Title: The close relations between podocyte injuries and membranous proliferative glomerulonephritis in autoimmune murine models

Authors: Junpei Kimura¹, Osamu Ichii¹, Saori Otsuka¹, Hayato Sasaki², Yoshiharu Hashimoto³, and Yasuhiro Kon¹

Affiliations:
¹Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
²Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
³Office for Faculty Development and Teaching Enriched Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan

Corresponding Author
Dr. Y. Kon, D.V.M., Ph.D., Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita18-Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan. Tel.: +81-11-706-5189, Fax: +81-11-706-5189, E-mail: y-kon@vetmed.hokudai.ac.jp
Running head: Podocyte injuries in murine glomerulonephritis

Conflict of Interest Statement
The authors declare that there is no conflict of interest.

Keywords: Autoimmune disease, B6.MRL-(D1Mit202-D1Mit403), BXSB/MpJ, Membranous proliferative glomerulonephritis, Podocyte, Systemic lupus erythematosus

Word count: 5000 words
Abstract

[BACKGROUND] Membranous proliferative glomerulonephritis (MPGN) is a major primary cause of chronic kidney disease (CKD). Podocyte injury is crucial in the pathogenesis of glomerular disease with proteinuria, leading to CKD. To assess podocyte injuries in MPGN, the pathological features of spontaneous murine models were analyzed.

[METHODS] The autoimmune-prone mice strains BXSB/MpJ-Yaa and B6.MRL-(D1Mit202-D1Mit403) were used as the MPGN models, and BXSB/MpJ-Yaa+ and C57BL/6 were used as the respective controls. In addition to clinical parameters and glomerular histopathology, the protein and mRNA levels of podocyte functional markers were evaluated as indices for podocyte injuries. The relation between MPGN pathology and podocyte injuries were analyzed by statistical correlation.

[RESULTS] Both models developed MPGN with albuminuria and elevated serum anti-dsDNA antibody levels. BXSB/MpJ-Yaa and B6.MRL showed severe proliferative lesions with T- and B-cell infiltrations and membranous lesions with T-cell infiltrations, respectively. Foot process effacement and microvillus-like structure formation were observed ultrastructurally in the podocytes of both MPGN models. Furthermore, both MPGN models showed a
decrease in immune-positive areas of nephrin, podocin, and synaptopodin in
the glomerulus, and in the mRNA expression of Nphs1, Nphs2, Synpo, Actn4,
Cd2ap, and Podxl in the isolated glomerulus. Significant negative
correlations were detected between serum anti-dsDNA antibody levels and
glomerular Nphs1 expression, and between urinary albumin-to-creatinine
ratio and glomerular expression of Nphs1, Synpo, Actn4, Cd2ap, or Podxl.
[CONCLUSION] MPGN models clearly developed podocyte injuries
characterized by the decreased expression of podocyte functional markers
with altered morphology. These data emphasized the importance of
regulation of podocyte injuries in MPGN.
Introduction

Chronic kidney disease (CKD) is one of the most serious public health problems because it is strongly associated with not only end-stage renal disease (ESRD) but also cardiovascular diseases [1]. Thus, understanding the pathophysiology of CKD is important to improve the morbidity and mortality of patients. Recent studies have shown that progressive podocyte injury, also called podocytopathy, is one of the key events in the pathogenesis of major CKD primary diseases such as diabetic nephropathy and renal sclerosis [2,3].

Podocytes are highly differentiated epithelial cells lining the outside of glomerular capillaries, and their foot processes (FPs) regulate the glomerular filtration barrier (blood–urine barrier; BUB) by the formation of a slit diaphragm (SD). Yi et al [4] indicated that a decrease in the expression of SD molecules and effacement of FPs were associated with the development of renal sclerosis. According to Pagtalunan et al [5], the number of podocytes in the glomerulus could be used as indices of podocyte injury in patients with diabetic nephropathy. In a CKD animal study targeting dogs, we have also clarified that the immune-positive levels of glomerular SD molecules, especially nephrin and actinin alpha 4 (ACTN4), negatively correlated with
serum creatinine levels, and nephrin mRNA expression in the kidneys of CKD groups was significantly lower than that in normal animals and negatively correlated with serum creatinine [6]. Several studies have indicated that the signaling pathway through Notch, transforming growth factor beta (TGF-β), and angiotensin II play crucial roles in podocyte injuries [7–10].

Membranous proliferative glomerulonephritis (MPGN) is one of the major CKD primary diseases and is associated with infections, drugs, and systemic disorders [11]. From early stage MPGN, increased glomerular cells and immune-complex depositions were observed in glomerular lesions with proteinuria caused by the ultrafiltration of plasma proteins [12]. Chronic glomerular lesions with increased urinary protein could trigger the formation of tubulointerstitial lesions and eventually progress to interstitial fibrosis leading to ESRD [12]. Although the appearance of proteinuria indicates BUB disruption in MPGN from the early stage, little is known about podocyte injury in MPGN patients and in model mice.

Spontaneous MPGN models, lupus-prone mice such as NZB, (NZB × NZW) F1 hybrid, BXSB/MpJ- Yaa (BXSB- Yaa), and MRL/MpJ- lpr are commonly used. These strains develop systemic autoimmune diseases
characterized by increased serum autoantibody levels and vasculitis, as well as MPGN [13–15]. BXSB-Yaa carries a mutant gene located on the Y chromosome, designated as Y-linked autoimmune acceleration (Yaa), and males show more severe MPGN than females [16]. We have demonstrated that BXSB-Yaa mice develop glomerular lesions with decreased WT1-positive podocytes leading to proteinuria subsequent to tubulointerstitial lesion formation [17]. Furthermore, we developed a spontaneous CKD model named B6.MRL-\(D1\text{Mit}202\)\(D1\text{Mit}403\) (B6.MRL), carrying the C57BL/6 (B6) background and the telomeric regions of chromosome 1 (68–81 cM) derived from lupus-prone MRL/MpJ [18]. This congenic region contains the Fas ligand, interferon activated gene 200 family, and Fc gamma receptor family, which were strongly associated with the developments of autoimmunity and MPGN [18]. With age, female B6.MRL spontaneously develop MPGN similar to human CKD [18–20]. Therefore, we considered that BXSB-Yaa and B6.MRL as appropriate models for the investigation of podocyte injury in MPGN.

