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ABSTRACT

Dynamics and practical predictability of extratropical low-frequency variability (LFV) in Northern

Hemisphere winter are examined in the framework of a two-dimensional (2D) stochastic differential equation

(SDE) on the phase space spanned by two leading empirical orthogonal function modes of low-pass-filtered

500-hPa geopotential height variations. The drift vector and diffusion tensor of the 2D SDE with multipli-

cative noise are theoretically connected with deterministic and stochastic error growth, respectively; both are

statistically estimated from a reanalysis dataset. Projected onto the 2D phase space is the practical pre-

dictability of the LFV estimated by the 10-day forecast spread based on the 1-month ensemble prediction

operationally conducted by the Japan Meteorological Agency (JMA). It is shown that the forecast spread of

the LFV prediction by the JMAmodel for a relatively shorter prediction period when themodel bias does not

hamper the forecast is primarily explained by the stochastic error growth associated with the diffusion tensor

and the deterministic error growth due to the Jacobian of the drift vector plays a secondary role. A non-

Gaussian PDF of the LFV is also related to the norm of the diffusion tensor. Hence, the stochastic processes

mostly control the dynamics and predictability of the LFV in the 2D phase space.

1. Introduction

The atmospheric low-frequency variability (LFV) with

week-to-month time scales is characterized by disordered

or chaotic nature but contains some ordered and persis-

tent states, such as blocking and teleconnection patterns,

which have been believed to be a key element of sub-

seasonal prediction. Charney and DeVore (1979) re-

garded two stable fixed points as zonal and blocked

weather regimes in their low-dimensional barotropic

model with an idealized topography for the extratropical

large-scale flow, and hypothesized that synoptic-scale

fluctuations trigger a regime-to-regime transition. Some

focused their attention on seeking fixed points in a non-

linear deterministic system so as to comprehensively

explain the LFV’s behavior. Quasi-stationary states are

actually realized when a trajectory passes near fixed

points (Legras and Ghil 1985) and local minimum points

(Mukougawa 1988) in a phase space, and multiple equi-

libria associated with those points were found in several

low-dimensional models (Cehelsky and Tung 1987; Itoh

and Kimoto 1996; Reinhold and Pierrehumbert 1982).

However, multiple equilibria can hardly be presented in

more complex systems such as general circulationmodels

(GCMs) with a huge number of variables. Efforts to find

multiple weather regimes in the observed atmospheric

motion have also been spurred (Kimoto and Ghil 1993;

MoandGhil 1988;Molteni et al. 1990), with laboring over

the search of multimodality in a low-dimensional phase

space spanned by statistically obtained leading modes

of LFV. Such difficulty in finding multiple weather re-

gimes in the observation and complex models has been

a stumbling block to apply a dynamic concept derived

in a low-dimensional dynamic system to the real atmo-

sphere. The difficulty comes from the implicit assump-

tion that the high-dimensional atmospheric system can

be reduced to a low-dimensional dynamic system by
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neglecting nonlinear feedbacks through high-frequency

variability and many aspects with limiting modes, vari-

ables, or domains.

The variation of the predictability of the LFV in the

phase space has been also examined to seek a plausible

dynamic relationship between predictability and atmo-

spheric LFV. Kimoto et al. (1992) investigated a case

that the subseasonal predictability got worse at the

timing when the atmospheric state changed from zonal

to blocking regimes. Palmer (1988) reported a better

prediction in the positive phase of the Pacific–North

American (PNA) pattern. Recently, Tang et al. (2007)

suggested that the atmospheric large-scale motion is less

(more) predictable in the negative (positive) phase of

the Arctic Oscillation (AO). As for a low-dimensional

system,Mukougawa et al. (1991) andYamane andYoden

(1997) successfully captured a tendency that the atmo-

spheric flow ismore (less) predictable when it approaches

(leaves) a quasi-stationary state or a weather regime. The

above two studies only shed light on a particular re-

lationship between predictability and quasi-stationary

states, however. A decade has passed since we were

standing at the difficulty of reducing a huge number of

dimensions and of pursuing the general relationship

between predictability and LFV. We are still far from

fully understanding the predictability of the LFV all

over the phase space in the framework of the deter-

ministic nonlinear dynamic system.

