point is often found between the reactant and product regions, 

and the saddle region dynamics plays a primary role in determining whether the system goes 

through the saddle to become products or not. Studies of classical dynamics21,22,25–44 in the 

saddle region and their quantum extension20,23,24,45,46 found, under certain conditions, robust 

existence of a “reactivity boundary” which lies in the phase space and separates the phase space 

points going to the product region and those going to the reactant region. In the context of the 

quantum dynamics, the phase space and geometric objects in it should be understood in terms of 

the Wigner distribution and the Weyl representation which have one-to-one correspondence to 

the quantum mechanical operators.45,47  

 

By extending the above mentioned theories of saddle region dynamics into systems 

under time-dependent laser fields, it has been enabled to extract the time-dependent reactivity 

boundary in these systems. The reaction boundary was found to move with time by the 

time-dependence of the laser field, so that the boundary “catches” the system excited in the 

reactant and “releases” it into the product, resulting in an increase of the reaction probability. It 

is thus enabled to give an interpretation of the controlled reaction after the optimal field is 

obtained. In this paper, we demonstrate a construction of the field on the basis of this physical 

interpretation. Showing that the physical interpretation is indeed capable of giving the control 

field to guide the reaction, the result will give further support to the validity of the physical 

understanding of the previous studies. We first review briefly the findings of the previous studies 

of the saddle region dynamics, and then present a scheme to construct an electric field that is 

consistent with the physical interpretation obtained by these theories. A numerical 

demonstration will be given for a simple one-dimensional model. 

 

Theoretical 

Review of previous theories 

In this section we explain the motion taking place in the vicinity of the saddle point. We treat the 

dynamics to the lowest approximation, one-dimensional parabolic barrier. Extension to 

multi-dimensional systems with anharmonicity and couplings among the degrees of freedom 

can be found in many books21,22 and papers.19,20,23–30,32,44,45,47 In the vicinity of the saddle point, 

the Hamiltonian without the laser field can be approximated by 
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,
2 2

, 

     (1) 

where q is the position coordinate of the system and p its conjugate momentum. We take the 

origin (q = 0) of the coordinate system at the saddle point, where the curvature of the potential is 

−λ 2⁄ . The sign of q is such that q < 0 corresponds to the reactant region and q > 0 to the 

product. In this case, one can easily assign the reactivity of the system: If the total energy H is 

higher than the potential energy at the saddle point [taken as zero in Eq.(1)], then the system can 

go over the barrier from the reactant to the product side or vice versa. If the total energy H is 

below zero, then the system will be reflected back and the reaction will not occur.  

 

 

 

 

Fig. 1  Phase space flow in the saddle region, for the case of one-dimensional harmonic system 

without laser field. The line x = 0 separates the destination of trajectories; trajectories with x > 0 

(colored by blue) go to the the product side, while those with x < 0 (red) go to the reactant side. 

 

 

The classical trajectories given by the Hamiltonian of Eq. (1) are depicted in Fig. 1. Because of 

the conservation of energy, they draw hyperbolas given by , const.                     

The following set of variables is often useful in theoretical investigations: 

√2
,																																																								

√2
. 

    (2) 
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These variables (x, ξ) define a skewed coordinate system in the phase space as in Fig. 1, and the 

two straight asymptotic lines of the hyperbolas are given by x = 0 and ξ = 0. In these coordinates, 

the Hamiltonian can be written as 

, 

(3) 

and their equations of motion are given by 

d
d

, 

d
d

. 

