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Lightcone dualities for curves in the lightcone unit 3-sphere
Shyuichi Izumiya,1,a) Yang Jiang,1,2,b) and Takami Sato2,c)

1School of Mathematics and Statistics, Northeast Normal University, Changchun 130024,
People’s Republic of China
2Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

(Received 25 December 2012; accepted 4 June 2013; published online 20 June 2013)

In this paper, we consider the curves in the unit 3-sphere in the lightcone. The
unit 3-sphere can be canonically embedded in the lightcone and de Sitter 4-space
in Lorentz-Minkowski 5-space. We investigate these curves in the framework of
the theory of Legendrian dualities between pseudo-spheres in Lorentz-Minkowski
5-space. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811451]

I. INTRODUCTION

The evolutes of curves in the unit 2-sphere are studied in Ref. 7 from the view point of the
Legendrian duality.4, 5 It is known that the evolute of a curve in the unit 2-sphere is the dual of
the tangent indicatrix of the original curve.11 The dual curve in the unit 2-sphere is defined to be
equidistant by π /2 from the original one. For a curve in the unit 3-sphere, however, the dual is a
surface. Therefore, the dual of the tangent indicatrix of a curve is a surface which is called the focal
surface (or, the focal set) of the original curve. The critical locus of the focal surface is the evolute
of the original curve (cf. Ref. 11). We remark that the focal set of a curve in the unit 2-sphere is a
curve which is equal to the evolute.

On the other hand, the first author (S.I.) introduced the mandala of Legendrian dualities be-
tween pseudo-spheres in Lorentz-Minkowski 5-space.4, 5 There are three kinds of pseudo-spheres
in Lorentz-Minkowski 5-space (i.e., the hyperbolic space, the de Sitter space, and the lightcone).
Especially, if we investigate spacelike submanifolds in the lightcone, those Legendrian dualities are
essentially useful (see also Ref. 9). For the de Sitter 4-space and the lightcone in Lorentz-Minkowski
5-space, there exist naturally embedded unit 3-spheres. The de Sitter 4-space corresponds to the
cosmic model, and the lightcone also has its clear background in Physics.15 In this paper, we inves-
tigate the curves in the unit 3-sphere in the framework of the theory of Legendrian dualities between
pseudo-spheres in Lorentz-Minkowski 5-space (Refs. 1, 2, 5, 6, 10–13, etc.). If we have a regular
curve in the unit 3-sphere, then we have the regular curve in the embedded unit 3-sphere in the light-
cone or de Sitter space. Therefore, we naturally have the dual hypersurfaces in the lightcone as an
application of the duality theorem in Ref. 5. There are two kinds of lightcone dual hypersurfaces of a
curve in the unit 3-sphere. We will give the classifications of the singularities of these hypersurfaces.
In physics, the singularities of the lightcone are also studied.14 The critical value sets of these two
hypersurfaces are called the lightcone focal surfaces, respectively. The projections of these focal
surfaces to unit 3-sphere are different surfaces. In Ref. 7, we have shown that the projection images
of the critical value sets of lightcone dual hypersurfaces for a curve in the unit 2-sphere coincide
with the evolute of the original curve. Therefore, the situation of curves in the unit 3-sphere is quite
different from that of curves in the unit 2-sphere. However, the projections of the critical sets of
lightcone focal surfaces are equal to the evolute of the curve. In order to clarify such situation, we
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introduce the notion of discriminant set of higher order for unfoldings of functions of one-variable
(see Sec. VI).

A brief description of the organization for this paper is as follows: In Sec. II, we give basic
concepts in this paper. In Sec. III, we formulate the Frenet-Serret type formulae for the curves in
the unit 3-sphere. We also give the definition of the spherical focal surfaces of the curve in the unit
3-sphere. The spherical evolutes of the curve in the unit 3-sphere are given by the critical sets of
the spherical focal surfaces. In Sec. IV, we define the lightcone dual hypersurfaces and the ligtcone
focal surfaces of the curves in the unit 3-sphere. In Sec. V, we calculate the conditions for the Ak(k
= 1, 2, 3, 4) singularities for the lightcone height functions of the curves in the unit 3-sphere. In
Sec. VI, we show that the projections of the critical sets of focal surfaces to the unit 3-sphere are the
same, and they are equal to the spherical evolutes of the curve in the unit 3-sphere (Theorem 6.2).
We also study the singularities of the lightcone dual hypersurfaces, the lightcone focal surfaces and
the spherical evolutes of the curves in the unit 3-sphere which is one of the main results in this paper
(cf. Theorem 6.9).

All maps considered here are of class C∞ unless otherwise stated.

II. BASIC CONCEPTS

In this section, we give the basic concepts in this paper. Let R5 be a five-dimensional vector
space. For any two vectors x = (x0, x1, x2, x3, x4), y = (y0, y1, y2, y3, y4) in R5, their pseudo-scalar
product is defined by 〈x, y〉 = −x0 y0 + x1 y1 + x2 y2 + x3 y3 + x4 y4. The pair (R5, 〈, 〉) is called
Lorentz-Minkowski 5-space. We denote it as R5

1.

For any four vectors x = (x0, x1, x2, x3, x4), y = (y0, y1, y2, y3, y4), z = (z0, z1, z2, z3, z4),
w = (w0, w1, w2, w3, w4) ∈ R5

1, their pseudo-vector product is defined by

x ∧ y ∧ z ∧ w =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 e2 e3 e4

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

z0 z1 z2 z3 z4

w0 w1 w2 w3 w4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where {e0, e1, e2, e3, e4} is the canonical basis of R5
1. A non-zero vector x ∈ R5

1 is called spacelike,
lightlike, or timelike if 〈x, x〉 > 0, 〈x, x〉 = 0, or 〈x, x〉 < 0, respectively. The norm of x ∈ R5

1 is
defined by ‖ x ‖= (sign(x)〈x, x〉)1/2, where sign(x) denotes the signature of x which is given by
sign(x) = 1, 0, or -1 when x is a spacelike, lightlike, or timelike vector, respectively.

Let γ : I → R5
1 be a regular curve in R5

1 (i.e., γ̇ (t) 	= 0 for any t ∈ I), where I is an open interval.
For any t ∈ I, the curve γ is called spacelike, lightlike, or timelike if 〈γ̇ (t), γ̇ (t)〉 > 0, 〈γ̇ (t), γ̇ (t)〉 = 0,
or 〈γ̇ (t), γ̇ (t)〉 < 0, respectively. The arc-length of a spacelike or timelike curve γ measured from
γ (t0)(t0 ∈ I ) is s(t) = ∫ t

t0
‖ γ̇ (t)‖ dt.