On the other hand, the framework of a stochastic dif-

ferential equation (SDE) has been recently used in the

discussion of the atmospheric LFV (Berner 2005; Sura

et al. 2005). The SDE in the Itô calculus (Hasselmann

1976; Penland and Matrosova 1998) is written as

dxi 5Ai(x)dt1 �
j
Sij(x)dWj , (1)

where x 5 x(t) is an atmospheric state vector, A(x) is

called deterministic drift, S(x) is a state-dependent co-

efficient tensor for multiplicative noise, and W is the

Wiener process vector, of which components are inde-

pendent of each other. See Paul and Baschnagel (1999)

for more detailed discussion on SDEs. The associate

Fokker–Planck equation (FPE) that can be derived from

Eq. (1) is written as

›P

›t
52�

i

›

›xi
Ai(x)P1 �

i,j

›2

›xi›xj
Bij(x)P , (2)

where P 5 P(x, t) denotes the probability density func-

tion (PDF) of the state vector and the diffusion tensor

B5 (1/2)SST. Following Berner (2005) and Sura et al.

(2005), the FPE coefficients ofA and B are respectively

approximated as

Ai ffi
�
Dxi
Dt

�
, (3)

and

Bij ffi
*
DxiDxj
2Dt

+
, (4)

where Dxi5 xi(t1Dt)2 xi(t), the angle brackets denote

an ensemble average, and Dt is a short, finite time in-

terval. Sura et al. (2005) indicated that a linear system

withmultiplicative noise could generate a climatological

PDF that departed from themultivariateGaussianity. In

contrast, Branstator and Berner (2005) prudently in-

sisted that a nonlinearity inherent in the planetary wave

dynamics maintains multiple weather regimes in the

LFV in a very long-term GCM simulation. Nonlinear

deterministic versus linear stochastic approaches to

LFV are still controversial, but we do not intend to get

involved with this debate. Rather, we will pursue a new

approach to explain the variation of the subseasonal

predictability of the LFV in the framework of SDE or

FPE. In fact, the fluctuation dissipation relation derived

from the SDE [Eq. (1)],

d

dt
hxixji5 hxiAji1 hxjAii1 2hBiji , (5)

is quite suggestive of an intimate relationship between

forecast spread and the atmospheric states. If the second

moment of atmospheric states is stationary, the PDF is

maintained with a macroscopic balance between the de-

cay by deterministic dynamics [the first and second terms

on the rhs of Eq. (5)] and the diffusion by stochastic

processes [the last term on the rhs of Eq. (5); Penland

2003]. Recent promising climate modeling researches

on tropical-to-extratropical atmospheric LFV (Newman

et al. 2003), extratropical cyclone statistics (Whitaker and

Sardeshmukh 1998), and tropical sea surface tempera-

tures (SSTs; Penland and Matrosova 1998) actually used

the fluctuation dissipation relation [Eq. (5)]. However,

the linkage of the FPE coefficients with the subseasonal

predictability has not been explored theoretically.

The purpose of this study is to develop a theory on the

error growth based on the SDE and then to examine

the relationship between the FPE coefficients and the

subseasonal predictability in the 2D phase space spanned

by the bases statistically obtained through the empiri-

cal orthogonal function (EOF) analysis for wintertime

extratropical LFV data. The multiplicative noise in the

SDE includes not only the nonlinear effect of high-

frequency variability but also the effects of unresolved

higher-order LFV components and the external forcing.
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Hence, in projecting huge-dimensional motions into

the 2D phase space, the deterministic drift vector as in

Eq. (3) is probably statistically insignificant, whereas

the stochastic noise statistics as in Eq. (4) are possibly

significant. The newly constructed theory can estimate

the deterministic and stochastic contribution to the

error growth, so that we may reveal the relationship

between forecast spread and FPE coefficients in a low-

dimensional system.

This paper moreover compares the empirical error

growth, or the FPE coefficients, based on a reanalysis

dataset with the forecast error growth of the Japan Me-

teorological Agency (JMA)’s 1-month prediction model.

Practically any model has a bias that is likely to de-

teriorate the predictability of the atmospheric motion.

However, for a medium-range forecast of a prediction

period shorter than 10 days where the model bias does

not much affect the prediction, we can expect that the

empirical error growth provides dynamic arguments to

explain the characteristics of the practical predictability

of the LFV based on the JMA’s 1-month prediction

model. Of course, for an extended-range forecast such

as seasonal prediction where the model bias crucially

affects the prediction, the above argument would lose

its dynamic background.

At present, faster-speed supercomputers enables

forecast centers such as the JMA, European Centre for

Medium-Range Forecasting, and National Centers for

Environmental Prediction to run a higher-resolution

model with greater ensemblemembers. The forecast data

that have been archived in the centers amount to as much

aswemanage to draw a projectionmap of forecast spread

onto the 2D phase space, even though the data length is

certainly shorter than that ideally required for a statistical

significance. We note that this paper does rule out the

work to prove that our newly developed theory on the

empirical error growth in the 2D phase space exactly

provides the forecast error growth in the perfect model.