In this study, the pathological features of MPGN were analyzed using 2 murine models, BXSB-Yaa and B6.MRL, with focus on podocyte injuries. The results showed that these MPGN models clearly developed podocyte injuries,
characterized by the decreased mRNA and protein levels of its functional
markers with morphological changes and exacerbation of clinical parameters.
Our data emphasized the importance of regulation of podocyte injuries in
MPGN.
Materials and Methods

Animals and Sample Preparations

Experimental animals were handled according to the “Guide for the Care and Use of Laboratory Animals” of Hokkaido University, Graduate School of Veterinary Medicine (approved by the Association for Assessment and Accreditation of Laboratory Animal Care International). Male BXSB·Yaa and female B6.MRL were used as MPGN model mice at age 4 months and 9–15 months, respectively. As healthy controls, male BXSB/MpJ·Yaa+ (BXSB) and female B6 mice were used at age 4 and 9 months, respectively. B6.MRL was created in our laboratory [18], whereas B6, BXSB, and BXSB·Yaa were purchased from Japan SLC Inc. (Shizuoka, Japan). All mice were maintained under specific pathogen-free conditions. The animals were subjected to deep anesthesia (60 mg/kg pentobarbital sodium administered intraperitoneally), and urine was collected by bladder puncture. After urine collection, the mice were euthanized by exsanguination from the carotid artery, and serum and kidneys were collected. The kidneys were fixed by 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB; pH 7.4) or 2.5% glutaraldehyde in 0.1 M PB at 4°C for histopathological analysis. PFA-fixed paraffin sections (2 μm thick) were then prepared and used for
periodic acid Schiff (PAS) staining or immunostaining.

Histological Analysis

To assess the severity of glomerulonephritis, semiquantitative glomerular damage scoring was performed as previous study [17]. Details of the procedures were described in Supplementary material 1.

Glomerular Isolation

Glomeruli of mice were isolated by a bead perfusion method [21]. Briefly, 40 mL of Hanks’ balanced salt solution (HBSS) containing 8×10^7 Dynabeads (Life Technologies, Palo Alto, CA) was perfused from the left ventricle. The kidneys were removed and digested in collagenase (1 mg/mL collagenase A [Roche, Basel, Switzerland] and 100 U/mL deoxyribonuclease I [Life Technologies] in HBSS) at 37°C for 30 min. The digested tissue was gently pressed through a 100-μm cell strainer (BD Falcon, Franklin Lakes, NJ, USA) using a flattened pestle, and the cell suspension was centrifuged at 200 × g for 5 min. The cell pellet was resuspended in 2 mL HBSS. Finally, glomeruli containing Dynabeads were gathered by a magnetic particle concentrator (Life Technologies).
Serological and Urinary Analysis

For the evaluation of the systemic autoimmune condition, serum levels of anti-double strand DNA (dsDNA) antibody were measured using Mouse Anti-dsDNA Ig's (Total A+G+M) ELISA kit (Alpha Diagnostic International, San Antonio, TX, USA). For the evaluation of renal function, serum blood urea nitrogen (sBUN) and creatinine (sCre) levels in all animals were measured using Fuji Drichem 7000v (Fujifilm, Tokyo, Japan). Urinary albumin-to-creatinine ratio (uACR) was determined using Albuwell M and The Creatinine Comparison (Exocell, Philadelphia, PA, USA).

Immunohistochemistry and Histoplanimetry

Immunostaining for nephrin, podocin, synaptopodin, CD3, and B220 was performed according to the procedure shown in Table 1. Details of the procedures are described in Supplementary material 1.

Quantifications of positive immunohistochemical reactions of SD molecules were performed as described previously [6]. Briefly, the glomerulus area and black pixels of positive reaction were measured, and the number of pixels per area was calculated for each SD molecule by means of
BZII-Analyzer (Keyence, Osaka, Japan). To evaluate T-cell and B-cell infiltration into the glomeruli, the number of CD3- and B220-positive cells was counted. In these measurements, 20 glomeruli were counted in 1 kidney section in each group (n = 5), and the values were expressed as means.

Immunofluorescence

Immunofluorescence for nephrin, podocin, and synaptopodin was performed according to the procedure shown in Table 1 and Supplementary material 1. Finally, the sections were examined under a fluorescence microscope (BZ-9000, Keyence).

Electron Microscopy

Ultrastructural analysis with a transmission electron microscope (TEM) was performed according to the following procedure. After fixation with 2.5% glutaraldehyde in 0.1 M PB for 4 h, small pieces of kidney tissue were fixed with 1% osmium tetroxide in 0.1 M PB for 2 h, dehydrated by graded alcohol, and embedded in epoxy resin (Quetol 812 Mixture; Nisshin EM, Tokyo, Japan). Ultrathin sections (70 nm) were double stained with uranyl acetate and lead citrate. All samples were observed under a JEOL transmission
electron microscope (JEM-1210; JEOL, Tokyo, Japan). Ultrastructural analysis with a scanning electron microscope (SEM) was performed according to the following procedure. Quarter sizes of glutaraldehyde-fixed kidneys were kept in 2% tannic acid for 1 h at 4°C and postfixed with 1% osmium tetroxide in 0.1 M PB for 1 h. The specimens were dehydrated through graded alcohol, transferred into 3-methylbutyl acetate, and dried using an HCP-2 critical point dryer (Hitachi, Tokyo, Japan). The dried specimens were sputter-coated with Hitachi E-1030 ion sputter coater (Hitachi), and then examined on an S-4100 SEM (Hitachi) with an accelerating voltage of 20 kV.

