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Abstract

A number of memory models have been proposed. These all have the basic structure

that excitatory neurons are reciprocally connected by recurrent connections together

with the connections with inhibitory neurons, which yields associative memory (i.e.,

pattern completion) and successive retrieval of memory. In most of the models, a

simple mathematical model for a neuron in the form of a discrete map is adopted.

It has not, however, been clarified whether behaviors like associative memory and

successive retrieval of memory appear when a biologically plausible neuron model

is used. In this paper, we propose a network model for associative memory and

successive retrieval of memory based on Pinsky-Rinzel neurons. The state of pat-

tern completion in associative memory can be observed with an appropriate bal-

ance of excitatory and inhibitory connection strengths. Increasing of the connection

strength of inhibitory interneurons changes the state of memory retrieval from as-

sociative memory to successive retrieval of memory. We investigate this transition.
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1 Introduction

Several models for assocative memory have been proposed so far, which have the

basic structure that excitatory neurons are reciprocally connected by recurrent con-

nections. This structure yields associative memory, that is, pattern completion [1-5].

An extended model of associative memory by introducing additional inhibitory in-

terneurons, which treats successive retrieval of memory, has also been proposed

[6-8].

On the other hand, it has become possible to introduce the effects of ion chan-

nels, neuromodulators, and the geometric structure of synaptic connections, based

on biological knowledge of neuronal activity that has recently accumulated. For

example, each area of a dendrite receives glutamatergic inputs from a different

source, and several types of interneurons connect with different areas of a den-

drite [9-11]. However, it has not been clarified how these factors contribute to the

memory system. Therefore, in order to construct a memory model consisting of bi-

ologically plausible neuron units, it is necessary to use a conductance-based model,

which includes ion channels, membrane dynamics, and the geometric structure of

synaptic connections. By using this level of model, we consider the effects of the

factors mentioned above. We believe that this level of modeling could link com-

putational theory with physiological data. In other words, our present approach

in terms of mathematical modeling corresponds to the intermediate level of theory

proposed by D. Marr [12], that is, “representation and algorithm”. Here we focus

on a conductance-based model of associative memory.

Furthermore, based on physiological experiments, it has been reported that Acetyl-

choline (ACh) projection reduces the release of GABA, and hence decreases IPSPs

in pyramidal cells of layer 2/3 in the cerebral cortex [13-15]. This indicates that

ACh projection modulates the GABAergic synaptic property. Interneurons modu-

late and coordinate the firing patterns of pyramidal cells, and stabilize the activity of

pyramidal cells by both feedback and feedforward inhibitions [9, 16]. If the synap-

tic currents from GABAergic interneurons to pyramidal cells are modulated by ACh

1



projections, the firing pattern of pyramidal cells would also be changed. Therefore,

we assume that the state of memory retrieval should be closely related to such ACh

projections.

In this study, focused on these effects of ACh, we also describe the relationship

between associative memory and successive retrieval of memory.
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2 Model

2.1 Network architecture

The network architecture in our model is a population of pyramidal cells that

are reciprocally connected by recurrent connections and GABAergic fast-spiking

interneurons. These interneurons project via GABAA synapses to pyramidal cells,

and the pyramidal cells project via AMPA synapses to other pyramidal cells forming

a recurrent network and also project via AMPA synapses to interneurons. We do

not include effect of NMDA channels because we do not consider synaptic learning

directly. The network is composed of 150 neurons: 120 pyramidal cells (80%) and

30 interneurons (20%). Three memory patterns, provided as binary patterns, are

embedded into the recurrent excitatory synaptic connections by Hebbian synaptic

modification. The Hebbian rule specifies a weight of 1 for a connection between

two active neurons and otherwise a weight of zero (see Appendix C for details). The

dendritic compartment receives the spike trains of external inputs and background

noise, the latter being independently generated by a Poisson process with an average

1 kHz firing rate. The schematic network architecture is shown in Fig. 1, and the

mathematical representation appears in Appendices A-C.