The parameter s is determined such that ‖γ ′(s)‖= 1 for the nonlightlike curve, where γ ′(s)
= dγ /ds(s) is the unit tangent vector of γ at s. We define the de Sitter 4-spaceby

S4
1 = {x ∈ R5

1 | 〈x, x〉 = 1}.
We define the closed lightcone with the vertex a by

LCa = {x ∈ R5
1 | 〈x − a, x − a〉 = 0}.

We define the open lightcone at the origin by

LC∗ = {x ∈ R5
1\{0} | 〈x, x〉 = 0}.

Here we consider the unit sphere in the lightcone defined by

S3
+ = {x ∈ LC∗ | x0 = 1} = {x ∈ R5

1 | x0 = 1, x2
1 + x2

2 + x2
3 + x2

4 = 1 },
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we call it the lightcone unit sphere. We define the canonical lightcone projection π : LC∗ −→ S3
+

by

π (x0, x1, x2, x3, x4) =
(

1,
x1

x0
,

x2

x0
,

x3

x0
,

x4

x0

)
.

We also define the three-dimensional Euclidean unit 3-sphere in R4
0 by

S3
0 = {x ∈ R5

1 | x0 = 0, x2
1 + x2

2 + x2
3 + x2

4 = 1},
where R4

0 = {x ∈ R5
1 | x0 = 0} is the Euclidean 4-space.

III. CURVES IN THE UNIT 3-SPHERE AND FOCAL SURFACES

Let γ : I −→ S3
+ be a regular curve. We have a map � : S3

+ → S3
0 defined by �(v) = v − e0,

which is an isometry. Then we have a regular curve γ : I → S3
0 defined by γ (s) = �(γ (s))

= γ (s) − e0, so that γ and γ have completely the same geometric properties as spherical curves.
Since γ is a spacelike curve, we can reparameterize it by the arc-length s. So we have the unit tangent
vector t(s) = γ ′(s) of γ (s). Suppose that ‖t ′(s)‖ 	= 1. Then ‖t ′(s) + γ (s)‖ 	= 0, so that we have an-
other unit vector n(s) = t ′(s)+γ (s)

‖t ′(s)+γ (s)‖ . We also define a unit vector by b(s) = γ (s) ∧ e0 ∧ t(s) ∧ n(s),

then we have a pseudo-orthonormal frame field {γ (s), t(s), n(s), b(s)} of R4
0 along γ (s). By standard

arguments, we have the following Frenet-Serret type formulae:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ ′(s) = t(s)

t ′(s) = κg(s)n(s) − γ (s)

n′(s) = −κg(s)t(s) + τg(s)b(s)

b′(s) = −τg(s)n(s)

,

where κg(s) = ‖t ′(s) + γ (s)‖ and τg(s) = −det(γ (s), γ ′(s), γ ′′(s), γ ′′′(s))/κ2
g (s). We call

{γ , t, n, b} a Sabban frame of γ .8 Here, κg is called a geodesic curvature and τ g a geodesic
torsion of γ in S3

0 , respectively.
It is known that the evolute of the curve in the unit 2-sphere is the dual of the spherical curve

given by the unit tangent vector t(s).11 But for a curve in the unit 3-sphere, the dual is a surface.
We call it the focal surface of the original curve. We now consider the focal surface of a curve
γ : I → S3

0 analogous to the case for curves in Euclidean space. We define F± : I × J → S3
0 by

F±(s, u) = uγ (s) + u

κg(s)
n(s) ±

√
κ2

g (s) − u2(κ2
g (s) + 1)

κg(s)
b(s).

We call each image of F± the spherical focal surface of γ . We remark that the focal surfaces of
γ satisfy the equations 〈γ ′(s), F±(s, u)〉 = 〈γ ′′(s), F±(s, u)〉 = 0. This means that each one of the
focal surfaces F± (s, u) of γ is the spherical dual of t in the sense of Ref. 10. By straightforward
calculations, we have

∂ F±

∂u
(s, u) = γ (s) + 1

κg(s)
n(s) ± −u(κ2

g (s) + 1)

κg(s)
√

κ2
g (s) − u2(κ2

g (s) + 1)
b(s),

∂ F±

∂s
(s, u) = −

uκ ′
g(s) ± τg(s)κg(s)

√
κ2

g (s) − u2(κ2
g (s) + 1)

κ2
g (s)

n(s)

+
uτg(s)κg(s)

√
κ2

g (s) − u2(κ2
g (s) + 1) ± u2κ ′

g(s)

κ2
g (s)

√
κ2

g (s) − u2(κ2
g (s) + 1)

b(s).
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It follows that {∂F± /∂u, ∂F± /∂s} are linearly dependent if and only if

τg(s)κg(s)
√

κ2
g (s) − u2(κ2

g (s) + 1) ± uκ ′
g(s) = 0,

so that we have

u = εiτg(s)κ2
g (s)√

κ ′2
g (s) + κ4

g (s)τ 2
g (s) + κ2

g (s)τ 2
g (s)

.(i = 1, 2; ε1 = 1, ε2 = −1).

Therefore, each critical value set of F± is given by

ε±
γ (s) = ±τg(s)κ2

g (s)√
κ ′2

g (s) + κ4
g (s)τ 2

g (s) + κ2
g (s)τ 2

g (s)

{
γ (s) + 1

κg(s)
n(s) +

(
1

κg(s)

)′ 1

τg(s)
b(s)

}
.

We remark that each curve of ε±
γ satisfies the equations

〈γ ′(s), ε±
γ (s)〉 = 〈γ ′′(s), ε±

γ (s)〉 = 〈γ ′′′(s), ε±
γ (s)〉 = 0.

In Ref. 11, Porteous introduced the notion of the evolute of γ in the unit 3-sphere. He defined it as
the curve which satisfies the above equations, so that we call each image of ε±

γ the spherical evolute

of γ in the unit 3-sphere. We remark that ε−
γ (s) = −ε+

γ (s). For s = s0, we fix v±
0 = ε±

γ (s0) and
〈γ (s0), ε±

γ (s0)〉 = c±. Since v−
0 = −v+

0 and c− = − c+ , we have a hyperplane

H P(v+
0 , c+) = {x ∈ R4

0 | 〈x, v+
0 〉 = c+ } = {x ∈ R4

0 | 〈x, v−
0 〉 = c− } = H P(v−

0 , c−),

so that we have a sphere

S2(v±
0 , c±) = H P(v±

0 , c±) ∩ S3
0 .

We call S2(v±
0 , c±) an osculating sphere of γ at s0. Therefore, the spherical evolutes ε±

γ (s) are the
loci of the centers of osculating spheres of γ .

Proposition 3.1. There exists a sphere S2(v, c) ⊂ S3
0 such that γ (I ) ⊂ S2(v, c) if and only if

both of the spherical evolutes ε±
γ of γ are single points.