Instead, we invoke the new theory to explain the practical

predictability of the LFV assessed by the ensemble

spread of the JMA’s 1-month prediction model. This at-

tempt is based on the so-called perfect model assumption

(Kalnay 2003) where the influence of the model bias

should be minimized.

The rest of the paper is organized as follows: Section 2

describes forecast and reanalysis data and prepares the

2D phase space, section 3 explains the theoretical back-

ground to link the FPE coefficients with subseasonal

predictability, section 4 shows subseasonal predictability

and statistically estimated error growth based on the SDE

projected onto the 2D phase space and illustrates the

statistical stability of the FPE coefficients, and section 5

concludes the paper.

2. Data and method

We used the operational 1-month ensemble forecasts

of the JMA in December–February (DJF) from 2001/02

to 2009/10. The JMA has conducted the forecast every

Wednesday and Thursday using a global spectral model.

The current forecasting system after March 2006 con-

tains 25 ensemble members in each prediction using

a model with TL155 (comparable to horizontal resolu-

tion of 110 km) and 40 vertical levels up to 0.1 hPa, while

the previous prediction system before February 2006

used a T106L40 model with 13 ensemble members. The

initial perturbation for the ensemble forecast was cre-

ated by the breeding of growing modes method. This

study used 500-hPa geopotential height in 216 ensemble

forecasts.

The analysis data that we used are 6-hourly Japanese

25-yr Reanalysis/JMA Climate Data Assimilation Sys-

tem (JRA-25/JCDAS) dataset (Onogi et al. 2007). The

grid interval is 1.258 in longitude by 1.258 in latitude,

which is dense enough to analyze the global-scale LFV.

The period is from 1979 to 2010, which is long enough to

project the data onto a 2D phase space. Following many

previous observational studies using a low-dimensional

phase space, we used 500-hPa geopotential height that

well represents significant characteristics of the LFV in

the troposphere. The LFV were extracted by taking

a low-pass filter of the 10-day running average

throughout the period to exclude high-frequency eddies.

AnLFVanomaly is defined as the deviation from theLFV

climatology. The analysis is limited in DJF.

We next defined a 2D phase space spanned by statis-

tically obtained leading modes of the LFV anomaly

north of 208N in DJF from 1979/80 to 2009/10 (Fig. 1).

We did not choose the phase space spanned by the

leading modes obtained from a long-term integration of

the forecast model because the 10-day forecast will be

insignificantly influenced by the model bias (Mukougawa

et al. 2009). As Quadrelli and Wallace (2004) and Itoh

(2008) suggested, most teleconnection patterns are well

represented by a linear combination of these two modes.

For example, the AO (Thompson and Wallace 2000) is

represented by a back-and-forth motion along a line

connecting between the second and fourth quadrant of

this 2D phase space. In fact, the AO index is highly cor-

related with an index linearly composed of the second

principal component (PC) and the first PC with the re-

versed sign (correlation coefficient is about 0.8). The

PNA pattern is almost parallel to the first EOF axis

(Wallace and Gutzler 1981). Note that the obtained EOF

modes are almost identical to those in Kimoto and Ghil

(1993) including their sign. Because the first and second

modes explain only 14.6% and 11.6% of the total
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variance of the LFV, respectively, we should care about

the lack of information by boldly limiting a huge-di-

mensional motion to the 2D phase space in the analysis.

The DJF-mean Niño-3.4 index is used as an index of

interannual variations of El Niño–Southern Oscillation

(ENSO). DJF seasons with a positive (negative) Niño-

3.4 index are classified as the warm (cold) phase of the

ENSO in this paper.

3. Theory

a. Conventional theory

Before developing our new theory on the initial error

growth by taking account of multiplicative noise, we

begin with the conventional deterministic error growth

theory (cf. Kalnay 2003). Any forecast model systems

can be symbolically written as a nonlinear deterministic

system of

dx

dt
5A(x) . (6)

The tangential linear equation around a particular state

vector is derived from Eq. (6) as

dyi
dt

5 �
j

›Ai

›xj
yj [ �

j
Jijyj , (7)

where y 5 y(t) is the error vector and J is the Jacobian

matrix of A. Formally solving Eq. (7) with an initial

error vector at t 5 0, y(0), then

yi(t)5 �
j
Mij(t, 0)yj(0) , (8)

where M(t, 0) denotes the error matrix (Lorenz 1965).