2.2 Pyramidal cells

We employ a two-compartment model for pyramidal cells that was proposed by

Pinsky and Rinzel [17]. It consists of somatic and dendritic compartments com-

prising different active ion-currents and synaptic inputs. The somatic compartment

has two voltage-dependent currents, the fast sodium currentINa and the delayed

rectifier potassium currentIK−DR, and a leak currentIL. The dendritic compartment

has three voltage-dependent currents, which are the calcium currentICa, the Ca-

activated potassium currentIK−C, and the potassium after-hyperpolarization current

IK−AHP, as well as the leak currentIL. The compartments are electrically connected

via conductancegc. Each pyramidal cell receives somatic inhibition from GABAer-
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gic fast-spiking interneurons, and dendritic excitation from other pyramidal cells

(recurrent collaterals). See Appendix A for details.

2.3 GABAergic FS interneurons

The interneuron model is a compartment with a sodium current,INa, a potassium

current,IK, and a leak currentIL [18]. Each GABAergic FS interneuron receives

excitatory input from 4 pyramidal cells, and projects via GABAA synapses to the

somatic compartment of all pyramidal cells. See Appendix B for details.
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Figure 1: A schematic diagram of the network architecture. The network architec-

ture consists of a population of pyramidal cells which are reciprocally connected by

recurrent connections and GABAergic fast-spiking interneurons with external input
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and noise. Connection matrices and are shown in three columns at the bottom of

the figure (see Appendix C for details).

3 Results

3.1 Dynamic behavior for associative memory

In this section, we investigate whether associative memory is achieved in the

Pinsky-Rinzel neurons network. Since the network should have the ability of pat-

tern completion to be associative memory, we evaluate the ability from the network

response when a partial cue, which is close to one of stored memory patterns, is ap-

plied to the network. The partial cue is produced by reducing the number of active

neurons from one of stored memory patterns.

The degree of pattern completion is evaluated by calculating the overlappingMµ

between the current network state and a stored memory pattern. The overlapping

Mµ is defined by

Mµ =
ηµ · X[k]
∥ηµ∥∥X[k]∥ , (1)

whereηµ is theµ-th embedded memory pattern, each of which is represented by a

N-dimensional vector of activities of neurons for an N-neuron network. Here, each

element of the vector is encoded by 1 (firing state) or 0 (resting state).X[k] is also

a N-dimensional vector for an N-neuron network:

X[k] = (x1[k], x2[k], · · · , xN[k])T . (2)

Herexi[k] is the number of spikes of thei-th neuron during the interval (kT, (k +

1)T) andT = 10 ms is fixed. The overlappingMµ takes the value of 1 when the

current network state is the same as theµ-th embedded memory pattern.
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Fig. 2 shows the network response when the partial cue was applied to the net-

work as an external stimulus at times of 0 ms, 250 ms, and 500 ms with each appli-

cation having a duration of 40 ms. It can be seen that even if the external stimulus

is slightly different from stored patterns (see Fig. 2 (a)), the activity pattern rapidly

converges to the closest stored pattern (see Fig. 2 (c)). This convergence occurs

because pyramidal cells participating in the same memory are enhanced by other

pyramidal cells by recurrent connections, but another pyramidal cells, which do not

belong to the construction of that memory, are suppressed by inhibitory interneu-

rons. This way of memory retrieval provides associative memory via the network’s

ability to complete patterns, which has been proposed by many researchers, for in-

stance, Amari [1], Anderson [2], Nakano [3], and Hopfield [4]. In the next section,

we examine the properties of pattern completion.
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Figure 2: Network response for external stimulation. (a) Rasterplot of external stim-

ulation. A stimulation that was slightly different to the stored pattern was applied to

each cell assembly at times 0 ms, 250 ms, and 500 ms, and each stimulus lasted for

40 ms. (b) Rasterplot of somatic spikes. These spikes are induced by the external

stimulus inputs. The different colors indicate a different cell assembly. (c) Overlap-
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ping between a stored pattern and an activity pattern of the network. Overlapping

was calculated using a time window of 10 ms, and the time window for moving

average was 0.05 ms. The parameters in this simulation aregGABA = 0.037 and

gAMPA,rec = 0.036. The stimulation suggests that an attractor dynamics emerges and

employs auto-association for the recall of memories.