Reverse Transcription and Real-time Polymerase Chain Reaction

For the examination of mRNA expression, total RNA from isolated glomeruli was purified using RNeasy Mini Kit (Qiagen, Hilden, Germany). Total RNAs were synthesized to cDNAs by a reverse transcription (RT) reaction by using ReverTra Ace reverse transcriptase enzyme (Toyobo, Osaka, Japan) and random dT primers (Promega, Madison, WI). Each cDNA was used for real-time polymerase chain reaction (PCR) with Brilliant III SYBR Green QPCR master mix on Mx3000P (Agilent Technologies, La Jolla, CA,
USA). The expression levels of genes were normalized to actin beta (Actb) as a housekeeping gene. The appropriate primer pairs are shown in Table 2.

Statistical Analysis

Results were expressed as the mean ± standard error (S.E.) and statistically analyzed using a nonparametric Mann–Whitney U test (P < 0.05). The correlation between 2 parameters was analyzed using Spearman's rank correlation test (P < 0.05).
Results

Clinical Parameters of Membranous Proliferative Glomerulonephritis Models

As the index of the systemic autoimmune condition, the serum anti-dsDNA level of BXSB-Yaa and B6.MRL was significantly higher than that of BXSB and B6, respectively (Table 3). BXSB-Yaa showed significantly higher anti-dsDNA levels than B6.MRL. In the indices of renal functions, including sBUN, sCre, and uACR, every parameter of BXSB-Yaa and B6.MRL was higher than that of BXSB and B6, respectively. Significant differences between controls and MPGN models were observed in uACR. The uACR in BXSB-Yaa was significantly higher than that in B6.MRL.

Glomerular Histopathology in Membrane Proliferative Glomerulonephritis Models

Both BXSB-Yaa and B6.MRL mice developed membranoproliferative MPGN characterized by glomerular hypertrophy, increased mesangial cells and their matrix, and thickening of the glomerular basement membrane (GBM) (Fig. 1b,d, Table 4). Proliferative and membranous lesions, in particular, were more severe in BXSB-Yaa and B6.MRL, respectively. No
glomerular lesion was observed in the controls (Fig. 1a,b, Table 4). To assess the glomerular infiltration of immune cells, immunohistochemistry for CD3 (T-cell marker) and B220 (B-cell marker) was performed. CD3-positive cells were observed in the glomerulus of BXSB-Yaa and B6.MRL as well as in the renal interstitium (Fig. 1f,h), but not in controls (Fig. 1e,g). Although few B220-positive cells were observed in the glomerulus of BXSB and BXSB-Yaa (Fig. 1i,j), they were scarcely observed in B6 and B6.MRL (Fig. 1k,l). In histoplanimetry, the number of CD3-positive cells in the glomerulus was significantly higher in both MPGN models than in each control (Fig. 1m). In relation to the histological observation, the number of B220-positive cells in the glomerulus was significantly higher in BXSB and BXSB-Yaa than in B6 and B6.MRL, respectively. No significant difference was observed between the controls and the MPGN models (Fig. 1m).

Glomerular Ultrastructure in Membranous Proliferative Glomerulonephritis Models

To analyze the morphological changes of podocytes in MPGN, the glomerular ultrastructure of MPGN models was compared with that of the controls by TEM and SEM. Under TEM observation, the controls showed
clear cytotrabecula (Cyto, which also known as primary process) and cytopodium (FP, which is also known as secondary process) (Fig. 2a,c,f,h). In both MPGN models, FPs showed irregular arrangements with hypertrophy and partial fusions (Fig. 2b,d,e,g,i,j). Furthermore, in MPGN models, the GBM was thickened and wrinkled, and high electron-dense deposits resembling immune complexes were observed in the double-countered GBM of the subendothelial regions (Fig. 2b,d,e,g,i,j). At higher magnifications, the liner SD was clearly observed between FPs of control mice (Fig. 2f,h). In both MPGN models, FP effacement was clearly observed, but the SD and the 3-layer structure of the GBM were unclear (Fig. 2g,i,j).

Under SEM observation, the width of the cytotrabecula was increased in MPGN models compared with the controls and the FPs were unclear in the former podocytes (Fig. 2k–t). At higher magnifications, the engagements of each FP were irregular, and a microvillus-like process was observed in the surface of podocytes in both MPGN models (Fig. 2q,s,t). In B6.MRL mice podocyte, these morphological changes were observed in TEM and SEM and severer at 15 months than at 9 months.

Localization and Expression of Slit Diaphragm Molecules in Membranous
Proliferative Glomerulonephritis Models

For the evaluation of podocyte injury, immunohistochemistry and immunofluorescence for SD molecules (nephrin, podocin, and synaptopodin) were performed (Fig. 3). Linear-positive reactions for nephrin, podocin, and synaptopodin were observed along the glomerular capillary rete in controls (Fig. 3a,c,e,g,i,k). In contrast, those in the MPGN models tended to be faint, partially showed granular patterns, and localized to the glomerular edge rather than the center (Fig. 3b,d,f,h,j,l). In immunohistoplanimetry, the relative positive areas of all SD molecules in the glomerulus were significantly smaller in both MPGN models than in controls (Fig. 3m).

