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Abstract
The presence of vegetation is commonly observed in both natural and rectified water-

courses. Vegetation in watercourses is desirable in some cases as it prevents bank erosion

and provides habitat and food for numerous species. On the other hand, vegetation causes

serious problems in other cases as it increases channel resistance and reduces channel ca-

pacity for the draining of flood water. Vegetation in a part of a channel produces transverse

shear flow, which may lead to flow instability and the generation of large-scale horizontal

vortices. These horizontal vortices have a strong influence on the velocity distribution and

the amount of discharge conveyed by a channel without overflow, and enhance the lateral

mixing of not only the flow itself, but also the substances transported by the flow both in-

side and outside the vegetated area. Therefore, it is important to determine the conditions

under which instability occurs, and the characteristics of the horizontal vortices from both

an engineering and an environmental points of view.

In this study we performed linear and nonlinear stability analyses of the flow in an open-

channel partially covered with vegetation. We assume that the base state flow field before

the occurrence of instability is characterized by turbulence, with a smaller length scale than

the flow depth, which is mainly generated by the bottom friction. By introducing perturba-

tions to the flow depth as well as the streamwise and transverse velocities in the base state,

the conditions required for perturbations grow in time were studied over a wide range of

(1) Froude number, (2) normalized non-vegetated zone width, and three other dimension-

less parameters which represent the relative effect of (3) bed friction, (4) vegetation drag

and (5) sub-depth eddy viscosity. The characteristic vortex shedding frequencies associ-

ated with the maximum growth rate was compared with those observed in experiments.

Although the linear analysis was shown to be capable of predicting the order of magnitude

of the frequencies, there is a systematic discrepancy between the predicted and observed

frequencies which may be due to the limitation of linear stability analysis.

The nonlinear development of the perturbations was studied by means of a weakly non-

linear stability analysis. Our results indicated that supercritical bifurcation, where the am-

plitude of the perturbations grows up to an upper bound as time tends to infinity, occurs

in the range of typical, moderate values of the concerning hydraulic parameters. From the
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nonlinear analysis, we found reasonable agreement between predicted and experimental

results for the lateral distribution of the time-averaged flow velocity, lateral kinematic eddy

viscosity, shear layer width and maximum friction velocity in the fully developed stage of

the perturbations.
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Chapter 1

Introduction

Parallel shear flows are commonly observed either in geophysical flows, e.g. flows in

compound channels, flows in channels with lateral varying bottom roughness, flows in

channel containing lateral vegetation, as well as in engineered flows, such as flows adjacent

to foams, filters and packed beds (Ikeda et al. (1994), White and Nepf (2007)). The lateral

velocity gradient may induce flow instability and the generation of large-scale horizontal

vortices, which have a strong influence on the velocity distribution and the flow discharge of

a channel. Though various studies on instability in channels with lateral velocity gradients

have been performed, only theoretical studies are reviewed herein.

Tamai et al. (1986) observed the generation of large eddies on the water surface in

a set of experiments with compound channels consisting of a main channel and a flood

plain. They concluded that the shear layer in the lateral velocity profile around the interface

between the main channel and the flood plain is the predominant cause for the generation

of large eddies. They applied the stability analysis of Michalke (1964) with the use of the

Rayleigh stability equation to their experimental results, and found that their observations

were able to be explained by the analysis.

Chu et al. (1991) performed a linear stability analysis of shear flows in channels with

varying flow depths and varying bottom roughness. They employed the St. Venant shallow

water equations with the free water surface approximated by a rigid lid, which is a valid

simplification when the Froude number is close to zero. The perturbation equations reduced

to a modified Rayleigh equation, which can be relatively easily solved. Because it is not
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possible to reproduce the lateral gradient of the streamwise velocity without including the

Reynolds stress in their formulation, they adopted an assumption that the flow depth and

the bottom roughness vary gradually across the channel in order to approximate it. They

found that flow stabilizes when the bottom roughness is sufficiently large, and the lateral

variation of flow is sufficiently small.

Ikeda et al. (1994) performed a temporal linear stability analysis of a partially vege-

tated channel. They obtained the base state flow with the use of the St. Venant shallow

water equations including the Reynolds stress expressed by the lateral kinematic eddy vis-

cosity empirically determined in experiments. In the perturbed problem, however, they

ignored the Reynolds stress and the variation of the water surface elevation, in effect re-

ducing their perturbed equations to a modified Rayleigh equation again. They found that

the dimensional angular frequency of maximum instability is uniquely correlated with the

ratio of two velocities a sufficient distance from the boundary between the non-vegetated

and vegetated zones.

Ghidaoui and Kolyshkin (1999) performed a temporal linear stability analysis of a chan-

nel flow with lateral velocity gradients without the rigid-lid assumption. The Reynolds

stress was included in their formulation by means of the eddy viscosity term of Chen and

Jirka (1997). Semi-empirical expressions were used to describe the base flow profile, con-

taining regression parameters which were not correlated to a specific flow field (i.e., the

source of flow retardation in part of the channel was not specified). Their computations

showed that the influence of the Reynolds number, defined using the eddy viscosity, on the

stability domain is small when it surpasses 1000.

Prooijen and Uijttewaal (2002) have also included the turbulent viscosity as in Chen and

Jirka (1997) in their temporal and spatial linear stability analysis of a channel flow with a

lateral velocity gradient generated by two separate water supplies with different velocities.

The mean flow field, which varied along the streamwise direction, was assumed to be the

base state and the rigid-lid assumption was employed, which is a reasonable simplification,

given that the Froude number in their experimental runs did not exceed 0.5.

White and Nepf (2007) performed a complete set of experiments and a spatial stability

analysis of a channel partially obstructed by an array of circular cylinders by the use of the
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modified Rayleigh equations following Chu et al. (1991), with the Reynolds stress scaled

with the width of the shear layer around the edge of the array. They made use of the rigid-

lid assumption, in accordance with the condition of small Froude numbers met in their

experiments (always below 0.25). They concluded that even though the drag differential of

the vegetated zone reinforces shear instability, the overall drag damps it if the background

friction in the channel is sufficiently large, thus allowing a range of stability characteristics.

In this study, we perform a temporal linear stability analysis of flow in an open chan-

nel partially covered with vegetation. By not employing the rigid-lid and the inviscid flow

assumptions, we could study the effects of the Froude number and the kinematic eddy vis-

cosity, respectively, on the growth rate of perturbations. We employ the St. Venant shallow

water equations with the Reynolds stress included to reproduce the velocity gradient due

to the differential drag between the regions with and without vegetation. The temporal and

spatial variations of flow vanish except for the lateral variation of the streamwise velocity

in the base state, which is used as a starting point of the stability analysis. This base state

flow field is not, however, just a temporal average of flow affected by fully-developed hori-

zontal vortices, but the flow undisturbed by the vortices. We thus employ a kinematic eddy

viscosity representing turbulence with a length scale smaller than the flow depth. Differ-

ently from Chen and Jirka (1997), the eddy viscosity employed herein is estimated for the

flow unaffected by the large-scale horizontal vortices. We impose perturbations on the base

state flow velocities and flow depth, and study how various hydraulic parameters affect the

time development of the perturbations.

The predictive theory of the present study also included a weakly nonlinear stability

analysis. The term weakly herein means that the time variation of the amplitude is much

slower than the time variation of the wavelike part of the disturbance. We made use of the

multiple scale analysis, a perturbation technique where the neutral instability, i.e., the con-

dition where the growth rate of the perturbations is zero, is deviated towards the unstable

region, i.e., where the perturbation grows with time. The bifurcation pattern was found

to be typically supercritical, where the absolute value of the amplitude reaches an equilib-

rium condition as time tends to infinity. The theory was able to predict the eddy viscosity

corresponding to the large-scale lateral motions.
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Chapter 2

Formulation

Suppose that water is flowing through a wide rectangular open-channel with lateral emer-

gent rigid vegetation (trees) as shown in Fig. 2-1. The vegetation is modeled by an array

of regularly spaced cylinders with a uniform diameter installed only on one side of the

channel. The model of cylinders as vegetation employed herein has been widely used

in previous studies (e.g., Ikeda et al. (1991), Tsujimoto (1991), Tsujimoto and Kitamura

(1992), Ikeda et al. (1994), Xiaohui and Li (2002) and White and Nepf (2007)). The re-

gion of the channel covered with vegetation is defined as the ‘vegetated zone’, the width

of which is denoted by B̃v. The region of the channel without vegetation is defined as the

‘non-vegetated zone’, the width of which is denoted by B̃.

2.1 Governing equations

In this study, we focus on horizontal vortices generated in the shallow flow in a wide rect-

angular open channel. The horizontal length scale of the vortices is commonly large com-

pared with the scale of the flow depth. The generation of such thin vortices can be described

by the depth-averaged shallow water formulation. In particular, the momentum equations

employed in this analysis need to include the Reynolds stress and the drag force due to

vegetation in order to represent the lateral velocity distribution due to the differential drag

between the non-vegetated and vegetated zones. The momentum equations in the stream-
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Figure 2-1: Conceptual diagram of the channel with vegetation. (a) The cross-sectional
view, and (b) the plan view.

wise and transverse directions (x̃ and ỹ) and the continuity equation are

∂Ũ

∂t̃
+ Ũ

∂Ũ

∂x̃
+ Ṽ

∂Ũ

∂ỹ
= gS − g∂H̃

∂x̃
− T̃bx + D̃x

ρH̃
+

1

ρ

(
∂T̃xx
∂x̃

+
∂T̃xy
∂ỹ

)
, (2.1a)

∂Ṽ

∂t̃
+ Ũ

∂Ṽ

∂x̃
+ Ṽ

∂Ṽ

∂ỹ
= −g∂H̃

∂ỹ
− T̃by + D̃y

ρH̃
+

1

ρ

(
∂T̃yx
∂x̃

+
∂T̃yy
∂ỹ

)
, (2.1b)

∂H̃

∂t̃
+
∂ŨH̃

∂x̃
+
∂ṼH̃

∂ỹ
= 0, (2.1c)

where t̃ is time, x̃ is the streamwise coordinate, ỹ is the lateral coordinate, the origin of

which is taken at the interface between the vegetated and non-vegetated zones, Ũ and Ṽ

are the x̃ and ỹ components of the flow velocity respectively, H̃ is the flow depth, T̃bx and

T̃by are the x̃ and ỹ components of the bed shear stress respectively, D̃x and D̃y are the x̃

and ỹ components of the drag force due to vegetation respectively, T̃ij (i, j = x, y) is the

Reynolds stress tensor, ρ is the density of water, g is the gravity acceleration, and S is the

bed slope of the channel. The tilde denotes dimensional variables, which is to be dropped

after normalization.