(4) 

 

The trajectories with x > 0 and ξ > 0 are “forward reactive” trajectories because they 

climb up from the reactant region, overcome the barrier, and go down to the product region (i.e., 

the reaction occurs). On the other hand, the trajectories with x < 0 and ξ > 0 are “forward 

non-reactive” trajectories because they start in the reactant region, but are reflected by the 

barrier, and go back into the reactant region. The trajectories with x < 0 and ξ < 0 are “backward 

reactive” trajectories, because they climb up from the product region and go down the barrier to 

the reactant region (i.e., the backward reaction). Similarly, the trajectories with x > 0 and ξ < 0 

are “backward non-reactive” trajectories. Note that the sign of x determines the fate of the 

system, that is, if x is positive (negative), the trajectory will go to the product (reactant, resp.) 

side, without mattering where it initially was. The set {x = 0}, i.e., the ξ-axis, thus divides all the 

climbing trajectories into two disjoint sets: ones going to the product and the others going to the 

reactant. Once we know the sign of x, we can tell the fate of the reaction without further 

observing the trajectory. In addition, once the system is located on the dividing surface {x = 0}, 

it stays there perpetually (i.e., the set {x = 0} forms an invariant manifold in the phase space). 

 

While the destination region of a trajectory is determined by the sign of x in classical 

mechanics, its quantum counterpart can be found by using the Wigner distribution.48,49 For a 

quantum state | 〉, the Wigner distribution is defined as 

, 2 exp
i

d . 

 (5) 

It is shown20 that, without any “(semi-)classical approximation”, the quantum mechanical 

reaction probability for the parabolic barrier is given by integrating the Wigner distribution in 
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the region x > 0: 

, Θ d d , 

(6) 

where the step function Θ(x) is 1 if x > 0 and 0 if x < 0. 

 

Now we include the effect of the external field. The Hamiltonian is given by 

,
2 2

, 

(7) 

where µ(q) is the dipole moment and F(t) is the electric field. We consider here only the lowest 

order of the expansion of µ: 

⋯. 

 (8) 

The treatment of the higher order terms in the expansion, as well as the nonlinear dependence of 

the Hamiltonian on F(t), can again be found in the previous works.19,20 The equations of motion 

for x and ξ now read 

d
d

1

√2
, 

d
d

1

√2
. 

(9) 

If we define the following time-dependent functions 

‡ ≝
1

√2
exp d , 

‡ ≝
1

√2
exp d , 

(10) 

and perform a coordinate transformation (x, ξ) → (∆x, ∆ξ) by 

‡ Δ , 
‡ Δ , 

(11) 

the equations of motion [Eq.(9)] are transformed to the following: 

d
d
Δ Δ , 
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d
d
Δ Δ . 

(12) 

Since Eq. (12) has the same form with Eq. (4), we can draw the same picture as Fig. 1 with the 

name of axes changed to (∆x, ∆ξ). The destination of the trajectory can now be told by the sign 

of ∆x. In the plot with the original coordinate (x, ξ), the reactivity boundaries are now given by 

‡  and ‡  rather than x = 0 and ξ = 0. In other words, the reactivity boundaries 

are shifted by the amount of ( ‡ , ‡ ), since the coordinate transformation Eq. (11) is a 

time-dependent origin shift. In the (q, p)-coordinates, the amount of the origin shift is expressed 

by 

‡ 1
2

‡ ‡ , 

‡
2

‡ ‡ , 

 (13) 

corresponding to Eq. (2). The shift of the reactivity boundaries caused by the laser field is 

schematically drawn in Fig. 2 (a). 

 

 

 

Fig. 2  Schematic representation of (a) shift of the reactivity boudaries, and (b)–(d) the 

catch-and-release mechanism of reaction control . The laser field shifts the reactivity boundary 

by the amount ( ‡ , ‡ ). Under the effect of the designed field for control, the boundaries 

shift toward the distribution in the reactant region to catch the system into the reactive region 

when the system is dominantly distributed in the reactant region (b). The boundaries then push 

the system to the right and release it into the product region (c). When the system is on the 

product side and heading to the left, the boundaries are shifted to the left to prohibit the system 

from entering the backward-reactive region (d). 
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In the previous work,20 we calculated the reactivity boundaries under the effect of the 

electric field obtained by the OCT. It was found that the reactivity boundaries are moved by the 

field accordingly to the movement of the system, resulting in the enhancement of the reaction: 

When the Wigner distribution of the system is predominantly located in the reactant region and 

moving toward the right direction (toward the product side), the boundaries move, by the effect 

of the control field, toward the left to increase the population included in the reactive region [Fig. 

