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1 Introduction

The study of the extrinsic differential geometry of submanifolds in Lorentz manifolds is
of special interest in Relativity theory. In particular, lightlike hypersurfaces are provided
good models for the study of different horizon types ([5, 7, 24]). A lightlike hypersurface
is also called a light sheet in Theoretical Physics (cf., [2]), which plays a principal role in
the quantum theory of gravity. In this paper we investigate the singularities of lightlike
hypersurfaces in Lorentz-Minkowski space. Although Lorentz-Minkowski space has no
gravity, the singularities of lightlike hypersurfaces give a typical model of horizons and
important information for the shape of horizons in general Lorentz manifolds. The lightlike
hypersurfaces are constructed as ruled hypersurfaces along spacelike submanifolds with
the lightlike rulings.

On the other hand, tools in the theory of singularities have proven to be useful descrip-
tion of geometrical properties of submanifolds immersed in different ambient spaces, from
both the local and global viewpoint [9, 10, 12, 15, 16, 17, 21]. The natural connection
between geometry and singularities relies on the basic fact that the contacts of a sub-
manifold with the models of the ambient space can be described by means of the analysis
of the singularities of appropriate families of contact functions, or equivalently, of their
associated Legendrian maps ([1, 25, 30]). When working in Lorentz-Minkowski space, the
properties associated to the contacts of a given submanifold with lightlike hyperplanes or
lightcones have a special relevance. In [11, 17], it was constructed a framework for the
study of spacelike submanifolds with codimension two in Lorentz-Minkowski space and
discovered a Lorentz invariant concerning their contacts with lightlike hyperplanes. The
geometry related to this framework is called the lightlike geometry (or, the lightlike flat
geometry) of spacelike submanifolds with codimension two. By using the invariants of
lightlike geometry, the singularities of lightlike hypersurfaces along spacelike surfaces in
Lorentz-Minkowski 4-space was investigated in [15]. It is not so difficult to generalize the
result of [15] into the case for codimension two in general dimensional Lorentz-Minkowski
space [18]. However, the situation is rather complicated for the general codimensional
case. The main difference from the Euclidean space case is the fiber of the canal hy-
persurface of a spacelike submanifold is neither connected nor compact. In this paper
we investigate singularities of lightlike hypersurfaces along general codimension space-
like submanifolds in Lorentz-Minkowski space. In order to avoid the above difficulty, we
arbitrary choose a timelike future directed unit normal vector field along the spacelike
submanifold which always exists for an orientable manifold (cf., [19]). Then we construct
the unit spherical normal bundle relative to the above timeline unit normal vector field,
which can be considered as a codimension two spacelike canal submanifold of the ambient
Lorentz-Minkowski space. Therefore, we can apply the idea of the lightlike geometry of
spacelike submanifolds of Lorentz-Minkowski space with codimension two. In this way
we constructed the framework of the lightlike geometry of spacelike submanifolds with
general codimension in [19] and investigated local and global properties. In this paper we
apply this framework and the theory of Legendrian singularities to investigate the singu-
larities of lightlike hypersurfaces along spacelike submanifolds with general codimension.
Here, we draw the picture of the lightlike surface along an ellipse in the Euclidean plane
canonically embedded in the Lorentz-Minkowski 3-space. We can observe that four swal-
lowtail singularities (for the definition see §6) on the surface which correspond to the
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vertices of the ellipse. This means that there might be interesting geometric meanings of
the singularities of lightlike surfaces.

 

Lightlike surface
Fig. 1.

In §3 we briefly review the framework of the lightlike geometry of spacelike subman-
ifolds with general codimension which was constructed in [19]. The notion of lightlike
hypersurfaces along spacelike submanifolds is introduced and the basic properties are in-
vestigated in §4. The notion of the distance squared functions families is useful for the
study of lightlike hypersurfaces (cf., §4). The critical value set of the lightlike hypersurface
along a spacelike submanifold is called the lightlike focal set of the submanifold. In §5 we
show that the lightlike focal set of a spacelike submanifold is a point if and only if the
lightlike hypersurface along the submanifold is a subset of a lightcone (Proposition 5.1).
Therefore, a lightcone is a model hypersurface of lightlike hypersurfaces. The geometric
meaning of the singularities of lightlike hypersurface is described by the theory of contact
of submanifolds with model hypersurfaces. Moreover, as an application of the theory of
Legendrian singularities, we show that two lightlike hypersurfaces are locally diffeomor-
phic if and only if the types of the contact of spacelike submanifolds with lightcones are
the same in the sense of Montaldi[25] under some generic conditions (Theorem 5.5). In §6
we describe the case for codimension two as a special case. We also investigate spacelike
curves in Lorentz-Minkowski 4-space as the simplest case of a higher codimension in §7.
In §8 we consider the case that submanifolds are located in a spacelike hyperplane or
in Hyperbolic space. In this case lightlike focal sets correspond to the focal sets in the
Euclidean sense or the hyperbolic and de Sitter focal sets (cf., [13]).

2 Basic notations on Lorentz-Minkowski space

We introduce in this section some basic notions on Lorentz-Minkowski n + 1-space. For
basic concepts and properties, see [26].

Let Rn+1 = {(x0, x1, . . . , xn) | xi ∈ R (i = 0, 1, . . . , n) } be an n + 1-dimensional
cartesian space. For any x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1, the pseudo
scalar product of x and y is defined by

⟨x,y⟩ = −x0y0 +
n∑

i=1

xiyi.
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We call (Rn+1, ⟨, ⟩) Lorentz-Minkowski n+ 1-space. We write Rn+1
1 instead of (Rn+1, ⟨, ⟩).

We say that a non-zero vector x ∈ Rn+1
1 is spacelike, lightlike or timelike if ⟨x,x⟩ > 0,

⟨x,x⟩ = 0 or ⟨x,x⟩ < 0 respectively. The norm of the vector x ∈ Rn+1
1 is defined by

∥x∥ =
√
|⟨x,x⟩|. The signature of a vector x ∈ Rn+1

1 \ {0} is defined to be

sign(x) =


1 x : spacelike,
0 x : lightlike,
−1 x : timelike.

We have the canonical projection π : Rn+1
1 → Rn defined by π(x0, x1, . . . , xn) = (x1, . . . , xn).

Here we identify {0}×Rn with Rn and it is considered as Euclidean n-space whose scalar
product is induced from the pseudo scalar product ⟨, ⟩. For a vector v ∈ Rn+1

1 and a real
number c, we define a hyperplane with pseudo normal v by

HP (v, c) = {x ∈ Rn+1
1 | ⟨x,v⟩ = c }.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane if
v is timelike, spacelike or lightlike respectively. We remark that {0} × Rn is a spacelike
hypersurface in Rn+1

1 .

We now define Hyperbolic n-space by

Hn(−1) = {x ∈ Rn+1
1 |⟨x,x⟩ = −1}

and de Sitter n-space by
Sn
1 = {x ∈ Rn+1

1 |⟨x,x⟩ = 1 }.

We define
LCa = {x = (x0, x1, . . . , xn) ∈ Rn+1

1 | ⟨x− a,x− a⟩ = 0},

which is called the lightcone with the vertex a. We denote that LC∗ = LC0 \ {0}. If
x = (x0, x1, . . . , x2) is a lightlike vector, then x0 ̸= 0. Therefore we have

x̃ =

(
1,
x1
x0
, . . . ,

xn
x0

)
∈ Sn−1

+ = {x = (x0, x1, . . . , xn) | ⟨x,x⟩ = 0, x0 = 1}.

We call Sn−1
+ the lightcone (or, spacelike) unit n− 1-sphere.

For any x1,x2, . . . ,xn ∈ Rn+1
1 , we define a vector x1 ∧ x2 ∧ · · · ∧ xn by

x1 ∧ x2 ∧ · · · ∧ xn =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en

x10 x11 · · · x1n
x20 x21 · · · x2n
...

... · · · ...
xn0 xn1 · · · xnn

∣∣∣∣∣∣∣∣∣∣∣
,

where e0, e1, . . . , en is the canonical basis of Rn+1
1 and xi = (xi0, x

i
1, . . . , x

i
n).We can easily

show that
⟨x,x1 ∧ x2 ∧ · · · ∧ xn⟩ = det(x,x1, . . . ,xn),

so that x1 ∧ x2 ∧ · · · ∧ xn is pseudo orthogonal to any xi (i = 1, . . . , n).
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3 Differential geometry on spacelike submanifolds

In this section we introduce the basic geometrical framework for the study of spacelike
submanifolds in Minkowski n+ 1-space analogous to the case of codimension two in [17].
Let Rn+1

1 be an oriented and time-oriented space. We choose e0 = (1, 0, . . . , 0) as the
future timelike vector field. Let X : U −→ Rn+1

1 be a spacelike embedding of codimension
k, where U ⊂ Rs (s+k = n+1) is an open subset. We also writeM = X(U) and identify
M and U through the embedding X. We say that X is spacelike if the tangent space
TpM of M at p is a spacelike subspace (i.e., consists of spacelike vectors) for any point
p ∈M . For any p = X(u) ∈M ⊂ Rn+1

1 , we have

TpM = ⟨Xu1(u), . . . ,Xus(u)⟩R.

Let Np(M) be the pseudo-normal space of M at p in Rn+1
1 . Since TpM is a spacelike

subspace of TpRn+1
1 , Np(M) is a k-dimensional Lorentzian subspace of TpRn+1

1 (cf.,[26]).
On the pseudo-normal space Np(M), we have two kinds of pseudo spheres:

Np(M ;−1) = {v ∈ Np(M) | ⟨v,v⟩ = −1 }
Np(M ; 1) = {v ∈ Np(M) | ⟨v,v⟩ = 1 },

so that we have two unit spherical normal bundles over M :

N(M ;−1) =
∪
p∈M

Np(M ;−1) and N(M ; 1) =
∪
p∈M

Np(M ; 1).

Then we have the Whitney sum decomposition

TRn+1
1 |M = TM ⊕N(M).

Since M = X(U) is spacelike, e0 is a transversal future directed timelike vector field
along M . For any v ∈ TpRn+1

1 |M, we have v = v1 + v2, where v1 ∈ TpM and v2 ∈
Np(M). If v is timelike, then v2 is timelike. Let πN(M) : TRn+1

1 |M −→ N(M) be the
canonical projection. Then πN(M)(e0) is a future directed timelike normal vector field
along M. So we always have a future directed unit timelike normal vector field along M
(even globally). We now arbitrarily choose a future directed unit timelike normal vector
field nT (u) ∈ Np(M ;−1), where p = X(u). Therefore we have the pseudo-orthonormal
compliment (⟨nT (u)⟩R)⊥ in Np(M) which is a k − 1-dimensional subspace of Np(M). We
can also choose a pseudo-normal section nS(u) ∈ (⟨nT (u)⟩R)⊥ ∩N(M ; 1) at least locally,
then we have ⟨nS,nS⟩ = 1 and ⟨nS,nT ⟩ = 0. We define a k − 1-dimensional spacelike
unit sphere in Np(M) by

N1(M)p[n
T ] = {ξ ∈ Np(M ; 1) | ⟨ξ,nT (p)⟩ = 0 }.

Then we have a spacelike unit k − 2-spherical bundle over M with respect to nT defined
by

N1(M)[nT ] =
∪
p∈M

N1(M)p[n
T ].
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Since we have T(p,ξ)N1(M)[nT ] = TpM × TξN1(M)p[n
T ], we have the canonical Rie-

mannian metric on N1(M)[nT ]. We denote the Riemannian metric on N1(M)[nT ] by
(Gij(p, ξ))16i,j6n−1.

For any future directed unit normal nT alongM, we arbitrary choose (at least locally)
the unit spacelike normal vector field nS with nS(u) ∈ N1(M)p[n

T ], where p = X(u).
We call (nT ,nS) a future directed pair along M. Clearly, the vectors nT (u) ± nS(u) are
lightlike. Here we choose nT + nS as a lightlike normal vector field along M. We define
a mapping

LG(nT ,nS) : U −→ LC∗

by LG(nT ,nS)(u) = nT (u) +nS(u). We call it the lightcone Gauss image of M = X(U)
with respect to (nT ,nS). Under the identification of M and U through X, we have the
linear mapping provided by the derivative of the lightcone Gauss image LG(nT ,nS) at
each point p ∈M ,

dpLG(nT ,nS) : TpM −→ TpRn+1
1 = TpM ⊕Np(M).

Consider the orthogonal projections πt : TpM ⊕Np(M) → Tp(M). We define

dpLG(nT ,nS)t = πt ◦ dp(nT + nS).