Furthermore, to evaluate the relation between immune cell infiltration and podocyte injuries, immune cell number (B220- and CD3-positive cells) and the relative SD molecule–positive area (nephrin, podocin, synaptopodin) in the glomerulus were analyzed (Table 5). No significant correlation was detected between both parameters.

mRNA Expression of Podocyte Functional Markers in Membranous Proliferative Glomerulonephritis Models

For further investigation of podocyte injury, the mRNA expression of the
functional markers were evaluated by quantitative PCR by using glomeruli isolated by bead perfusion methods (Fig. 4). As markers of functional proteins, Nphs1, Nphs2, and Synpo (SD molecules); Actn4, Cd2ap, and Myh9 (cytoskeletal proteins); and Podxl (the major constituent of podocyte glycocalyx) were examined. The mRNA expression levels of all podocyte functional markers except Myh9 were significantly decreased in BXSB-Yaa compared with BXSB. In the early MPGN stage of B6.MRL1 (9 months), the expression levels of Nphs2, Actn4, and Myh9 tended to be higher than those of B6; the reverse was true for Nphs1, Synpo, and Cd2ap. In the late MPGN stage of B6.MRL1 (12 months), the expression levels of all functional marker mRNAs were significantly lower compared with B6.

Furthermore, the relations between clinical parameters and the mRNA expression levels of podocyte functional markers were evaluated (Table 6). Serum anti-dsDNA levels were negatively correlated with the values of Nphs1 and Actn4 in BXSB-Yaa mice, and with Nphs1 and Podxl in B6.MRL. Furthermore, uACR levels were negatively correlated with the mRNA expression levels of all functional markers in both BXSB-Yaa and B6.MRL.
Discussion

Podocyte Injuries in Membranous Proliferative Glomerulonephritis

Systemic lupus erythematosus (SLE) is a representative autoimmune disease showing the deposition of immune complexes or direct autoantibody deposition to systemic organs, including the kidney, leading to complement activation, Fc receptor ligation, and subsequent inflammation [22]. In particular, SLE-related MPGN (lupus nephritis) is one of the most serious SLE complications since it is a major predictor of poor prognosis [22,23]. In lupus nephritis, it has been suggested that glomerular immune complex depositions cause glomerular lesions such as mesangial cell proliferation and GBM thickening, which lead to BUB disruption, as in other MPGNs such as IgA nephropathy and drug-induced glomerulonephritis [17–20,24]. BXSB-Yaa and B6.MRL are spontaneous murine models of autoimmune-mediated MPGN [17-20]. The present study clarified that both MPGN models had clearly elevated serum dsDNA antibody levels and developed membranoproliferative MPGN with immune complex depositions and altered podocyte morphology, such as FP effacement and the appearance of microvillus-like processes. Furthermore, the glomerular mRNA levels of podocyte functional markers were significantly decreased and negatively
correlated with uACR in the MPGN models. Little has been known about podocyte injury in MPGN, which is one of the major primary diseases leading to CKD and subsequent ESRD. The present study clarified that the decrease of podocyte functional mRNA expression levels in MPGN closely correlated with the morphological changes of podocytes as well as glomerular dysfunction indicated by increased uACR. Importantly, although the pathological mechanism of podocyte injuries was mainly investigated by using drug-induced glomerular disease models but not spontaneous models such as BXSB-Yaa or B6.MRL. The podocyte injuries in spontaneous models would more clearly reflect those in human clinical cases than the drug induced glomerular disease models. Recent experimental and clinical studies have revealed that podocytes exhibit various structural changes, including FP effacement, cell body attenuation, pseudocyst formation, hypertrophy, cytoplasmic accumulation of lysosomal elements, and detachment from the GBM, under several pathological situations [25]. Among these changes, FP effacement is the most representative change in podocyte shape, which is closely correlated with progressive proteinuria [26, 27]. Furthermore, an increase in podocyte microvilli represents another morphologic alteration during both experimental and human nephrotic syndrome, with unknown
mechanisms and significance [28]. These findings suggested that
immune-mediated MPGN involves podocyte injury with morphological
change leading to BUB disruption, similar to other glomerular diseases.

Contribution of Immune Cell Infiltration to Podocyte Injuries in
Membranous Proliferative Glomerulonephritis

Interestingly, there was a difference in glomerular pathological features
between BXSB-Yaa and B6.MRL: proliferative and membranous lesions were
more severe in BXSB-Yaa and B6.MRL, respectively. Furthermore, the
populations of glomerulus-infiltrating immune cells were different between
these models; B-cells were localized in the glomerulus of BXSB-Yaa, but not
B6.MRL. Because BXSB also had B-cells in the glomerulus, the BXSB
genomic background rather than the Yaa mutation might have a role in the
infiltration of B-cells in the glomerulus. Studies on lupus models have
demonstrated that infiltrating B-cells in the kidney secrete antibodies with
various antigen specificities, contributing to increased in situ immune
complexes [29]. Recent reports have suggested that depleting B-cells either
before or after disease onset prevented and/or delayed the onset of nephritis
in several different lupus model mice [30,31]. Furthermore, lupus-prone
MRL/MpJ-\textit{lpr} mice, which express a mutant transgene encoding surface immunoglobulin (meaning that their B-cells are unable to secrete antibodies), still develop nephritis [32]. These reports indicated that B-cells can play some roles not only in antibody productions and the activation of pathogenic T-cells but also in secreting pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-\(\alpha\)) and interleukin 6 (IL-6), contributing to the development of glomerular lesions. However, our study demonstrated that no significant correlation was observed between T-cells or B-cells and SD protein expression levels in the glomerulus of MPGN models. From these findings, the presence and functional activation of infiltrating B-cells in the glomerulus might exacerbate the glomerular proliferative lesions in BXSB-\textit{Yaa}, not primarily contributing to podocyte injury.