2 (b)]. Once the system has entered into the forward-reactive region, the boundaries move 

toward the right to guide the system into the product side [Fig. 2 (c)]. In this paper we call this 

movement of the boundaries “catch-and-release mechanism” because the boundaries go to catch 

the system in the reactant region and then release it into the product side. 

 

Algorithm for Designing Pulse Shape Using the Catch-and-release 

Mechanism 

Here we consider a control method based on the interpretation of control mechanism found in 

the previous work. From the findings summarized in the previous section, we wish the 

boundaries to shift toward the reactant side for catching the system lying on the reactant side 

and heading for the product side, and then to move toward the product side for guiding the 

system to the product and releasing it. In addition, when the system is on the product side and 

moving toward the reactant side, we wish to decrease the probability of the backward reaction, 

by shifting the boundaries toward the reactant region [Fig. 2 (d)] 

 

According to the above requirement, we set the shift ‡  proportional to the 

average of the product of q and p: That is, when the system is on the reactant side (q < 0) with 

positive momentum p > 0, the reactivity boundaries ‡  shift in negative direction toward the 

reactant side to catch the system [Fig. 2 (b)]. On the other hand, once the system arrives in the 

product side with positive momentum (q > 0, p > 0), ‡  shifts in positive direction to put the 

system into the product region [Fig. 2 (c)]. Likewise, when the system has negative momentum 

(p < 0) on the product side (q > 0) and tries to go back to the reactant, ‡  shifts in negative 

direction to prevent the system from returning to the reactant side [Fig. 2 (d)]. Thus we set 

‡ ′
̂ ̂
2

, 

(14) 

with some proportionality constant α’ > 0. Due to the non-commutativity of  and ̂, we have 

put the average of ̂ and ̂  to make a Hermitian operator.  



9 
 

 

From Eqs. (10) and (13), we can solve Eq. (14) in terms of the electric field F(t): 

λ
d
d

̂ ̂
2

, 

 (15) 

where ′⁄ . The detailed derivation of Eq. (15) is given in the appendix. This equation, 

together with the Schrödinger equation 

i
∂
∂

, 

 (16) 

gives a simultaneous time evolution equation for  and .  

 

Eq. (15) contains the second-order time derivative of , whose time propagation 

depends on the electric field  through Eq. (16). We adopt the following locally iterative 

method to solve these equations for : We set up a small time window (e.g. a few 

propagation steps) and propagate the system for this interval according to Eq. (16) with zero 

field. Then we obtain the right hand side of Eq. (15), which in turn is inserted into Eq. (16) and 

time propagation in the same time interval is again performed with the new field. This procedure 

is repeated until convergence. In the next section we demonstrate numerical results obtained 

with the method presented above by using a model system, and check its validity for control. 

 

Results and Discussion 
The model system we use here for demonstration is a one-dimensional system with a dipole 

couping to the laser field, which was regarded as mimicking the isomerization of 

trimethylenimine.14 The Hamiltonian is given by 

2
, 

(17) 

with the effective mass m = 99.33 amu, the potential energy 

2
, 

(18) 

/2 3.79	cm , 1.59	cm , 9.22	cm , the time-dependent 

electric field F (t), and the dipole moment 
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, 

 (19) 

with 0.301 . The potential energy, energy eigenvalues and eigenfunctions without the 

electric field are shown in Fig. 3. Throughout the numerical calculations, we use the 

sinc-function discrete variable representation of Colbert and Miller,50 where the interval of 

∈ 0.4	 , 0.4	  is divided into 80 equally-spaced grid points. Numerical results for the 

transition energies and the transition moments are shown in Tables 1 and 2. 