We call the linear transformations Sp(n
T ,nS) = −dpLG(nT ,nS)t the (nT ,nS)-shape

operator of M = X(U) at p = X(u). Let {κi(nT ,nS)(p)}si=1 be the eigenvalues of
Sp(n

T ,nS), which are called the lightcone principal curvatures with respect to (nT ,nS)
at p = X(u). Then the lightcone Gauss-Kronecker curvature with respect to (nT ,nS) at
p = X(u) is defined by

Kℓ(n
T ,nS)(p) = detSp(n

T ,nS).

We say that a point p = X(u) is an (nT ,nS)-umbilical point if

Sp(n
T ,nS) = κ(nT ,nS)(p)1TpM .

We say that M = X(U) is totally (nT ,nS)-umbilical if all points on M are (nT ,nS)-
umbilical. Moreover, M = X(U) is said to be totally lightcone umbilical if it is totally
(nT ,nS)-umbilical for any future directed pair (nT ,nS).

We deduce now the lightcone Weingarten formula. SinceXui
(i = 1, . . . s) are spacelike

vectors, we have a Riemannian metric (the lightcone first fundamental form ) on M =
X(U) defined by ds2 =

∑s
i=1 gijduiduj, where gij(u) = ⟨Xui

(u),Xuj
(u)⟩ for any u ∈ U.

We also have a lightcone second fundamental invariant with respect to the normal vector
field (nT ,nS) defined by hij(n

T ,nS)(u) = ⟨−(nT + nS)ui
(u),Xuj

(u)⟩ for any u ∈ U. By
the similar arguments to those in the proof of [17, Proposition 3.2], we have the following
proposition.

Proposition 3.1 We choose a pseudo-orthonormal frame {nT ,nS
1 , . . . ,n

S
k−1} of N(M)

with nS
k−1 = nS. Then we have the following lightcone Weingarten formula with respect

to (nT ,nS):

(a) LG(nT ,nS)ui
= ⟨nS

ui
,nT ⟩(nT−nS)+

∑k−2
ℓ=1 ⟨(nT+nS)ui

,nS
ℓ ⟩nS

ℓ −
∑s

j=1 h
j
i (n

T ,nS)Xuj

(b) πt ◦ LG(nT ,nS)ui
= −

∑s
j=1 h

j
i (n

T ,nS)Xuj
.

Here
(
hji (n

T ,nS)
)
=

(
hik(n

T ,nS)
) (
gkj

)
and

(
gkj

)
= (gkj)

−1.
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As a consequence of the above proposition, we have an explicit expression of the
lightcone curvature by

Kℓ(n
T ,nS) =

det
(
hij(n

T ,nS)
)

det (gαβ)
.

Since ⟨−(nT +nS)(u),Xuj
(u)⟩ = 0, we have hij(n

T ,nS)(u) = ⟨nT (u)+nS(u),Xuiuj
(u)⟩.

Therefore the lightcone second fundamental invariant at a point p0 = X(u0) depends
only on the values nT (u0) + nS(u0) and Xuiuj

(u0), respectively Thus, the lightcone cur-
vatures also depend only on nT (u0) + nS(u0), Xui

(u0) and Xuiuj
(u0), independent of

the derivation of the vector fields nT and nS. We write κi(n
T
0 ,n

S
0 )(p0) (i = 1, . . . , s) and

Kℓ(n
T
0 ,n

S
0 )(u0) as the lightcone curvatures at p0 = X(u0) with respect to (nT

0 ,n
S
0 ) =

(nT (u0),n
S(u0)). We might also say that a point p0 = X(u0) is (nT

0 ,n
S
0 )-umbilical

because the lightcone (nT ,nS)-shape operator at p0 depends only on the normal vec-
tors (nT

0 ,n
S
0 ). So we denote that hij(n

T , ξ)(u0) = hij(n
T ,nS)(u0) and Kℓ(n

T , ξ)(p0) =
Kℓ(n

T
0 ,n

S
0 )(p0), where ξ = nS(u0) for some local extension nT (u) of ξ. Analogously,

we say that a point p0 = X(u0) is an (nT
0 ,n

S
0 )-parabolic point of X : U −→ Rn+1

1 if
Kℓ(n

T
0 ,n

S
0 )(u0) = 0. And we say that a point p0 = X(u0) is a (nT

0 ,n
S
0 )-flat point if it is

an (nT
0 ,n

S
0 )-umbilical point and Kℓ(n

T
0 ,n

S
0 )(u0) = 0.

On the other hand, we define a map LG(nT ) : N1(M)[nT ] −→ LC∗ by LG(nT )(u, ξ) =
nT (u)+ξ, which we call the lightcone Gauss image ofN1(M)[nT ]. This map leads us to the
notions of curvatures. Let T(p,ξ)N1(M)[nT ] be the tangent space of N1(M)[nT ] at (p, ξ).
Under the canonical identification (LG(nT )∗TRn+1

1 )(p,ξ) = T(nT (p)+ξ)Rn+1
1 ≡ TpRn+1

1 , we
have

T(p,ξ)N1(M)[nT ] = TpM ⊕ TξS
k−2 ⊂ TpM ⊕Np(M) = TpRn+1

1 ,

where TξS
k−2 ⊂ TξNp(M) ≡ Np(M) and p = X(u). Let

Πt : LG(nT )∗TRn+1
1 = TN1(M)[nT ]⊕ Rk+1 −→ TN1(M)[nT ]

be the canonical projection. Then we have a linear transformation

Sℓ(n
T )(p,ξ) = −Πt

LG(nT )(p,ξ) ◦ d(p,ξ)LG(nT ) : T(p,ξ)N1(M)[nT ] −→ T(p,ξ)N1(M)[nT ],

which is called the lightcone shape operator ofN1(M)[nT ] at (p, ξ). Let κℓ(n
T )i(p, ξ) be the

eigenvalues of Sℓ(n
T )(p,ξ), (i = 1, . . . , n− 1). Here, we denote κℓ(n

T )i(p, ξ), (i = 1, . . . , s)
as the eigenvalues belonging to the eigenvectors on TpM and κℓ(n

T )i(p, ξ), (i = s +
1, . . . n − 1) as the eigenvalues belonging to the eigenvectors on the tangent space of the
fiber of N1(M)[nT ]. We have shown in [19] that κℓ(n

T )i(p, ξ) = −1, (i = s+1, . . . n− 1).
We call κℓ(n

T )i(p, ξ), (i = 1, . . . , s) the lightcone principal curvatures of M with respect
to (nT , ξ) at p ∈ M. The lightcone Lipschitz-Killing curvature of N1(M)[nT ] at (p, ξ) is
defined to be Kℓ(n

T )(p, ξ) = detSℓ(n
T )(p,ξ).

We now define a mapping DG(nT ) : N1(M)[nt] −→ Sn
1 by DG(nT )(p, ξ) = ξ, which is

called the de Sitter Gauss image of N1(M)[nT ]. By the similar way to the above case, we
can define the de Sitter shape operator Sd(n

T )(p,ξ). The de Sitter principal curvatures ofM
with respect to (nT , ξ) at p ∈M are defined to be the eigenvalues of Sd(n

T )(p,ξ) belonging
to the eigenvectors on TpM , which are denoted by κd(n

T )i(p, ξ), (i = 1, . . . , s). We also
define a mapping G(nT ) :M −→ Hn(−1) by G(nT )(p) = nT (p).We call it the hyperbolic
Gauss image of M with respect to nT . We define the hyperbolic shape operator Sh(n

T )p
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with respect to nT by Sh(n
T ) = −πt◦dG(nT )(p), where πt : TpRn+1

1 = TpM⊕Np(M) −→
TM is the orthogonal projection under the identification of TnT (p)Rn+1

1 ≡ TpRn+1
1 .We also

define the hyperbolic principal curvatures κh(n
T )i(p) (i = 1, . . . , s) ofM as the eigenvalues

of Sh(n
T ). By the assertion (b) of Proposition 3.1, we have the following corollary:

Corollary 3.2 Under the above notations, we have the following assertions:

(1) The lightcone principal curvatures κℓ(n
T )i(p, ξ), (i = 1, . . . , s) are the eigenvalues of

the matrix (hji (n
T (p),nS(p))), where nS is the local section of N1(M)[nT ] with nT (p) = ξ.

(2) We have the following relation:

κℓ(n
T )i(p, ξ) = κh(n

T )i(p) + κd(n
T )i(p, ξ), (i = 1, . . . , s).

4 Lightlike hypersurfaces

We define a hypersurface

LHM(nT ) : N1(M)[nT ]× R −→ Rn+1
1

by
LHM((p, ξ), t) = X(u) + t(nT + ξ)(u) = X(u) + tLG(nT )(u, ξ),

where p = X(u), which is called the lightlike hypersurface along M relative to nT . In
general, a hypersurface H ⊂ Rn+1

1 is called a lightlike hypersurface if it is tangent to the
lightcone at any regular point. We remark that LHM(nT )(N1(M)[nT ]× R) is a lightlike
hypersurface.

We introduce the notion of Lorentzian distance-squared functions on spacelike sub-
manifold, which is useful for the study of singularities of lightlike hypersurfaces.

First we define a family of functions G :M × Rn+1
1 −→ R on a spacelike submanifold

M = X(U) by
G(p,λ) = G(u,λ) = ⟨X(u)− λ,X(u)− λ⟩,

where p = X(u). We call G the Lorentzian distance-squared function on the spacelike
submanifold M. For any fixed λ0 ∈ Rn+1

1 , we write gλ0(p) = G(p,λ0) and have the
following proposition.

Proposition 4.1 Let M be a spacelike submanifold and G : M × (Rn+1
1 \M) → R the

Lorentzian distance-squared function on M. Suppose that p0 ̸= λ0. Then we have the
following:

(1) gλ0(p0) = ∂gλ0/∂ui(p0) = 0 (i = 1, . . . , s) if and only if there exist ξ0 ∈ N1(M)p0 [n
T ]

and µ ∈ R \ {0} such that

p0 − λ0 = µLG(nT )(p0, ξ0).

(2) gλ0(p0) = ∂gλ0/∂ui(p0) = detH(gλ0)(p0) = 0 (i = 1, . . . , s) if and only if there
exist ξ ∈ N1(M)p0 [n

T ] and µ ∈ R \ {0} such that

p0 − λ0 = µLG(nT )(p0, ξ0)

and 1/µ is one of the non-zero lightcone principal curvatures κi(n
T )(p0, ξ0), (i = 1, . . . , s).

Here, H(gλ0)(p0) is the Hessian matrix of gλ0 at p0.
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Proof. (1) We denote that p = X(u). The condition gλ0(p) = ⟨X(u)−λ0,X(u)−λ0⟩ = 0
means that X(u)− λ0 ∈ LC∗. We observe that ∂g/∂ui((p) = 2⟨Xui

(u),X(u)− λ0⟩ = 0
if and only if X(u) − λ0 ∈ NpM. Hence gλ0(p0) = ∂gλ0/∂ui((p0) = 0 (i = 1, . . . , s) if
and only if p0 − λ0 ∈ NpM ∩ LC∗. Then we denote that v = X(u) − λ0 ∈ LC∗. If
⟨nT (u),v⟩ = 0, then nT (u) have to be lightlike or spacelike. This contradiction to the
fact that nT (u) is a timelike unit vector, so that ⟨nT (u),v⟩ ≠ 0. We set

ξ0 =
−1

⟨nT (u),v⟩
v − nT (u).

Then we have

⟨ξ0, ξ0⟩ = −2
−1

⟨nT (u),v⟩
⟨nT (u),v⟩ − 1 = 1

⟨ξ0,nT (u)⟩ =
−1

⟨nT (u),v⟩
⟨nT (u),v⟩+ 1 = 0.

This means that ξ0 ∈ N1(M)p(M). Since −v = ⟨nT (u),v⟩(nT (u)+ξ0), we have p0−λ0 =
µLG(nT )(p0, ξ0), where p0 = X(u) and µ = −⟨nT (u),v⟩. The converse assertion is trivial
by definition.

(2) By a straightforward calculation, we have

∂2g

∂ui∂uj
= 2

{
⟨Xuiuj

,X − λ0⟩+ ⟨Xui
,Xuj

⟩
}
.

Under the conditions p0 − λ0 = µ(nT (u) + ξ0) and p0 = X(u), we have

∂2g

∂ui∂uj
(u) = 2

{
⟨Xuiuj

(u), µ(nT (u) + ξ0)⟩+ gij(u)
}
.