Proof. If one of the spherical evolutes ε+
γ of γ is a single point, we can set that ε+

γ (s) = v+. In
this case another spherical evolute ε−

γ is constant too. Then 〈γ (s), v+〉′ = 〈γ ′(s), v+〉 = 〈t(s), ε+
γ (s)〉

= 0, so we have 〈γ (s), v+〉 = c+ and γ (I ) ⊂ S2(v+, c+). Conversely, if γ (I ) ⊂ S2(v, c), then at
any point on γ , the osculating spheres is S2(v, c) itself. So the locus of the centers of osculating
spheres of γ is v and −v. Therefore, both of the spherical evolutes ε±

γ of γ are single points. This
completes the proof. �
IV. LIGHTCONE DUALS OF CURVES IN THE UNIT 3-SPHERE

In Ref. 5, the first author introduced the Legendrian dualities between pseudo-spheres in
Lorentz-Minkowski 5-space which is a basic tool for the study of hypersurfaces in pseudo-spheres
in Lorentz-Minkowski 5-space. We define one-forms 〈dv,w〉 = −w0dv0 + ∑4

i=1 wi dvi , 〈v, dw〉
= −v0dw0 + ∑4

i=1 vi dwi in R5
1 × R5

1 and consider the following two double fibrations:

(1) (a) LC∗ × S4
1 ⊃ 	3 = {(v,w) | 〈v,w〉 = 1},

(b) π31 : 	3 −→ LC∗, π32 : 	3 −→ S4
1 ,

(c) θ31 = 〈dv,w〉|	3, θ32 = 〈v, dw〉|	3.

(2) (a) LC∗ × LC∗ ⊃ 	4 = {(v,w) | 〈v,w〉 = −2},
(b) π41 : 	4 −→ LC∗, π42 : 	4 −→ LC∗,
(c) θ41 = 〈dv,w〉|	4, θ42 = 〈v, dw〉|	4.

Here, πi1(v,w) = v, πi2(v,w) = w. We remark that θ−1
i1 (0) and θ−1

i2 (0) define the same tangent
hyperplane field over 	i which is denoted by Ki, i=3,4. It has been shown in Ref. 5 that each
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(	i, Ki)(i = 3, 4) is a contact manifold and both of π ij(j = 1, 2) are Legendrian fibrations. Moreover,
those contact manifolds are contact diffeomorphic to each other. In Ref. 5, we have defined four
double fibrations (	i, Ki), i = 1, 2, 3, 4, such that these are contact diffeomorphic to each other.
Here, we only use (	3, K3) and (	4, K4). If we have an isotropic mapping i: L → 	i (i.e., i*θ i1

= 0), we say that π i1(i(L)) and π i2(i(L)) are 	i-dual to each other, i = 3, 4. For detailed properties
of Legendrian fibrations, see Ref. 1.

We now define hypersurfaces in LC* associated with the curves in S3
+ or S3

0 . Let γ : I −→ S3
+

be a unit speed curve. We define L D
±
γ : I × R2 −→ LC∗ by

L D
±
γ (s, u, v) = γ (s) + un(s) + vb(s) ±

√
u2 + v2 + 1e0.

We also define L Dγ : I × R2 −→ LC∗ by

L Dγ (s, u, v) = u2 + v2 − 4

4
γ (s) + un(s) + vb(s) + u2 + v2 + 4

4
e0.

Then we have the following proposition.

Proposition 4.1. Under the above notation, we have the followings:

(1) γ and L D
±
γ are 	3-dual to each other.

(2) γ and L Dγ are 	4-dual to each other.

Proof. Consider the mapping L3(s, u, v) = (L D
±
γ (s, u, v), γ (s)). Then we have

〈L D
±
γ (s, u, v), γ (s)〉 = 〈γ (s), γ (s)〉 = 1

and

L ∗
3 θ32 = 〈L D

±
γ (s, u, v), γ ′(s)〉ds = 〈L D

±
γ (s, u, v), t(s)〉ds = 0.

The assertion (1) holds.
We also consider the mapping L4(s, u, v) = (L Dγ (s, u, v), γ (s)). Since 〈γ (s), e0〉 = −1

and 〈γ (s), γ (s)〉 = 1, we have 〈L Dγ (s, u, v), γ (s)〉 = (u2 + v2)/4 − 1 − ((u2 + v2)/4 + 1) = −2.

Moreover, we have

L ∗
4 θ42 = 〈L Dγ (s, u, v)), γ ′(s)〉ds = 〈L Dγ (s, u, v), t(s)〉ds = 0.

This completes the proof. �
We call each image of L D

±
γ the Lightcone dual haypersurface of the de Sitter spherical curve

γ and L Dγ the Lightcone dual hypersurface of the lightlike spherical curve γ . Then we have two

mappings π ◦ L D
±
γ : I × R2 → S3

+ and π ◦ L Dγ : I × R2 → S3
+ defined by

π ◦ L D
±
γ (s, u, v) = ±

(
1√

u2 + v2 + 1
γ (s) + u√

u2 + v2 + 1
n(s) + v√

u2 + v2 + 1
b(s)

)
+ e0,

π ◦ L Dγ (s, u, v) = u2 + v2 − 4

u2 + v2 + 4
γ (s) + 4u

u2 + v2 + 4
n(s) + 4v

u2 + v2 + 4
b(s) + e0.

In this paper, we consider the singularities of these dual surfaces and mappings. By the Frenet-
Serret type formulae, we have

∂L D
±
γ

∂u
(s, u, v) = n(s) ± u√

1 + u2 + v2
e0,

∂L D
±
γ

∂v
(s, u, v) = b(s) ± v√

1 + u2 + v2
e0,
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∂L D
±
γ

∂s
(s, u, v) = (1 − uκg(s))t(s) − vτg(s)n(s) + uτg(s)b(s),

∂L Dγ

∂u
(s, u, v) = u

2
γ (s) + n(s) + u

2
e0,

∂L Dγ

∂v
(s, u, v) = v

2
γ (s) + b(s) + v

2
e0,

∂L Dγ

∂s
(s, u, v) = u2 + v2 − 4uκg(s) − 4

4
t(s) − vτg(s)n(s) + uτg(s)b(s).

Then we have the following proposition.

Proposition 4.2. Let γ : I −→ S3
+ be a unit speed curve. Then we have the followings:

(1) (s, u, v) is a singular point of L D
±
γ if and only if u = 1/κg(s).

(2) (s, u, v) is a singular point of L Dγ if and only if v = ±√
4 + 4uκg(s) − u2.