3.2 Pattern completion

Pattern completion can be viewed as attractor dynamics and, thus, depends on

the structure of basin of attraction of stored patterns. In order to understand the

basin structure in phase space, we study the relation between the probability of

memory retrieval and the difference between an input pattern and a stored pattern.

Input patterns are provided by N-dimensional vectors of binary patterns for an N-

neuron network, where each input pattern is provided by increasing or decreasing

the number of active neurons from a stored pattern. The difference of the number

of active neurons between an input pattern and a stored pattern is defined as DBIS.

Plus or minus sign of DBIS indicates the increase or the decrease of the number of

active neurons in the input pattern from a stored memory pattern (see Fig. 3 (a)).

The probability of memory retrieval is calculated as follows. An input pattern

is selected from the set of input patterns with different DBIS, and applied to the

network as an external stimulus at times 50 ms with a duration of 40 ms. Then,

the overlapping is calculated from the network response at time of 500 ms after

stimulus onset. We define the success of memory retrieval as being greater than 80

% of overlapping. The probability of memory retrieval is calculated as the rate of

success of memory retrieval under 40 trials with different initial conditions of the

network.

Fig. 3 (b) shows the probability of memory retrieval for different DBIS input

patterns. It can be seen the parameter region that accomplish the probability of

memory retrieval being almost one, even if the input pattern differs from the stored

pattern by several active neurons (see Fig. 3 (b),gGABA = 0.030). These results
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suggest the presence of attractors in the network dynamics.

Furthermore, this type of memory retrieval becomes unstable with an increase

of the connection strength from the inhibitory interneurons to the pyramidal cells,

gGABA, which indicates that the connection strength could modify the structure of

the basin of attraction (see Fig. 3 (b),gGABA = 0.040). In the following section, we

consider the effect ofgGABA in the memory retrieval.
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Figure 3: The structure of the basin of attraction. (a) The difference between an

input pattern and a stored pattern (DBIS). Plus or minus sign of DBIS indicates the

increase or the decrease of the number of active neurons in the input pattern from

a stored memory pattern. (b) The abscissa denotes DBIS, and the ordinate denotes

the probability of memory retrieval. Red solid and blue dashed curves show the
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cases ofgGABA= 0.030 andgGABA= 0.040, respectively.

3.3 The influence of inhibition on memory retrieval

We consider the change of dynamics associated with memory retrieval, when the

relative strength of inhibitory connections to pyramidal cells changes. Fig. 4 shows

a rasterplot of the somatic spikes for all pyramidal cells with different connection

strengthsgGABA after the input of an external stimulus. Here, the external stimulus

is applied at time 0 ms. The connection strength ofgGABA starts withgGABA= 0 and

changes togGABA = 0.032 at 1000 ms, andgGABA = 0.048 at 2500 ms (Fig. 4 (a)).

Without inhibition,gGABA = 0, the firing activity of pyramidal cells is enhanced by

recurrent connections, which brings about effects like epileptic seizure (Fig. 4 (b),

state I). WhengGABA= 0.032, the network behaves like associative memory (Fig. 4

(b), state II). WhengGABA = 0.048, the network state changes dynamically, yield-

ing successive retrieval of memories (Fig. 4 (b), state III). Thus, the modality of

the retrieval process changes, depending on the connection strength of GABAergic

inhibitory interneurons to pyramidal cells.
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Figure 4: Rasterplot of the somatic spikes for different values of the connection

strengthgGABA. We observed the behavior of most cells firing, as in an epileptic

seizure, forgGABA = 0 (state I), associative memory retrieval forgGABA = 0.032

(state II), and successive retrieval of memories forgGABA = 0.048 (state III). (a)

Time-series of the connection strengthgGABA. The connection strength starts at

gGABA = 0, and changes togGABA = 0.032 at 1000 ms, and togGABA = 0.048 at

2500 ms. (b) Rasterplot of somatic spikes. Different colors indicate different cell

assemblies. (c) Overlapping between somatic spikes and stored memory patterns.

3.4 Effects of gAMPA ,rec / gGABA balance for associative memory

We examined the network’s ability to behave like associative memory in the pa-

rameter space ofgAMPA,rec (the strength of excitatory-excitatory connections) and

gGABA (the strength of inhibitory connections to pyramidal cells). We performed

simulations by fixing DBIS= −6 as one of the values in which the pattern comple-

tion is accomplished in Fig. 5 (a). We also examined another values, for example,

DBIS = −10,+6, but there was no essential difference.