Therefore, we have(
∂2g

∂ui∂uj
(u)

)(
gkℓ(u)

)
=

(
2
{
−µhij(nT (u),nS(u)) + δij

})
,

where nS is the local section of N1(M)[nT ] with nS(u) = ξ0. It follows that detH(g)(p0) =
0 if and only if 1/µ is an eigenvalue of (hij(n

T (u),nS(u))), which is equal to one of the
lightcone principal curvatures κi(n

T )(p0, ξ0), (i = 1, . . . , s) by Corollary 3.2. 2

In order to understand the geometric meanings of the assertions of Proposition 4.1, we
briefly review the theory of Legendrian singularities For detailed expressions, see [1, 30].
Let π : PT ∗(Rn+1) −→ Rn+1 be the projective cotangent bundle with its canonical contact
structure. We next review the geometric properties of this bundle. Consider the tangent
bundle τ : TPT ∗(Rn+) → PT ∗(Rn+1) and the differential map dπ : TPT ∗(Rn+1) →
TRn+1 of π. For any X ∈ TPT ∗(Rn+1), there exists an element α ∈ T ∗(Rn+1

1 such that
τ(X) = [α]. For an element V ∈ Tx(Rn+1), the property α(V ) = 0 does not depend on
the choice of representative of the class [α]. Thus we can define the canonical contact
structure on PT ∗(Rn+1) by

K = {X ∈ TPT ∗(Rn+1) | τ(X)(dπ(X)) = 0}.
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We have the trivialization PT ∗(Rn+1) ∼= Rn+1 × P n(R)∗, and call

((v0, v1, . . . , vn), [ξ0 : ξ1 : · · · : ξn])

homogeneous coordinates of PT ∗(Rn+1), where [ξ0 : ξ1 : · · · : ξn] are the homogeneous
coordinates of the dual projective space P n(R)∗.

It is easy to show that X ∈ K(x,[ξ]) if and only if
∑n

i=0 µiξi = 0, where dπ̃(X) =∑n
i=0 µi∂/∂vi. An immersion i : L → PT ∗(Rn+1) is said to be a Legendrian immersion if

dimL = n and diq(TqL) ⊂ Ki(q) for any q ∈ L. The map π ◦ i is also called the Legendrian
map and the set W (i) = imageπ ◦ i, the wave front set of i. Moreover, i (or, the image of
i) is called the Legendrian lift of W (i).

Let F : (Rk×Rn+1,0) −→ (R,0) be a function germ. We say that F is a Morse family
of hypersurfaces if the map germ

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn+1,0) −→ (R× Rk,0)

is submersive, where (q, x) = (q1, . . . , qk, x0, . . . , xn) ∈ (Rk×Rn+1,0). In this case we have
a smooth n-dimensional submanifold

Σ∗(F ) =
{
(q, x) ∈ (Rk × Rn+1,0)

∣∣∣ F (q, x) =
∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
and the map germ LF : (Σ∗(F ),0) −→ PT ∗Rn+1 defined by

LF (q, x) =

(
x,

[
∂F

∂x0
(q, x) : · · · : ∂F

∂xn
(q, x)

])
is a Legendrian immersion. We call F a generating family of LF , and the wave front set
is given by W (LF )= πn(Σ∗(F )), where πn : Rk × Rn −→ Rn is the canonical projection.
In the theory of unfoldings of function germs, the wave front set W (LF ) is called a
discriminant set of F, which we also denote DF . Therefore, Proposition 4.1 asserts that
the discriminant set of the Lorentzian distance-squared function G is given by

DG =
{
λ
∣∣∣ λ = X(p) + t(nT ± ξ)(p), p ∈M, ξ ∈ N1(M)p[n

T ], t ∈ R
}
,

which is the image of the lightlike hypersurface along M relative to nT .

By the assertion (2) of Proposition 4.1, a singular point of the lightlike hypersurface
is a point λ0 = p0 + t0(n

T + ξ0)(p0) for t0 = 1/κi(n
T )(p0, ξ0), i = 1, . . . .s). Then we have

the following corollary.

Corollary 4.2 The critical value of LHM(nT ) is the point where κi(n
T )(p, ξ) ̸= 0 and

λ = p+
1

κℓ(nT )i(p, ξ)
LG(nT )(p, ξ).

We define a mapping LFκℓ(nT )i
: N1(M)[nT ] −→ Rn+1

1 by

LFκℓ(nT )i
(p, ξ) = p+

1

κℓ(nT )i(p, ξ)
LG(nT )(p, ξ).
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We also define

LFM(nT ) =
∪{

LFκℓ(nT )i
(p, ξ) | (p, ξ) ∈ N1(M)[nT ] s.t. κℓ(n

T )i(p, ξ) ̸= 0, i = 1, . . . , s
}
.

We call LFM(nT ) the lightlike focal set of M = X(U) relative to nT . By definition, the
lightlike focal set of M = X(U) relative to nT is the critical values set of the lightlike
hypersurface LHM(nT )(N1(M)[nT ]× R) along M relative to nT .

We can show that the image of the lightlike hypersurface alongM is independent of the
choice of the future directed timelike normal vector field nT as a corollary of Proposition
4.1.

Corollary 4.3 Let nT and nT be future directed timelike unit normal fields along M .
Then we have

LHM(nT )(N1(M)[nT ]× R) = LHM(nT )(N1(M)[nT ]× R) and LFM(nT ) = LFM(nT ).

Proof. By Proposition 4.1, the both images of the lightlike hypersurface alongM relative
to nT and nT are the discriminant sets of the Lorentzian distance-squared function G on
M . Moreover, the focal set ofM is the critical value set of the lightlike hypersurface along
M relative to nT . Since G is independent of the choice of nT , we have the assertion. 2

We have the following proposition.

Proposition 4.4 Let G be the Lorentzian distance-squared function on M. For any point
(u,λ) ∈ G−1(0), the germ of G at (u,λ) is a Morse family of hypersurfaces.

Proof. We denote that

X(u) = (X0(u), X1(u), . . . , Xn(u)) and λ = (λ0, λ1, . . . , λn).

By definition, we have

G(u,λ) = −(X0(u)− λ0)
2 + (X1(u)− λ1)

2 + · · ·+ (Xn(u)− λn)
2.

We now prove that the mapping

∆∗G =

(
G,

∂G

∂u1
, . . . ,

∂G

∂us

)
is non-singular at (u,λ) ∈ G−1(0). Indeed, the Jacobian matrix of ∆∗G is given by

2(X0 − λ0) −2(X1 − λ1) · · · −2(Xn − λn)

A 2X0u1 −2X1u1 · · · −2Xnu1

...
...

. . .
...

2X0us −2X1us · · · −2Xnus

 ,

whereA is the following matrix:
2⟨X − λ,Xu1⟩ · · · 2⟨X − λ,Xus⟩

2(⟨Xu1 ,Xu1⟩+ ⟨X − λ,Xu1u1⟩) · · · 2(⟨Xu1 ,Xus⟩+ ⟨X − λ,Xu1us⟩)
...

. . .
...

2(⟨Xus ,Xu1⟩+ ⟨X − λ,Xusu1⟩) · · · 2(⟨Xus ,Xus⟩+ ⟨X − λ,Xusus⟩)

 .
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Since X is an immersion, the rank of the matrix 2X0u1 −2X1u1 · · · −2Xnu1

...
...

. . .
...

2X0us −2X1us · · · −2Xnus

 .

is equal to s. Moreover, X −λ is lightlike, so that it is linearly independent with respect
to tangent vectors Xu1 , . . . ,Xus . This means that the rank of the matrix

2(X0 − λ0) −2(X1 − λ1) · · · −2(Xn − λn)
2X0u1 −2X1u1 · · · −2Xnu1

...
...

. . .
...

2X0us −2X1us · · · −2Xnus


is equal to s+ 1. Therefore the Jacobi matrix of ∆∗G is non-singular at (u,λ) ∈ G−1(0).
2

Since G is a Morse family of hypersurfaces, we have a Legendrian immersion

LG : Σ∗(G) −→ PT ∗(Rn+1
1 )

defined by

LG(u,λ) = (λ, [(X0(u)− λ0) : (λ1 −X1(u)) : · · · : (λn −Xn(u))]),

where

Σ∗(G) = {(u,λ) | λ = LHM(nT )(p, ξ, t) ((p, ξ), t) ∈ N1(M)[nT ]× R}.

We observe that G is a generating family of the Legendrian immersion LG whose wave
front is LHM(nT )(N1(M)[nT ] × R). Therefore we say that the Lorentzian distance-
squared function G on M gives a Lorentz-Minkowski-canonical generating family for the
Legendrian lift of LHM(nT )(N1(M)[nT ]× R).

5 Contact with lightcones

In this section we consider the geometric meanings of the singularities of lightlike hy-
persurfaces from the view point of the theory of contact of submanifolds with model
hypersurfaces in [25]. We begin with the following basic observations.

Proposition 5.1 Let λ0 ∈ Rn+1
1 and M a spacelike submanifold without points satisfying

Kℓ(n
T )(p, ξ) = 0. Then M ⊂ LCλ0 if and only if λ0 = LFM(nT ) is the lightcone focal set.

In this case we have LHM(nT )(N1(M)[nT ]) ⊂ LCλ0 and M = X(U) is totally lightcone
umbilical.

Proof. By Proposition 3.1, Kℓ(n
T )(p0, ξ0) ̸= 0 if and only if

{(nT + nS), (nT + nS)u1 , . . . , (n
T + nS)us}
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is linearly independent for p0 = X(u0) ∈ M and ξ0 = nS(u0), where nS : U −→
N1(M)[nT ] is a local section. By definition, M ⊂ LCλ0 if and only if gλ0(u) ≡ 0 for
any u ∈ U, where gλ0(u) = G(u,λ0) is the Lorentzian distance-squared function on M. It
follows from Proposition 4.1 that there exists a smooth function µ : U×N1(M)[nT ] −→ R
and section nS : U −→ N1(M)[nT ] such that

X(u) = λ0 + µ(u,nS(u))(nT (u)± nS(u)).

In fact, we have µ(u,nS(u)) = −1/κℓ(n
T )i(p, ξ) i = 1, . . . , s, where p = X(u) and

ξ = nS(u). It follows that κℓ(n
T )i(p, ξ) = κ̃ℓ(n

T )j(p, ξ), so that M = X(U) is totally
lightcone umbilical. Therefore we have

LHM(nT )(u,nS(u), t) = λ0 + (t+ µ(u,nS(u))(nT (u)± nS(u)).

Hence we have LHM(nT )(N1(M)[nT ]) ⊂ LCλ0 . By Corollary 5.2, the critical value set of
LHM(nT )(N1(M)[nT ]) is the lightcone focal set LFM(nT ). However, it is equal to λ0 by
the previous arguments.

For the converse assertion, suppose that λ0 = LFM(nT ). Then we have

λ0 = X(u) +
1

κℓ(nT )i(X(u), ξ)
LG(nT )(u, ξ),

for any i = 1, . . . , s and (p, ξ) ∈ N1(M)[nT ], where p = X(u). Thus, we have

κℓ(n
T )i(X(u), ξ) = κℓ(n

T )j(X(u), ξ)

for any i, j = 1, . . . , s, so that M is totally lightcone umbilical. Since LG(nT )(u, ξ) is
lightlike, we have X(u) ∈ LCλ0 . This completes the proof. 2

According to the above proposition, the lightcone is regarded as a model lightlike hy-
persurface in Rn+1

1 .We now consider the contact of spacelike submanifolds with lightcones
in the view of Montaldi’s theory. We review the theory of contact for submanifolds in [25].
LetXi and Yi, i = 1, 2, be submanifolds of Rn with dimX1 = dimX2 and dimY1 = dimY2.
We say that the contact of X1 and Y1 at y1 is same type as the contact of X2 and Y2 at
y2 if there is a diffeomorphism germ Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and
Φ(Y1) = Y2. In this case we write K(X1, Y1; y1) = K(X2, Y2; y2). Since this definition of
contact is local, we can replace Rn by arbitrary n-manifold. Montaldi gives in [25] the
following characterization of contact by using K-equivalence.

Theorem 5.2 Let Xi and Yi, i = 1, 2, be submanifolds of Rn with dimX1 = dimX2 and
dimY1 = dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→
(Rp, 0) be submersion germs with (Yi, yi) = (f−1

i (0), yi). Then

K(X1, Y1; y1) = K(X2, Y2; y2)

if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

On the other hand, we return to the review on the theory of Legendrian singularities.
We introduce a natural equivalence relation among Legendrian submanifold germs. Let
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F,G : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces. Then we say that
LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if there exists a contact diffeomor-
phism germ H : (PT ∗Rn, z) −→ (PT ∗Rn, z′) such that H preserves fibers of π and that
H(LF (Σ∗(F ))) = LG(Σ∗(G)), where z = LF (0), z

′ = LG(0). By using the Legendrian
equivalence, we can define the notion of Legendrian stability for Legendrian submanifold
germs by the ordinary way (see, [1, Part III]). We can interpret the Legendrian equiv-
alence by using the notion of generating families. We denote by En the local ring of
function germs (Rn,0) −→ R with the unique maximal ideal Mn = {h ∈ En | h(0) = 0 }.
Let F,G : (Rk × Rn,0) −→ (R,0) be function germs. We say that F and G are P -K-
equivalent if there exists a diffeomorphism germ Ψ : (Rk ×Rn,0) −→ (Rk ×Rn,0) of the
form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈ (Rk×Rn,0) such that Ψ∗(⟨F ⟩Ek+n

) = ⟨G⟩Ek+n
.