Proof. By the above calculations, ∂L D
±
γ /∂u(s, u, v), ∂L D

±
γ /∂v(s, u, v), ∂L D

±
γ /∂s(s, u, v) are

linearly dependent if and only if u = 1/κg(s). The assertion (1) follows. By the similar reason, we
have the assertion (2). This completes the proof. �

Therefore, the critical value sets of the above dual hypersurfaces are given by

C(L D
±
γ ) =

{
γ (s) + 1

κg(s)
n(s) + vb(s) ±

√
1 + κ2

g (s) + v2κ2
g (s)

κ2
g (s)

e0

∣∣∣ v ∈ R, s ∈ I, κg(s) 	= 0

}
,

C(L Dγ )± = {κg(s)uγ (s) + un(s) ±
√

4 + 4uκg(s) − u2b(s) + (κg(s)u + 2)e0|u ∈ R, s ∈ I }.
We, respectively, denote that

L F±
γ (s, u) = γ (s) + 1

κg(s)
n(s) + v(u)b(s) ±

√
1 + κ2

g (s) + v2(u)κ2
g (s)

κ2
g (s)

e0,

L F±
γ (s, u) = κg(s)uγ (s) + un(s) ±

√
4 + 4uκg(s) − u2b(s) + (κg(s)u + 2)e0,

where we have the relation v(u) = ±√
4 + 4uκg(s) − u2. We respectively call each one of L F±

γ the
lightcone focal surface of the de Sitter spherical curve γ and each one of L F±

γ the ligtcone focal
surface of the lightcone spherical curve γ . Then the projections of L F±

γ and L F±
γ to S3

+ are given
as follows:

π (C(L D
±
γ )) =

⎧⎨⎩±(κg(s)γ (s) + n(s) + vκg(s)b(s))√
1 + κ2

g (s) + v2κ2
g (s)

+ e0

∣∣∣ v ∈ R, s ∈ I, κg(s) 	= 0

⎫⎬⎭ ,

π (C(L Dγ )±) =
{

uκg(s)γ (s) + un(s) ± √
4 + 4uκg(s) − u2b(s)

κg(s)u + 2
+ e0 |u ∈ R, s ∈ I

}
.

On the other hand, we define π̃ = � ◦ π : LC∗ → S3
0 . By the previous calculations, π̃ (C(L D

±
γ ))

is different from π̃ (C(L Dγ )±). In Ref. 7, it was shown that the projections of the critical value sets
of the lightcone dual hypersurfaces of γ and γ are the same for a curve γ : I → S2

+. Moreover, it is
equal to the spherical evolute of γ . Therefore, the situation for curves in S3

+ is quite different from
that for curves in S2

+.
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V. LIGHTCONE HEIGHT FUNCTIONS

In order to study the singularities of Lightcone dual surfaces of spherical curves, we introduce
two families of functions and apply the theory of unfoldings. Let γ : I −→ S3

+ be a unit speed curve,
according to the duality between lightcone and de Sitter 4-space in Sec. IV, we define the following
family of functions:

H : I × LC∗ −→ R, H (s, v) = 〈γ (s), v〉 − 1.

We call H a lightcone height function of the de Sitter spherical curve γ . For any fixed v ∈ LC∗, we
denote hv(s) = H (s, v). For simplification, we denote

ρ(s) =
√

(κ4
g (s)τ 2

g (s) + κ2
g (s)τ 2

g (s) + κ ′2
g (s))/κ4

g (s)τ 2
g (s).

Then we have the following proposition for hv .

Proposition 5.1. Let γ : I −→ S3
+ be a unit speed curve, then we have the followings:

(1) hv(s) = 0 if and only if there exist λ,μ, ξ, η ∈ R with η2 = 1 + λ2 + μ2 + ξ 2 such that
v = γ (s) + λt(s) + μn(s) + ξ b(s) + ηe0.

(2) hv(s) = h
′
v(s) = 0 if and only if there exist μ, ξ, η ∈ R with η2 = 1 + μ2 + ξ 2 such that

v = γ (s) + μn(s) + ξ b(s) + ηe0 = γ (s) + μn(s) + ξ b(s) ±
√

1 + μ2 + ξ 2e0.

(3) hv(s) = h
′
v(s) = h

′′
v(s) = 0 if and only if κg(s) 	= 0 and

v = γ (s) + 1

κg(s)
n(s) + ξ b(s) ±

√
1 + κ2

g (s) + κ2
g (s)ξ 2

κ2
g (s)

e0.

(4) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = 0 if and only if κg(s) 	= 0, τg(s) 	= 0 and

v = γ (s) + 1

κg(s)
n(s) − κ ′

g(s)

κ2
g (s)τg(s)

b(s) ± ρ(s)e0.

(5) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = h

(4)
v (s) = 0 if and only if κg(s) 	= 0, τg(s) 	= 0,(( −1

κg(s)

)′ 1

τg(s)

)′
− τg(s)

κg(s)
= 0

and

v = γ (s) + 1

κg(s)
n(s) − κ ′

g(s)

κ2
g (s)τg(s)

b(s) ± ρ(s)e0.

(6) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = h

(4)
v (s) = h

(5)
v (s) = 0 if and only if κg(s) 	= 0, τg(s) 	= 0,(( −1

κg(s)

)′ 1

τg(s)

)′
− τg(s)

κg(s)
=

{(( −1

κg(s)

)′ 1

τg(s)

)′
− τg(s)

κg(s)

}′
= 0

and

v = γ (s) + 1

κg(s)
n(s) − κ ′

g(s)

κ2
g (s)τg(s)

b(s) ± ρ(s)e0.

Proof. (1) Since v ∈ LC∗, there exist ω, λ,μ, ξ, η ∈ R with ω2 + λ2 + μ2 + ξ 2 − η2

= 0 such that v = ωγ (s) + λt(s) + μn(s) + ξ b(s) + ηe0. From hv(s) = 〈γ (s), v〉 − 1 = 0, we have
ω = 1. So v = γ (s) + λt(s) + μn(s) + ξ b(s) + ηe0 and η2 = 1 + λ2 + μ2 + ξ 2. The converse
direction also holds.

(2) Since h
′
v(s) = 〈t(s), v〉, hv(s) = h

′
v(s) = 0 if and only if

h
′
v(s) = 〈t(s), v〉 = 〈t(s), γ (s) + λt(s) + μn(s) + ξ b(s) + ηe0〉 = λ = 0.
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It follows from the fact η2 = 1 + μ2 + ξ 2 that η = ±
√

1 + μ2 + ξ 2. Then we have v = γ (s)
+ μn(s) + ξ b(s) + ηe0 = γ (s) + μn(s) + ξ b(s) ±

√
1 + μ2 + ξ 2e0.