We observed that the memory retrieval was successful in the parameter regions

of white colored in Fig. 5 (a). This result implies that pattern completion is accom-

plished for an appropriate balance ofgAMPA,rec / gGABA (see Fig. 5 (a) and Fig. 5 (b),

state II). In particular, in the parameter region wheregGABA is greater than its values

by which the pattern completion is accomplished, successive retrieval of memory

was observed (see Fig. 5 (b), state III). On the other hand, in the parameter region

wheregGABA is smaller than its values by which the pattern completion is accom-

plished, the network behavior such as an epileptic seizure was observed (see Fig. 5

(b), state I). In addition, we labeled “state IV” as the parameter region which could

not be classified in any of the three states in Fig. 5 (b). In state IV, various types of

complex patterns were observed.
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Figure 5: The parameter space ofgAMPA,rec / gGABA. (a) The difference between

the input pattern and one of the stored patterns (DBIS= −6). The white color scale

indicates the probability of memory retrieval. (b) The phase diagram of the dynamic

states of network: an epileptic seizure (state I), a pattern completion (state II), and

a successive retrieval of memories (state III). State IV is a state which could not be

classified in any of the above three states.

4 Summary and discussion

In this paper, we have proposed a neural network model consisting of biologi-

cally plausible Pinsky-Rinzel neuronal units, where the network comprises excita-

tory recurrent connections and inhibitory connections by GABAergic fast-spiking

interneurons.

First, we observed network activity after external stimulus. The activity pattern

of the network rapidly converged to one of the stored patterns. This occurred even

if the external stimulus was slightly different from the stored pattern. To clarify

the network’s pattern completion ability, we examined the probability of memory

retrieval for different values of the difference between the input and stored patterns.

The result suggests that attractor dynamics works in the same way for pattern com-

pletion as it does for representing association of memory. The first significant result
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of the present study is, therefore, the achievement of an associative memory model

in terms of a biologically plausible neural network.

Second, a more dynamic modeling of the process of retrieving memories was also

realized in terms of a biologically plausible model. When the relative strength of

inhibitory connections to pyramidal cells changes, the basins of attraction of stored

patterns are modulated, and thus the retrieval of memory becomes unstable, which

gives rise to successive association of memories.

The successive association of memories might be caused by the following two

factors. One is the synchronization of interneurons. When strong IPSPs are pro-

duced by the synchronization of interneurons, the basin of attraction could be mod-

ified and most pyramidal cells could be kicked out of the attractor by noise. Then the

memory pattern should disappear. An increase in the degree of synchrony among

interneurons could cause transition between memory patterns. The other possibility

is the synchronization of pyramidal cells. When pyramidal cells belonging to the

same memory synchronize each other, the currents from the recurrent connections

flow into their dendrites at the same time. At that time, the reset via absolute refrac-

tory period in all pyramidal cells occurs at the same time. Therefore, the pyramidal

cells can not keep high in their membrane potential during absolute refractory pe-

riod, and then stop firing.

With respect to the characteristics of transition among memories, each memory

pattern appears in both forms of fixed order and of random order depending on

the parameter. In particular, patterns in random order appear in the parameter of

boundary area between the states II and III in Fig. 5 (b). In addition, there is the

possibility to have the dynamical transitions via NMDA channels. Since NMDA

channels on the pyramidal cells have longer time constants than most other chan-

nels, say, AMPA channels, the time history of the spikes could be reflected in the

membrane potential of pyramidal cells.

This type of successive transition is similar to the behavior of memory retrieval

based on chaotic itinerancy [6, 7, 19] or latching dynamics [20]. Clarifying the re-
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lationship between the present model and these models is a subject for future study.

Finally, we discuss about the functional role of ACh in memory retrieval. It has

been reported that ACh projection reduces the release of GABA, and hence de-

creases IPSPs in pyramidal cells of layer 2/3 in the cerebral cortex [13-15]. Thus,

ACh projection brings about the decrease of the connection strength ofgGABA in our

model. When the connection strength ofgGABA decreases, the network dynamics

changes from successive retrieval of memories (state III) to associative memory re-

trieval (state II) (see Fig. 4). This result suggests the regulations of the process of

memory retrieval via ACh projections.