 

 

Fig. 3  Potential energy, energy eigenvalues and eigenfunctions of the model system. 
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i j N=10 N=20 N=40 N=80 N=200 

0 1 121.013  88.612 88.378 88.378 88.378  

0 2 231.051  202.544 202.787 202.787 202.787  

0 3 255.828  273.256 273.741 273.741 273.741  

0 4 475.767  358.265 356.574 356.574 356.574  

0 5 1102.587  437.000 435.797 435.797 435.797  

1 2 110.038  113.933 114.409 114.409 114.409  

1 3 134.815  184.644 185.363 185.363 185.363  

1 4 354.754  269.653 268.195 268.195 268.195  

1 5 981.574  348.388 347.419 347.419 347.419  

2 3 24.777  70.712 70.954 70.954 70.954  

2 4 244.716  155.721 153.786 153.786 153.786  

2 5 871.536  234.456 233.010 233.010 233.010  

3 4 219.939  85.009 82.832 82.832 82.832  

3 5 846.759  163.744 162.056 162.056 162.056  

4 5 626.820  78.735 79.224 79.224 79.224  

TABLE 1: Numerical values of the transition frequency Ej − Ei in cm−1, where Ei and Ej are the 

eigenenergies of the states | 〉 and | 〉, and their dependence on the grid size N. 

 

i j N=10 N=20 N=40 N=80 N=200 

0 1 0.0027494 0.0001120 0.0001130 0.0001130 0.0001130 

0 2 0.2588751 0.7427083 0.7470755 0.7470755 0.7470755 

0 3 0.0080954 0.0045662 0.0048149 0.0048149 0.0048149 

0 4 0.0242874 0.0219536 0.0223187 0.0223187 0.0223187 

0 5 0.0097093 0.0048293 0.0040180 0.0040180 0.0040180 

1 2 0.0055681 0.0074483 0.0075479 0.0075479 0.0075479 

1 3 0.7879808 0.7803590 0.7704241 0.7704241 0.7704241 

1 4 0.0186331 0.0365620 0.0370082 0.0370082 0.0370082 

1 5 0.0001858 0.0193159 0.0220963 0.0220963 0.0220963 

2 3 0.0305122 0.3082355 0.3260697 0.3260697 0.3260697 

2 4 0.4219174 1.2260224 1.3183019 1.3183019 1.3183019 

2 5 0.0082896 0.3018197 0.2869016 0.2869016 0.2869016 

3 4 0.4932864 1.9754476 1.9696534 1.9696534 1.9696534 

3 5 0.0014546 0.6127348 0.6367535 0.6367535 0.6367535 

4 5 0.0163778 5.6393118 5.6830635 5.6830635 5.6830635 

TABLE 2: Numerical values of the transition moment | | | |  in 10 	 , and their 

dependence on the grid size N. 
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We take the ground state |0〉 as the initial state (“reactant”). The goal of the control is 

to move the population into the other well (“product”). A technical problem in designing the 

control field by Eqs.(15) and (16) is that the initial condition | 0 〉 |0〉 and F (0) = 0 is a 

stationary solution of Eqs. (15) and (16) and no time evolution can be obtained from this initial 

condition. We therefore make a small deviation from the pure ground state in the initial 

condition: 

| 0 〉 √0.999|0〉 √0.001|2〉. 

 (20) 

The system then goes increasingly further from the initial state under the time propagation by 

Eqs. (15) and (16). After the field is obtained in this way, we perform a numerical simulation of 

the time evolution starting with the pure ground state | 0 〉 |0〉 as the initial condition 

under the effect of the obtained field. In what follows, we plot the time evolution of the 

wavefunctions obtained in the latter time propagation calculation.  