The singular value decomposition (SVD) analysis for

the error matrix is

M(t, 0)v(m) 5s
(m)
D u(m) , (9)

providing two sets of orthonormal bases of v(m) and u(m),

which are the mth mode of the initial and final error

vector, respectively. The spread of the initial error for the

error matrix is derived from Eq. (8) as fED 5 «s
(1)
D , where

« denotes the magnitude of the initial perturbation.

b. New theory

Wenow develop a theory for the error growthwith the

SDE as already introduced in Eq. (1). The SDE is re-

written in the integral form as

xi(t)5 xi(0)1

ðt
0
Ai(x) dt1

ðt
0
�
j
Sij(x) dWj . (10)

Taking an ensemble mean for Eq. (10), then

hxi(t)i5 hxi(0)i1
ðt
0
hAi(x)i dt . (11)

Subtracting Eq. (11) from Eq. (10), the deviation from

the ensemble-mean state follows

dxi(t)2 dxi(0)5

ðt
0
dAi(x) dt1

ðt
0
�
j
Sij(x) dWj , (12)

FIG. 1. (a) First and (b) second EOFs of 10-day low-pass-filtered geopotential height at 500 hPa in DJF from 1979/80

to 2009/10 based on 6-hourly JRA25/JCDAS dataset. Contour interval is 10 m with negative contours dashed.
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where dxi 5 xi 2 hxii and dAi 5Ai 2 hAii. Provided that

ergodicity permits us to replace the ensemble mean with

the intermittent temporal average over a finite sub-

domain in the phase space, the deterministic drift can be

estimated as the ensemble mean of the time evolution

of the atmospheric state vector in the phase space as

Eq. (3).We hereafter assume that the Jacobianmatrix of

A is independent of the stochastic processes in a tan-

gential linear system.

First the temporal evolution of the error growth by

deterministic processes follows

dxi(t)5 �
j
Mij(t, 0)dxj(0) , (13)

just like the conventional error growth theory. The

spread for the deterministic error matrix is therefore

derived from Eq. (13) as

ED 5 «kM(t, 0)k . (14)

Remark that the error matrix with relatively short

forecasting period can be approximated by

M ffi exp(tJ) ffi I1 tJ , (15)

where the norm of J is derived from the spatial differ-

ence of A.

Next, using an analogy in the derivation of the fluc-

tuation dissipation relation [Eq. (5)] from Eq. (12), the

equation of the error covariance matrix is obtained as

hdxi(t)dxj(t)i2 hdxi(0)dxj(0)i5
ðt
0
hdxidAji dt

1

ðt
0
hdxjdAii dt1

ðt
0
2hBiji dt . (16)

The first and second terms in the rhs are related to the

Jacobian matrix:

hdxidAji1 hdxjdAii ffi �
k

(Jikhdxjdxki1 Jjkhdxidxki) ,

(17)

noticing that hA(x)i5A(hxi)1(1/2)A00(hxi)h(x2 hxi)2i1
⋯ ffi A(hxi) and dAi 5Ai(x)2 hAi(x)i ffi �jdxjJij(hxi).
The same form can be easily derived from Eq. (8), if the

error originated from the initial perturbation yi is re-

placed with the deviation from the ensemble average

dxi. In a purely stochastic system, where the first two terms

are ignored, the eigenvalue analysis for the diffusion

tensor is

Be
(m)
S 5s

(m)
S e

(m)
S , (18)

providing a set of orthonormal bases of e
(m)
S , and the

time evolution of the ensemble spread for the stochastic

processes is estimated by

ES 5 («21 2kBkt)1/25 («21 2s
(1)
S t)1/2 , (19)

with the initial error with its variance «2. Note that all

the eigenvalues are positive because the B is a positive

Hermitian matrix. Following the previous studies

(Berner 2005; Sura et al. 2005), A is statistically esti-

mated by Eq. (3) and the diffusion tensor is also statis-

tically obtained by Eq. (4), remarking that Dt in Eqs. (3)

and (4) is set to 6 h in the analysis. Equations (14) and

(19) therefore provide the way to evaluate the determin-

istic and stochastic error growth from an initial perturba-

tion, respectively.

4. Results

a. Forecast spread

Figure 2 shows some forecast statistics of the opera-

tional 1-month ensemble prediction of the JMA in DJF

from 2001/02 to 2009/10. The statistics for the 10-day

forecast projected onto the 2D phase space (section 2)

were obtained based on the 10-day running average of

500-hPa geopotential height prediction north of 208N,

and they were plotted at each locus in the phase space

for the initial date of the forecast. Following Sura et al.