There have been recent findings about the role of ACh on attention mechanisms

through its effects on GABAergic interneurons in the physiological experiment. It

would be interesting to relate these findings to the change of dynamic modalities

of the memory retrieval process in the realistic neural network model studied here.

This is a subject for future study.
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Appendix: Model equations

A: Pyramidal cells

We use a two-compartment model for pyramidal cells proposed by Pinsky and

Rinzel [17]. This model consists of somatic and dendritic compartments. The mem-

brane potentials of each compartment are described by

Cm

dVs

dt
= −gL(Vs− EL) − INa− IK−DR− Isyn,s+ (gc/p)(Vd − Vs) + Is/p,

Cm

dVd

dt
= −gL(Vd − EL) − ICa− IK−AHP− IK−C − Isyn,d/(1− p)

+ (gc/(1− p))(Vs− Vd) + Id/(1− p),

(3)

where the currents are

INa = gNam
2
∞(Vs)h(Vs− ENa),

IK−DR = gK−DRn(Vs− EK),

ICa = gCas
2(Vd − ECa),

IK−AHP = gK−AHPq(Vd − EK),

IK−C = gK−Ccmin(Ca/250,1)(Vd − EK).

(4)

The kinetics of gating variables are described by

dx
dt
= αx(1− x) − βxx, (5)

wherex stands for the different kinetic variablesh, n, m, s, c andq, andαx andβx

are dimensionless time-scales tuning the rate of opening or closing of the channels.
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αm =
0.32(−46.9− Vs)

exp((−46.9− Vs)/4)− 1

βm =
0.28(Vs+ 19.9)

exp((Vs+ 19.9)/5)− 1

αn =
0.016(−24.9− Vs)

exp((−24.9− Vs)/5)− 1

βn = 0.25 exp(−1− 0.025Vs)

αh = 0.128 exp((−43− Vs)/18)

βh =
4

1+ exp((−20− Vs)/5)

αs =
1.6

1+ exp(−0.072(Vd − 5))

βs =
0.02(Vd + 8.9)

exp((Vd + 8.9)/5)− 1

αq = 0.01 min(Ca/500,1)

βq = 0.001

αc =


exp((Vd + 50)/11)− exp(−(Vd + 53.5)/27)

18.975
Vd ≤ −10

2 exp(−(Vd + 53.5)/27) Vd > −10

βc =


2 exp((Vd + 53.5)/27)− αc Vd ≤ −10

0 Vd > −10.

(6)

The calcium concentrationCasatisfies

dCa

dt
= −0.13ICa− 0.075Ca. (7)

The synaptic currentIsyn is defined below (see Appendix C). We used the follow-

ing standard values of the parameters for the pyramidal cell. The maximal con-

ductances (in mS/cm2) aregc = 1, gNa = 30, gK−DR = 15, gL = 0.1, gCa = 10,

gK−AHP = 0.8, andgK−C = 15. The reversal potentials (in mV) areEK = −75,

ENa = 60,ECa = 80, andEL = −60. The applied currents (inµA/cm2) areIs = −0.5
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and Id = 0. The capacitance wasCm = 3 µF/cm2 and the proportion of soma area

was p = 0.5. We used non-bursting parameters for simplicity and the values of

these parameters are based on the Pinsky-Rinzel model.

B: GABAergic FS interneurons

We employed the Wang-Buzsáki model for the interneurons, a single compart-

ment model with a sodium and a potassium channel [18]. The equation for the

potential is

Cm

dVf s

dt
= −INa− IK − IL − Isyn, f s+ I f s, (8)

where the current are

INa = gNam
3
∞(Vf s)h(Vf s− ENa),

IK = gKn4(Vf s− EK),

IL = gL(Vf s− EL).