 

Figure 4 shows the results of calculation presented in the previous section, where we 

have put the parameter 1000	a. u. Panel (a) shows the electric field obtained by the time 

propagation given by Eqs. (15) and (16). Panel (b) shows the time evolution of the population in 

each eigenstate, that is, | | | , for n = 0-5, under the effect of the electric field shown in 

(a). Populations for the higher states (n > 5) were found to be minor. The electric field is 

effective in the time range t < 20 ps. After the pulse, the system is successfully populated in the 

right well (the state |1〉) with more than 95% population. Since the present algorithm is 

constructed by the qualitative physical interpretation of the phase space structure, we consider 

that the success of the method in the control gives further support to our “catch-and-release” 

interpretation suggested in the previous work.20 

 

For further analysis of the obtained field in Fig. 4 (a), we take a window Fourier 

transform defined by 

, ≝ exp	 i ′ d ′
/

/
, 

 (21) 

where w is a window function. The window Fourier transform gives the local power spectrum in 

the time range	 /2, /2 . Here we take the window size T = 4.096 ps and the 

Blackman window 

0.42 0.50 cos 0.08 cos . 
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 (22) 

The qualitative result did not change by replacing the window function to the rectangular and 

the Hanning windows.51 Figure 5 shows the time-resolved power spectrum S(ω, t) of the field 

shown in Fig. 4 (a). We can find the frequency components corresponding to the transition 

sequence |0〉→|2〉→|5〉→|3〉→|1〉 as could already be seen by Fig. 4 (b). Note that the similar 

time-resolved power spectrum has been found for the local control field,14 except that there the 

cost functional has been designed to make the system pass through the less excited state |4〉 

instead of |5〉. The field obtained by the present method may not be a fully optimized one in 

that it uses the excited state |5〉 rather than |4〉. We will come back to this point in Summary 

and Outlook section.  
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(a) 

 

(b) 

 

Fig. 4  Results of the control calculation with the field strength parameter 1000	a. u.		 

(a) The electric field. (b) Time evolution of the populations in the eigenstates. 
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Fig. 5  Time-resolved power spectrum of the field shown in Fig. 4 (a). Light colors correspond 

to higher power. The relevant transition frequencies of the system are indicated by straight lines. 

 

 

In the present procedure, the system is first excited by a small amount into the state 

|2〉 by a perturbation. Then, the system starts to oscillate due to the quantum beating between 

|0〉 and |2〉. As shown in Fig. 2, the present control algorithm makes the electric field change in 

accordance with the average position of the system. The reactivity boundary should approach 

the system in the reactant region only when the system is heading toward the barrier [Fig. 2 (b)]. 

Thus the field starts to oscillate with the same frequency with the system, and this oscillating 

field excites the system further. After the excitation, the system goes over the barrier through the 

state |5〉, and then it is de-excited in the product well |3〉→|1〉, whence the system ceases its 

oscillation and the field decays to zero as well. The last part may need explanation since the 

state |3〉 is already in “product side” but the present method further de-excites the system into 

|1〉. This can be understood by noting that, when the system is on the product side [Fig. 2(d)], 

the present algorithm designs the field such that the reactivity boundary is as far from the 

system as possible. Therefore, even if the system is already on the product side, Eq. (15) still 

makes nonzero electric field according to the oscillation of the system in the product well: when 

the system is heading toward the reactant side, the reactivity boundary moves back slightly 

toward the reactant side to avoid the system. This field de-excites the system into the state |1〉 

which is in the product region and “furthest” from the boundary. 
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(a) 

 

(b) 

 

 

Fig. 6  Same as Fig. 4 but with the field strength parameter 1500	a. u. 
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(a) 

 

(b) 

 

 

Fig. 7  Same as Fig. 4 but with the field strength parameter 500	a. u. 
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Next we investigate the effect of the parameter  appearing in the present algorithm, 

since the choice of its value is somewhat arbitrary. Figure 6 shows the results obtained by 

setting 1500	a. u., larger than the previous result. It is seen that the field is now stronger 

than the previous case, which is natural since the parameter  scales the field amplitude in Eq. 