Here Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra isomorphism defined by Ψ∗(h) = h◦Ψ.
We say that F is an infinitesimally K-versal deformation of f = F |Rk × {0} if

Ek = Te(K)(f) +

⟨
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

⟩
R
,

where

Te(K)(f) =

⟨
∂f

∂q1
, . . . ,

∂f

∂qk
, f

⟩
Ek
.

(See [22].) The main result in the theory of Legendrian singularities ([1], §20.8 and [30],
THEOREM 2) is the following:

Theorem 5.3 Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces.
Then we have the following assertions:

(1) LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent if and only if F and G are
P -K-equivalent,

(2) LF (Σ∗(F )) is Legendrian stable if and only if F is an infinitesimally K-versal defor-
mation of f = F |Rk × {0}.

Since F and G are function germs on the common space germ (Rk ×Rn,0), we do not
need the notion of stably P -K-equivalences under this situation [30, page 27]. For any map
germ f : (Rn,0) −→ (Rp,0), we define the local ring of f by Qr(f) = En/(f ∗(Mp)En +
Mr+1

n ). We have the following classification result of Legendrian stable germs (cf. [15,
Proposition A.4]) which is the key for the purpose in this section.

Proposition 5.4 Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces
and f = F |Rk × {0}, g = G|Rk × {0}. Suppose that LF and LG are Legendrian stable.
The the following conditions are equivalent:

(1) (W (LF ),0) and (W (LG),0) are diffeomorphic as set germs,

(2) LF (Σ∗(F )) and LG(Σ∗(G)) are Legendrian equivalent,

(3) Qn+1(f) and Qn+1(g) are isomorphic as R-algebras.

Returning to lightlike hypersurfaces, we now consider the function

G : Rn+1
1 × Rn+1

1 −→ R
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defined by G(x,λ) = ⟨x− λ,x− λ⟩. Given λ0 ∈ Rn+1
1 , we denote gλ0(x) = G(x,λ0), so

that we have g−1
λ0
(0) = LCλ0 . For any p0 = X(u0) ∈M , t0 ∈ R and ξ0 ∈ N1(M)p[n

T ], we
consider the point λ0 = X(u0) + t0(n

T (u0) + ξ0). Then we have

gλ0 ◦X(u0)) = G ◦ (X × 1Rn+1
1

)(u0,λ0) = G(p0,λ0) = 0,

where t0 = 1/κℓ(n
T )i(p0, ξ0), i = 1, . . . , s. We also have relations

∂gλ0 ◦X
∂ui

(u0) =
∂G

∂ui
(p0,λ0) = 0, i = 1, . . . , s.

These imply that the lightcone g−1
λ0
(0) = LCλ0 is tangent to M = X(U) at p0 = X(u0).

In this case, we call LCλ0 a tangent lightcone of M = X(U) at p0 = X(u0).

We now describe the contacts of spacelike submanifolds with lightcones. We de-
note by Qσ(X, u0) the local ring of the function germ g̃λσ

0
: (U, u0) −→ R, where

λ0 = LCM(u0, ξ0, t0). We remark that we can explicitly write the local ring as follows:

Qn+1(X, u0) =
C∞

u0
(U)

⟨⟨X(u)− λ0,X(u)− λ0⟩⟩C∞
u0

(U) +Mu0(U)
n+2 ,

where C∞
u0
(U) is the local ring of function germs at u0.

Let LHMi
(nT

i ) : (N1(Mi)[n
T
i ]×R, (pi, ξi, ti)) −→ (Rn+1

1 ,λi), (i = 1, 2) be two lightlike
hypersurface germs of spacelike submanifold germs X i : (U, u

i) −→ (Rn+1
1 , pi). Let Gi :

(U×Rn+1
1 , (ui,λσ

i )) −→ R be the Lorentzian distance-squared function germ of X i. Then
we have the following theorem:

Theorem 5.5 Let X i : (U, u
i) −→ (Rn+1

1 , pi), i = 1, 2, be spacelike surface germs such
that the corresponding Legendrian submanifold germs LGi

(Σ∗(Gi)) are Legendrian stable.
Then the following conditions are equivalent:

(1) (LHM1(N1(M1)[n
T
1 ]×R),λ1) and (LHM2(N1(M2)[n

T
2 ]×R),λ2) are diffeomorphic,

(2) (LG1(Σ∗(G1)), (u
1,λ1)) and (LG2(Σ∗(G2)), (u

2,λ2)) are Legendrian equivalent,

(3) G1 and G2 are P -K-equivalent,

(4) g1,λ1 and g2,λ2 are K-equivalent,

(5) K(X1(U), LCλ1 , p1) = K(X2(U), LCλ2 , p2).

(6) Qn+1(X1, u
1) and Qn+1(X2, u

2) are isomorphic as R-algebras.

Proof. By Proposition 6.4, the conditions (1), (2) and (6) are equivalent. This condition is
also equivalent to that two generating families G1 and G2 are P -K-equivalent by Theorem
6.3. If we denote gi,λi

(u) = Gi(u,λi), then we have gi,λi
(u) = gλi

◦X i(u). By Theorem 6.2,
K(X1(U), LCλ1 , p1) = K(x2(U), LCλ2, p2) if and only if g̃1,λ1 and g̃2,λ2 are K-equivalent.
This means that (4) and (5) are equivalent. By definition, (3) implies (4). The uniqueness
of the infinitesimally K-versal deformation of gi,λi

[22] leads that the condition (4) implies
(3). This completes the proof. 2

For a spacelike embedding germ X : (U, u0) −→ (Rn+1
1 , p0), we consider a set germ

(X−1(LCλ0), u0), which is called the tangent lightcone indicatrix germ of X, where λ0 =
LHM(p0, ξ0, t0) and t0 = −1/κℓ(n

T )i(p0, ξ0)(i = 1, . . . s). We have the following corollary
of Theorem 5.5.
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Corollary 5.6 Under the assumptions of Theorem 5.5, if the lightlike hypersurface germs
(LHM1(N1(M1)[n

T
1 ] × R),λ1) and (LHM2(N1(M2)[n

T
2 ] × R),λ2), then tangent lightcone

indicatrix germs
(X−1

1 (LCλ1), u
1) and (X−1

2 (LCλ2), u
2)

are diffeomorphic as set germs.

Proof. Notice that the tangent lightcone indicatrix germ of X i is the zero level set of
gi,λi

. Since K-equivalence among function germs preserves the zero-level sets of function
germs, the assertion follows from Theorem 5.5. 2

On the other hand, we consider generic properties of lightlike hypersurfaces along
spacelike submanifolds. Let Embsp (U,Rn+1

1 ) be the space of spacelike embeddings with
the Whitney C∞-topology for an open set U ⊂ Rn+1

1 . We consider the function G :
Rn+1

1 ×Rn+1
1 −→ R again. We claim that gλ is a submersion at x ̸= λ for any λ ∈ Rn+1

1 .
For any X ∈ Embsp (U,Rn+1

1 ), we have G = G ◦ (X × 1Rn+1
1

). We have the r-jet extension

jr1G : U × Rn+1
1 −→ Jr(U,R) defined by jr1G(u,λ) = jrgλ(u), where J

k(U,R) is the k-jet
space of functions on U. We consider the trivialization Jr(U,R) ≡ U × R × Jr(s, 1). For

any submanifold Q ⊂ Jr(s, 1), we denote that Q̃ = U × R×Q. As an application of [29,
Lemma 6], the set

TQ = {X ∈ Embsp (U,Rn+1
1 ) | jr1G is transversal to Q̃ }

is a residual set of Embsp (U,Rn+1
1 ). Moreover, if Q is a closet subset , then TQ is open.

It is known [8] that there exists a semi-algebraic set W r(s, 1) ⊂ Jk(s, 1) and a stratifica-
tion Ar(s, 1) of Jk(s, 1) \W r(s, 1) such that limk 7→∞ codW r(s, 1) = +∞. The stratifica-
tion Ar(s, 1) is called the canonical stratification. We define a stratification Ar(U,R) of
Jr(U,R) \W r(U,R) by

U × (R \ {0})× (Jr(s, 1) \W r(s, 1)), U × {0} × Ar(s, 1),

where W r(U,R) = U × R × W r(s, 1). In [28], it was shown that if jr1G(U × Rn+1
1 ) ∩

W r(U,R) = ∅ and jr1G is transversal to Ar(U,R), then the map π|G−1(0) : G−1(0) −→ R
is MT-stable map-germ at each point, where π : U ×Rn+1

1 −→ Rn+1
1 is the canonical pro-

jection. Here, a map germ is said to be MT-stable if the jet extension is transversal to the
canonical stratification of the jet space of sufficiently higher order (cf., [8, 23]). The main
result of the theory of Topological stability of Mather is that MT-stability implies topo-
logical stability. By Proposition 4.1, the lightlike hypersurface LHM(nT )(N1(M)[nT ]×R)
is the discriminant set of G, which is equal to the critical value set of π|G−1(0). Since
codW r(U,R) > s+ n+ 1 for sufficiently large k, the set

O1 = {X ∈ Embsp (U,Rn+1
1 ) | jr1G(U × Rn+1

1 ) ∩W r(U,R) = ∅ }

is a residual set. It follows that the set

O = {X ∈ O1 | jr1G is transversal to Ar(U,R) }

is a residual set. Therefore, we have the following theorem.
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Theorem 5.7 There exists a residual set O ⊂ Embsp (U,Rn+1
1 ) such that for any X ∈ O,

the germ of the lightlike hypersurface LHM(nT )(N1(M)[nT ]× R) at any point is a germ
of the critical value set of an MT-stable map germ.

In the case when n ≤ 5, by the classification results of the K-equivalence among function
germs, the canonical stratification Ak(s, 1) is given by the finite collection of the K-orbits.
Moreover, if jr1G is transversal to the K-orbit of jrgλ0(u0) for sufficiently large r, then G
is an infinitesimally K-versal deformation of gλ at (u0,λ0) [22]. By Theorem 5.3, we have
the following theorem.

Theorem 5.8 Suppose that n ≤ 5. Then there exists a residual set O ⊂ Embsp (U,Rn+1
1 )

such that for any X ∈ O, the germ of the lightlike hypersurface LHM(nT )(N1(M)[nT ]×R)
at any point is the germ of the wave front set of a stable Legendrian submanifold germ
LG(Σ∗(G)).

6 Spacelike submanifolds with codimension two

In the case when s = n − 1, N1(M)[nT ] is a double covering of M = X(U). We can
construct a spacelike unit normal section nS(u) ∈ Np(M) by

nS(u) =
nT (u) ∧Xu1(u) ∧ · · · ∧Xun−1(u)

∥nT (u) ∧Xu1(u) ∧ · · · ∧Xun−1(u)∥
.

Then σ±(u) = (X(u),±nS(u)) are sections of N1(M)[nT ]. Clearly, the vectors nT (u)±
nS(u) are lightlike. In [17], it was shown that nT (u)± nS(u), n̄T (u)± n̄S(u) are respec-
tively parallel for any two future directed unit timelike normal sections nT (u), n̄T (u) ∈
Np(M). Therefore, ˜nT (u)± nS(u) = ˜n̄T (u)± n̄S(u). It follows that we have a mapping

L̃G
±

: U −→ Sn−1
+ defined by L̃G

±
(u) = ˜nT (u)± nS(u). We call one of L̃G

±
a nor-

malized lightcone Gauss map of M = X(U), which is independent of the choice of nT .
Since Np(M)[nT ] is a spacelike line in Np(M), we have ξ = nS(u) or ξ = −nS(u) for any

(X(u), ξ) ∈ N1(M)[nT ]. In [17], the normalized lightcone shape operator S̃±
ℓ,p : TpM →

TpM was defined by taking the derivative of the normalized lightcone Gauss map L̃G
±
.