(9)

The kinetic variablesh andn obey eq.5, and the rate constants are given by

αm =
−0.1(Vf s+ 35)

exp(−0.1(Vf s+ 35))− 1
,

βm = 4 exp(−(Vf s+ 60)/18),

αh = 0.07 exp(−(Vf s+ 58)/20),

βh =
1

exp(−0.1(Vf s+ 28))+ 1
,

αn =
−0.01(Vf s+ 34)

exp(−0.1(Vf s+ 34))− 1
,

βn = 0.125 exp(−(Vf s+ 44)/80).

(10)
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The kinetic variablemwas approximated by its asymptotic valuem∞(V) = αm/(αm+

βm). Other parameters for interneurons are fixed to standard values: the maximal

conductances (in mS/cm2) aregNa = 35,gK = 9, andgL = 0.1; the reversal poten-

tials (in mV) areENa = 55,EK = −90, andEL = −65; the membrane capacitance is

Cm = 1 µF/cm2; and the applied current isI f s = 0 µA/cm2.

C: Synaptic connections

The set of synapses includes the synapse providing the external input. Their be-

havior is described by equations (11)-(17) below. When the voltage of a presynaptic

cell goes beyond the fixed threshold, the synapse is activated and the postsynaptic

cell receives excitation or inhibition. The synaptic currents in eq. (3) and (8) are

given by

Isyn,s = IGABA,

Isyn,d = IAMPA,rec+ IAMPA,ex+ Inoise,

Isyn, f s = IAMPA,ei,

(11)

where

IGABA= gGABA(V − EGABA)
Ni∑
j=1

Wie
j sGABA

j ,

IAMPA,rec = gAMPA,rec(V − EAMPA)
Ne∑
j=1

Wee
j sAMPA,rec

j ,

IAMPA,ex = gAMPA,ex(V − EAMPA)s
ex,

Inoise= gAMPA,n(V − EAMPA)s
n,

IAMPA,ei = gAMPA,ei(V − EAMPA)
Ne∑

n=1

Wei
j sAMPA

j .

(12)
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HereV is a membrane potential, andsj is a kinetic variable labeled by the indexj of

a presynaptic neuron. We determined the connection matrices in the following way.

Three memory patterns are independently embedded into the recurrent excitatory

connections between pyramidal cellsWee via a clipped Hebbian learning rule [21].

Wee are fixed in such a way during simulation.

Wee
i j =


min(1,

3∑
µ=1

η
µ
i η
µ
j ) ∈ {0,1} i , j

0 i = j,

(13)

whereηµi is theµ-th component in the memory pattern, each of which is encoded by

a value 1 (firing state) or 0 (resting state).

Each component of the connection matrix from pyramidal cells to interneurons

Wei also takes the value one or zero. Each interneuron receives synapses from

four pyramidal cells, which are selected randomly from the whole pyramidal cell

population. The elements of the connection matrix from interneurons to pyramidal

cells Wie are assumed to be uniformly distributed between 0 and 1. We used a

reversal potential ofEGABA = −75 mV for GABAA synapses, andEAMPA = 0 mV

for AMPA synapses. The synaptic conductances (in mS/cm2) aregAMPA,rec = 0.036,

gAMPA,ex = 0.225,gAMPA,n = 0.0045, andgAMPA,ei = 0.1.

The synaptic gating variables,sAMPA,rec andsAMPA, for the AMPA synapses obey

ds

dt
= H(Vpre+ 40)− βes, (14)

whereVpre is the presynaptic potential,βe = 0.5 ms−1 is a decay rate, and is the

Heaviside function
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H(x) =


1 x > 0

0 x ≤ 0.
(15)

The synaptic gating variables,sex andsn, for the AMPA synapse obey

ds

dt
=
∑

k

δ(t − tkpoisson) − βes, (16)

where tkpoisson is k-th time of spike in a Poisson spike train. Each spike train is

independently generated by a Poisson process with 100Hz firing rate in average

for external inputs and 1kHz firing rate for background noise. The synaptic gating

variablesGABA for the GABAA synapse obeys

ds

dt
= αiF(Vpre)(1− s) − βi s,

F(Vpre) = 1/(exp(−Vpre/2)+ 1),

(17)

whereαi = 12 ms−1 andβi = 0.1 ms−1 are the rise and decay rates for the inhibi-

tions to pyramidal cells. Numerical integration was performed with a fourth-order

Runge-Kutta method using a 0.05 ms time step.
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