(3) Since h
′′
v(s) = 〈κg(s)n(s) − γ (s), v〉, hv(s) = h

′
v(s) = h

′′
v(s) = 0 if and only if

h
′′
v(s) = 〈κg(s)n(s) − γ (s), γ (s) + μn(s) + ξ b(s) ±

√
1 + μ2 + ξ 2e0〉 = κg(s)μ − 1 = 0.

Then we have κg(s) 	= 0, μ = 1/κg(s) and

v = γ (s) + n(s)/κg(s) + ξ b(s) ±
√

(1 + κ2
g (s) + κ2

g (s)ξ 2)/κ2
g (s)e0.

(4) Since h
′′′
v (s) = 〈κ ′

g(s)n(s) − (κ2
g (s) + 1)t(s) + κg(s)τg(s)b(s), v〉, hv(s) = h

′
v(s) = h

′′
v(s)

= h
′′′
v (s) = 0 if and only if

h
′′′
v (s) =〈κ ′

g(s)n(s) − (κ2
g (s) + 1)t(s) + κg(s)τg(s)b(s),

γ (s) + n(s)/κg(s) + ξ b(s) ±
√

(1 + κ2
g (s) + κ2

g (s)ξ 2)/κ2
g (s)e0〉

= κ ′
g(s)/κg(s) + κg(s)τg(s)ξ = 0.

Then we have κg(s) 	= 0, τ g(s) 	= 0, ξ = −κ ′
g(s)/κ2

g (s)τg(s), and v = γ (s) + n(s)/κg(s)
− κ ′

g(s)b(s)/κ2
g (s)τg(s) ± ρ(s)e0.

The proof of (5) and (6) follows by computing the 4th and 5th derivatives of h̄v(s) with respect
to s. The calculations are lengthy and are omitted. �

For a function f(s), we say that f has Ak-singularity at s0 if f ( p)(s0) = 0 for all 1 ≤ p ≤ k and
f (k + 1)(s0) 	= 0. By Proposition 5.1 (6), we know that for hv , only Ak-singularity, k = 1, 2, 3, 4, are
generic singularities.

Let γ : I −→ S3
+ be a unit speed curve, according to the duality in the lightcone in Sec. IV, we

define the following family of functions:

H : I × LC∗ −→ R, H (s, v) = 〈γ (s), v〉 + 2.

We call H a lightcone height function of the lightlike spherical curve γ . For any fixed v ∈ LC∗, we
denote hv(s) = H (s, v). For simplification, we denote

σ±(s) = (κ2
g (s)τg(s) ±

√
κ ′2

g (s) + κ2
g (s)τ 2

g (s) + κ4
g (s)τ 2

g (s))/(κ ′2
g (s) + κ2

g (s)τ 2
g (s)).

The we have the following proposition for hv .

Proposition 5.2. Let γ : I −→ S3
+ be a unit speed curve, then we have the followings:

(1) hv(s) = 0 if and only if v = λγ (s) + μt(s) + ξn(s) + ηb(s) + (λ + 2)e0, where λ,μ, ξ, η

∈ R and μ2 + ξ 2 + η2 − 4λ − 4 = 0.
(2) hv(s) = h′

v(s) = 0 if and only if v = ((ξ 2 + η2)/4 − 1)γ (s) + ξn + ηb(s) + ((ξ 2 + η2)/4
+ 1)e0.

(3) hv(s) = h′
v(s) = h′′

v(s) = 0 if and only if

v = κg(s)ξγ (s) + ξn(s) ±
√

4 + 4κg(s)ξ − ξ 2b(s) + (κg(s)ξ + 2)e0.

(4) hv(s) = h′
v(s) = h′′

v(s) = h′′′
v (s) = 0 if and only if κ ′2

g (s) + κ2
g (s)τ 2

g (s) 	= 0 and

v = 2κ2
g (s)τg(s)σ±(s)γ (s) + 2κg(s)τg(s)σ±(s)n(s) − 2κ ′

g(s)σ±(s)b(s) + (2κ2
g (s)τg(s)σ±(s) + 2)e0.

(5) hv(s) = h′
v(s) = h′′

v(s) = h′′′
v (s) = h(4)

v (s) = 0 if and only if κ ′2
g (s) + κ2

g (s)τ 2
g (s) 	= 0,(( −1

κg(s)

)′ 1

τg(s)

)′
− τg(s)

κg(s)
= 0
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and

v = 2κ2
g (s)τg(s)σ±(s)γ (s) + 2κg(s)τg(s)σ±(s)n(s) − 2κ ′

g(s)σ±(s)b(s) + (2κ2
g (s)τg(s)σ±(s) + 2)e0.

(6) hv(s) = h′
v(s) = h′′

v(s) = h′′′
v (s) = h(4)

v (s) = h(5)
v (s) = 0 if and only if κ ′2

g (s) + κ2
g (s)τ 2

g (s)
	= 0, (( −1

κg(s)

)′ 1

τg(s)

)′
− τg(s)

κg(s)
=

{(( −1

κg(s)

)′ 1

τg(s)

)′
− τg(s)

κg(s)

}′
= 0

and

v = 2κ2
g (s)τg(s)σ±(s)γ (s) + 2κg(s)τg(s)σ±(s)n(s) − 2κ ′

g(s)σ±(s)b(s) + (2κ2
g (s)τg(s)σ±(s) + 2)e0.

The proof of this proposition is similar to the proof of Proposition 5.1, we omit it. According to
the assertions of Propositions 5.1 and 5.2, we define an invariant

κS(s) =
(( −1

κg(s)

)′ 1

τg(s)

)′
− τg(s)

κg(s)
.

We call κS(s) spherical curvature of γ . We have the following proposition.

Proposition 5.3. For a unit speed curve γ : I → S3
+, both of the spherical evolutes ε±

γ are single
points if and only if κS ≡ 0.

Proof.

κS(s) =
(

(−1/κg(s))′

τg(s)

)′
− τg(s)

κg(s)
= κg(s)κ ′′

g (s)τg(s) − 2κ ′2
g (s)τg(s) − κg(s)κ ′

g(s)τ ′
g(s) − κ2

g (s)τ 3
g (s)

κ3
g (s)τ 2

g (s)
,

ε′±
γ (s) = −κS(s)κ4

g (s)τ 2
g (s)κ ′

g(s)

(κ ′2
g (s) + κ4

g (s)τ 2
g (s) + κ2

g (s)τ 2
g (s))3/2

{
γ (s) + 1

κg(s)
n(s) + (1/κg(s))′

τg(s)
b(s)

}

− κS(s)κ3
g (s)τ 2

g (s)

κg(s)τg(s)(κ ′2
g (s) + κ4

g (s)τ 2
g (s) + κ2

g (s)τ 2
g (s))1/2

b(s).