\textit{Putative Mechanism of Podocyte Injuries in Membranous Proliferative Glomerulonephritis}

Recently, it has been suggested that FP effacement, the response of the podocyte to injury, is dependent on the disruption of the actin cytoskeletal network as an initial event [33,34]. In several glomerular diseases of human and mice, it has been implicated that the molecular framework of process
consists of actin filaments and cytoskeleton proteins such as ACTN4, CD2-associated protein (CD2AP), and myosin, heavy chain 9, non-muscle (MYH9), and FP effacement is caused by rearrangements of this molecular framework [33-36]. Indeed, our data indicated that the glomerular mRNA expression levels of actin-associated cytoskeletal proteins, including Actn4 and Cd2ap, decreased in MPGN models compared with controls. Interestingly, the glomerular Actn4 mRNA expression in both MPGN models strongly and negatively correlated with uACR. In contrast, the glomerular Myh9 expression level of B6.MRL in the early stage (age 9 months) was significantly higher than that of controls. From these findings, altered glomerular mRNA expression levels of cytoskeletal proteins might indicate cytoskeletal rearrangements associated with MPGN progression and may be associated with the effacement of FPs and formation of microvillus-like processes in podocytes.

Trigger and Crucial Pathway of Podocyte Injuries in Membranous Proliferative Glomerulonephritis

Several factors, including genetic, mechanical, and immunological stresses, and toxins, were suggested to be the causes of FP effacement
associated with cytoskeletal rearrangement and redistribution of SD proteins [37]. In the present study, MPGN podocytes showed not only morphological changes but also abnormalities in SD protein localization: nephrin, podocin, and synaptopodin were localized to the cell body as well as FP, showing a granular pattern. More recent studies indicated that Rho-kinases play a pivotal role in the organization of the actin cytoskeleton of podocytes [38-40]. Asanuma et al [39] suggested that Rho-kinase regulates actin–myosin-containing stress fibers in the podocyte cell body. Meyer-Schwesinger et al [40] demonstrated that increased activation of Rho-kinases leads to cytoskeletal rearrangement in the course of antibody-mediated podocyte injury, culminating in FP effacement, proteinuria, and detachment into the urine, and that this could be prevented by Rho-kinase inhibition. Furthermore, in vitro and in vivo studies have revealed that proinflammatory cytokines such as IL-1β and TNF-α are involved in Rho-kinase pathway activation [41,42]. From these findings, Rho-kinase abnormality, which is caused by the glomerular exposure of internal or blood proinflammatory cytokines, including IL-1β and TNF-α, might be a trigger for podocyte injury in MPGN. The determination of the immune-mediated pathological pathway of podocyte injuries would lead to
the regulation of animal and human MPGN.

In conclusion, although there was a small difference in glomerular pathological features between BXSB-\textit{Yaa} and B6.MRL, both MPGN models clearly developed podocyte injuries characterized by decreased expression of functional markers, with morphological changes and aggravation of clinical parameters.
Acknowledgments

This work was supported by a Grants-in-Aid for Scientific Research from Graduate School of Veterinary Medicine, Hokkaido University, and Grant-in-Aid for JSPS Fellows (No. 25000961), and Grant-in-Aid for Young Scientist (No. 24688033) and Grant-in-Aid for Scientific Research B (No. 24380156) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
References

7. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB,

balance of inhibitory and active Fc gamma receptors in murine

 Y, Endoh D, Kon Y. Local overexpression of interleukin-1 family, member
 6 relates to the development of tubulointerstitial lesions. Lab Invest

 Betsholtz C. A new method for large scale isolation of kidney glomeruli

 2110-2121.

 Kidney Int 2006; 70: 1403-1412.

25. Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: Is the

 Re-evaluation of foot process effacement in acute puromycin

32. Chan OT, Hannum LG, Haberman AM. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in

Tables

Table 1. Summary of immunostaining conditions

<table>
<thead>
<tr>
<th></th>
<th>Nephrin</th>
<th>Podocin</th>
<th>Synaptopodin</th>
<th>CD3</th>
<th>R220</th>
</tr>
</thead>
<tbody>
<tr>
<td>First antibody</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit polyclonal antibodies (1:500; IBL, Gunma, Japan)</td>
<td>Rabbit polyclonal antibodies (1:800; IBL)</td>
<td>Mouse monoclonal antibodies (1:1000; Fitzgerald, MA, USA)</td>
<td>Rabbit polyclonal IgG antibodies (1:150; Nichirei, Tokyo, Japan)</td>
<td>Rabbit polyclonal IgG antibodies (1:1000; Cedarlane, Ontario, Canada)</td>
<td></td>
</tr>
<tr>
<td>Biotinylated goat anti-rabbit</td>
<td>Biotinylated goat anti-rabbit</td>
<td>Simple Stain Mouse</td>
<td>Biotinylated goat anti-rabbit</td>
<td>Biotinylated goat anti-rabbit</td>
<td></td>
</tr>
<tr>
<td>Second antibody</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG antibodies (SABPO kit, Nichirei)</td>
<td>IgG antibodies (SABPO kit, Nichirei)</td>
<td>IgG antibodies (SABPO kit, Nichirei)</td>
<td>IgG antibodies (Caltag)</td>
<td>IgG antibodies (Caltag)</td>
<td></td>
</tr>
<tr>
<td>Alexa Fluor 546-labeled donkey anti-rabbit IgG antibodies (1:500, Life Technologies)</td>
<td>Alexa Fluor 546-labeled donkey anti-rabbit IgG antibodies (1:500, Life Technologies)</td>
<td>Alexa Fluor 488-labeled donkey anti-mouse IgG antibodies (1:500, Life Technologies)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Summary of specific gene primers for real-time polymerase chain reaction