The drag force vector (D̃x, D̃y) is described by the expression

(D̃x, D̃y) =


0 in the non-vegetated zone,

ρCDãH̃

2
(Ũ2 + Ṽ 2)1/2(Ũ , Ṽ ) in the vegetated zone,

(2.2)
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Figure 2-2: The plan view of an array of regularly-spaced cylinders as a model of vegeta-
tion.

where CD is the drag coefficient of vegetation, typically estimated 1 to 2. In addition, ã is

a parameter describing the density of vegetation, written by

ã =
d̃

l̃xl̃y
, (2.3)

where d̃ is the diameter of cylinders and l̃x and l̃y are the distances between two adjacent

cylinders in the x̃ and ỹ directions respectively, as shown in Fig. 2-2.

The bed shear stress is related to the flow velocity by means of the bed friction coeffi-

cient Cf , such that

(T̃bx, T̃by) = ρCf (Ũ
2 + Ṽ 2)1/2(Ũ , Ṽ ). (2.4)

Though the bed friction coefficient Cf is a weak function of the flow depth relative to the

roughness height, it is assumed to be constant and common in both vegetated and non-

vegetated zones for simplicity.

With the use of Boussinesq’s kinematic eddy viscosity, the Reynolds stresses are ex-

pressed by

T̃xx = 2ρν̃T
∂Ũ

∂x̃
, (2.5a)

T̃xy = T̃yx = ρν̃T

(
∂Ũ

∂ỹ
+
∂Ṽ

∂x̃

)
, (2.5b)

T̃yy = 2ρν̃T
∂Ṽ

∂ỹ
, (2.5c)

where ν̃T is the kinematic eddy viscosity. We assume that, in the base state before insta-
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bility occurs, the flow is already affected by turbulence the length scale of which is smaller

than the flow depth mainly generated by the bottom friction (sub-depth scale turbulence).

Therefore, the kinematic eddy viscosity ν̃T should correspond to the sub-depth scale turbu-

lence. As the velocity distribution results from the sub-depth scale turbulence, we employ

a logarithmic velocity distribution in the form

〈Ũ〉
Ũf

=
1

κ
ln
z̃

k̃s
+Ks, (2.6)

where the brackets denote local variables which are not depth-averaged, Ũf is the friction

velocity (=
√
T̃b/ρ), T̃b is the bottom shear stress, κ is the Kármán constant (= 0.4), z̃

is the coordinate in the depth direction, k̃s is the roughness height, and Ks is a constant

determined as 8.5 in experiments. The shear stress 〈T̃xz〉 is negligibly small at the water

surface, increases linearly in the downward depth direction, and reaches the bottom shear

stress T̃b at the channel bottom, such that

〈T̃xz〉 = ρŨ2
f

(
1− z̃

H̃

)
. (2.7)

With the use of the local (not depth-averaged) kinematic eddy viscosity, the shear stress

〈T̃xz〉 is defined as

〈T̃xz〉 = ρ〈ν̃T 〉
d〈Ũ〉
dz̃

. (2.8)

Substitution of (2.6) and (2.7) into (2.8) yields

〈ν̃T 〉 = κŨf z̃

(
1− z̃

H̃

)
. (2.9)

Taking the average of the above equation from the bottom to the water surface, we obtain

ν̃T =
1

6
κŨfH̃. (2.10)

The formulation described above can be applied to the region sufficiently far from the

vegetated zone where there is no influence of vegetation. The kinematic eddy viscosity in
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such a region takes the form

ν̃T =
1

6
κŨf∞H̃∞. (2.11)

where Ũf∞ and H̃∞ are the friction velocity and the flow depth in the region sufficiently

far from the vegetated zone, respectively. We assume that the sub-depth scale turbulence

is rather isotropic. Therefore, the above formulation is expected to describe the Reynolds

stresses in the streamwise and lateral directions a sufficient distance from the vegetated

zone. Although the kinematic eddy viscosity in the horizontal direction is known to be

larger than (2.11), as in Chen and Jirka (1997), we assumed that the increase in the kine-

matic eddy viscosity is caused by large-scale horizontal vortices generated by instability.

In the shear layer formed around the boundary between the two zones, and inside the

vegetated zone, the velocity and the shear velocity are reduced because of the Reynolds

stress and the drag force due to vegetation. In addition, the length scale of sub-depth scale

vortices may be affected by a typical length scale of vegetation such as the vegetation

spacing. According to the experimental results of Ikeda et al. (1991), however, the depth-

averaged kinematic eddy viscosity even in the shear layer and the vegetated zone can be

represented by (2.11). This may be attributed to the fact that the sum of the resistant forces

(the bed shear stress, the Reynolds stress and the vegetation drag force) remains constant

regardless of the reduction in the bed shear stress in the shear layer and the vegetated zone.

The kinematic eddy viscosity may be correlated to the total resistant force. Furthermore,

since the flow depth and the spacing of vegetation in Ikeda et al.’s experiments are both

in the same range, the kinematic eddy viscosity in the vegetated zone may not be strongly

affected by vegetation. These assumptions and (2.11) are employed in this study as well.

Therefore, the Reynolds stress in (2.1a–b) are expressed by the constant sub-depth kine-

matic eddy viscosity as in (2.11), for both the non-vegetated and vegetated zones.

At the side walls, the velocity vanishes in the directions both tangential and normal to

the side walls. The following conditions therefore hold:

Ũ = 0 at ỹ = B̃,−B̃v, (2.12a)

Ṽ = 0 at ỹ = B̃,−B̃v. (2.12b)
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In the shallow water formulation, however, it is not easy to make use of the conditions of

vanishing streamwise velocity (2.12a) (non-slip conditions). In place of these conditions,

the following slip conditions are often used:

∂Ũ

∂ỹ
= 0 at ỹ = B̃,−B̃v. (2.13)

At a sufficient distance from the boundary between the two zones, the streamwise veloc-

ity asymptotically approaches constant velocities in both the non-vegetated and vegetated

zones in the base state. If B̃ and B̃v are sufficiently large, and the slip condition (2.13)

holds, the streamwise velocity is constant at both side walls in the base state, i.e. for which

Ũ = Ũ∞ at ỹ = B̃; Ũ = Ũ−∞ at ỹ = −B̃v, (2.14)

where Ũ∞ and Ũ−∞ are the velocities at a sufficient distance from the boundary in the non-

vegetated and vegetated zones, respectively. We assume that both side walls are located

at a sufficient distance from the boundary, and employ (2.12b) and (2.13) as the boundary

conditions at the side walls.

Right at the boundary between the non-vegetated and vegetated zones, the velocities,

flow depth and shear stresses are continuous, such that

lim
ỹ→+0

(
Ũ , Ṽ , H̃, T̃xx, T̃xy, T̃yy

)
= lim

ỹ→−0

(
Ũ , Ṽ , H̃, T̃xx, T̃xy, T̃yy

)
. (2.15)

2.2 Normalization

At a sufficient distance from the boundary between the two zones in the base state normal

flow equilibrium condition, Ũ and H̃ are constant, and Ṽ vanishes. Thus, (2.1) allows the

solutions

Ũ∞ =

(
gH̃∞S

Cf

)1/2

, Ũ−∞ =

(
2gH̃∞S

2Cf + CDãH̃∞

)1/2

. (2.16)

The velocity and flow depth at a sufficient distance from the vegetated zone, Ũ∞ and H̃∞,

are used for the normalization. The velocities and flow depth are then rendered dimension-

22



less according to the following expressions:

(Ũ , Ṽ ) = Ũ∞(U, V ), H̃ = H̃∞H. (2.17)

The independent variables x̃, ỹ and t̃ are normalized with the use of the width of the non-

vegetated zone B̃, such that

(x̃, ỹ) = B̃(x, y), t̃ =
B̃

Ũ∞
t. (2.18)

With the use of the above normalization, the governing equations (2.1) are rewritten in

the form

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
= −F−2∂H

∂x
+ β

(
1− Tbx +Dx

H

)
+ ε

(
∂2U

∂x2
+
∂2U

∂y2

)
,

(2.19a)
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
= −F−2∂H

∂y
− βTby +Dy

H
+ ε

(
∂2V

∂x2
+
∂2V

∂y2

)
, (2.19b)

∂H

∂t
+
∂UH

∂x
+
∂VH

∂y
= 0, (2.19c)

where (Tbx, Tby) and (Dx, Dy) are the normalized bed shear stress and vegetation drag

vectors, respectively, written in the form

(Tbx, Tby) =
(
U2 + V 2

)1/2
(U, V ) , (2.19d)

(Dx, Dy) =

 α (U2 + V 2)
1/2
H (U, V ) if −Bv ≤ y ≤ 0,

0 if 0 ≤ y ≤ 1,
(2.19e)

where the range −Bv ≤ y ≤ 0 corresponds to the vegetated zone and the range 0 ≤ y ≤ 1

corresponds to the non-vegetated zone. The above normalized governing equations include

the four non-dimensional parameters β, ε, F and α. The parameter β, which expresses

the relative importance of the bed shear effect, is dependent on the aspect ratio of the non-
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vegetated zone AR = B̃/H̃∞, and the bottom friction coefficient Cf , such that

β =
Cf B̃

H̃∞
= CfAR. (2.20)

The parameter ε is associated with the eddy viscosity ν̃T , expressed by (2.11), in the form

ε =
ν̃T

Ũ∞B̃
=
C

1/2
f H̃∞

15B̃
=

C
1/2
f

15AR
. (2.21)

The Froude number F is given by

F =
Ũ∞√
g̃H̃∞

=

(
S

Cf

)1/2

. (2.22)

The parameter α is related to the vegetation drag and density, and is defined by

α =
CDãH̃∞

2Cf
. (2.23)
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Chapter 3

Base state normal flow

In the base state, (2.19) reduces to

β
(
1− U2

0

)
+ ε

d2U0

dy2
= 0 if 0 ≤ y ≤ 1, (3.1a)

β
[
1− U2

0 (1 + α)
]

+ ε
d2U0

dy2
= 0 if −Bv ≤ y ≤ 0, (3.1b)

where U0 is the streamwise velocity in the base state, which is a function only of the trans-

verse coordinate y.