The normalized principal curvatures {κ̃±ℓ,i(p)}
n−1
i=1 are defined to be the eigenvalues of the

normalized lightcone shape operator S̃±
ℓ,p. It was shown that

κ̃±ℓ,i(p) =
1

ℓ±0 (p)
κi(n

T ,±nS)(p),

where nT (u)±nS(u) = (ℓ±0 (p), ℓ
±
1 (p), . . . , ℓ

±
n (p)) and p = X(u).We define the normalized

lightlike hypersurface alongM = X(U) as the images of the maps L̃H
±
M : U×R −→ Rn+1

1

defined by L̃H
±
M(u, t) = X(u) + tL̃G

±
(u). Since

L̃G
±
(u) =

1

ℓ±0 (p)
(nT (u)± nS(u)) =

1

ℓ±0 (p)
LG(nT )(p,nS(u)),
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we have
LHM(N1(M)[nT ]× R) = L̃H

+

M(U × R) ∪ L̃H
−
M(U × R).

In this case the singular value of L̃H
±
M(U × R) is the point where κ̃±ℓ,i(p) ̸= 0 and

λ± = X(u) +
1

κ̃±ℓ,i(p)
L̃G

±
(u) = X(u) +

1

κi(nT ,±nS)(p)
LG(nT )(p,±nS(u)).

Therefore we have a mapping L̃E
±
κ̃±
ℓ,i

: U −→ Rn+1
1 defined by

L̃E
±
κ̃±
ℓ,i
(u) = X(u) +

1

κ̃±ℓ,i(u)
L̃G

±
(u).

Then we define

L̃E
±
M =

∪{
L̃E

±
κ̃±
ℓ,i
(u) | u ∈ U such that κ̃±ℓ,i(u) ̸= 0, i = 1, . . . , n− 1.

}
.

By the above arguments, we know that L̃E
±
M is nothing but the lightlike focal set of

M = X(U). However, we call it the lightlike evolute of M = X(U) in the case when
codimM = 2.

The lightlike hypersurface L̃H
±
M(U ×R) for a spacelike surface M = X(U) in R4

1 was
investigated in [15] under a slightly different formulation. By a classification of stable
Legendrian mappings in [30], we have the following proposition (cf., [15]).

Proposition 6.1 There exists an open dense subset O ⊂ Embsp (U,R4
1) such that for any

X ∈ O, the germ of the normalized lightlike hypersurfaces L̃H
±
M(U × R) at any point is

diffeomorphic to the image of one of the map germs Ak (1 ≤ k ≤ 4) or D±
4 : where,

Ak, D
±
4 -map germs f : (R3, 0) −→ (R4, 0) are given by

(A1) f(u1, u2, u3) = (u1, u2, u3, 0),

(A2) f(u1, u2, u3) = (3u21, 2u
3
1, u2, u3),

(A3) f(u1, u2, u3) = (4u31 + 2u1u2, 3u
4
1 + u2u

2
1, u2, u3),

(A4) f(u1, u2, u3) = (5u41 + 3u2u
2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u1, u2),

(D+
4 ) f(u1, u2, u3) = (2(u21 + u22) + u1u2u3, 3u

2
1 + u2u3, 3u

2
2 + u1u3, u3),

(D−
4 ) f(u1, u2, u3) = (2(u31 − u1u

2
2) + (u21 + u22)u3, u

2
2 − 3u21 − 2u1u3, u1u2 − u2u3, u3).

By using the generic normal forms [30] of generating families (i.e. Lorentzian distance
squared functions) of LG(Σ∗(G)) and Corollary 5.6, we have the following corollary.

Corollary 6.2 There exists an open dense subset O ⊂ Embsp (U,R4
1) such that for any

X ∈ O, the germ of the corresponding tangent lightcone indicatrix at any point (x0, y0) ∈
U is diffeomorphic to one of the germs in the following list:

(1) {(x, y) ∈ (R2, 0) | x3 + y2 = 0 } (ordinary cusp)

(2) {(x, y) ∈ (R2, 0) | x4 ± y2 = 0 } (tachnode or point)

(3) {(x, y) ∈ (R2, 0) | x5 + y2 = 0 } (rhamphoid cusp)

(4) {(x, y) ∈ (R2, 0) | x3 − xy2 = 0 } (three lines)

(5) {(x, y) ∈ (R2, 0) | x3 + y3 = 0 } (line)
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In [9] the lightlike surface along a spacelike curve in R3
1 was investigated. Here, we

give a brief review on the results. Let γ : I −→ R3
1 be a unit speed spacelike curve

with ∥γ ′′(s)∥ ̸= 0, where I is an open interval. Then we define t(s) = γ ′(s) and call
t(s) a unit tangent vector of γ at s. The curvature of γ at s is defined to be κ(s) =√
|⟨γ ′′(s),γ ′′(s)⟩|. If κ(s) ̸= 0, then the unit principal normal vector n(s) of the curve

γ at s is given by γ ′′(s) = κ(s)n(s). We denote that δ(γ(s)) = sign(n(s)). The unit
vector b(s) = t(s) ∧ n(s) is called a unit binormal vector of the curve γ at s. Since t(s)
is spacelike, we have ⟨b(s), b(s)⟩ = −δ(γ(s)) and sign (γ ′(s)) = 1 Then the following
Frenet-Serret type formulae hold:

t′(s) = κ(s)n(s),
n′(s) = −δ(γ(s))κ(s)t(s) + τ(s)b(s),
b′(s) = τ(s)n(s),

where τ(s) is the torsion of the curve γ at s. In this case we distinguish two cases as
follows:

Case 1) If δ(γ) = −1, then n is timelike, so the we choose nT = n. We now consider
the lightlike surface LH±

C [n](I × R) along C = γ(I) defined by

LH±
C [n](s, t) = γ(s) + t(n± b)(s).

By the Frenet-Serret type formulae, we have

n′(s)± b′(s) = −δ(γ(s))κ(s)t(s) + τ(s)(b(s)± n(s)),

so that κ±ℓ (s) = δ(γ(s))κ(s) = −κ(s).
Case 2) If δ(γ) = 1, then n is spacelike, so the we choose nT = b. We now consider the
lightlike surface LH±

C [b](I × R) along C = γ(I) defined by

LH±
C [b](s, t) = γ(s) + t(b± n)(s).

We also have

b′(s)± n′(s) = ∓δ(γ(s))κ(s)t(s) + τ(s)(b(s)± n(s)),

so that κ±ℓ (s) = ±δ(γ(s))κ(s) = ±κ(s).
On the other hand, we have

γ(s) + t(b± n)(s) = γ(s)± t(n± b)(s).

If we define a diffeomorphism Ψ± : I × R −→ I × R by Ψ±(s, t) = (s,±t), then we
have LH±

C [b] = LH±
C [n] ◦ Ψ±. Therefore, we have LH±

C [b](I × R) = LH±
C [n](I × R). The

assertions of Theorem B in [9] can be interpreted as the following theorem under the
framework in this paper.

Theorem 6.3 1) Suppose that δ(γ) = −1. Then we have the followings:

(a) The lightlike surface LH±
C [n](I × R) is locally diffeomorphic to the cuspidal edge at

LH±
C [n](s0, t0) if and only if t0 =

−1

κ(s0)
=

−1

κ±ℓ (s0)
. Moreover, the the lightlike evolute LE±

C

is the critical locus of the cuspidal edge.
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(b) The lightlike surface LH±
C [n](I × R) is locally diffeomorphic to the swallowtail at

LH±
C [n](s0, t0) if and only if t0 =

−1

κ(s0)
=

−1

κ±ℓ (s0)
, (κ′ − τκ)(s) = 0 and (κ′ − τκ)′(s) ̸= 0.

2) Suppose that δ(γ) = 1. Then we have the followings:

(a) The lightlike surface LH±
C [b](I × R) is locally diffeomorphic to the cuspidal edge at

LH±
C [b](s0, t0) if and only if t0 =

±1

κ(s0)
=

1

κ±ℓ (s0)
. Moreover, the the lightlike evolute LE±

C

is the critical locus of the cuspidal edge.

(b) The lightlike surface LH±
C [b](I × R) is locally diffeomorphic to the swallow tail at

LH±
C [b](s0, t0) if and only if t0 = ± 1

κ(s0)
=

1

κ±ℓ (s0)
, (κ′−τκ)(s) = 0 and (κ′−τκ)′(s) ̸= 0.

Here, the cuspidaledge is a set germ CE = {(u1, u22, u32)|(u1, u2) ∈ R2} and the swal-
lowtail is a set germ SW = {(3u41 + u21u2, 4u

3
1 + 2u1u2, u2)|(u1, u2) ∈ R2} (cf., Fig.2).

cuspidaledge swallowtail
Fig. 2.

7 Spacelike curves in Minkowski 4-space

In §6 we investigated the spacelike submanifolds with codimension two, and we have a clas-
sification of the singularities of the lightlike hypersurfaces in R4

1. In this section we consider
the higher codimensional case in R4

1, that is spacelike curves in Minkowski 4-space as a spe-
cial case as the previous results. Let γ : I −→ R4

1 be a spacelike curve with ∥γ ′′(s)∥ ̸= 0.
In this case we write C = γ(I) instead of M = γ(I). Since ∥γ ′(s)∥ > 0, we can reparam-
eterize it by the arc-length s. So we have the unit tangent vector t(s) = γ ′(s) of γ(s).

Moreover we have two unit normal vectors n1(s) =
γ ′′(s)

κ1(s)
, n2(s) =

n′
1(s) + δκ1(s)t(s)

∥n′
1(s) + δκ1(s)t(s)∥

under the conditions that κ1(s) = ∥γ ′′(s)∥ ̸= 0, κ2(s) = ∥n′
1(s) + δk1(s)t(s)∥ ̸= 0, where

δi = sign(ni(s)) and sign(ni(s)) is the signature of ni(s) (i = 1, 2, 3). Then we have an-
other unit normal vector field n3(s) defined by n3(s) = t(s)∧n1(s)∧n2(s). Therefore we
can construct a pseudo-orthogonal frame {t(s),n1(s),n2(s),n3(s)}, which satisfies the
Frenet-Serret type formulae:

t′(s) = κ1(s)n1(s),
n′

1(s) = −δ1κ1(s)t(s) + κ2(s)n2(s),
n′

2(s) = δ3κ2(s)n1(s) + κ3(s)n3(s),
n′

3(s) = δ1κ3(s)n2(s),
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where κ2(s) = δ2⟨n′
1(s),n2(s)⟩ and κ3(s) = δ3⟨n′

2(s),n3(s)⟩. Since t(s) is spacelike, we
distinguish the following three cases:

Case 1: n1(s) is timelike, that is, δ1 = −1 and δ2 = δ3 = 1.

Case 2: n2(s) is timelike, that is, δ2 = −1 and δ1 = δ3 = 1.

Case 3: n3(s) is timelike, that is, δ3 = −1 and δ1 = δ2 = 1.

We consider the lightlike hypersurface along C, and calculate the Lorentzian distance-
squared function on C which is useful for the study the singularities of lightlike hypersur-
faces in the each case.

7.1 Case 1

Suppose that n1(s) is timelike. In this case we adopt nT (s) = n1(s) and denote that
b1(s) = n2(s), b2(s) = n3(s). Then we have the pseudo-orthogonal frame

{t(s),nT (s), b1(s), b2(s)},

δ1 = −1 and δ2 = δ3 = 1, which satisfies the following Frenet-Serret type formulae:
t′(s) = κ1(s)n

T (s),

nT ′
(s) = κ1(s)t(s) + κ2(s)b1(s),

b′1(s) = κ2(s)n
T (s) + κ3(s)b2(s),

b′2(s) = −κ3(s)b1(s).

Since N1(C)[n
T ] is parametrized by

N1(C)[n
T ] = {(γ(s), ξ) ∈ γ∗TR4

1 | ξ = cos θb1(s) + sin θb2(s) ∈ Nγ(s)(C), s ∈ I},

the lightcone Gauss image of N1(C)p[n
T ] is given by

LG(nT )(s, θ) = nT (s) + cos θb1(s) + sin θb2(s).

Then we have the lightlike hypersurface along C

LHC((s, θ), t) = γ(s) + t(nT (s) + cos θb1(s) + sin θb2(s)) = γ(s) + tLG(nT )(s, θ).

We remark that the image of this lightlike hypersurface along C is independent of the
choice of the future directed timelike normal vector field nT by Corollary 5.3.

Now we investigate the Lorentzian distance-squared functions G : I × R4
1 −→ R on a

spacelike curve C = γ(I) defined by

G(p,λ) = G(s,λ) = ⟨γ(s)− λ,γ(s)− λ⟩,

where p = γ(s). For any fixed λ0 ∈ R4
1, we write g(p) = gλ0(p) = G(p,λ0).