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer sequence (5'→3')</th>
<th>Product size (bp)</th>
<th>Specific function in podocyte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F: forward, R: reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nphs1</td>
<td>F: ACCTGTATGACGAGGTGGAGAG</td>
<td>218</td>
<td>SD protein</td>
</tr>
<tr>
<td>(NM_019459)</td>
<td>R: TCGTGAAGAGTCTCACACCAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nphs2</td>
<td>F: AAGGTTGATCTCCGTCTCCAG</td>
<td>105</td>
<td>SD protein</td>
</tr>
<tr>
<td>(NM_130456)</td>
<td>R: TTCCATGCGGTAGTAGCAGAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Clinical parameters of membranous proliferative glomerulonephritis model and control mice

<table>
<thead>
<tr>
<th></th>
<th>dsDNA (μg/mL)</th>
<th>sBUN (mg/dL)</th>
<th>sCre (mg/dL)</th>
<th>uACR (μg/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BXSB/MpJ-Yaa*</td>
<td>4 months</td>
<td>72.35 ± 4.45</td>
<td>29.80 ± 3.50</td>
<td>0.56 ± 0.17</td>
</tr>
<tr>
<td>BXSB/MpJ-Yaa</td>
<td>4 months</td>
<td>883.07* ± 85.11</td>
<td>38.93 ± 9.92</td>
<td>1.30 ± 1.03</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>9 months</td>
<td>61.57 ± 19.08</td>
<td>22.88 ± 1.42</td>
<td>0.12 ± 0.01</td>
</tr>
<tr>
<td>B6.MRL-(D1Mit202-D1Mit403)</td>
<td>9 months</td>
<td>85.01* ± 35.86</td>
<td>24.92 ± 5.42</td>
<td>0.21 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>15 months</td>
<td>407.55* ± 166.38</td>
<td>30.24 ± 4.63</td>
<td>0.68 ± 0.56</td>
</tr>
</tbody>
</table>

Values are mean ± S.E. dsDNA, double-strand DNA; sBUN, serum blood urea nitrogen; sCre, serum creatinine; uACR, urinary albumin-to-creatinine ratio. *Significantly different from each control (Mann–Whitney U test, P < 0.05); n ≥ 5.
Table 4. Quantitative evaluations of glomerular damage

<table>
<thead>
<tr>
<th></th>
<th>glomerulus damage score</th>
<th>cell number in 1 glomerulus</th>
<th>thickness of glomerular basement membrane (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BXSB/MpJ-Yaa 4 month</td>
<td>34.01 ± 10.45</td>
<td>35.12 ± 2.33</td>
<td>1.98 ± 0.11</td>
</tr>
<tr>
<td>BXSB/MpJ-Yaa 4 month</td>
<td>180.68 ± 60.77 *</td>
<td>67.09 ± 9.96 *</td>
<td>4.01 ± 1.69 *</td>
</tr>
<tr>
<td>C57BL/6 9 month</td>
<td>78.11 ± 21.26</td>
<td>41.12 ± 4.27</td>
<td>2.31 ± 0.08</td>
</tr>
<tr>
<td>B6.MRL-(D1Mit202-D1Mit403) 15 month</td>
<td>195.96 ± 42.53 *</td>
<td>55.96 ± 3.55 *</td>
<td>5.96 ± 0.98 *</td>
</tr>
</tbody>
</table>

Values are mean ± S.E. *Significantly different from each control (Mann-Whitney U test, P < 0.05); n ≥ 5.

Table 5. Relation between histological parameters and expression of podocyte functional proteins

<table>
<thead>
<tr>
<th>Parameter/protein</th>
<th>Nephrin</th>
<th>Podocin</th>
<th>Synaptopodin</th>
<th>Nephrin</th>
<th>Podocin</th>
<th>Synaptopodin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3-positive cell number</td>
<td>-0.700</td>
<td>-0.600</td>
<td>-0.700</td>
<td>-0.493</td>
<td>0.309</td>
<td>-0.319</td>
</tr>
<tr>
<td>B220-positive cell number</td>
<td>-0.308</td>
<td>-0.564</td>
<td>-0.564</td>
<td>-0.030</td>
<td>0.277</td>
<td>-0.577</td>
</tr>
</tbody>
</table>

Values are the Spearman’s rank correlation coefficients. n ≥ 5.
Table 6. Relation between clinical parameters and podocyte functional mRNA expression

<table>
<thead>
<tr>
<th>Parameter /mRNA</th>
<th>Nphs1</th>
<th>Nphs2</th>
<th>Synpo</th>
<th>Actn4</th>
<th>Cd2ap</th>
<th>Myh9</th>
<th>Podxl</th>
<th>Nphs1</th>
<th>Nphs2</th>
<th>Synpo</th>
<th>Actn4</th>
<th>Cd2ap</th>
<th>Myh9</th>
<th>Podxl</th>
</tr>
</thead>
<tbody>
<tr>
<td>sADA</td>
<td>-0.569*</td>
<td>-0.464</td>
<td>-0.420</td>
<td>-0.662**</td>
<td>-0.310</td>
<td>-0.279</td>
<td>-0.437</td>
<td>-0.557*</td>
<td>-0.121</td>
<td>-0.439</td>
<td>-0.421</td>
<td>-0.275</td>
<td>-0.379</td>
<td>-0.578*</td>
</tr>
<tr>
<td>BUN</td>
<td>-0.245</td>
<td>-0.159</td>
<td>-0.203</td>
<td>-0.286</td>
<td>-0.144</td>
<td>-0.256</td>
<td>-0.167</td>
<td>-0.066</td>
<td>-0.170</td>
<td>-0.379</td>
<td>-0.159</td>
<td>-0.352</td>
<td>-0.385</td>
<td>-0.324</td>
</tr>
<tr>
<td>sCre</td>
<td>-0.295</td>
<td>-0.110</td>
<td>-0.128</td>
<td>-0.195</td>
<td>-0.121</td>
<td>-0.136</td>
<td>-0.191</td>
<td>0.278</td>
<td>0.109</td>
<td>-0.020</td>
<td>0.154</td>
<td>-0.022</td>
<td>-0.199</td>
<td>-0.003</td>
</tr>
<tr>
<td>uACR</td>
<td>-0.624**</td>
<td>-0.512*</td>
<td>-0.747**</td>
<td>-0.865**</td>
<td>-0.624*</td>
<td>-0.574*</td>
<td>-0.621**</td>
<td>-0.505*</td>
<td>-0.245</td>
<td>-0.577**</td>
<td>-0.469*</td>
<td>-0.552**</td>
<td>-0.466*</td>
<td>-0.49*</td>
</tr>
</tbody>
</table>