The normalization of (Ũ∞, Ũ−∞) leads to (1, φ), where φ is the ratio between the

undisturbed velocities in the vegetated and non-vegetated zones at a sufficient distance

from their boundary, which is related to the non-dimensional parameter α, such that

φ =
Ũ−∞

Ũ∞
=

1

(1 + α)1/2
. (3.2)

The domain of φ is 0 < φ ≤ 1; φ approaches to 0 when the vegetation obstructs the flow

completely in the vegetated zone (α → ∞), and takes the value of unity when there is no

vegetation (α = 0). The boundary conditions corresponding to (2.13) and (2.14) in the

base state are then

dU0

dy
= 0 at ỹ = 1,−Bv, (3.3a)

U = 1 at y = 1, U = φ at y = −Bv. (3.3b)
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And the matching conditions (2.15) reduce to

lim
y→+0

U0 = lim
y→−0

U0 = ψ, (3.4a)

lim
y→+0

dU0

dy
= lim

y→−0

dU0

dy
, (3.4b)

where ψ is the base flow velocity between the non-vegetated and vegetated zones.

3.1 Explicit analytical solutions of the base state

3.1.1 Non-vegetated zone

In order to obtain an explicit analytical solution for (3.1a), we start by multiplying this

equation by dU0/dy:

β
dU0

dy
− βU2

0

dU0

dy
+ ε

dU0

dy

d2U0

dy2
= 0 (3.5)

Integration of (3.5) with respect to y leads to

βU0 −
β

3
U3
0 +

ε

2

(
dU0

dy

)2

= C0, (3.6)

where C0 is an integral constant which is determined by introducing the boundary condi-

tions (3.3) into (3.6). We then obtain

C0 =
2β

3
. (3.7)

Substituting (3.7) into (3.6) and writing the resulting equation in integral form, we have

(
3ε

2β

)1/2 ∫ U0

ψ

dU0

(1− U0)(U0 + 2)1/2
=

∫ y

0

dy = y. (3.8)

We introduce the following variable transformation:

(U0 + 2)1/2 = χ. (3.9)
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By employing the above transformation, (3.8) is rewritten as

(
3ε

2β

)1/2 ∫ χ

χψ

2dχ

(3− χ2)
= y, (3.10)

where χψ is the value of χ which corresponds to ψ,

χψ = (ψ + 2)1/2. (3.11)

Another variable transformation is introduced,

χ =
√

3 tanh γ. (3.12)

By employing the above transformation, (3.10) is rewritten as

(
2ε

β

)1/2 ∫ γ

γψ

dγ =

(
2ε

β

)1/2

(γ − γψ) = y, (3.13)

where γψ is the value of γ which corresponds to χψ,

γψ = tanh−1
(
χψ√

3

)
= tanh−1

(
ψ + 2

3

)1/2

. (3.14)

The variable γ is related to U0 by U0 = 3 tanh2 γ − 2. Thus, we have

U0 = 3 tanh2

[(
β

2ε

)1/2

y + tanh−1
(
ψ + 2

3

)1/2
]
− 2. (3.15)

3.1.2 Vegetated zone

Similarly to the non-vegetated zone, we multiply (3.1b) by dU0/dy:

β
dU0

dy
− β(1− α)U2

0

dU0

dy
+ ε

dU0

dy

d2U0

dy2
= 0. (3.16)
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By integrating the above with respect to y, we have

βU0 −
β

3
(1− α)U3

0 +
ε

2

(
dU0

dy

)2

= C1, (3.17)

where the integral constant C1 is determined by introducing the boundary conditions (3.3)

into (3.17),

C1 =
2βφ

3
. (3.18)

Substituting (3.18) into (3.17) and writing the resulting equation in integral form, we have

(
3ε

2β

)1/2 ∫ U0

ψ

φdU0

(U0 − φ)(U0 + 2φ)1/2
=

∫ y

0

dy = y. (3.19)

We introduce the following variable transformation:

(U0 + 2φ)1/2 = λ. (3.20)

By employing the above transformation, (3.19) is rewritten as

(
3ε

2β

)1/2 ∫ λ

λψ

2φdλ

(λ2 − 3φ)
= y, (3.21)

where λψ is the value of λ corresponding to ψ,

λψ = (ψ + 2φ)1/2. (3.22)

We employ another variable transformation,

λ =
√

3φ coth θ. (3.23)

By employing the above transformation, (3.21) is rewritten as

(
2εφ

β

)1/2 ∫ θ

θψ

dθ =

(
2εφ

β

)1/2

(θ − θψ) = −y, (3.24)
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where θψ is given by

θψ = coth−1
(
λψ√
3φ

)
= coth−1

(
ψ + 2φ

3φ

)1/2

. (3.25)

The variable θ is related to U0 by U0 = 3φ coth2 θ − 2φ. Thus, we have

U0 = 3φ coth2

[
−
(
β

2εφ

)1/2

y + coth−1
(
ψ + 2φ

3φ

)1/2
]
− 2φ. (3.26)

3.1.3 Velocity at the boundary between the two zones

With the use of (3.15) and (3.26), the matching condition (3.4b) is rewritten in the form

(φ+ 1)(φ− 1)ψ3 − 2φ2(φ− 1) = 0. (3.27)

Because φ 6= 1, the above equation is reduced to

ψ =

(
2φ2

1 + φ

)1/3

. (3.28)

3.2 Results

Rewriting the base state explicit analytical solutions (3.15) and (3.26), we have

U0(y) =


3 tanh2

[(
β

2ε

)1/2

y + tanh−1
(
ψ + 2

3

)1/2
]
− 2 if 0 ≤ y ≤ 1,

3φ coth2

[
−
(
β

2εφ

)1/2

y + coth−1
(
ψ + 2φ

3φ

)1/2
]
− 2φ if −Bv ≤ y ≤ 0.

(3.29)

The streamwise velocity in the base state, U0, is thus found to be expressed by hyperbolic-

tangent and hyperbolic-cotangent functions which are invariant in time and in the stream-

wise direction, and include four non-dimensional parameters β, ε, ψ and φ, where the later

two can be expressed as functions of α, only.

Figs. 3-1(a), (b) and (c) depict the lateral distribution of U0 as in (3.29) as functions
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Figure 3-1: The lateral distribution of the streamwise velocity in the base state U0 as func-
tions of (a) β for the case ε = 6 × 10−4, α = 10, (b) ε for the case β = 0.05, α = 10, and
(c) α for the case β = 0.05, ε = 6× 10−4.
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of the parameters β, ε and α, respectively. Note that the velocities at the far right and

left correspond to Ũ∞ and Ũ−∞, and the value of U0 at the far left is φ. It is found from

Fig. 3-1(a) that, as β increases, the width of the shear layer decreases. This is because an

increase in β implies an increase in the relative significance of the bed friction over the

vegetation drag. In Fig. 3-1(b), on the other side, the increase of ε results in the increase

of the shear layer width following the increase of the relative importance of the sub-depth

kinematic eddy viscosity. The relative increase of the viscous effects will result in a milder

base state velocity gradient. According to Fig. 3-1(c), φ decreases with increasing α, as it

is natural that the velocity difference between the two zones increases with the vegetation

drag parameter. In contrast to β and ε, the shear layer width does not strongly depend on

α.
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Chapter 4

Linear stability analysis

A temporal linear stability analysis is performed herein. A disturbance undulating in the

streamwise direction is introduced to the base state. The streamwise and lateral velocities

U and V , and the flow depth H are then expanded in the form

U(x, y, t) = U0 (y) + AU1(y)ei(kx−ωt), (4.1a)

V (x, y, t) = AV1(y)ei(kx−ωt), (4.1b)

H(x, y, t) = 1 + AH1(y)ei(kx−ωt), (4.1c)

where A, k and ω are the amplitude, wavenumber and angular frequency of perturbation.

In the scheme of temporal linear stability analysis, k is real while ω is complex such that

ω = ωr+iΩ, where ωr is the real angular frequency and Ω is the growth rate of perturbation.

Substituting (4.1) into the governing equations (2.19), we obtain the following per-

turbed equations in the non-vegetated zone:

[
i (kU0 − ω) + k2ε+ 2βU0 − ε

d2

dy2

]
U1 +

dU0

dy
V1 +

(
ikF−2 − βU2

0

)
H1 = 0, (4.2a)[

i (kU0 − ω) + k2ε+ βU0 − ε
d2

dy2

]
V1 + F−2

dH1

dy
= 0, (4.2b)

ikU1 +
dV1
dy
− i(ω − kU0)H1 = 0. (4.2c)
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In the vegetated zone, (2.19) becomes

[
i (kU0 − ω) + k2ε+ 2βU0 (1 + α)− ε d2

dy2

]
U1 +

dU0

dy
V1 +

(
ikF−2 − βU2

0

)
H1 = 0,

(4.3a)[
i (kU0 − ω) + k2ε+ βU0 (1 + α)− ε d2

dy2

]
V1 + F−2

dH1

dy
= 0,

(4.3b)

ikU1 +
dV1
dy
− i (ω − kU0)H1 = 0.

(4.3c)

Since the amplitude of the perturbation A is assumed to be infinitesimally small, the terms

containing A2 have been dropped in the linear stability analysis, so that the results of the

analysis are valid only in the range of small amplitudes.