By Proposition 4.1, the discriminant set of the Lorentzian distance-squared function G is
given by

DG = LHC(N1(C)[n
T ]× R) =

{
λ = γ(s) + tLG(s, θ)

∣∣∣ θ ∈ [0, 2π), s ∈ I, t ∈ R
}
,
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which is the image of the lightlike hypersurface along C. We also calculate that g′′(p) =
2⟨γ ′′(s),γ(s) − λ0⟩ + 2⟨γ ′(s),γ ′(s)⟩ = 2(−µκ1 + 1). Then g′′(p) = 0 if and only if µ =
1/κ1(s). It means that a singular point of the lightlike hypersurface is a point λ0 =
γ(s0) + t0LG(θ0, s0) for t0 = 1/κ1(s0). Therefore, the lightlike focal surface is

LFC =
{
λ = γ(s)− 1

κ1(s)
LG(nT )(s, θ)

∣∣∣ s ∈ I, θ ∈ [0, 2π)
}
.

Moreover, if we calculate the third, 4th and 5th derivatives of g(s), we have the
following proposition.

Proposition 7.1 Let C be a spacelike curve and G : C × (R4
1 \ C) → R the Lorentzian

distance-squared function on C. Suppose that p0 = γ(s0) ̸= λ0. Then we have the follow-
ings:

(1) g(p0) = g′(p0) = 0 if and only if there exist θ0 ∈ [0, 2π) and µ ∈ R \ {0} such that

γ(s0)− λ0 = µLG(nT )(s0, θ0).

(2) g(p0) = g′(p0) = g′′(p0) = 0 if and only if there exists θ0 ∈ [0, 2π) such that

γ(s0)− λ0 =
1

κ1(s0)
LG(nT )(s0, θ0).

(3) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = 0 if and only if there exists θ0 ∈ [0, 2π) such that

γ(s0)− λ0 =
1

κ1(s0)
LG(nT )(s0, θ0)

and κ′1(s0)− cos θ0κ1(s0)κ2(s0) = 0, so that we can write θ0 = θ(s0).

(4) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = g(4)(p0) = 0 if and only if there exists θ0 = θ(s0) ∈
[0, 2π) such that

γ(s0)− λ0 =
1

κ1(s0)
LG(nT )(s0, θ(s0)),

κ′1(s0)− cos θ(s0)κ1(s0)κ2(s0) = 0 and (2κ′1(s0)κ2(s0) + κ1(s0)κ
′
2(s0)) cos θ(s0)− κ′′1(s0)−

κ1(s0)κ
2
2(s0) + κ1(s0)κ2(s0)κ3(s0) sin θ(s0) = 0.

(5) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = g(4)(p0) = g(5)(p0) = 0 if and only if there exists
θ0 = θ(s0) ∈ [0, 2π) such that

γ(s0)− λ0 =
1

κ1(s0)
LG(nT )(s0, θ(s0)),

κ′1(s0) − cos θ(s0)κ1(s0)κ2(s0) = 0, (2κ′1(s0)κ2(s0) + κ1(s0)κ
′
2(s0)) cos θ(s0) − κ′′1(s0) −

κ1(s0)κ
2
2(s0)+κ1(s0)κ2(s0)κ3(s0) sin θ(s0) = 0 and ((2κ′1(s0)κ2(s0)+κ1(s0)κ

′
2(s0)) cos θ(s0)−

κ′′1(s0)− κ1(s0)κ
2
2(s0) + κ1(s0)κ2(s0)κ3(s0) sin θ(s0))

′ = 0.

Taking account of the above proposition, we denote that ρ1(s, θ) = κ′1(s)−cos θκ1(s)κ2(s)
and η1(s, θ) = (2κ′1(s)κ2(s)+κ1(s)κ

′
2(s)) cos θ−κ′′1(s)−κ1(s)κ22(s)+κ1(s)κ2(s)κ3(s) sin θ,

which might be important invariants of C = γ(I). Then we can show that ρ1(s, θ) =
η1(s, θ) = 0 if and only if ρ1(s, θ) = σ1(s) = 0, where

σ1(s) =
[
κ1κ2(κ

′′
1 + κ1κ

2
2)− κ′1(2κ

′
1κ2 + κ1κ

′
2)∓ κ1κ2κ3

√
(κ1κ2)2 − (κ′1)

2
]
(s).
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7.2 Case 2

Suppose that n2(s) is timelike. Then we adopt nT (s) = n2(s) and denote that b1(s) =
n1(s), b2(s) = n3(s). We have a pseudo-orthogonal frame {t(s),nT (s), b1(s), b2(s)}, δ2 =
−1 and δ1 = δ3 = 1, which satisfies the following Frenet-Serret type formulae:

t′(s) = κ1(s)b1(s),
b′1(s) = −κ1(s)t(s) + κ2(s)n

T (s),

nT ′
(s) = κ2(s)b1(s) + κ3(s)b2(s),

b′2(s) = κ3(s)n
T (s),

Here, N1(C)[n
T ] is parametrized by

N1(C)[n
T ] = {(γ(s), ξ) ∈ γ∗TR4

1 | ξ = cos θb1(s) + sin θb2(s) ∈ Nγ(s)(C), s ∈ I},

so that we have the lightlike hypersurface along C = γ(I):

LHC((s, θ), t) = γ(s) + tLG(nT )(s, θ).

We consider the Lorentzian distance-squared function G : C×R4
1 −→ R on a spacelike

curve C = γ(I). Under the similar notations to the case 1), we have the following
proposition:

Proposition 7.2 Let C be a spacelike curve and G : C × (R4
1 \ C) → R the Lorentzian

distance-squared function on C. Suppose that p0 ̸= λ0. Then we have the following:

(1) g(p0) = g′(p0) = 0 if and only if there exist θ0 ∈ [0, 2π) and µ ∈ R \ {0} such that

γ(s0)− λ0 = µLG(nT )(s0, θ0).

(2) g(p0) = g′(p0) = g′′(p0) = 0 if and only if there exists θ0 ∈ [0, 2π) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0).

(3) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = 0 if and only if there exists θ0 ∈ [0, 2π) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0)

and κ′1(s0) cos θ0 − κ1(s0)κ2(s0) = 0, so that we can write θ0 = θ(s0).

(4) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = g(4)(p0) = 0 if and only if there exists θ0 = θ(s0) ∈
[0, 2π) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ(s0)
LG(nT )(s0, θ(s0)),

κ′1(s0) cos θ(s0)− κ1(s0)κ2(s0) = 0 and (κ′′1(s0) + κ1(s0)κ
2
2(s0)) cos θ(s0)− 2κ′1(s0)κ2(s0)−

κ1(s0)κ
′
2(s0) + κ1(s0)κ2(s0)κ3(s0) sin θ(s0) = 0.
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(5) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = g(4)(p0) = g(5)(p0) = 0 if and only if there exists
θ0 = θ(s0) ∈ [0, 2π) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ(s0)
LG(nT )(s0, θ(s0)),

κ′1(s0) cos θ(s0) − κ1(s0)κ2(s0) = 0, (κ′′1(s0) + κ1(s0)κ
2
2(s0)) cos θ(s0) − 2κ′1(s0)κ2(s0) −

κ1(s0)κ
′
2(s0) + κ1(s0)κ2(s0)κ3(s0) sin θ(s0) = 0 and ((κ′′1(s0) + κ1(s0)κ

2
2(s0)) cos θ(s0) −

2κ′1(s0)κ2(s0)− κ1(s0)κ
′
2(s0) + κ1(s0)κ2(s0)κ3(s0) sin θ(s0))

′ = 0.

The above proposition asserts that the discriminant set of the Lorentzian distance-squared
function G is given by

DG = LHC(N1(C)[n
T ]× R) =

{
λ = γ(s) + tLG(nT )(s, θ)

∣∣∣ s ∈ I, θ ∈ [0, 2π), t ∈ R
}
.

Moreover, the lightlike focal surface is

LFC =
{
λ = γ(s)− 1

κ1(s) cos θ
LG(nT )(s, θ)

∣∣∣ s ∈ I, θ ∈ [0, 2π)
}
.

Here, we also denote that ρ2(s, θ) = κ′1(s) cos θ − κ1(s)κ2(s) and

η2(s, θ) = (κ′′1(s) + κ1(s)κ
2
2(s)) cos θ − 2κ′1(s)κ2(s)− κ1(s)κ

′
2(s) + κ1(s)κ2(s)κ3(s) sin θ.

We can also show that ρ2(s, θ) = η2(s, θ) = 0 if and only if ρ2(s, θ) = σ2(s) = 0, where

σ2(s) =
[
κ1κ2(κ

′′
1 + κ1κ

2
2)− κ′1(2κ

′
1κ2 + κ1κ

′
2)± κ1κ2κ3

√
−(κ1κ2)2 + (κ′1)

2
]
(s).

7.3 Case 3

Suppose that n3(s) is timelike. Then we adopt nT (s) = n3(s) and denote that b1(s) =
n1(s), b2(s) = n2(s). We have a pseudo-orthogonal frame {t(s),nT (s), b1(s), b2(s)} and
δ3 = −1 and δ1 = δ2 = 1,which satisfies the following Frenet-Serret type formulae:

t′(s) = κ1(s)b1(s),
b′1(s) = −κ1(s)t(s) + κ2(s)b2(s),
b′2(s) = −κ2(s)b1(s) + κ3(s)n

T (s),

nT ′
(s) = κ3(s)b2(s),

Here, N1(C)[n
T ] is parametrized by

N1(C)[n
T ] = {(γ(s), ξ) ∈ γ∗TR4

1 | ξ = cos θb1(s) + sin θb2(s) ∈ Nγ(s)(C), s ∈ I},

so that we have the lightlike hypersurface along C:

LHC((s, θ), t) = γ(s) + tLG(nT )(s, θ).

We investigate the Lorentzian distance-squared function on a spacelike curve C = γ(I)
By the calculations similar to the cases 1 and 2, we have the following proposition:
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Proposition 7.3 Let C be a spacelike curve and G : C × (R4
1 \ C) → R the Lorentzian

distance-squared function on C = γ(I). Suppose that p0 ̸= λ0. Then we have the following:

(1) g(p0) = g′(p0) = 0 if and only if there exist θ0 ∈ [0, 2π) and µ ∈ R \ {0} such that

γ(s0)− λ0 = µLG(nT )(s0, θ0).

(2) g(p0) = g′(p0) = g′′(p0) = 0 if and only if there exists θ0 ∈ [0, sπ) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0).

(3) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = 0 if and only if there exists θ0 ∈ [0, sπ) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0)

and κ′1(s0) cos θ0 + κ1(s0)κ2(s0) sin θ0 = 0, so that we can write θ0 = θ(s0).

(4) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = g(4)(p0) = 0 if and only if there exists θ0 = θ(s0) ∈
[0, 2π) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ(s0)
LG(nT )(s0, θ(s0)),

κ′1(s0) cos θ(s0) + κ1(s0)κ2(s0) sin θ(s0) = 0. and (2κ′1(s0)κ2(s0) + κ1(s0)κ
′
2(s0)) sin θ(s0) +

(κ′′1(s0)− κ1(s0)κ
2
2(s0)) cos θ(s0)− κ1(s0)κ2(s0)κ3(s0) = 0.

(5) g(p0) = g′(p0) = g′′(p0) = g′′′(p0) = g(4)(p0) = g(5)(p0) = 0 if and only if there exists
θ0 = θ(s0) ∈ [0, 2π) such that

γ(s0)− λ0 = − 1

κ1(s0) cos θ(s0)
LG(nT )(s0, θ(s0)),

κ′1(s0) cos θ(s0)+κ1(s0)κ2(s0) sin θ(s0) = 0, and ((2κ′1(s0)κ2(s0)+κ1(s0)κ
′
2(s0)) sin θ(s0))+

(κ′′1(s0)− κ1(s0)κ
2
2(s0)) cos θ(s0))− κ1(s0)κ2(s0)κ3(s0))

′ = 0.

The above proposition asserts that the discriminant set of the Lorentzian distance-squared
function G is given by

DG = LHC(N1(C)[n
T ]× R) =

{
λ = γ(s) + tLG(nT )(s, θ)

∣∣∣ s ∈ I, θ ∈ [0, 2π), t ∈ R
}
.

Moreover, the lightlike focal surface is

LFC =
{
λ = γ(s)− 1

κ1(s) cos θ
LG(nT )(s, θ)

∣∣∣ s ∈ I, θ ∈ [0, 2π)
}
.

Here, we also denote that ρ3(s, θ) = κ′1(s) cos θ + κ1(s)κ2(s) sin θ and

η3(s, θ) = (2κ′1(s)κ2(s) + κ1(s)κ
′
2(s)) sin θ + (κ′′1(s)− κ1(s)κ

2
2(s)) cos θ − κ1(s)κ2(s)κ3(s),

We can also show that ρ3(s, θ) = η3(s, θ) = 0 if and only if ρ3(s, θ) = σ3(s) = 0, where

σ3(s) =
[
κ1κ2(κ

′′
1 − κ1κ

2
2)− κ′1(2κ

′
1κ2 + κ1κ

′
2)∓ κ1κ2κ3

√
(κ1κ2)2 + (κ′1)

2
]
(s).