So ε′±
γ ≡ 0 if and only if κS ≡ 0. This completes the proof. �

VI. SINGULARITIES OF LIGHTCONE DUALS OF SPHERICAL CURVES

In this section, we classify the singularities of L D
±
γ and L Dγ as an application of the unfolding

theory of functions. Let F : (R × Rr , (s0, x0)) −→ R be a function germ, we call F an r-parameter
unfolding of f, where f (s) = Fx0 (s, x0). The discriminant setof F is defined by

DF =
{

x ∈ Rr | ∃s ∈ R, F(s, x) = ∂ F

∂s
(s, x) = 0

}
.

By Propositions 5.1 (2) and 5.2 (2), the discriminant set of H and H are

DH = {γ (s) + un(s) + vb(s) ±
√

u2 + v2 + 1e0 | s ∈ I, u, v ∈ R},

DH = {(u2 + v2 − 4)γ (s)/4 + un(s) + vb(s) + (u2 + v2 + 4)e0/4 | s ∈ I, u, v ∈ R}.
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These are the lightcone dual hypersurfaces of γ and the lightcone dual surface of γ , respectively.
Moreover, the both assertions (4) of Propositions 5.1 and 5.2 describe the singularities of the lightcone
focal surfaces of γ and γ , respectively.

Proposition 6.1. The critical value sets of L F±
γ and L F±

γ are give as follows:

C(L F±
γ ) =

{
γ (s) + 1

κg(s)
n(s) − κ ′

g(s)

κ2
g (s)τg(s)

b(s) ± ρ(s)e0

∣∣∣ s ∈ I

}
,

C(L F±
γ ) = {2κ2

g (s)τg(s)σ±(s)γ (s) + 2κg(s)τg(s)σ±(s)n(s)

−2κ ′
g(s)σ±(s)b(s) + (2κ2

g (s)τg(s)σ±(s) + 2)e0 | s ∈ I }.
Then we have the following theorem as a corollary.

Theorem 6.2. Both of the projections of the critical value sets C(L F±
γ ) and C(L F±

γ ) in the unit

3-sphere S3
0 are the images of the spherical evolutes of γ , that is,

π̃ (C(L F±
γ )) = π̃ (C(L F±

γ )) = {ε±
γ (s) | s ∈ I }.

Proof. We know that

π̃ (C(L F±
γ )) =

{
± 1

ρ(s)

(
γ (s) + 1

κg(s)
n(s) − κ ′

g(s)

κ2
g (s)τg(s)

b(s)

) ∣∣∣ s ∈ I

}
and

π̃ (C(L F±
γ )) =

{
σ±(s)

κ2
g (s)τg(s)γ (s) + κg(s)τg(s)n(s) − κ ′

g(s)b(s)

κ2
g (s)τg(s)σ±(s) + 1

∣∣∣ s ∈ I

}
.

By straightforward calculations, we have

κ2
g (s)τg(s)σ±(s)

κ2
g (s)τg(s)σ±(s) + 1

=
κ2

g (s)τg(s)(κ2
g (s)τg(s) ±

√
κ ′2

g (s) + κ2
g (s)τ 2

g (s) + κ4
g (s)τ 2

g (s))

κ ′2
g (s) + κ2

g (s)τ 2
g (s) + κ4

g (s)τ 2
g (s) ± κ2

g (s)τg(s)
√

κ ′2
g (s) + κ2

g (s)τ 2
g (s) + κ4

g (s)τ 2
g (s)

= ±κ2
g (s)τg(s)√

κ ′2
g (s) + κ2

g (s)τ 2
g (s) + κ4

g (s)τ 2
g (s)

= ±1

ρ(s)
.

Similarly, we can calculate that

κg(s)τg(s)σ±(s)

κ2
g (s)τg(s)σ±(s) + 1

= ±1

ρ(s)κg(s)
,

κ ′
g(s)σ±(s)

κ2
g (s)τg(s)σ±(s) + 1

= ±κ ′
g(s)

ρ(s)κ2
g (s)τg(s)

.

Thus we have

π̃ (C(L F±
γ )) = π̃ (C(L F±

γ )) = {ε±
γ (s) | s ∈ I }.

This completes the proof. �
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Inspired by Propositons 5.1, 5.2, and Theorem 6.2, we define the following set:

D�
F =

{
x ∈ Rr | ∃s ∈ R, F(s, x) = ∂ F

∂s
(s, x) = · · · = ∂�F

∂s�
(s, x) = 0

}
,

which we call the discriminant set of order �. Of course, D1
F = DF . In order to understand the

geometric properties of the discriminant set of order �, we introduce an equivalence relation
among the unfoldings of functions. Let F and G be r-parameter unfoldings of f(s) and g(s),
respectively. We say that F and G are P-R-equivalent if there exists a diffeomorphism germ
� : (R × Rr , (s0, x0)) −→ (R × Rr , (s ′

0, x′
0)) of the form �(s, x) = (�1(s, x), φ(x)) such that

G ◦ � = F. By straightforward calculations, we have the following proposition.

Proposition 6.3. Let F and G be r-parameter unfoldings of f(s) and g(s), respectively. If F and
G are P-R-equivalent by a diffeomorphism germ � : (R × Rr , (s0, x0)) −→ (R × Rr , (s ′

0, x′
0)) of

the form �(s, x) = (�1(s, x), φ(x)), then φ(D�
F ) = D�

G as set germs.

By Propositions 5.1 and 5.2, we have the following proposition.

Proposition 6.4. Under the same notations as in the previous paragraphs, we have

DH = D1
H

= Images L D
±
γ , D2

H
= Images L F±

γ , π̃ (D3
H

) = Images ε±
γ ,

DH = D1
H = Image L Dγ , D2

H = Images L F±
γ , π̃ (D3

H ) = Images ε±
γ .

Let F be an r-parameter unfolding of f and f has Ak-singularity (k ≥ 1) at s0. We denote the
(k − 1)-jet of the partial derivative ∂F/∂xi at s0 as

j (k−1)

(
∂ F

∂xi
(s, x0)

)
(s0) =

k−1∑
j=1

α j i (s − s0) j , i = 1, · · · , r.

If the rank of k × r matrix (α0i, αji) is k(k ≤ r), then F is called a versal unfolding of f, where
α0i = ∂ F/∂xi (s0, x0). We have the following classification theorem of versal unfoldings (see page
149, Sec. 6.6 of Ref. 3).

Theorem 6.5. Let F : (R × Rr , (s0, x0)) −→ R be an r-parameter unfolding of f which has
Ak-singularity at s0. Suppose F is a versal unfolding of f, then F is P-R-equivalent to one of the
following unfoldings:

(a) k = 1 : ± s2 + x1,
(b) k = 2 : s3 + x1 + sx2,
(c) k = 3 : ± s4 + x1 + sx2 + s2x3,
(d) k = 4 : s5 + x1 + sx2 + s2x3 + s3x4.