The boundary conditions of vanishing lateral velocity (2.12b) and vanishing shear stress

(2.13) at the side walls take the following forms at O(A):

dU1

dy
= 0 at y = −Bv, 1, (4.4a)

V1 = 0 at y = −Bv, 1. (4.4b)

At the interface between the vegetated and non-vegetated zones y = 0, the matching con-

ditions reduce to

lim
y→+0

(
U1, V1, H1,

dU1

dy
,
dV1
dy

)
= lim

y→−0

(
U1, V1, H1,

dU1

dy
,
dV1
dy

)
. (4.5)

Although there are five matching conditions in (4.5), only four of them are independent

since, if four of them are imposed, the other condition is automatically satisfied. Thus, one

of these conditions can be dropped afterwards.

A numerical scheme is necessary to solve (4.2) and (4.3) under the boundary and match-

ing conditions (4.4) and (4.5), as the equations obviously do not admit analytical solutions.

We employ a spectral collocation method with the Chebyshev polynomials. In the non-
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vegetated zone (0 ≤ y ≤ 1), the variables U1, V1 and H1 are expanded in the form

U1 =
N∑
j=0

ajTj (ξ) , V1 =
N∑
j=0

a(N+1)+jTj (ξ) , H1 =
N∑
j=0

a2(N+1)+jTj (ξ) ,

(4.6a, b, c)

and, in the vegetated zone (−Bv ≤ y ≤ 0), they are expanded in the form

U1 =
N∑
j=0

a3(N+1)+jTj (η) , V1 =
N∑
j=0

a4(N+1)+jTj (η) , H1 =
N∑
j=0

a5(N+1)+jTj (η) ,

(4.7a, b, c)

where aj (j = 0, 1, 2, ..., 6N + 5) are the coefficients of the Chebyshev polynomials, and

Tj(ξ) and Tj(η) are the Chebyshev polynomials in ξ and η of degree j. The independent

variables ξ and η both range from -1 to 1, and are related to y by the equations ξ = 2y − 1

(0 ≤ y ≤ 1) and η = 2y/Bv + 1 (−Bv ≤ y ≤ 0), respectively. The expansions (4.6)

and (4.7) are substituted into the governing equations (4.2) and (4.3) respectively, and the

resulting six equations are evaluated at the Gauss-Lobatto points defined by

ξm = cos
mπ

N
, ηm = cos

mπ

N
, (4.8a, b)

where m = 0, 1, ..., N . Therefore, the number of points where the governing equations are

evaluated is N + 1. We obtain a system of 6(N + 1) algebraic equations with 6(N + 1) un-

known coefficients a0, a1, a2, ..., a6N+5. Eight equations of the system are then replaced by

the four boundary conditions (4.4) and four of the matching conditions (4.5). The resulting

linear algebraic system can be written in the form

M


a0

a1
...

a6N+5

 = 0, (4.9)

whereM is a 6(N + 1)×6(N + 1) matrix in which the elements consist of the coefficients

of U1, V1 andH1 in the governing equations (4.2) and (4.3), and the boundary and matching
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conditions (4.4) and (4.5). The condition for (4.9) to have a non-trivial solution is thatM

should be singular. Thus,

|M| = 0. (4.10)

The solution of the above equation takes the functional form

ω = ωr + iΩ = ω (k, β, ε, α,Bv, F ) . (4.11)
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Chapter 5

Results and discussion: linear stability

analysis

As seen in (4.11), there are six important non-dimensional parameters k, β, ε, α, Bv, and

F determining the growth rate Ω. The contours of the growth rate Ω on the plane of these

parameters are shown in Figs. 5-1–5-5. When Ω is positive, the perturbations grow with

time, whereas the perturbations decay until they vanish when Ω is negative. The thick

solid lines in the figures indicate the neutral instability curve on which Ω = 0 and the

perturbations neither grow nor decay, and divide the planes into stable (Ω < 0) and unstable

regions (Ω > 0). In the figures, Ω typically becomes negative in the range of sufficiently

small and large values of k, and takes a maximum value between them. It follows that Ω as

a function of k commonly possesses a characteristic wavenumber km associated with the

maximum growth rate Ωm, implying the selection of a preferential wavelength at the linear

level.

The parameters β, ε, α, Bv, and F were systematically varied from a base set of numer-

ical values consisting of β = 0.05, ε = 6× 10−4, α = 10, Bv = 0.55 and F = 0.5. These

values were defined based on typical values of the experiments of Ikeda et al. (1991).

In Fig. 5-1(a), the dependence of Ω on β is studied for the case ε = 6× 10−4, α = 10,

Bv = 0.55 and F = 0.5, following the base set of values for these parameters. The

growth rate Ω is maximized when β is around 10−1. As β increases or decreases from

this value, the flow becomes less stable, and in the range β ' 0.5, the region of positive
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Figure 5-1: The contours of the perturbation growth rate Ω in the β-k plane for the case
ε = 6× 10−4, α = 10, Bv = 0.55, F = 0.5.

Ω completely disappears and the flow becomes stable. In the range of large β, the effect

of the bottom friction inhibits the effect of the lateral velocity gradient, as already shown

by Chu et al. (1991) and White and Nepf (2007). On the other side, in the range of small

β, the relative effect of the small scale turbulences generated by the bottom friction will

be reduced, allowing the shear layer to expand further along the transverse direction and

leading to a milder lateral gradient of the base state velocity, as in Fig. 3-1(a), leading to

the reduction of the growth rate Ω. Although the present shallow water formulation may

no longer be valid in the range of β / 5 × 10−3, the decrease in the growth rate Ω is

expected to occur in this range. In the range of sufficiently small β, the shear layer may be

affected by the zero disturbance boundary condition of the walls, as pointed by Kolyshkin

and Ghidaoui (2002). The range of k for positive Ω and the characteristic wavenumber

km increase with β. This is because the wavenumber k is normalized by the width of the

non-vegetated zone B̃.

The effect of the parameter ε on Ω is studied in Fig. 5-2. The parameter ε measures

the relative effect of the sub-depth kinematic eddy viscosity. Because the sub-depth kine-

matic eddy viscosity is derived taking into consideration the small scale turbulences gen-

erated by the bottom friction before instability takes place, ε does not contain the effect of

38



the large-scale turbulences. It is found from Fig. 5-2 that the flow becomes stable when

ε ' 4.0 × 10−3. In this range, the dissipation of energy caused by the small scale turbu-

lences will be sufficiently large to suppress the effect of the transverse mixing. On the other

side, as ε decreases, Ω increases. In the range of very small ε, the flow approaches to the

inviscid case. The characteristic wavenumber km increases with the decrease of ε because

of the normalization of the wavenumber k. In case we had employed the kinematic eddy

viscosity as in Chen and Jirka (1997), the growth rate of perturbations would have been un-

derestimated, following that a larger eddy viscosity would corresponds to a smaller growth

rate Ω.

The dependence of Ω on the vegetation drag parameter α is studied in Fig. 5-3. It is

found that, in the range of small α, Ω is negative and the flow is stable as already pointed out

by Chu et al. (1991) and White and Nepf (2007). As α increases, Ω increases with a slight

increase in km, which peaks around the point (α, k) ≈ (102, 6). In the range of α ' 102,

Ω decreases with slight decreases in km, and Ω becomes negative and the flow becomes

stable again when α ' 4 × 103. In the present analysis, we assume that the kinematic

eddy viscosity in the vegetated zone is represented by (2.11) since the typical length scale

of vegetation is not significantly smaller than the flow depth. When the vegetation density

reaches a certain density, this assumption may no longer be valid. However, it is natural that

the flow becomes stable with increasing α since the vegetated zone becomes like a cavity

region when α is sufficiently large, and the large-scale horizontal vortices are damped by

strong retardation effects. Therefore, the contours of Ω in the range of large α in Fig. 5-3

are at least qualitatively correct.

The effect of the width of the vegetated zone Bv on Ω is shown in Fig. 5-4. It is found

from the figure that Ω is negative for any value of k when Bv / 0.1, and Ω is almost

independent of Bv when Bv ' 0.5. In this analysis, we assume that Bv is large enough

that U0 is almost constant at y = −Bv as described in (2.14). Therefore, Fig. 5-4 is not

reliable in the range of small Bv. However, Fig. 5-4 is at least qualitatively correct because

the lateral displacement of water is suppressed and the flow becomes stable when Bv is

sufficiently small.

The dependence of Ω on the Froude number F is studied in Fig. 5-5. Because the rigid-
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Figure 5-2: The contours of the perturbation growth rate Ω in the ε-k plane for the case
β = 0.05, α = 10, Bv = 0.55, F = 0.5.
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Figure 5-3: The contours of the perturbation growth rate Ω in the α-k plane for the case
β = 0.05, ε = 6× 10−4, Bv = 0.55, F = 0.5.
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Figure 5-4: The contours of the perturbation growth rate Ω in the Bv-k plane for the case
β = 0.05, ε = 6× 10−4, α = 10, F = 0.5.
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Figure 5-5: The contours of the perturbation growth rate Ω in the F -k plane for the case
β = 0.05, ε = 6× 10−4, α = 10, Bv = 0.55.

41



lid assumption was not employed in the present analysis, the growth rate of perturbations

can also be studied for values of F which are not close to zero. It is found from the

figure that the flow is unstable in the range of small F . As F increases, the instability

weakens and a stable region is observed in the range F ≈ 2.3 − 2.6. When F ' 2.6

under the conditions of this figure, the flow is again found to be unstable. It has been

empirically known that rapid flow plays stabilizing effects for lateral velocity gradients,

which is theoretically explained in this analysis. On the other side, as pointed by Kolyshkin

and Ghidaoui (2002), the rapid flow becomes unstable to gravity waves if F is sufficiently

large. Therefore, although the flow is found to be stable to the lateral velocity gradients

when F ' 2.3 in Fig. 5-5, it is unstable to gravity when F ' 2.6.