(2005), the plots are smoothed over 3 3 3 bins, each of

which occupies a 0.4 3 0.4 tile squarely divided in the

phase space. A total of 216 forecasts are scattered over

there, and then a single bin contains a few forecasts even

around the origin (Fig. 2a). The resultant projection

therefore gives us only a very rough picture without

bearing a usual statistical significance test in a bin-to-bin

comparison, but the phase space distribution of the

forecast spread is apparently nonuniform. The spread

along themost- and least-growing directions on the phase

space (Figs. 2c,d) as well as the total spread of 500-hPa

geopotential height north of 208N (Fig. 2b) show en-

hanced (reduced) predictability in the second (fourth)

quadrant. The difference of themagnitude between these

two subdomains is less than 10% for the total spread

(Fig. 2b), but exceeds 20% for the spread along the most-

growing direction (Fig. 2c) with a statistical significance

at the 95% level.

Two points should be discussed regarding the statistics

of the forecast spread. First, the error growth along the

most-growing direction is moderately larger than that

along the least-growing direction in the second quadrant

(Figs. 2c,d). Figure 3 shows a scatterplot of the most-

growing vector for ensemble forecasts of which initial
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condition resides in each quadrant in the phase space.

Note that a line segment connecting between each plot-

ted point and origin denotes the magnitude and direction

of each dimensional eigenvector. The majority of vector

directs toward the second EOF axis with a small EOF1

component especially in the first, third, and fourth

quadrant (Figs. 3a,c,d), where the most-growing vector

hasmuch larger magnitude than the least one (Figs. 2c,d).

By contrast, there is no preferable direction for the most-

growing vector in the second quadrant (Fig. 3b). Second,

we have to check an influence of the forecast system re-

newal in 2006 (section 2). Figure 3 plots themost-growing

vector with open circles for the previous system and with

solid circles for the renewed one. We cannot find any

significant difference between them, so we need not care

about the system renewal effect in this study.

Our newly developed theory on the error growth

(section 3) can deal with the stochastic growth repre-

sented by the diffusion tensor as well as the determin-

istic growth described by the Jacobian matrix. Note that

the initial error variance is now set to 0.12, which roughly

corresponds to the magnitude of the initial error of JMA

operational 1-month ensemble forecast (not shown).

The estimated spread ED due to the Jacobian matrix

[Eq. (14)] has a different distribution (Fig. 4a) from the

projected spread on the most-growing direction for the

FIG. 2. Subseasonal predictability statistics smoothed over 3 3 3 bins on the phase space spanned by the two

leading EOFs; each bin occupies a 0.43 0.4 tile. (a) The number of the JMA’s forecasts in each bin with contours of

0.2, 0.5, 1, 2, 3, and 4. The area with the sampling number less than 0.5 is blanked out in other panels. (b) Forecast

spread of 500-hPa geopotential height anomaly. Contour interval is 1 m. Spread at 10 forecast days along the (c)

most- and (d) least-growing directions in the phase space. Contour interval is 0.02.
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operational 10-day forecast of the JMA (Fig. 2c). It is

slightly large in the fourth quadrant, but it seems rather

uniform near the origin. Areas with large ED reside far

from the origin of the phase space, although the sample

size is highly limited there. The estimated spread any-

where in the phase space is much smaller than the

forecast spread E ; 0.65 of the operational ensemble

prediction for LFV (Fig. 2c). Moreover, the largest

singular vector direction (tick marks in Fig. 4a) in the

third and fourth quadrant is not always along the EOF2

axis, which is quite different from the most-growing

direction of the operational forecast (Figs. 3c,d). On

the other hand, the distribution of the estimated spread

ES (Fig. 4b) due to the stochastic processes [Eq. (19)]

agrees well with that of the forecast spread (Fig. 2c) in

the 2D phase space. Note that because the diffusion

tensor term [
Ð t
0 hBiji dt in Eq. (16)] largely contributes

to the error covariance matrix of hdxidxji in Eq. (16)

shown in Fig. 4c, the first and second terms are indeed

negligible in Eq. (16). The local maxima of the norm of

the diffusion tensor are found in the third and fourth

quadrant, while the local minima are located in the first

to second quadrant and near (0, 22) in the phase space

(Fig. 4b). The exception is a part of the first quadrant,

where the ensemble spread (Fig. 2c) is rather large

but the norm of the diffusion tensor is smallest in the

phase space. The magnitude of the forecast error growth

(Fig. 4b) due to the stochastic processes is about one-third

smaller than the magnitude of the ensemble spread,

perhaps because the JMA forecast model bias moder-

ately expands the error growth. Thus, it is suggested that

the forecast spread of 10-day ensemble prediction of the

LFV in the 2D phase space is attributed to the stochastic

processes. Furthermore, the first eigenvector of the dif-

fusion tensor (tick marks in Fig. 4b) is parallel to the

second EOFmode, similar to the most-growing direction

of the forecast spread (Fig. 3). The estimated spread to

the second eigenvector of the diffusion tensor, with the

given initial error being 0.12 again (Fig. 4d), also agrees

with the pattern of the ensemble forecast spread pro-

jected onto the least-growing direction (Fig. 2d).