We have the following classification result as a corollary of the above theorem.

Corollary 6.6. Let F : (R × Rr , (s0, x0)) −→ R be an r-parameter unfolding of f which has
Ak-singularity at s0. Suppose F is a versal unfolding of f, then we have the following assertions:

(a) For k = 1, DF is diffeomorphic to {0} × Rr−1 and D2
F = ∅.

(b) For k = 2, DF is diffeomorphic to C(2, 3) × Rr−2, D2
F is diffeomorphic to {0} × Rr−2 and

D3
F = ∅.

(c) For k = 3, DF is diffeomorphic to SW × Rr−3, D2
F is diffeomorphic to C(2, 3, 4) × Rr−3,D3

F
is diffeomorphic to {0} × Rr−3 and D4

F = ∅.

(d) For k = 4, DF is locally diffeomorphic to B F × Rr−4,D2
F is diffeomorphic to C(B F)

× Rr−4,D3
F is diffeomorphic to C(2, 3, 4, 5) × Rr−4, D4

F is diffeomorphic to {0} × Rr−4 and
D5

F = ∅.

We remark that all of diffeomorphisms in the above assertions are diffeomorphism germs.
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Here, we respectively call

C(2, 3) = {(x1, x2) | x1 = u2, x2 = u3}
a (2, 3)-cusp,

C(2, 3, 4) = {(x1, x2, x3) | x1 = u2, x2 = u3, x3 = u4}
a (2, 3, 4)-cusp,

C(2, 3, 4, 5) = {(x1, x2, x3, x4) | x1 = u2, x2 = u3, x3 = u4, x4 = u5}
a (2, 3, 4, 5)-cusp,

SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v}
a swallow tail,

B F = {(x1, x2, x3.x4) | x1 = 5u4 + 3vu2 + 2wu, x2 = 4u5 + 2vu3 + wu2, x3 = u, x4 = v}
a butterfly,

C(B F) = {(x1, x2, x3, x4) | x1 = 6u5 + u3v, x2 = 25u4 + 9u2v, x3 = 10u3 + 3uv, x4 = v}
a c-butterfly (i.e., the critical value set of the butterfly).

We have the following key propositions for H and H .

Proposition 6.7. If hv0 has an Ak-singularity, k = 1, 2, 3, 4, at s0, then H is a versal unfolding
of hv0 .

Proof. For v ∈ LC∗, we have v = (±(v2
1 + v2

2 + v2
3 + v2

4)1/2, v1, v2, v3, v4). We denote that
γ (s) = (0, x1(s), x2(s), x3, (s), x4(s)). Then

H (s, v) = 〈γ (s), v〉 − 1 = x1(s)v1 + x2(s)v2 + x3(s)v3 + x4(s)v4 − 1.

Thus we have

∂ H

∂v1
(s, v) = x1(s),

∂ H

∂v2
(s, v) = x2(s),

∂ H

∂v3
(s, v) = x3(s),

∂ H

∂v4
(s, v) = x4(s),

∂2 H

∂s∂v1
(s, v) = x ′

1(s),
∂2 H

∂s∂v2
(s, v) = x ′

2(s),
∂2 H

∂s∂v3
(s, v) = x ′

3(s),
∂2 H

∂s∂v4
(s, v) = x ′

4(s),

∂3 H

∂s2∂v1
(s, v) = x ′′

1 (s),
∂3 H

∂s2∂v2
(s, v) = x ′′

2 (s),
∂3 H

∂s2∂v3
(s, v) = x ′′

3 (s),
∂3 H

∂s2∂v4
(s, v) = x ′′

4 (s),

∂4 H

∂s3∂v1
(s, v) = x ′′′

1 (s),
∂4 H

∂s3∂v2
(s, v) = x ′′′

2 (s),
∂4 H

∂s3∂v3
(s, v) = x ′′′

3 (s),
∂4 H

∂s3∂v4
(s, v) = x ′′′

4 (s).

For a fixed point v0 = (v00, v01, v02, v03, v04), the 3-jet of ∂ H/∂vi (s, v0) at s0 is

j (3) ∂ H

∂vi
(s, v0)(s0) = x ′

i (s0)(s − s0) + x ′′
i (s0)(s − s0)2/2 + x ′′′

i (s0)(s − s0)3/6, i = 1, 2, 3, 4.

For k = 1, 2, 3, it is obviously that H is a versal unfolding of hv0 . So we only consider the case
k = 4. We need to show that the rank of the matrix A is 4, where

A =

⎛⎜⎜⎜⎜⎜⎝
x1(s0) x2(s0) x3(s0) x4(s0)

x ′
1(s0) x ′

2(s0) x ′
3(s0) x ′

4(s0)

x ′′
1 (s0) x ′′

2 (s0) x ′′
3 (s0) x ′′

4 (s0)

x ′′′
1 (s0) x ′′′

2 (s0) x ′′′
3 (s0) x ′′′

4 (s0)

⎞⎟⎟⎟⎟⎟⎠ .
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We have

det A = 〈e0 ∧ γ (s0) ∧ γ ′(s0) ∧ γ ′′(s0), γ ′′′(s0)〉 = −κ2
g (s0)τg(s0) 	= 0,

which completes the proof. �
Proposition 6.8. If hv0 has an Ak-singularity, k = 1, 2, 3, 4, at s0, then H is a versal unfolding

of hv0 .

Proof. For v ∈ LC∗, we have v = (v0, v1, v2, v3, v4) = (±(v2
1 + v2

2 + v2
3

+ v2
4)1/2, v1, v2, v3, v4). We write γ (s) = (1, x1(s), x2(s), x3(s), x4(s)). Then we have

H (s, v) = 〈γ (s), v〉 + 2 = ∓(v2
1 + v2

2 + v2
3 + v2

4)1/2 + x1(s)v1 + x2(s)v2 + x3(s)v3 + x4(s)v4 + 2.

Thus we have

∂ H

∂v1
(s, v) = −v1/v0 + x1(s),

∂ H

∂v2
(s, v) = −v2/v0 + x2(s),

∂ H

∂v3
(s, v) = −v3/v0 + x3(s),

∂ H

∂v4
(s, v) = −v4/v0 + x4(s),

∂2 H

∂s∂v1
(s, v) = x ′

1(s),
∂2 H

∂s∂v2
(s, v) = x ′

2(s),
∂2 H

∂s∂v3
(s, v) = x ′

3(s),
∂2 H

∂s∂v4
(s, v) = x ′

4(s),

∂3 H

∂s2∂v1
(s, v) = x ′′

1 (s),
∂3 H

∂s2∂v2
(s, v) = x ′′

2 (s),
∂3 H

∂s2∂v3
(s, v) = x ′′

3 (s),
∂3 H

∂s2∂v4
(s, v) = x ′′

4 (s),

∂4 H

∂s3∂v1
(s, v) = x ′′′

1 (s),
∂4 H

∂s3∂v2
(s, v) = x ′′′

2 (s),
∂4 H

∂s3∂v3
(s, v) = x ′′′

3 (s),
∂4 H

∂s3∂v4
(s, v) = x ′′′

4 (s).