Fig. 5-6 depicts the neutral instability curves (Ω = 0) for the case β = 0.05, ε =

6 × 10−4, and Bv = 0.55 for varying α and multiple Froude numbers F . The range of

small α where the flow is found to be stable when F = 0.5 or F = 1.5 is more prone

to become unstable to gravity, as while the flow is stable when α / 0.5 for F = 0.5 and

F = 1.5, it becomes unstable to gravity in this range when F = 2.5. As F increases from

0.5 to 2.5, the unstable region for α ' 0.5 diminishes because the gravity effects weaken

the instability due to the transverse mixing. The combined effect of rapid flow and lateral

mixing stabilizes the flow in the range of α ≈ 101 for F = 2.5.

Once the characteristic frequency of the generation of vortices ωrm associated with the

maximum growth rate Ωm is determined, the corresponding time period T̃ can be calculated

by the following relation:

T̃ =
2πB̃

ωrmŨ∞
. (5.1)

Assuming that the perturbation with the maximum growth rate Ωm is realized in exper-

iments and in the field, we compare T̃ predicted in the analysis with the results of the

laboratory experiments obtained by Ikeda et al. (1994) and Tsujimoto (1991). In their ex-

periments, vortices were generated by an array of regularly spaced cylinders installed on

one side of channels, which is the same setup as assumed in the present analysis. The major

hydraulic parameters of the experiments are listed in Table 5.1.

Fig. 5-7 depicts a comparison between the predicted and measured values of T̃ . It is
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Figure 5-6: The contours of the neutral instability (Ω = 0) in the α-k plane for the case
β = 0.05, ε = 6× 10−4, Bv = 0.55 and multiple Froude numbers F .

Table 5.1: Hydraulic parameters from the experiments of Ikeda et al. (1994) (runs 1–5) and
Tsujimoto (1991) (runs IW1–IW3).

Run β ε (×10−4) BV F α Predicted ωrm Predicted T̃ (s) Measured T̃ (s)

1 0.061 5.19 0.57 0.41 9.9 4.15 2.9 6.4

2 0.061 5.19 0.57 0.75 9.9 4.12 1.6 3.8

5 0.038 6.88 0.57 0.44 15.9 2.63 3.6 9.0

IW1 0.024 4.84 0.43 0.69 67.9 2.64 1.6 3.3

IW2 0.030 5.89 0.43 0.78 50.8 2.70 1.4 2.5

IW3 0.025 5.43 0.43 0.93 63.5 2.54 1.2 1.9
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Figure 5-7: Comparison between the predicted and measured periods of the generation of
vortices.

found that, though the vortex shedding periods predicted by the present analysis and those

observed in the experiments are on the same order of magnitude, the predictions are gen-

erally smaller than the observed by a factor of approximately two. The vortex shedding

periods observed in the experiments correspond to those in a fully developed stage, which

cannot be predicted by the present linear stability analysis. Rather, the results of the lin-

ear analysis can reliably reflect only an initial stage of the growth of infinitesimally small

disturbances. The vortex shedding period may be longer due to the nonlinear interaction

among vortices with a variety of length scales and frequencies.

Ikeda et al. (1994) made a comparison between the vortex shedding periods observed

in their experiments and those predicted by their linear stability analysis, and showed good

agreement between them. Their analysis employed the lateral kinematic eddy viscosity

observed in their experiments which is approximately twice as large as (2.11). The effect

of the nonlinear interaction may be attributable to an increase in the mixing efficiency, and

is apparently equivalent to the increase in the kinematic eddy viscosity. In order to gain a

qualitative understanding of the effect of nonlinear interaction, a weakly nonlinear stability

analysis will no doubt prove useful.
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Chapter 6

Nonlinear stability analysis

The neutral state obtained from the linear stability analysis is deviated towards the unstable

region as

φ = φc − ζ2, k = kc + k0ζ
2, (6.1)

where φc is a value of φ which lies on the neutral curve, kc is the preferential wavenumber

corresponding to φc and ζ is the expansion parameter, defined in (6.1). Except for the region

where φ is sufficiently small, we have that the flow is stable if φ < φc. For this reason, the

sign in the expression of the expansion of φ is negative. As previously stated, the results

in the range of large α, which correspond to a small φ, might not be quantitatively reliable.

Therefore, this range of neutral stability will not be considered for expansion in the present

analysis. The parameter k0 is introduced to correlate the expansions of φ and k.

We perform a weakly analysis, where the time scale of the variation of the amplitude

A is much slower than the variation of the wavelike part of the disturbance. The slow time

scale t1 is defined as

t = t0, t1 = ζ2t. (6.2)

From the above relation, the time derivative becomes

∂

∂t
=

∂

∂t0
+

∂

∂t1
. (6.3)

For simplicity, the subscript 0 is dropped hereafter.
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The non-linear interactions of the fundamental wave are generated from the order of

A3. We then expand the velocities and flow depth up to this order in the form

U(x, y, t) = U0c(y) + ζÛ1(x, y, t) + ζ2Û2(x, y, t) + ζ3Û3(x, y, t), (6.4a)

V (x, y, t) = ζV̂1(x, y, t) + ζ2V̂2(x, y, t) + ζ3V̂3(x, y, t), (6.4b)

H(x, y, t) = 1 + ζĤ1(x, y, t) + ζ2Ĥ2(x, y, t) + ζ3Ĥ3(x, y, t), (6.4c)

where the circumflex denotes the eigenfunctions in the scheme of nonlinear analysis and

U0c is the base state velocity corresponding to φc.

6.1 O(ζ)

Substituting (6.1)-(6.4) into (2.19), we obtain the following equations at O(ζ):

GÛ1 +
dU0c

dy
V̂1 + JĤ1 = 0, (6.5a)

KV̂1 + F−2
∂Ĥ1

∂y
= 0, (6.5b)

∂Û1

∂x
+
∂V̂1
∂y

+ PĤ1 = 0, (6.5c)

where the linear operators G, J , K and P are given by the following expressions:

G =


∂

∂t
+ U0c

(
2β +

∂

∂x

)
− ε
(
∂2

∂x2
+

∂2

∂y2

)
if 0 ≤ y ≤ 1,

∂

∂t
+ U0c

(
2β(1 + αc) +

∂

∂x

)
− ε
(
∂2

∂x2
+

∂2

∂y2

)
if −Bv ≤ y ≤ 0,

(6.6a)

J = −βU2
0c + F−2

∂

∂x
, (6.6b)

K =


∂

∂t
+ U0c

(
β +

∂

∂x

)
− ε
(
∂2

∂x2
+

∂2

∂y2

)
if 0 ≤ y ≤ 1,

∂

∂t
+ U0c

(
β(1 + αc) +

∂

∂x

)
− ε
(
∂2

∂x2
+

∂2

∂y2

)
if −Bv ≤ y ≤ 0,

(6.6c)

P =
∂

∂t
+ U0c

∂

∂x
, (6.6d)

where αc is the α corresponding to φc.
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The fundamental perturbations at O(ζ) are assumed to have a form similar to the one

employed in the linear analysis, as follows:

Û1(x, y, t) = AU11(y)E + c.c., (6.7a)

V̂1(x, y, t) = AV11(y)E + c.c., (6.7b)

Ĥ1(x, y, t) = AH11(y)E + c.c., (6.7c)

whereE = ei(kcx−ωct), and c.c. is the complex conjugate of the preceding term. Substituting

the above expansions into (6.5), we obtain the following equations composed of AE at

O(ζ):

G1U11 +
dU0c

dy
V11 + J1H11 = 0, (6.8a)

K1V11 + F−2
dH11

dy
= 0, (6.8b)

L1U11 +
dV11
dy

+ P1H11 = 0. (6.8c)

where the linear operators Gn, Jn, Kn, Ln and Pn are given by the following expressions:

Gn =


ni (kcU0c − ωc) + 2βU0c + ε(nkc)

2 − ε d2

dy2
if 0 ≤ y ≤ 1,

ni (kcU0c − ωc) + 2β(1 + αc)U0c + ε(nkc)
2 − ε d2

dy2
if −Bv ≤ y ≤ 0,

(6.9a)

Jn = nikcF
−2 − βU2

0c , (6.9b)

Kn =


ni (kcU0c − ωc) + βU0c + ε(nkc)

2 − ε d2

dy2
if 0 ≤ y ≤ 1,

ni (kcU0c − ωc) + β(1 + αc)U0c + ε(nkc)
2 − ε d2

dy2
if −Bv ≤ y ≤ 0,

(6.9c)

Ln = nikc, (6.9d)

Pn = −ni(ωc − kcU0c), (6.9e)

where ωc is the eigenvalue corresponding to kc and φc. Because ωc is located at the neutral

curve, its imaginary part is zero. The boundary and matching conditions of (6.8) are similar

47



to (4.4)-(4.5):

dU11

dy
= 0 at y = −Bv, 1, (6.10a)

V11 = 0 at y = −Bv, 1, (6.10b)

lim
y→+0

(
U11, V11, H11,

dU11

dy
,
dV11
dy

)
= lim

y→−0

(
U11, V11, H11,

dU11

dy
,
dV11
dy

)
.(6.10c)

Equations (6.8) are solved similarly to the equations in the linear stability analysis,

with U11, V11 and H11 being expanded using the Chebyshev polynomials as in (4.6)-(4.7).

The expansions are evaluated at the Gauss-Lobatto points defined by (4.8) and a system of

6(N + 1) algebraic equations with 6(N + 1) unknown coefficients. Eight equations are

then replaced by four boundary and four matching conditions from (6.10). The resulting

algebraic linear system takes the following form:

M11


a110

a111
...

a116N+5

 = 0, (6.11)

whereM11 isMwith α, k and ω replaced by αc, kc and ωc, respectively, and a110 , a111 , a112 ,

..., a116N+5
are the unknown coeffients to be obtained from the solution of (6.11).

6.2 O(ζ2)

Substituting (6.1)-(6.4) and the solutions at O(ζ) into (2.19), we obtain the following equa-

tions at O(ζ2):

GÛ2 +
dU0c

dy
V̂2 + JĤ2 = A2E2I

(1)
22 + c.c.+ AA∗I

(1)
20 , (6.12a)

KV̂2 + F−2
∂Ĥ2

∂y
= A2E2I

(2)
22 + c.c.+ AA∗I

(2)
20 , (6.12b)

∂Û2

∂x
+
∂V̂2
∂y

+ PĤ2 = A2E2I
(3)
22 + c.c.+ AA∗I

(3)
20 , (6.12c)
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where the asterisk denotes complex conjugate and I(j)20 and I(j)22 (j = 1, 2, 3) are nonlinear

terms composed of the solutions at O(0) and O(ζ) and their derivatives. I
(j)
20 and I

(j)
22

(j = 1, 2, 3) are shown in Appendix B.