Figure 5 shows the time evolution of the observed

forecast spread (solid line) and the estimated initial er-

ror growth due to the deterministic process (dotted line)

and that due to the stochastic processes (dashed line)

against the forecast period for a particular initial loca-

tion at (21.2, 21.2) in the phase space. The magnitude

of the initial error is set to 0.12 for these estimations as in

Fig. 4. The observed forecast spread increases until its

saturation period of about 3 weeks. The estimated

spread due to the stochastic diffusion mostly follows it

until 5 days and then increases more slowly than the

operational forecast spread. On the other hand, the es-

timated error for the deterministic process is too slowly

increasing, and its magnitude is much smaller than the

observed forecast spread even within a short forecast

period of a couple of days, in which the tangential linear

equation is thought to precisely describe the initial error

FIG. 3. Scatterplots of the direction of themost-growingmode for 10-day forecast spread in the (a) first, (b) second, (c) third, and (d) fourth

quadrant. Open (solid) circles are plotted at the arrowhead of the most-growing vector from the origin for the forecasts before DJF 2005/06

(after DJF 2006/07). A line segment between plotted point and origin denotes the magnitude and direction of a dimensional eigenvector.
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growth. This supports the notion that the practical pre-

dictability of the extratropical LFV projected on a low-

dimensional phase space can be assessed using the

equation with the stochastic processes. The assessment

is worthwhile for medium-range forecasts with near a

10-day period when the model bias insignificantly affects

the prediction.

The climatological PDF distribution (Fig. 6) of the extra-

tropical LFV by scattering 11 192 reanalysis data points1

over the 2D phase space moreover indicates a link be-

tween the spread and the norm of the diffusion tensor.

The non-Gaussian PDF distribution possibly suggests

the existence of multiple weather regimes (Kimoto and

Ghil 1993; Sura et al. 2005). In fact, the observed PDF is

smaller than the bivariate Gaussianity in regions of the

fourth quadrant far from the origin, while larger PDF

than the Gaussianity is found in the first and the second

quadrant. Areas with larger PDF than the Gaussianity

are also located on the negative side of each axis. In-

terestingly, the overall distribution of the observed PDF

is closely related to the distribution of the observed

spread (Fig. 2c) and the estimated spread for stochastic

FIG. 4. The 10-day forecast spread due to the (a) deterministic Jacobian matrix and (b) stochastic diffusion tensor

with the initial error variance fixed at 0.12. Contour interval is 0.02 (10 day)21. (c) The norm of the covariancematrix

in Eq. (16). (d) The spread due to the second eigenvalue of diffusion tensor with the initial error variance fixed at 0.12

again. Tick marks in (a)–(c) denote the direction of the largest eigenvector of the error matrix, the diffusion tensor,

and the covariance matrix, respectively.

1 Degrees of freedom are about 300 in the analysis period, be-

cause a low-pass filter was taken for the data.
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processes (Fig. 4b). Three preferred regions along a cir-

cle whose center is at the origin and radius is about 1.5 in

the 2D phase space (Fig. 6) coincide well with the loci

with small norm of the diffusion tensor, while the fourth

quadrant characterized by less frequency has a large

norm of the diffusion tensor. Thus, the regions with the

PDF larger thanGaussianity (i.e., weather regimes) could

be formed through the smaller stochastic spread of the

trajectory there.

b. Statistical stability

This subsection examines statistical stability of the

FPE coefficients in terms of the relationship among

them. Remembering Ai ffi hDxi/Dti [Eq. (3)] and Bij ffi
hDxiDxj/2Dti [Eq. (4)], we find the relation of�

�
i

�
Dxi
Dt

�2�
5 trace

�
2B

Dt

�
, (20)

which means that the ensemble mean of the (squared)

magnitude of the time evolution of state vector is pro-

portional to the sum of all of the eigenvalues of B. As

the first eigenvalue is much larger than the other(s), the

norm of diffusion tensor is almost explained by the

variance of time evolution of state vector. Figures 7a,b

display the ensemble mean of the norm of Dx/Dt (i.e.,
hkDx/Dtki) and the norm of the ensemble-mean Dx/Dt
(i.e., khDx/Dtik), respectively. The former distribution

is similar to the plot of the lhs of Eq. (20) (not shown),

and the latter is the magnitude of drift vector in short.