We can unify the invariants σi(s), (i = 1, 2, 3) as follows:

σ(s) =
[
κ1κ2(κ

′′
1 − κ1κ

2
2)− κ′1(2κ

′
1κ2 + κ1κ

′
2)∓ δ2κ1κ2κ3

√
δ1(κ1κ2)2 + δ2(κ′1)

2
]
(s).
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7.4 Classifications of singularities

By using the results of three cases, we classify the singularities of the lightlike hypersurface
along γ as an application of the unfolding theory of functions. For a function f(s), we say
that f has Ak-singularity at s0 if f

(p)(s0) = 0 for all 1 ≤ p ≤ k and f (k+1)(s0) ̸= 0. Let F
be an r-parameter unfolding of f and f has Ak-singularity (k ≥ 1) at s0. We denote the
(k − 1)-jet of the partial derivative ∂F/∂xi at s0 as

j(k−1)

(
∂F

∂xi
(s,x0)

)
(s0) =

k−1∑
j=1

αji(s− s0)
j, (i = 1, · · · , r).

If the rank of k× r matrix (α0i, αji) is k (k ≤ r), then F is called a versal unfolding of f ,
where α0i = ∂F/∂xi(s0,x0).

Inspired by the propositions in the previous subsections, we define the following set:

Dℓ
F =

{
x ∈ Rr | ∃s ∈ R, F (s,x) =

∂F

∂s
(s,x) = · · · = ∂ℓF

∂sℓ
(s,x) = 0

}
,

which is called a discriminant set of order ℓ. Of course, D1
F = DF and D2

F is the set of
singular points of DF . Therefore, we have the following proposition.

Proposition 7.4 For all the cases, we have

DG = D1
G = LHC(N1(C)[n

T ]× R), D2
G = LFC and D3

G is the critical value set of LFC .

In order to understand the geometric properties of the discriminant set of order ℓ, we
introduce an equivalence relation among the unfoldings of functions. Let F and G be
r-parameter unfoldings of f(s) and g(s), respectively. We say that F and G are P-R-
equivalent if there exists a diffeomorphism germ Φ : (R×Rr, (s0,x0)) −→ (R×Rr, (s′0,x

′
0))

of the form Φ(s,x) = (Φ1(s,x), ϕ(x)) such that G ◦ Φ = F. By straightforward calcula-
tions, we have the following proposition.

Proposition 7.5 Let F and G be r-parameter unfoldings of f(s) and g(s), respectively.
If F and G are P-R-equivalent by a diffeomorphism germ Φ : (R × Rr, (s0,x0)) −→
(R×Rr, (s′0,x

′
0)) of the form Φ(s,x) = (Φ1(s,x), ϕ(x)), then ϕ(D

ℓ
F ) = Dℓ

G as set germs.

We have the following classification theorem of versal unfoldings [3, Page 149, 6.6].

Theorem 7.6 Let F : (R × Rr, (s0,x0)) −→ R be an r-parameter unfolding of f which
has Ak-singularity at s0. Suppose F is a versal unfolding of f , then F is P-R-equivalent
to one of the following unfoldings:

(a) k = 1 ; ±s2 + x1,

(b) k = 2 ; s3 + x1 + sx2,

(c) k = 3 ; ±s4 + x1 + sx2 + s2x3,

(d) k = 4 ; s5 + x1 + sx2 + s2x3 + s3x4.

We have the following classification result as a corollary of the above theorem.
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Corollary 7.7 Let F : (R × Rr, (s0,x0)) −→ R be an r-parameter unfolding of f which
has Ak-singularity at s0. Suppose F is a versal unfolding of f , then we have the following
assertions:

(a) If k = 1, then DF is diffeomorphic to {0} × Rr−1 and D2
F = ∅.

(b) If k = 2, then DF is diffeomorphic to C(2, 3)×Rr−2, D2
F is diffeomorphic to {0}×Rr−2

and D3
F = ∅.

(c) If k = 3, then DF is diffeomorphic to SW ×Rr−3, D2
F is diffeomorphic to C(2, 3, 4)×

Rr−3, D3
F is diffeomorphic to {0} × Rr−3 and D4

F = ∅.
(d) If k = 4, then DF is locally diffeomorphic to BF × Rr−4, D2

F is diffeomorphic to
C(BF )×Rr−4, D3

F is diffeomorphic to C(2, 3, 4, 5)×Rr−4, D4
F is diffeomorphic to {0}×

Rr−4 and D5
F = ∅.

We remark that all of diffeomorphisms in the above assertions are diffeomorphism germs.

Here, we respectively call C(2, 3) = {(x1, x2) | x1 = u2, x2 = u3} a (2, 3)-cusp, C(2, 3, 4) =
{(x1, x2, x3) | x1 = u2, x2 = u3, x3 = u4} a (2, 3, 4)-cusp, C(2, 3, 4, 5) = {(x1, x2, x3, x4) |
x1 = u2, x2 = u3, x3 = u4, x4 = u5} a (2, 3, 4, 5)-cusp, SW = {(x1, x2, x3) | x1 = 3u4 +
u2v, x2 = 4u3 + 2uv, x3 = v} a swallow tail, BF = {(x1, x2, x3.x4) | x1 = 5u4 + 3vu2 +
2wu, x2 = 4u5 + 2vu3 + wu2, x3 = u, x4 = v} a butterfly, and C(BF ) = {(x1, x2, x3, x4) |
x1 = 6u5 + u3v, x2 = 25u4 + 9u2v, x3 = 10u3 + 3uv, x4 = v} a c-butterfly (i.e., the critical
value set of the butterfly). Here we have the following key proposition on G.

Proposition 7.8 If g(s) has Ak-singularity (k = 1, 2, 3, 4) at p0, then G is a versal
unfolding of g.

Proof. We denote that γ(s) = (X0(s), X1(s), X2(s), X3(s)) and λ = (λ0, λ1, λ2, λ3).

By definition, we have

G(s,λ) = −(X0(s)− λ0)
2 + (X1(s)− λ1)

2 + (X2(s)− λ2)
2 + (X3(s)− λ3)

2.

Thus we have

∂G

∂λi
(s,λ) = 2(Xi(s)− λi), and

∂2G

∂s∂λi
(s,λ) = 2X ′

i(s), for(i = 0, 1, 2, 3)

For a fixed λ0 = (λ00, λ01, λ02, λ03), the 3-jet of ∂G/∂λi(s,λ0)(i = 0, , 1, 2, 3) at s0 is

j(3)
∂G

∂λi
(s,λ0)(s0) = 2X ′

i(s0)(s− s0)−X ′′
i (s0)(s− s0)

2− 1

3
X ′′′

i (s0)(s− s0)
3, (i = 0, 1, 2, 3).

It is enough to show that the rank of the following matrix A is four,

B =


2(X0(s)− λ0) 2(X1(s)− λ1) 2(X2(s)− λ2) 2(X3(s)− λ3)

2X ′
0(s0) 2X ′

1(s0) 2X ′
2(s0) 2X ′

3(s0)
2X ′′

0 (s0) 2X ′′
1 (s0) 2X ′′

2 (s0) 2X ′′
3 (s0)

2X ′′′
0 (s0) 2X ′′′

1 (s0) 2X ′′′
2 (s0) 2X ′′′

3 (s0)

 .

In fact, B = 2t(γ(s)− λ,γ ′(s),γ ′′(s),γ ′′′(s)) = 2t(γ(s)− λ, t(s), t′(s), t′′(s)), and γ(s)−
λ, t(s), t′(s), and t′′(s) are linearly independent each other in all Case 1,2,3, respectively.
This completes the proof. 2

Finally, we can apply Corollary 8.5 to our condition. Then we have the following theorem:
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Theorem 7.9 Let γ : I −→ +R4
1 be a spacelike curves with κ1(s) ̸= 0 and κ2(s) ̸= 0.

(A) For the lightlike hypersurfaces LHC((s, θ), t) of C = γ(I) in the Case 1, we have the
following assertions:

(1) The lightlike hypersurface LHC(N1(C)[n
T ]×R) is locally diffeomorphic to C(2, 3)×R2

at λ0 if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 =
1

κ1(s0)
LG(nT )(s0, θ0),

and ρ1(s0, θ0) ̸= 0. In this case, the lightlike focal set LFC is non-singular.

(2) The lightlike hypersurface LHC(N1(C)[n
T ] × R) is locally diffeomorphic to SW × R

at λ0 if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 =
1

κ1(s0)
LG(nT )(s0, θ0),

ρ1(s0, θ0) = 0 and σ1(s0) ̸= 0. In this case, the lightlike focal set LFC is locally diffeomor-
phic to C(2, 3, 4)× R and the critical value set of LFC is a regular curve.

(3) The lightlike hypersurface LHC(N1(C)[n
T ]× R) is locally diffeomorphic to BF at λ0

if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 =
1

κ1(s0)
LG(nT )(s0, θ0),

ρ1(s0, θ0) = 0, σ1(s0) = 0 and σ′
1(s0) ̸= 0. In this case, the lightlike focal set LFC is is

locally diffeomorphic to C(BF ) × R and the critical value set is locally diffeomorphic to
the C(2, 3, 4, 5)-cusp.

(B) For the lightlike hypersurfaces LHC(N1(C)[n
T ] × R) of C = γ(I) in the Case 2, we

have the following assertions:

(1) The lightlike hypersurface LHC(N1(C)[n
T ]×R) is locally diffeomorphic to C(2, 3)×R2

at λ0 if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0)

and ρ2(s0, θ0) ̸= 0. In this case, the lightlike focal set LFC is non-singular.

(2) The lightlike hypersurface LHC(N1(C)[n
T ] × R) is locally diffeomorphic to SW × R

at λ0 if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0),

ρ2(s0, θ0) = 0 and σ(s0) ̸= 0. In this case, the lightlike focal set LFC is locally diffeomorphic
to C(2, 3, 4)× R and the critical value set of LFC is a regular curve.

(3) he lightlike hypersurface LHC(N1(C)[n
T ]×R) is locally diffeomorphic to BF at λ0 if

and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0),
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ρ2(s0, θ0) = 0, σ2(s0) = 0 and σ′
2(s0) ̸= 0. In this case, the lightlike focal set LFC is locally

diffeomorphic to C(BF )× R and the critical value set of LFC is locally diffeomorphic to
the C(2, 3, 4, 5)-cusp.

(C) For the lightlike hypersurfaces LHC(N1(C)[n
T ] × R) of C = γ(I) in the Case 3, we

have the following assertions:

(1) The lightlike hypersurface LHC(N1(C)[n
T ]×R) is locally diffeomorphic to C(2, 3)×R2

at λ0 if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0),

and ρ3(s0, θ0) ̸= 0. In this case, the lightlike focal set LFC is non-singular.

(2) The lightlike hypersurface LHC(N1(C)[n
T ] × R) is locally diffeomorphic to SW × R

at λ0 if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0),

ρ3(s0, θ0) = 0 and σ3(s0) ̸= 0. In this case, the lightlike focal set LFC is locally diffeomor-
phic to C(2, 3, 4)× R and the critical value set of LFC is a regular curve.

(3) The lightlike hypersurface LHC(N1(C)[n
T ]× R) is locally diffeomorphic to BF at λ0

if and only if there exist θ0 ∈ [0, 2π) such that

p0 − λ0 = − 1

κ1(s0) cos θ0
LG(nT )(s0, θ0),

ρ3(s0, θ0) = 0, σ3(s0) = 0 and σ′
3(s0) ̸= 0. In this case, the lightlike focal set LFC is locally

diffeomorphic to C(BF )× R and the critical value set of LFC is locally diffeomorphic to
the C(2, 3, 4, 5)-cusp.

8 Submanifolds in Euclidean space or

Hyperbolic space

In this section we consider submanifolds in Euclidean space and Hyperbolic space as
special cases as the previous results.

8.1 Submanifolds in Euclidean space

Let Rn
0 be the Euclidean space which is given by x0 = 0 for x = (x0, x1, . . . , xn). Consider

an embedding X : U −→ Rn
0 , where U ⊂ Rs is an open set. In this case we can

adopt nT = e0 = (1, 0, . . . , 0) as a future directed timelike unit normal vector field along
M = X(U) in Rn+1

1 . In this case N1(M)[nT ] = N1(M)[e0] is the unit normal bundle

N e
1 (M) of M in Rn

0 in the Euclidean sense. Therefore, the lightcone Gauss map L̃G(nT )

is given by L̃G(nT )(p, ξ) = e0 + ξ = e0 + G(p, ξ), where G : N e
1 (M) −→ Sn−1 is the

Gauss map of the unit normal bundle N e
1 (M) defined by G(p, ξ) = ξ[6]. Since e0 is a

constant vector, we have d(p,ξ)LG(nT ) = d(p,ξ)G, so that we have

κi(n
T )(p, ξ) = κi(e0)(p, ξ) = κi(p, ξ),
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where κi(p, ξ) (i = 1, . . . , s) are the eigenvalues of −d(p,ξ)G belonging to the eigenvectors
on TpM, which are the principal curvatures ofM with respect to ξ in the Euclidean sense.