At O(ζ2), the fundamental perturbations are assumed to have the form:

Û2(x, y, t) = A2U22(y)E2 + c.c.+ AA∗U20(y) + U00(y), (6.13a)

V̂2(x, y, t) = A2V22(y)E2 + c.c.+ AA∗V20(y), (6.13b)

Ĥ2(x, y, t) = A2H22(y)E2 + c.c.+ AA∗H20(y). (6.13c)

The base flow velocity at y = −Bv is φc when considering the neutral state. However,

the actual velocity at y = −Bv is φc − ζ2. A corrective term U00(y) is then introduced in

(6.13a) because φ is perturbed as φc − ζ2. The base state velocity U0 is expanded as

U0 = U0c + ζ2U00, (6.14)

where U0c is U0 corresponding to φc. Substituting (6.1) and (6.14) into (3.1), we have the

following equations at O(ζ2):

2βU0cU00 − ε
d2U00

dy2
= 0 if 0 ≤ y ≤ 1,

(6.15a)

2β (1 + αc) U0cU00 − ε
d2U00

dy2
= −2β (1 + αc)

1/2 − 2ε (1 + αc)
dU0c

dy
if −Bv ≤ y ≤ 0.

(6.15b)

The above equations are supplemented by the following boundary and matching conditions:

dU00

dy
= 0 at ỹ = 1,−Bv, (6.16a)

lim
y→+0

(
U00,

dU00

dy

)
= lim

y→−0

(
U00,

dU00

dy

)
. (6.16b)

In order to solve (6.15) under the boundary and matching conditions (6.16), we expand
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U00 using the Chebyshev polynomials as in (4.6) and (4.7). As in (4.6) and (4.7), different

expansions of U00 are employed in the non-vegetated and vegetated zones. From evaluating

the expanded equations and boundary and matching conditions at the Gauss-Lobatto points

defined as in (4.8), we obtain an algebraic system which takes the form

M00


a000

a001
...

a002N+1

 =


f000(y)

f001(y)
...

f002N+1
(y)

 , (6.17)

whereM00 is the 2 (N + 1)×2 (N + 1) matrix of the unknown coefficients a000 , a001 , a002 ,

..., a006N+5
, and f00i(y) (i = 1, ..., 2N + 1) corresponds to the terms of (6.15) and (6.16)

which do not contain U00.

Substituting (6.13) into (6.12), we have the following equations composed of terms

with A2E2:

G2U22 +
dU0c

dy
V22 + J2H22 = I

(1)
22 , (6.18a)

K2V22 + F−2
dH22

dy
= I

(2)
22 , (6.18b)

L2U22 +
dV22
dy

+ P2H22 = I
(3)
22 , (6.18c)

and the following equations composed of terms with AA∗:

G0U20 +
dU0c

dy
V20 + J2H20 = I

(1)
20 , (6.19a)

K0V20 + F−2
dH20

dy
= I

(2)
20 , (6.19b)

dV20
dy

= I
(3)
20 . (6.19c)

Equations (6.18) and (6.19) are supplemented by boundary and matching conditions similar
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to (4.4)-(4.5), as follows:

dU22

dy
= 0 at y = −Bv, 1, (6.20a)

V22 = 0 at y = −Bv, 1, (6.20b)

lim
y→+0

(
U22, V22, H22,

dU22

dy
,
dV22
dy

)
= lim

y→−0

(
U22, V22, H22,

dU22

dy
,
dV22
dy

)
;(6.20c)

dU20

dy
= 0 at y = −Bv, 1, (6.21a)

V20 = 0 at y = −Bv, 1, (6.21b)

lim
y→+0

(
U20, V20, H20,

dU20

dy
,
dV20
dy

)
= lim

y→−0

(
U20, V20, H20,

dU20

dy
,
dV20
dy

)
.(6.21c)

The procedure for solving the system of equations (6.18) is similar to the one employed

for solving (6.9). The resulting algebraic linear system takes the form:

M22


a220

a221
...

a226N+5

 =


f220(y)

f221(y)
...

f226N+5
(y)

 , (6.22)

whereM22 is the matrix in which the elements consist of the coefficients of the unknown

terms a220 , a221 , a222 , ..., a226N+5
. The terms f22i(y) (i = 1, ..., 6N + 5) correspond to I(j)22

(j = 1, 2, 3), with the exception of eight terms which take the value of zero in correspon-

dence with the boundary and matching conditions (6.20).

Equation (6.19c) can be solved analytically using two out of the four boundary and

matching conditions (6.21) which contain the term V20 or its derivative. Although only

the first derivative appears in the left-hand side of (6.19c), two conditions are necessary to

solve (6.19c) because I(3)20 is different in the non-vegetated and vegetated zones. I(3)20 is a

function of V11 and H11 (see (B.3)), which are different in each zone.

Following the determination of V20 from the analytical solution of (6.19c), H20 is then

determined from the analytical solution of (6.19b). Because only one condition in (6.20)
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contains H20 while two conditions are necessary to solve (6.19b) in the non-vegetated and

vegetated zones, an undetermined integration constant is added to the solution of H20.

In order to solve (6.19a), U20 is expanded using the Chebyshev polynomials similarly

to (4.6) and (4.7). From evaluating the expanded equations and boundary and matching

conditions at the Gauss-Lobatto points defined as in (4.8), we obtain the following algebraic

system:

M00


a200

a201
...

a202N+1

 =


f200(y)

f201(y)
...

f202N+1
(y)

 , (6.23)

where f20i(y) (i = 1, ..., 2N + 1) corresponds to the terms of (6.19a) which do not contain

U20, and to the terms which assume the value of zero which are obtained from the boundary

and matching conditions.

In order to determine the integration constant introduced to the solution of H20, we

introduce a condition of conservation of flow discharge (Q) in the form:

Q =
1

T

∫ T

0

∫ 1

−Bv
UHdydt, (6.24)

where T is a period of time long enough so that the average of the fluctuating terms van-

ishes. A sufficiently long distance in the streamwise direction could also have been em-

ployed instead. Introducing the expansions up to the order of O(ζ2) into the above, we

have:

Q =

∫ 1

−Bv

{
U0c(y) + ζ2 [U00(y) + AA∗ (H20(y)U0(y) + U20(y) + U11(y)H∗11(y) + c.c.)]

}
dy,

(6.25)

where the terms containing E vanish in the long time average. Because the flow discharge

is conserved in the base state, the following relation holds:

∫ 1

−Bv
[H20(y)U0(y) + U20(y) + U11(y)H∗11(y) + c.c.]dy = 0, (6.26)

The unknown constant introduced to H20 is determined from the solution of the above
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equation.

The variables with the subscript 20 reflect the changes in the time-averaged flow veloc-

ities and flow depth due to a change in the velocity distribution.

6.3 O(ζ3)

Substituting (6.1)-(6.4) and the solutions at O(0), O(ζ) and O(ζ2) into (2.19), we obtain

the following equations at O(ζ3):

GÛ3 +
dU0

dy
V̂3 + JĤ3 = A3E3I

(1)
33 + c.c.+

[
A2A∗I

(1)
31 + AI

(2)
31 +

dA

dt1
I
(3)
31

]
E + c.c.,

(6.27a)

KV̂3 + F−2
∂Ĥ3

∂y
= A3E3I

(2)
33 + c.c.+

[
A2A∗I

(4)
31 + AI

(5)
31 +

dA

dt1
I
(6)
31

]
E + c.c.,

(6.27b)
∂Û3

∂x
+
∂V̂3
∂y

+ PĤ3 = A3E3I
(3)
33 + c.c.+

[
A2A∗I

(7)
31 + AI

(8)
31 +

dA

dt1
I
(9)
31

]
E + c.c.,

(6.27c)

where I(i)31 (i = 1, ..., 9) and I(j)33 (j = 1, 2, 3) are nonlinear terms composed of the solutions

at O(ζ) and O(ζ2) and their derivatives.

At O(ζ3), the fundamental perturbations are assumed to have the form:

Û3(x, y, t) = A3U33(y)E3 + c.c.+ U31(y, t1)E + c.c., (6.28a)

V̂3(x, y, t) = A3V33(y)E3 + c.c.+ V31(y, t1)E + c.c., (6.28b)

Ĥ3(x, y, t) = A3H33(y)E3 + c.c.+H31(y, t1)E + c.c.. (6.28c)

Substituting the above expansions into (6.27), we have the following equations composed
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of terms with E (excluding E3):

G1U31 +
dU0

dy
V31 + J1H31 =

[
A2A∗I

(1)
31 + AI

(2)
31 +

dA

dt1
I
(3)
31

]
, (6.29a)

K1V31 + F−2
dH31

dy
=

[
A2A∗I

(4)
31 + AI

(5)
31 +

dA

dt1
I
(6)
31

]
, (6.29b)

L1U31 +
dV31
dy

+ P1H31 =

[
A2A∗I

(7)
31 + AI

(8)
31 +

dA

dt1
I
(9)
31

]
. (6.29c)

The boundary and matching conditions of the above equations are similar to (4.4)-(4.5):

dU31

dy
= 0 at y = −Bv, 1, (6.30a)

V31 = 0 at y = −Bv, 1, (6.30b)

lim
y→+0

(
U31, V31, H31,

dU31

dy
,
dV31
dy

)
= lim

y→−0

(
U31, V31, H31,

dU31

dy
,
dV31
dy

)
.(6.30c)

From expanding U31, V31 and H31 using the Chebyshev polynomials as in (4.7) and

evaluating the resulting equations at the Gauss-Lobatto points as in (4.8), we have a lin-

ear system obtained from (6.29) with eight equations replaced by conditions expressed in

(6.30) which takes the form:

M11


a310(t1)

a311(t1)
...

a316N+5
(t1)

 =


f310(y, t1)

f311(y, t1)
...

f316N+5
(y, t1)

 , (6.31)

where f31i (i = 1, ..., 6N + 5) are nonhomogeneous solutions obtained from the right-hand

side terms of (6.29), with the exception of eight terms which take the value of zero in

correspondence with the boundary and matching conditions (6.30).