For a fixed v0 = (v00, v01, v02, v03, v04), the 3-jet of ∂ H/∂vi (s, v0) at s0 is

j (3) ∂ H

∂vi
(s, v0)(s0) = x ′

i (s0)(s − s0) + x ′′
i (s0)(s − s0)2/2 + x ′′′

i (s0)(s − s0)3/6, i = 1, 2, 3, 4.

For k = 1, 2, 3, it is obviously that H is a versal unfolding of hv0 . So we only consider the case
k = 4. We need to show that the rank of the matrix B is 4, where

B =

⎛⎜⎜⎜⎜⎜⎝
−v01/v00 + x1(s0) −v02/v00 + x2(s0) −v03/v00 + x3(s0) −v04/v00 + x4(s0)

x ′
1(s0) x ′

2(s0) x ′
3(s0) x ′

4(s0)

x ′′
1 (s0) x ′′

2 (s0) x ′′
3 (s0) x ′′

4 (s0)

x ′′′
1 (s0) x ′′′

2 (s0) x ′′′
3 (s0) x ′′′

4 (s0)

⎞⎟⎟⎟⎟⎟⎠ .

By straightforward calculations, we have

det B = 〈e0 ∧ γ ′(s0) ∧ γ ′′(s0) ∧ γ ′′′(s0), v0〉/v00 + 〈e0 ∧ γ (s0) ∧ γ ′(s0) ∧ γ ′′(s0), γ ′′′(s0)〉

= 〈κ2
g (s0)τg(s0)γ (s0), v0〉/v00 − 〈κ ′

g(s0)b(s0), v0〉/v00 + 〈κg(s0)τg(s0)n(s0), v0〉/v00 − κ2
g (s0)τg(s0).

In this case, hv0 (s) has an A4-singularity, then we have

v0 = 2κ2
g (s0)τg(s0)σ±(s0)γ (s0) + 2κg(s0)τg(s0)σ±(s0)n(s0) − 2κ ′

g(s0)σ±(s0)b(s0)

+(2κ2
g (s0)τg(s0)σ±(s0) + 2)e0.
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Moreover, we have

v00 = 2κ2
g (s0)τg(s0)σ±(s0) + 2.

Therefore by calculation, we have

det B = ± κ2
g (s0)τ 2

g (s0) + κ ′2
g (s0)√

κ ′2
g (s0) + κ2

g (s0)τ 2
g (s0) + κ4

g (s0)τ 2
g (s0) ± κ2

g (s0)τg(s0)
	= 0,

which completes the proof. �
We have the following theorem.

Theorem 6.9. Let γ : I −→ S3
+ be a unit speed curve.

(A) For the lightcone duals L D
±
γ of γ , we have the following assertions:

(1) Each one of the lightcone duals L D
±
γ of γ is locally diffeomorphic to C(2, 3) × R2 at

(s0, u0, v0) if and only if

κg(s0) 	= 0, u0 = 1

κg(s0)
and v0 	=

(
1

κg(s0)

)′ 1

τg(s0)
.

In this case, each one of L F±
γ is non-singular and each one of Images ε±

γ is empty.

(2) Each one of the lightcone duals L D
±
γ of γ is locally diffeomorphic to SW × R at (s0, u0, v0)

if and only if

κg(s0) 	= 0, τg(s0) 	= 0, u0 = 1

κg(s0)
, v0 =

(
1

κg(s0)

)′ 1

τg(s0)
, and κS(s0) 	= 0.

In this case, each one of L F±
γ is locally diffeomorphic to C(2, 3, 4) × R and each one of Images ε±

γ

is a regular curve.
(3) Each one of the lightcone duals L D

±
γ of γ is locally diffeomorphic to BF at (s0, u0, v0) if

and only if

κg(s0) 	= 0, τg(s0) 	= 0, u0 = 1

κg(s0)
, v0 =

(
1

κg(s0)

)′ 1

τg(s0)
, κS(s0) = 0, and κ ′

S(s0) 	= 0.

In this case, each one of L F±
γ is locally diffeomorphic to C(B F) × R and each one of Images ε±

γ is

locally diffeomorphic to the projection of the C(2, 3, 4, 5) to S3
0 .

(B) For the lightcone dual L Dγ of γ , we have the following assertions:
(1) The lightcone dual L Dγ of γ is locally diffeomorphic to C(2, 3) × R2 at (s0, u0, v0) if and

only if

u0 	= 2κg(s0)τg(s0)σ±(s0) and v0 = ±
√

4 + 4κg(s0)u0 − u2
0.

In this case, each one of L F±
γ is non-singular and each one of Images ε±

γ is empty.
(2) The lightcone dual L Dγ of γ is locally diffeomorphic to SW × R at (s0, u0, v0) if and only

if

κ ′2
g (s0) + κ2

g (s0)τ 2
g (s0) 	= 0, u0 = 2κg(s0)τg(s0)σ±(s0), v0 = −2κ ′

g(s0)σ±(s0), and κS(s0) 	= 0.

In this case, each one of L F±
γ is locally diffeomorphic to C(2, 3, 4) × R and each one of Images ε±

γ

is a regular curve.
(3) The lightcone dual L Dγ of γ is locally diffeomorphic to BF at (s0, u0, v0) if and only if

κ ′2
g (s0) + κ2

g (s0)τ 2
g (s0) 	= 0, u0 = 2κg(s0)τg(s0)σ±(s0), v0 = −2κ ′

g(s0)σ±(s0),

κS(s0) = 0 and κ ′
S(s0) 	= 0.
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In this case, each one of L F±
γ is locally diffeomorphic to C(B F) × R and each one of Images ε±

γ is

locally diffeomorphic to the projection of the C(2, 3, 4, 5)-cusp to S3
0 .

Proof. By Propositions 5.1 and 5.2, the discriminant sets of H and H are the lightcone duals of
γ and γ , respectively. By Propositions 5.1 and 5.2, both of hv0 and hv0 have Ak singularities (k =
1, 2, 3, 4), respectively, if and only if the above conditions on the geodesic curvatures and geodesic
torsions hold. By Propositions 6.7 and 6.8, H and H are versal unfoldings of hv0 and hv0 at any point
s0 ∈ I, respectively. We apply Corollary 6.6, so that we have the above assertions. This completes
the proof. �
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