On the other hand, the intersection of a lightcone with Rn
0 is a hypersphere in Rn

0 ,
so that the contact of a submanifold in Rn

0 with lightcones is equivalent to the contact
with hyperspheres in Rn

0 .We define the projection π : Rn+1
1 −→ Rn

0 by π(x0, x1, . . . , xn) =
(0, x1, . . . , xn). Then we have

π ◦ LFκi(nT )(p,ξ)(p, ξ, t) = X(u) +
1

κi(p, ξ)
G(p, ξ).

Therefore, π ◦ LFM is the focal set of M = X(U) in the Euclidean sense (cf., [27]). If
s = n− 1, π ◦ LFM is called the evolute of M in Rn

0 .

We remark that if nT = v is a constant timelike unit vector, the spacelike submanifold
M is a submanifold in the spacelike hyperplane HP (v, c). Since HP (v, c) is isometric to
the Euclidean space Rn

0 , all results for the case n = e0 hold in this case.

8.2 Submanifolds in Hyperbolic space

Let X : U −→ Hn(−1) be an immersion into the hyperbolic space. Then we adopt
nT (u) = X(u). In this case N1(M)[nT ] is the unit normal bundle Nh

1 (M) of M = X(U)
in Hn(−1). Therefore, the lightcone Gauss image LG(nT ) is given by LG(nT )(u, ξ) =
X(u) + ξ = L(u, ξ), where L : Nh

1 (M) −→ Sn−1
+ is the hyperbolic Gauss indicatrix

of the unit normal bundle Nh
1 (M)(cf., [4]). Since we identify M with U through X,

dX(u) can be regarded as 1TpM for p = X(u). Therefore, we have κh(n
T )i(p) = −1

and we denote that κd(n
T )i(p, ξ) = κd(ξ)i(p), (i = 1, . . . , s), which we call the de Sitter

principal curvatures of M at p = X(u) with respect to ξ (cf., [10, 14]). By Corollary 3.2,
we have κℓ(n

T )i(p, ξ) = −1 + κd(ξ)i(p). The lightlike hypersurface along M is given by
LHM(p, ξ, t) = X(u)+t(X(u)+ξ), where p = X(u). Since ⟨LHM(p, ξ, t),LHM(p, ξ, t)⟩ =
−1− 2t,

LHM(p, ξ, t) is


timeline if and only if t > −1

2
,

lightlike if and only if t = −1

2
,

spacelike if and only if t < −1

2
.

We now define a mapping

Φ : Rn+1
1 \ LC0 −→ Hn(−1) ∪ Sn

1

by Φ(x) = x
∥x∥ . We have Rn+1

1 \ LC0 = T ∪ S, where S = {x ∈ Rn+1
1 | ⟨x,x⟩ > 0 } and

T = {x ∈ Rn+1
1 | ⟨x,x⟩ < 0 }. We define ΦS = Φ|S : S −→ Sn

1 and ΦT = Φ|T : T −→
Hn(−1).

We distinguish two cases as follows:

Case 1) t > −1
2
, so that LHM(p, ξ, t) is timelike. Thus we have LHM(p, ξ, t) ∈ T . It

follows that we have the mapping LHT
M : N1(M)[nT ]×{t ∈ R | 2t+1 > 0 } → T defined

by

LHT
M(p, ξ, t) = ΦT ◦ LHM(p, ξ, t) =

1√
2t+ 1

((t+ 1)X(u) + tξ).
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Case 2) t < −1
2
, so that LHM(p, ξ, t) is spacelike. Thus we have LHM(p, ξ, t) ∈ S. It

follows that we have the mapping LHS
M : N1(M)[nT ]×{t ∈ R | 2t+1 < 0 } → S defined

by

LHS
M(p, ξ, t) = ΦS ◦ LHM(p, ξ, t) =

1√
−2t− 1

((t+ 1)X(u) + tξ).

Then we have the following proposition.

Proposition 8.1 Under the above notations, we have the followings:

(1) For t0 > −1
2
, (p0, ξ0, t0) is a singular point of LHM if and only if it is a singular point

of LHT
M ,

(2) For t0 < −1
2
, (p0, ξ0, t0) is a singular point of LHM if and only if it is a singular point

of LHS
M .

Proof. (1) Let (p0, ξ0, t0) be a regular point of LHM . Then the tangent hyperplane at
(p0, ξ0, t0) of LHM(N1(M)[nT ] × {t ∈ R | 2t + 1 > 0 }) is a light like hyperplane, on
where there are no timeline vectors. Since LHM(t0, ξ0, t0) is timeline, it is transversal to
the tangent hyperplane. Moreover, LHM(t0, ξ0, t0) is directed to the fiber direction of the
projection ΦT , so that LHT

M = ΦT ◦LHM is regular at (p0, ξ0, t0). The converse assertion
is trivial.

(2) For t0 > −1
2
, we assume that (p0, ξ0, t0) be a regular point of LHM . For any

v ∈ T(p0,ξ0)N1(M)[nT ], we take the directional derivative of the relation ⟨LHM ,LHM⟩ =
−1− 2t with respect to v at (p0, ξ0, t0). Then we have

0 = Dv(−1− 2t)|t=t0 = 2⟨LHM , DvLHM⟩|(p0,ξ0,t0).

Therefore, LHM(p0, ξ0, t0) and DvLHM(p0, ξ0, t0) are pseudo-orthogonal. Moreover,

∂LHM

∂t
(p0, ξ0, t0) = p0 + ξ0

is light like. Since LHM(p0, ξ0, t0) is space like, it is transversal to the tangent hyperplane
of LHM(N1(M)[nT ] × {t ∈ R | 2t + 1 < 0 }) at (p0, ξ0, t0). Thus, LHS

M = ΦS ◦ LHM is
regular at (p0, ξ0, t0). The converse assertion is trivial. This completes the proof. 2

On the other hand, by Corollary 4.2, the singular point of LHM is
(
p, ξ, 1

κℓ(nT )i(p,ξ)

)
,

(i = 1, . . . , s), so that we have the following corollary.

Corollary 8.2 We have the following assertions:

(1) If (κℓ(n
T )i(p, ξ))

2 + 2κℓ(n
T )i(p, ξ) > 0, then the critical value of LHT

M is

ΦT ◦ LFκℓ(nT )i
(p, ξ) =

|κℓ(nT )i(p, ξ) + 1|√
(κℓ(nT )i(p, ξ))2 + 2κℓ(nT )i(p, ξ)

(
p+

1

κℓ(nT )i(p, ξ) + 1
ξ

)
,

(i = 1, . . . , s).

(2) If (κℓ(n
T )i(p, ξ))

2 + 2κℓ(n
T )i(p, ξ) < 0, then the critical value of LHS

M is

ΦS ◦ LFκℓ(nT )i
(p, ξ) =

−(κℓ(n
T )i(p, ξ) + 1)√

−(κℓ(nT )i(p, ξ))2 − 2κℓ(nT )i(p, ξ)

(
p+

1

κℓ(nT )i(p, ξ) + 1
ξ

)
,

(i = 1, . . . , s).
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Proof. Suppose that (κℓ(n
T )i(p, ξ))

2 + 2κℓ(n
T )i(p, ξ) > 0. Since t = 1/κℓ(n

T )i(p, ξ), we
have

ΦT◦LFκℓ(nT )i(p,ξ)
(p, ξ) =

√
κℓ(nT )i(p, ξ)

κℓ(nT )i(p, ξ) + 2

κℓ(n
T )i(p, ξ) + 1

κℓ(nT )i(p, ξ)

(
p+

1

κℓ(nT )i(p, ξ) + 1
ξ

)
.

For convenience we denote that κ = κℓ(n
T )i(p, ξ). If κ < 0, then κ + 2 < 0, so that

κ+ 1 < −1. Therefore, we have√
κ

κ+ 2

κ+ 1

κ
= −

√
κ

(κ+ 2)κ2
(κ+ 1) =

−(κ+ 1)√
κ2 + 2κ

.

If κ > 0, then κ+ 2 > 0, so that we have√
κ

κ+ 2

κ+ 1

κ
=

√
κ

(κ+ 2)κ2
(κ+ 1) =

(κ+ 1)√
κ2 + 2κ

.

Thus we have the formula (1).

Suppose that (κℓ(n
T )i(p, ξ))

2+2κℓ(n
T )i(p, ξ) < 0.We also denote that κ = κℓ(n

T )i(p, ξ).
Then we have

ΦS ◦ LFκℓ(nT )i(p,ξ)
(p, ξ) =

√
κ

−κ− 2

κ+ 1

κ

(
p+

1

κ+ 1
ξ

)
.

Since −2 < κ < 0, we have√
κ

−κ− 2

κ+ 1

κ
= −

√
κ

(−κ− 2)κ2
(κ+ 1) =

−(κ+ 1)√
−κ2 − 2κ

.

Thus we have the formula (2). This completes the proof. 2

Since κℓ(n
T )i(p, ξ) = κd(ξ)i(p)− 1, we have

(κℓ(n
T )i(p, ξ))

2 + 2κℓ(n
T )i(p, ξ) = (κd(ξ)i(p))

2 − 1,

so that we have

ΦT ◦ LFκℓ(nT )i
(p, ξ) =

|κd(ξ)i(p)|√
(κd(ξ)i(p))2 − 1

(
p+

1

κd(ξ)i(p)
ξ

)
and

ΦS ◦ LFκℓ(nT )i
(p, ξ) =

−κd(ξ)i(p)√
−(κd(ξ)i(p))2 − 1

(
p+

1

κd(ξ)i(p)
ξ

)
.

We now introduce the notion of focal sets of submanifolds in the hyperbolic space.
For a submanifold M = X(U) ⊂ Hn(−1), we define the total focal set of M by

TFM =
∪{

±κd(ξ)i(p)√
|(κd(ξ)i(p))2 − 1|

(
p+

1

κd(ξ)i(p)
ξ

) ∣∣∣κd(ξ)i(p) ̸= ±1, i = 1, . . . , s

}
.
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We have the following decomposition of the total focal set:

TFM = HFM ∪ SFM ,

where

HFM =
∪{

±κd(ξ)i(p)√
(κd(ξ)i(p))2 − 1

(
p+

1

κd(ξ)i(p)
ξ

) ∣∣∣(κd(ξ)i(p))2 > 1, i = 1, . . . , s

}

and

SFM =
∪{

±κd(ξ)i(p)√
1− (κd(ξ)i(p))2

(
p+

1

κd(ξ)i(p)
ξ

) ∣∣∣(κd(ξ)i(p))2 < 1, i = 1, . . . , s

}
.

We call HFM the hyperbolic focal set and SFM the de Sitter focal set. We denote that

LFT
M =

∪{
LFκℓ(nT )i

(p, ξ)
∣∣∣ (κℓ(nT )i(p, ξ))

2 + 2κℓ(n
T )i(p, ξ) > 0

}
and

LFS
M =

∪{
LFκℓ(nT )i

(p, ξ)
∣∣∣ (κℓ(nT )i(p, ξ))

2 + 2κℓ(n
T )i(p, ξ) < 0

}
.

We respectively call LFT
M and LFT

M the timelike part of and the spacelike part of the focal
set of M. By the previous arguments, we have the following proposition.

Proposition 8.3 Let M = X(U) be a submanifold in the hyperbolic space Hn(−1). Then
we have

ΦT (LFT
M) ⊂ HFM and ΦS(LFS

M) ⊂ SFM .

In [13] the notion of the evolutes of a hypersurface in the hyperbolic space was in-
troduced and the singularities the evolutes are investigated. If M is a hypersurface of
the hyperbolic space, then M is a spacelike submanifold in Rn+1

1 with the codimension
two and Nh

1 is a double covering of M. In this case, the above definition of the focal
sets are the same as the definitions of the evolutes in [13]. Therefore, we denote that
LET

M ,LE
S
M ,HEM , SEM instead of LFT

M ,LF
S
M ,HFM ,SFM , respectively. Then we have the

following corollary of Proposition 8.3.

Corollary 8.4 Let M = X(U) be a hypersurface in the hyperbolic space Hn(−1). Then
we have

ΦT (LET
M) ⊂ HEM and ΦS(LES

M) ⊂ SEM .
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