The magnitude of hkDx/Dtki is much larger than that of

khDx/Dtik even in the region far from the origin of the

phase space. This means that any features of the drift

vector shown in the vector plot of Fig. 7b are therefore

statistically insignificant in the 2D phase space. The

square root of the diffusion tensor norm (Fig. 7c) has

a quite similar distribution to hkDx/Dtki, which is consistent
with Eq. (20). Note that, since the trace of B is slightly

larger than norm of B that is a positive Hermitian matrix,

the plot of Fig. 7c is a bit smaller than that of Fig. 7a. Thus,

this kind of highly truncated systems with reducing the

dimension too much from the real atmospheric system

must scatter the trajectory associated with the estimated

diffusion tensor.

We further examine the statistical stability of the FPE

coefficients from a different viewpoint. Traditionally,

the ENSO is an effective agent of the external forcing to

the PNA pattern (Geisler et al. 1985; Horel andWallace

1981). In fact, Palmer (1999) illustrated an important

role of the external forcing that potentially shifts the

PDF of the extratropical LFV to a particular direction in

the phase space. The composited drift vector for the

warm and cold phases of the ENSO (Figs. 8a,b) suggests

the importance of the external forcing (see section 2 for

how the PC time series are divided into the warm and

cold phases of ENSO). The drift vector is statistically

unstable even with a larger magnitude than its average

(Fig. 7b). The diffusion tensor norm, in contrast, holds

the characteristics of its average distribution with the

FIG. 5. Growth of ensemble forecast spread (solid), and empir-

ically estimated spread for the stochastic diffusion (dashed) and the

deterministic system (dotted) at (1.2, 21.2) in the phase space

against the forecast period.

FIG. 6. The PDF of the two leading principal components

(contour) and its departure from the bivariate Gaussianity (shad-

ing) (unit is 1023). Contours are drawn for 10, 20, 30, 50, 70, 100,

and 125 3 1023 and color shading is shown by the scale. The area

with less than 0.01 PDF is blanked out in Figs. 4, 7, and 8.
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local maximum in the fourth quadrant and smaller

values in the upper half plane. Interestingly the drift

vector shows an opposite direction in the fourth quad-

rant between two phases. This clear difference gives rise

to the larger norm of the diffusion tensor in the total-

period statistics there, so that the ENSO is thought of as

a strong external forcing in this 2D system that, to some

extent, brings statistical instability of the drift vector.

We next perform another division of the PC time se-

ries. The observed forecast spread (Fig. 2) is based on

the operational 1-month forecast in 2001/02–2009/10

from the initial condition of the analysis data, which is

also used in the estimation of the spread due to the de-

terministic and stochastic processes. To examine the

effect of this duplicate use of the analysis data to the

results, the data are split into 1990s and 2000s (Figs. 8c,d).

The former period is completely independent to the op-

erational forecast used in this paper. The difference of the

diffusion tensor norm between these two periods is not so

large. Hence, the diffusion tensor norm is so statistically

stable that we need not care about the problem of the

duplicate use of the analysis data after 2001/02.

5. Concluding remarks

This study investigated predictability and the dy-

namics of the extratropical LFV in terms of an SDE

equation in the phase space constructed by the two

leading modes for the LFV based on JRA-25/JCDAS

data in DJF from 1979/80 to 2009/10. The ensemble

spread of the operational 1-month prediction of the JMA

in DJF from 2001/02 to 2009/10 was used to evaluate the

practical predictability of the LFV. The 10-day forecast

spread of 10-day running-mean 500-hPa geopotential

height showed a nonuniform distribution of predictability

in the 2D phase space, even though the data period of the

ensemble prediction utilized in this study was too short

to assure statistical significance. The distribution of the

forecast spread and the normof the diffusion tensor in the

SDE in the 2D phase space were very similar to each

other, but the norm of the Jacobianmatrix obtained from

the drift vector of the SDE has a totally different mag-

nitude and distribution in the phase space. We thus sug-

gest that the stochastic multiplicative noise expressed by

the diffusion tensor can play a primary role in the forecast

error growth in this low-dimensional phase space and

show that the new theory can explain the characteristics

of the practical predictability of the LFV assessed by the

JMA’s 1-month prediction model for a medium-range

forecast where the model bias only insignificantly affects

the forecast.

The predictability of the LFV was enhanced (reduced)

in the second (fourth) quadrant of the 2D phase space

FIG. 7. (a) The ensemblemean of the norm of the time derivative

of the atmospheric state vector. Contour interval is 0.1 (10 day)21

and the area with less than 0.01 PDF is blanked out. (b) The norm

ofA superimposed with the drift vector itself; the reference vector

with its magnitude of 0.5 (10 day)21 is at the bottom right. (c) The

square root of norm of 2BDt.
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(section 4). Figures 9a,b show the corresponding com-

posite of zonal-mean zonal wind and the Eliassen–Palm

flux for the second and fourth quadrant. The second-

quadrant composite shows a wider and relatively weaker

subtropical jet stream with active Rossby waves, while

the fourth-quadrant composite shows a narrower and

stronger subtropical jet with inactive Rossby waves.