Values are the Spearman's rank correlation coefficients. SD, slit diaphragm; sBUN, serum blood urea nitrogen; sCre, serum creatinine; uACR, urinary albumin-to-creatinine ratio. * and **, significantly correlated (Spearman's rank-correlation test, *P < 0.05. **P < 0.01); n \(\geq 5 \).
Figure legends

Figure 1. Histopathology and immune cell infiltration in membranous proliferative glomerulonephritis.

(a–d) Histopathology of renal cortices. BXSB/MpJ-Yaa (BXSB, 4 months; a), BXSB/MpJ-Yaa (BXSB-Yaa, 4 months; b), C57BL/6 (B6, 9 months; c), and B6.MRL-(D1Mit202-D1Mit403) (B6.MRL, 15 months; d). In the glomerulus, mesangial matrix expansion, mesangial cell proliferation, and periglomerular cell infiltration are observed in the BXSB-Yaa and B6.MRL mice models. Periodic acid Schiff (PAS) staining. Bars = 50 μm. (e–l) Immunohistochemistry of CD3 (e–h) and B220 (i–l). BXSB (e and i), BXSB-Yaa (f and j), B6 (g and k), and B6.MRL (h and k). Bars = 50 μm. CD3-positive cells are observed in the glomerulus and renal interstitium of BXSB-Yaa and B6.MRL (arrows). B220-positive cells are observed in the glomerulus of BXSB and BXSB-Yaa (arrowheads), but not in B6 and B6.MRL. (m) Numbers of CD3-positive and B220-positive cells in the glomerulus. BXSB and BXSB/MpJ-Yaa: 4 months. B6: 9 months. B6.MRL: 15 months. Values are mean ± S.E. *, significantly different (Mann–Whitney U test, P < 0.05); n = 5.
Figure 2. Ultrastructural changes of the glomerulus in membranous proliferative glomerulonephritis.

(a–j) Ultrastructure of the glomerulus under a transmission electron microscope. BXSB/MpJ·Yaa⁺ (BXSB, 4 months; a and f), BXSB/MpJ·Yaa (BXSB·Yaa, 4 months; b and g), C57BL/6 (B6, 9 months; c and h), B6.MRL·(D1Mit202-D1Mit403) (B6.MRL, 9 months; d and i), and B6.MRL (15 months; e and j). Compared with the podocytes (Pod) of BXSB and B6, showing clear cytotrabecula (Cyto, which is also known as primary process) and cytopodium (foot process, Fp, which is also known as secondary process) (a, c, f, and h), the Fps of BXSB·Yaa and B6.MRL show irregular arrangements with hypertrophy and partial fusions (b, d, e, g, i, and j). The glomerular basement membrane (GBM) is thickened and wrinkled in BXSB·Yaa and B6.MRL (b and e, arrows), and high electron-dense deposits are observed in the double-countered GBM of the subendothelial regions (b and e, asterisks). The slit diaphragm (SD) is a clear linear pattern between the Fps of BXSB and B6 (f and h, arrowheads). In both BXSB·Yaa and B6.MRL, the Fp is effaced, and the SD as well as the 3-layer structure of the
GBM are unclear (g, i, and j). Ery, erythrocyte. Bars = 1 μm (a–e) and 100 nm (f–j). (k–t) Ultrastructure of the glomerulus under a scanning electron microscope. BXSB (4 months; k and p), BXSB·Yaa (4 months; l and q), B6 (9 months; m and r), B6.MRL (9 months; n and s) and B6.MRL (15 months; o and t). The width of Cyto increase in BXSB·Yaa and B6.MRL (l, n, and o) compared with the controls (k and m) and the Fps are unclear in the former Pod. The engagements of each Fp are irregular, and microvillus-like processes (villi) are observed on the surface of Pod in BXSB·Yaa and B6.MRL. Bars = 2 μm.

Figure 3. Localizations of podocyte functional markers in membranous proliferative glomerulonephritis.

(a–l) Immunofluorescence of nephrin (a–d), podocin (e–h), and synaptopodin (i–l). BXSB/MpJ·Yaa+ (BXSB, 4 months; a, e, and i), BXSB/MpJ·Yaa (BXSB·Yaa, 4 months; b, f, and j), C57BL/6 (B6, 9 months; c, g, and k), and B6.MRL·(D1Mit202·D1Mit403) (B6.MRL, 15 months; d, h, and l). The positive reactions for nephrin, podocin, and synaptopodin tended to be faint, partially showed granular patterns, and localized to the glomerular edge.
rather than the center in BXSB-\textit{Yaa} and B6.MRL glomeruli. Bars = 50 \(\mu \text{m} \).