(15). With this stronger field, the system reaches the target state in a shorter time [compare Fig. 

4(b) and 6(b)]. It is well known, and mathematically stated in Ref. 15, that the control field is far 

from unique. There is actually infinite number of pulse shapes that can lead to the same target 

state. Analysis of the Hessian matrix of the cost functional15 has shown that at the optimal 

solution for an N-level system, the cost functional is minimum only along N2 directions in the 

space of F (t), while along the other directions the landscape of the cost functional is flat (with 

zero curvature). Changing the pulse shape along these directions does not (at least to the 

quadratic approximation around the minimum) affect the optimality of the field. The freedom of 

the parameter  here, roughly corresponding to the time taken for reaching the target state, can 

represent one of such directions. 

Quite naturally, the opposite behavior is observed when we decrease . Figure 7 

shows the results obtained by setting 500	a. u. As expected, the field is weaker than the 

previous figures and guides the system to the target state more slowly. 

 

Summary and Outlook 

A procedure for designing a laser pulse to control chemical reactions was suggested on the basis 

of the physical interpretation found in the previous work. The method consists of a simultaneous 

solution of the time propagation of the wavefunction and an equation to determine the electric 

field. The latter equation conditions the electric field in such a way that the phase space 

reactivity boundary shifts toward the reactant side to catch the population located in the reactant 

region, and then guides the system toward the product side where it is released. The success of 

this method in controlling the reaction, demonstrated here with a model system, supports the 

validity of the physical interpretation of the control process by the “catch-and-release” 

mechanism. 

The procedure constructed in the present work needs only a single simultaneous 

propagation of the system and the field. In this sense it belongs to the category of the local 

OCT.14 However, it is still questionable whether this procedure is any better as a method than 

existing ones in the sense of optimality in the laser field design. In the global OCT, the concept 

of optimality depends on the definition of the cost functional. The latter includes, for example, a 

penalty factor for the field intensity and frequency constraints, whose choice is quite arbitrary. 
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Each choice of the cost function results in a distinct “optimal” field. To get the optimal field for 

each particular choice of the cost functional, it is best to use the global OCT to numerically 

optimize the full details of the pulse shape for that particular cost functional. The pulse shape 

obtained by the present method should not be optimal for all the different choices of the cost 

functional. Rather, our emphasis lies in obtaining physical insights in the control process. The 

success of the present procedure in guiding the system into the reaction product strengthens the 

validity of the “catch-and-release” concept. It can nevertheless be said that the present method, 

being a local OCT, has an advantage of requiring less computational power, and it may also 

serve to give a good initial guess of the pulse shape for the global OCT, since the latter is an 

iterative procedure which needs an initial guess. 

 

 

APPENDIX A: DERIVATION OF EQ. (15) 
By differentiating Eq. (10) with respect to t, we obtain 

d
d

‡ ‡ 1

√2
, 

d
d

‡ ‡ 1

√2
. 

(A1) 

This simply says that Eq. (10) is a particular solution of Eq. (9). Differentiating Eq. (13) with 

respect to t and inserting Eq. (A1), we obtain 

d
d

‡ 1

√2
‡ ‡ . 

 (A2) 

Differentiating once more and using Eq. (A1) again, we obtain 

d
d

‡ 1

√2
‡ ‡ √2  

‡ . 

 (A3) 

One could have obtained Eq. (A3) more easily: Since ‡ is a particular solution of the equation 

of motion, Eq. (A3) is just the equation of motion given by the Hamiltonian of Eq. (7). From Eq. 

(A3) we can express the electric field in terms of ‡ 

1
λ

d
d

‡ . 
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 (A4) 

Substituting Eq. (14) into Eq. (A4) gives Eq. (15). 
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