The difference of the composite maps, being statisti-

cally significant (Fig. 9c), resembles the regression map

on the AO index (Fig. 9d). This is consistent with Tang

et al. (2007), who suggested that the atmospheric large-

scale motion is less (more) predictable in the negative

(positive) phase of AO.

As documented in the introduction, the practical

predictability examined in this paper inevitably depends

on which forecast models one chooses. However, the

practical predictability of the LFV assessed by a 10-day

forecast spread of the JMA’s 1-month prediction model

has a qualitatively similar distribution in the 2D phase

space to the empirically estimated predictability based

on the SDE equation. The similarity implies that the

10-day forecast of the JMA model is reliable enough to

represent the evolution of the LFV in the real atmo-

sphere and is not much influenced by the model bias. On

the other hand, for other LFV phenomena such as the

Madden–Julian oscillation of which model prediction

FIG. 8. The ensemble-mean drift vector (arrows) and diffusion tensor norm (contours) for the (a) warm and (b)

cold phases of El Niño–Southern Oscillation. Contour interval is 0.01 (10 day)21, and the arrow size follows the

reference in the bottom [unit is (10 day)21]. The area with diffusion tensor norm greater than 0.06 (10 day)21 is

shaded. (c),(d) As in (a), but for the statistics in 1990/91–1999/2000 and 2000/01–2009/10, respectively.
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suffers from a significant model bias, the error growth of

the forecast model would be much larger than the em-

pirical error growth estimated by a long-term reanalysis

dataset, and the temporal evolution of the error growth

would be quite different between them (cf. Chikamoto

et al. 2007). In such a case, the argument based on the

SDE equation might be inadequate to examine the prac-

tical predictability.

One might imagine that an empirical SDE has a po-

tential to propose a brand-new subseasonal forecast with

a less computational cost. Unfortunately, an SDE fore-

cast in the 2D phase space would not be so promising

because the ensemble-mean drift vector is again much

smaller than the observed time evolution of the tra-

jectory (Figs. 7a,b). This issue could be relieved if we

utilized the phase space with much higher dimension.

We guess that the data length of about 10d/2 of DJF

seasons is required to estimate the d-dimensional PDF.2

The reanalysis data have been archived for about 30 yr,

FIG. 9. Composite map of zonal-mean wind (contours) and the Eliassen–Palm flux (arrows) for the (a) second and

(b) fourth quadrants. Contour interval is 5 m s21. The reference at the bottom denotes 100 kg m21 s22 horizontal

component and 1 kg m21 s22 vertical component of the Eliassen–Palm flux. (c) The difference of the composited

zonal-mean zonal wind between the second and the fourth quadrants (i.e., Fig. 9a2 Fig. 9b). The contour interval is

1 m s21 and the shading denotes the statistical significance at 95% level. (d) The regression of zonal-mean zonal wind

on the Arctic Oscillation index with the contour interval of 0.5 m s21.

2 The degrees of freedom of data in a single DJF season are

about 9. If you statistically calculated the one-dimensional PDF in

a phase space, you would require about 30 independent samples.

The required number of winters can then be roughly estimated by

10d/2 of DJF seasons for the d-dimensional plot.
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and then the maximum size of the dimension utilized is

at most 3. However, most of significant variations in the

tropospheric LFV dynamics would not be represented

even in a three-dimensional phase space. The limita-

tion could be avoided using a very-long-term integra-

tion of a GCM (Branstator and Berner 2005). If we

want to represent 3/4 of the tropospheric LFV variations,

a 100 000-yr GCM integration should be conducted to

create enough data to plot the PDF in a 10-dimensional

phase space. It is also quite interesting to extend our study

to examine the predictability of extratropical LFV oc-

curring in a long-term GCM integration under the ‘‘per-

fectmodel’’ scenario. In this case, the predictability of the

LFV of the GCM should be assessed by the spread of

ensemble ‘‘forecast’’ conducted by the same GCM, and

the empirical error growth should be evaluated in a phase

space constructed by leading EOFs of the LFV in the

GCM.The comparison between the ensemble spread and

the empirical error growth obtained in the same GCM

simulation would clarify the relevance of our new theory

on the forecast error growth in exploring the predic-

tability of the LFV since the result is totally free from the

model bias. Moreover, our studies would be applied to

a different geophysical fluid like the oceans, a different

spatial domain like the stratosphere and the Southern

Hemisphere, anddifferent seasons. These extensiveworks

will be left for our near-future studies.
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