Because the non-homogeneous part of (6.31) admits a non-trivial solution, a solvability

condition has to be satisfied. This condition is that the determinant ofM11 with one of its

columns replaced by the right-hand side column vector should vanish. This linear algebraic
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Figure 6-1: Supercritical bifurcation based on the expansion of the ratio between the undis-
turbed velocities φ.

system reduces to the following Landau equation:

dA

dt1
= η0A+ η1|A|2A, (6.32)

where η0 is the linear growth rate of the amplitude and η1 is the first Landau constant.

The signs of the real parts of η0 and η1 determine the bifurcation pattern. In the case of

Re(η0) > 0 and Re(η1) < 0, we have supercritical bifurcation, where a steady state with

an equilibrium amplitude Ae is reached as t1 →∞. From (6.32), we have

|Ae| =

√
−Re(η0)

Re(η1)
. (6.33)

The phase µ of the amplitude is also derived from (6.32),

Ae = |Ae| eiµt1 , (6.34a)

µ = Im(η0) + Im(η1) |Ae|2 . (6.34b)

Fig. 6-1 illustrates the equilibrium amplitude in the case of supercritical bifurcation

based on the expansion of the ratio between the undisturbed velocity in the vegetated zone

and the undisturbed velocity in the vegetated zone, φ.

Fig. 6-2 presents a comparison between the base state velocityU0 and the time-averaged

normalized velocity U , referent to run 3 (as in Table 7.3) of the experiments described in

Ikeda et al. (1991). The gradient of U is milder due to the increase of the mixing layer

around the boundary between the non-vegetated and vegetated zones. Fig. 6-3 presents
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Figure 6-2: Base state and time averaged velocity profiles (run 3 of Ikeda et al. (1991)).
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Figure 6-3: Fluctuating normalized velocity vectors (run 3 of Ikeda et al. (1991)).

normalized fluctuating velocity (i.e.,
√
U2 + V 2−U ) vectors up to the order of O(ζ2), also

referent to run 3.
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Chapter 7

Results and discussion: nonlinear

stability analysis

7.1 Supercritical bifurcation

The neutral curve in the φ − k plane can depicted once the parameters β, ε, Bv and F are

specified. Hereafter, φc will be taken as the maximum value of φ which lays on the neutral

curve in φ− k plane. A sample neutral curve in the φ− k plane is depicted in Fig 7-1.

In this section, we derive the Landau equation for multiple values of β and ε, while the

parameters F and Bv are kept constant (F = 0.5 and Bv = 0.55). As seen in Fig. 5-6, the

minimum αc, which corresponds to the maximum φc, does not vary when F increases from

0.5 to 1.5. And because of the gravitational instability, a minimum threshold αc dividing

the plane into a stable and an unstable region cannot be defined for F = 2.5. Therefore, the

variation of F is not considered herein. And because the neutral instability does not vary

significantly due to Bv, except when Bv is sufficiently small, as depicted in Fig. 5-4, this

parameter is also kept constant herein.

The parameter φc, its corresponding kc in the neutral curve in the φ− k plane, and the

determined linear growth rate η0 and the first Landau constant η1 are presented in Table 7.1,

for multiple values of β, and Table 7.2, for multiple values of ε.

Supercritical bifurcation is found to occur for values of β within the range of 0.032 −

0.316 in Table 7.1, as Re(η0) is positive and Re(η1) is negative in this range. However,
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Figure 7-1: Neutral curve in the φ − k plane for the case β = 0.05, ε = 6× 10−4,
Bv = 0.55, F = 0.5.

Table 7.1: Parameters on the neutral curve in the φ − k plane for the case ε = 6 × 10−4,
Bv = 0.55, F = 0.5 and multiple values of β; and the real and imaginary parts of η0 and
η1.

β Cf AR φc kc Re(η0) Im(η0) Re(η1) Im(η1)

0.010 0.0020 5.0 0.903 2.07 -3.64 -0.36 581 149

0.018 0.0029 6.0 0.892 2.53 -1.00 -1.08 -54 -28

0.032 0.0043 7.3 0.871 3.14 2.13 -1.23 -163 -92

0.056 0.0064 8.9 0.837 3.94 0.83 -3.16 -192 -10

0.100 0.0093 10.7 0.784 5.07 1.03 -3.25 -206 -24

0.178 0.0137 13.0 0.706 6.71 1.30 -3.02 -226 -44

0.316 0.0201 15.7 0.584 9.19 1.56 -1.72 -246 -75

0.562 0.0295 19.1 Stable
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Table 7.2: Parameters on the neutral curve in the φ − k plane for the case β = 0.05,
Bv = 0.55, F = 0.5 and multiple values of ε; and the real and imaginary parts of η0 and
η1.

ε Cf AR φc kc Re(η0) Im(η0) Re(η1) Im(η1)

1.78× 10−5 0.0006 88.9 0.974 19.33 4.34 -173.42 -12005 -198

3.16× 10−5 0.0008 60.6 0.967 14.29 3.20 -107.92 -6184 -115

5.62× 10−5 0.0012 41.3 0.956 10.73 2.40 -61.62 -3060 -79

1.00× 10−4 0.0018 28.1 0.941 8.11 1.80 -33.79 -1515 -52

1.78× 10−4 0.0026 19.2 0.921 6.19 1.35 -17.55 -759 -33

3.16× 10−4 0.0038 13.0 0.893 4.82 1.02 -7.99 -386 -17

5.62× 10−4 0.0056 8.9 0.851 3.85 0.78 -3.67 -210 -10

1.00× 10−3 0.0083 6.1 0.784 3.14 0.64 0.71 -36 27

1.78× 10−3 0.0121 4.1 0.667 2.62 0.10 -0.23 -117 -28

3.16× 10−3 0.0178 2.8 0.405 2.33 -0.72 -0.60 64 56

5.62× 10−3 0.0261 1.9 Stable

because Re(η0) for β = 0.032 is larger than Re(η0) for larger values of β when it was

expected to be smaller, we can assume that this result is not reliable. Moreover, negative

Re(η0) were obtained for β = 0.10 and β = 0.18, while all values of Re(η0) should be

positive because the instability occurs when φ < φc. Therefore, the results in the range

of β / 0.032 are not reliable. This is attributed to the fact that the channel is not wide

enough to accommodate the shear layer, which further increases once nonlinear terms are

considered, as depicted in Fig 6-2. The flow is stable for any φ in the range of β ' 0.562.

In Table 7.2, the values of η0 and η1 are not correct in the range of ε ' 1.00 × 10−3,

also because of the small aspect ratio of the channel. In the range of ε ' 5.62× 10−3, how-

ever, the flow is expected to be stable, which is in agreement with Fig. 5-2. Supercritical

bifurcation is found to occur for all values of ε / 5.62× 10−4.

7.1.1 Critical vegetation drag and density

The neutral curves in the φ − k plane for various β or ε typically posses a maximum φc,

above which the flow is stable. Therefore, there is typically a minimum critical vegetation

drag and density parameter αc below which the flow is stable. Fig. 7-2 (a) and (b) depict

the minimum αc as functions of β and ε, respectively.
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The flow is less stable in the range of small and large β, for which correspond larger

values of αc. αc is minimized when β is around 0.08. As previously mentioned, the role

of β on the instabilities due to the transverse mixing is dual, as the increase of β can both

enhance or damp these instabilities. For a large β, the bed shear stress effects overlaps the

effect of lateral mixing, while in the range of small β, the velocity gradient which enhances

the lateral mixing is milder. Although the shallow water approach is not valid in the range

of small β, an increasing of αc is expect to take place at this range.

The increase of ε makes the flow less unstable because the effect of the sub-depth-scale

eddy viscosity suppresses the effect of transverse mixing. Therefore, for a larger ε, a larger

αc is necessary for the flow to become unstable, as observed in Fig. 7-2 (b).

7.1.2 Equilibrium amplitude

The absolute value of the equilibrium amplitude (|Ae|) was determined from (6.33) for the

ranges of β and ε which correspond to supercritical bifurcation. Fig 7-3 (a) and (b) depict

|Ae| as functions of β and ε respectively.

In Fig 7-3(a), |Ae| increases, tends to stabilize and then slightly decreases with the in-

crease of β. While we have found that the flow is less unstable in the range of sufficiently

large or small β, herein we also have to consider that the transverse mixing may be en-

hanced by the smaller φc in the range of large β. Similarly, in Fig 7-3(b), while the flow is

expected to be less unstable in the range of large ε, the corresponding φc is this region will

be small, which may enhance the instabilities and result in higher amplitudes.

7.1.3 Maximum friction velocity

We can define a friction velocity (UfM ) by the lateral shear stress due to the transverse

mixing as

U2
fM = −U ′V ′, (7.1)

where U ′ and V ′ are the fluctuations of the streamwise and transverse velocities, respec-

tively.

Fig. 7-4 presents a sample curve of −U ′V ′ as a function of y for the case β = 0.05,
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Figure 7-2: αc as functions of (a) β for the case ε = 6× 10−4, (b) ε for the case β = 0.05;
in both cases Bv = 0.55, F = 0.5.
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Figure 7-3: Absolute value of the equilibrium amplitude (|Ae|) as functions of (a) β for the
case ε = 6× 10−4, (b) ε for the case β = 0.05; in both cases Bv = 0.55, F = 0.5.

62



�0.4 �0.2 0.2 0.4 0.6 0.8 1.0
y

�0.00001

0.00001

0.00002

0.00003

0.00004
�U '�V '

Figure 7-4: −U ′V ′ as a function of y for the case β = 0.05, ε = 6 × 10−4, Bv = 0.55,
F = 0.5, ζ2 = 0.01.