Comparison of SD protein–positive area ratio. The relative immune-positive areas of nephrin, podocin, and synaptopodin in the glomerulus. BXSB and BXSB/MpJ-\textit{Yaa}: 4 months. B6: 9 months. B6.MRL: 15 months. Values are mean \(\pm \) S.E. *, significantly different from each control mice (Mann–Whitney \textit{U} test, \(P < 0.05 \)); \(n = 5 \).

Figure 4. mRNA expression levels of podocyte functional markers in membranous proliferative glomerulonephritis.

The relative mRNA expression of podocyte functional markers was analyzed by quantitative real-time PCR, using isolated glomerulus samples. BXSB/MpJ-\textit{Yaa} (BXSB, 4 months), BXSB/MpJ-\textit{Yaa} (BXSB-\textit{Yaa}, 4 months), C57BL/6 (B6, 9 months), and B6.MRL-(\textit{D1Mit202-D1Mit403}) (B6.MRL, 9 and 15 months). Each podocyte functional marker was normalized to \textit{Actb}. Values are mean \(\pm \) S.E. *, significantly different from each control mice (Mann–Whitney \textit{U} test, \(P < 0.05 \)); \(n \geq 4 \).
Histological Analysis

Glomerular damage scores were determined according to the following procedures. Briefly, 100 glomeruli per kidney was examined by using PAS-stained sections and scored from 0 to +4 according to the following criteria: 0, no recognizable lesion in glomeruli; +1, a little PAS-positive deposition, mild cell proliferation, mild membranous hypertrophy, and/or partial podocyte adhesion to the parietal layer of the renal corpuscle; +2, segmental or global PAS-positive deposition, cell proliferation, membranous hypertrophy, and/or glomerular hypertrophy; +3, the same as grade 2 with PAS-positive deposition in 50% of regions of glomeruli and/or severe podocyte adhesion to the parietal layer of the renal corpuscle; +4, disappearance of capillary and capsular lumina, global deposition of PAS-positive material, and/or periglomerular infiltration of inflammatory cells and fibrosis, based on the degrees of PAS-positive deposition, cell proliferation, membranous hypertrophy, podocyte adhesion to the parietal layer, disappearance of capillary and capsular lumina, and periglomerular infiltration of inflammatory cells and fibrosis. If, for example, 50 of 100 glomeruli were +1, 25 of 100 glomeruli were +2, 20 of 100 glomeruli were +3, and 5 of 100 glomeruli were +4, the semiquantitative score would be \((1 \times 50 / 100) + (2 \times 25 / 100) + (3 \times 5 / 100) + (4 \times 5 / 100)\) \times 100 = 180.

To assess the glomerular and membranous lesions, cell number in 1 glomerulus and GBM thickness were determined, respectively. The number of cells per glomerulus and thickness of thickest GBM in 1 glomerulus were determined and averaged in at least 10 glomeruli of the PAS-stained samples.
Immunohistochemistry

Immunostaining for nephrin, podocin, synaptopodin, CD3, and B220 was performed according to the following procedure. For antigen retrieval, deparaffinized sections were incubated in citrate buffer (pH 6.0) for 20 min at 105°C for nephrin and podocin (Dako Target Retrieval Solution, pH 9; DAKO, Glostrup, Denmark), for 20 min at 105°C for synaptopodin and CD3, or in 0.1% pepsin/0.2 M HCl for 5 min at 37°C for B220. After cooling, slides were soaked in methanol containing 3% H$_2$O$_2$ for 15 min at room temperature. After washing, sections were blocked by 10% normal goat serum for nephrin and podocin, blocking solution A (mouse stain kit; Nichirei, Tokyo, Japan) for synaptopodin, or 0.25% casein/0.01 M PBS for CD3 and B220 for 60 min at room temperature. Then, sections were incubated with rabbit polyclonal antibodies for nephrin (1:500; Immuno-Biological Laboratories, Gunma, Japan), rabbit polyclonal antibodies for podocin (1:800; Immuno-Biological Laboratories), mouse monoclonal antibodies for synaptopodin (1:50; Fitzgerald, MA, USA), rabbit polyclonal antibodies for CD3 (1:150; Nichirei), or rat monoclonal antibodies for B220 (1:1000; Cedarlane, Ontario, Canada) overnight at 4°C. After washing 3 times in phosphate-buffered saline (PBS), sections were incubated with biotin-conjugated goat anti-rabbit IgG antibodies for nephrin, podocin, and CD3 (SABPO kit, Nichirei) or goat anti-rat IgG antibodies for B220 (1:200; Caltag Medsystems, Buckingham, UK) for 30 min at room temperature, washed, and incubated with streptavidin-biotin complex (SABPO kit, Nichirei) for 30 min. For synaptopodin, sections were incubated with blocking solution B (mouse stain kit, Nichirei) for 10 min at room temperature, washed, and incubated with Simple Stain Mouse MAX-PO(M) (mouse stain kit, Nichirei) for 10 min. All sections were then incubated with 3,3’-diaminobenzidine tetrahydrochloride–H$_2$O$_2$ solution. Finally, the
sections were counterstained with hematoxylin.

Immunofluorescence

Immunofluorescence for nephrin, podocin, and synaptopodin was performed according to the following procedure. After the deparaffinization, antigen retrieval was performed by the same method as in immunohistochemistry. After being washed, sections were blocked by 5% normal donkey serum for 60 min at room temperature. Incubation with primary antibodies was performed by the same method as in immunohistochemistry. After washing with PBS, the sections were incubated with Alexa Fluor 546-labeled donkey anti-rabbit IgG antibodies (1:500, Life Technologies) for nephrin and podocin, or Alexa Fluor 488-labeled donkey anti-mouse IgG antibodies (1:500, Life Technologies) for synaptopodin for 30 min at room temperature and washed again. For nuclear staining, sections were incubated with Hoechst 33342 (1:2000; Dojindo, Kumamoto, Japan) for 5 min.