ε = 6 × 10−4, Bv = 0.55, F = 0.5, and ζ2 = 0.01. As depicted in this figure, −U ′V ′

reaches its maximum at y = 0. Therefore the friction velocity UfM reaches its maximum

at the boundary between the non-vegetated and the vegetated zone. Far from this boundary,

−U ′V ′ decays to zero.

Fig 7-5 (a) and (b) depicts the maximum friction velocity as functions of β and ε, re-

spectively. The behavior of UfM,max is found to be similar to the behavior of the amplitude

as functions of β or ε in Fig 7-5. The value of UfM,max is obviously expect to increase

with |Ae|, since the fluctuating terms increase with |Ae|. Because a small ζ is employed

in Fig 7-5, which will lead to very small higher order terms of ζ , there is a quasi-linear

correlation between the amplitude in Fig 7-3 and UfM,max in Fig 7-5.

7.1.4 Lateral large-scale kinematic eddy viscosity

In the fully developed stage of perturbations, the Reynolds stress can be determined from

the fluctuating velocities U ′ and V ′. Using Boussinesq’s kinematic eddy viscosity, the

following relation holds:

−ρU ′V ′ = ρεM
dU

dy
, (7.2)

where εM is the lateral kinematic eddy viscosity at the fully developed stage of perturba-

tions. εM is normalized by the undisturbed velocity in the non-vegetated zone, Ũ∞, and the
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Figure 7-5: Ufm,max as a function of (a) β for the case ε = 6× 10−4, (b) ε for the case
β = 0.05; in both cases Bv = 0.55, F = 0.5, ζ2 = 0.01.
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Figure 7-6: dU/dy as a function of y for the case β = 0.05, ε = 6 × 10−4, Bv = 0.55,
F = 0.5, ζ2 = 0.01.

width of the non-vegetated zone, B̃, as in (2.21).

Fig. 7-6 presents a sample curve of dU/dy as a function of y for the case β = 0.05,

ε = 6 × 10−4, Bv = 0.55, F = 0.5, and ζ2 = 0.01. Similarly to −U ′V ′ in Fig. 7-4,

dU/dy has a maximum at y = 0 and decays to zero far from the interface between the non-

vegetated and vegetated zones. And differently from −U ′V ′, dU/dy has a cusp at y = 0.

The kinematic eddy viscosity εM determined from (7.2) and using the values of β, ε,

Bv, F and ζ2 of Fig. 7-4 and Fig. 7-6 is depicted in Fig. 7-7 as a function of y. Because εM

can only be determined in the shear layer, the range of the transverse coordinate y presented

in Fig. 7-7 is limited to −0.15 ≤ y ≤ 0.15. εM has two local points of maximum, one in

the non-vegetated zone, and one in the vegetated zone, and a cusp at y = 0.

Although εM is the eddy viscosity which takes into account the effect of the lateral

transverse mixing, the values of εM in Fig. 7-7 are not larger than the value of ε = 6×10−4,

which is the sub-depth eddy viscosity in the case depicted in Fig. 7-7. This is because a

small value of ζ was employed in Fig. 7-7, such that the condition depicted in this figure

is not much deviated from the neutral stability. Comparisons between ε and εM for larger

values of ζ will be presented in the next section.

Fig 7-8 (a) and (b) depicts the maximum εM , which can be located either in the non-
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Figure 7-7: Lateral kinematic eddy viscosity in the fully developed stage of perturbations
εM as a function of y for the case β = 0.05, ε = 6× 10−4, Bv = 0.55, F = 0.5, ζ2 = 0.01.

vegetated or the vegetated zones, as functions of β and ε, respectively. While U ′V ′ in-

creases with the increasing of β or ε, the velocity gradient dU/dy at the shear layer be-

comes steeper with the increase of β and becomes milder with the increase of ε, as in

Fig. 3-1. Therefore, the effects of increasing β and ε on εM are opposite.

7.2 Comparison with experimental data

The predictive nonlinear analysis developed herein was compared with the results of the

laboratory experiments of Ikeda et al. (1991) and White and Nepf (2007). In their experi-

ments, vortices were generated in a channel featuring a lateral array of pile dikes. The major

hydraulic variables of their experimental runs are presented in Table 7.3. We predicted su-

percritical bifurcation for most cases, with the exception of runs II, III and XI, although in

the experiments an equilibrium amplitude was also observed in these runs. Runs II, III and

XI have in common the small value of β, which is a less favorable condition for predicting

supercritical bifurcation, as previously mentioned.

7.2.1 Time-averaged velocity

A comparison between the time-averaged velocity profile along the transverse direction ỹ

theoretically determined herein and measurements of Ikeda et al. (1994) is presented in
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Figure 7-8: εm,max as a function of (a) β for the case ε = 6× 10−4, (b) ε for the case
β = 0.05; in both cases Bv = 0.55, F = 0.5, ζ2 = 0.01.
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Table 7.3: Hydraulic parameters from the experiments of Ikeda et al. (1991) (runs 1–5) and
White and Nepf (2007) (runs I–XI).

Run β ε(×10−4) F φ φc kc Re(η0) Im(η0) Re(η1) Im(η1)

1 0.061 5.19 0.51 0.303 0.846 4.27 0.88 -1.83 -228 -14.2

2 0.061 5.19 0.77 0.303 0.845 4.27 0.87 -1.63 -228 -14.5

3 0.079 4.48 0.74 0.356 0.838 5.07 1.06 -2.28 -282 -24.5

4 0.164 3.00 0.62 0.462 0.810 8.71 1.82 -4.64 -532 -64.3

5 0.038 6.88 0.48 0.243 0.852 3.16 0.54 -0.99 -154 4.3

I 0.058 3.99 0.22 0.124 0.869 4.71 0.98 -2.12 -300 -11.4

II 0.023 4.73 0.21 0.078 0.900 3.05 -10.82 4.69 538 621.4

III 0.023 7.31 0.21 0.079 0.861 2.65 0.39 -0.77 61 20.1

IV 0.064 4.02 0.22 0.075 0.862 4.94 1.03 -1.98 -303 -15.1

V 0.061 2.82 0.05 0.079 0.890 5.57 1.19 -3.05 -453 -21.7

VI 0.043 2.86 0.16 0.065 0.905 4.78 1.01 -2.58 -421 -8.6

VII 0.055 3.73 0.21 0.024 0.877 4.76 0.99 -1.24 -322 -11.2

VIII 0.126 4.29 0.08 0.034 0.799 6.54 1.36 -0.73 -316 -36.4

IX 0.089 4.95 0.11 0.033 0.818 5.25 1.08 -0.73 -251 -20.8

X 0.066 5.22 0.34 0.030 0.837 4.50 0.92 -0.65 -227 -10.8

XI 0.032 8.70 0.19 0.018 0.827 2.83 0.17 0.13 131 365.6

68



Fig. 7-12.

The present model reproduces well the velocity gradient around the shear layer. How-

ever, the observed gradient may be slightly shifted towards the non-vegetated region, as in

(a) and (c). This is because in the mathematical model employed herein, the drag force

due to vegetation is assumed as zero at the immediate vicinity of the edge of the vegetated

region, as in (2.2), while a non-zero vegetation drag force may actually extend slightly

into the range of small positive y. The boundary layer at the vicinity of the walls is not

reproduced by the theory, since we did not make use the condition of vanishing streamwise

velocity at the walls, which is difficult to be used in the shallow water formulation.

7.2.2 Maximum friction velocity

The maximum friction velocity defined by the lateral shear stress is determined from the

following relation, which is similar to (7.1), and has also been employed by White and

Nepf (2007),

Ũ2
fM,max = −

(
Ũ ′Ṽ ′

)
max

, (7.3)

where Ũ ′ and Ṽ ′ are the fluctuations of Ũ and Ṽ . The above definition for the friction

velocity is employed herein just in the present comparison between theoretical and exper-

imental results. It was not employed when determining the eddy viscosity in (2.11). The

predicted ŨfM,max was found to be located at the interface between the non-vegetated and

vegetated zones, while in the experiments of White and Nepf (2007), it was located within

1−2cm of the array edge. This is also because of the slight shift of the observed velocity

gradient towards the non-vegetated zone, when comparing to the prediction.

Table 7.4 and Fig 7-10 present a comparison between observed and predicted values of

maximum friction velocity ŨfM,max, corresponding to the experimental runs of White and

Nepf (2007). The agreement is found to be reasonably good.
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Figure 7-9: Lateral distribution of time-averaged velocity: (a) run 1; (b) run 2; (c) run 3
(Ikeda et al. (1991)).
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Table 7.4: Observed and predicted maximum friction velocity ŨfM,max.

Run, White and Nepf (2007) I IV V VI VII VIII IX X

Ũf,max (cm/s), observed 1.8 2.1 0.4 1.5 1.9 0.4 0.8 3.4

Ũf,max (cm/s), predicted 1.8 1.8 0.4 1.3 1.9 0.7 1.0 3.2
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Figure 7-10: Comparison between the predicted and measured maximum friction velocity.

7.2.3 Shear layer width

The shear layer width Θ̃ is measured by the momentum thickness following White and

Nepf (2007),

Θ̃ =

∫ B̃

−B̃v

[
1

4
−

(
Ũ − ŨA

∆Ũ

)]
dỹ, (7.4)

where ŨA = (Ũ∞ + Ũ−∞)/2 and ∆Ũ = Ũ∞ − Ũ−∞.

Table 7.5 and Fig. 7-11 present a comparison between observed and predicted values

of the shear-layer width at the equilibrium Θ̃. For most of the runs the agreement may be

considered reasonable, with the exception of run VIII.

Table 7.5: Observed and predicted shear layer width at the equilibrium Θ̃.
Run White and Nepf (2007) I IV V VI VII VIII IX X

Θ̃ (cm), observed 5.1 4.8 4.5 5.4 4.5 4.4 4.4 4.4

Θ̃ (cm), predicted 4.7 4.5 4.0 4.8 4.7 3.2 4.1 4.9
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Figure 7-11: Comparison between the predicted and measured shear layer width Θ̃.

7.2.4 Lateral large-scale kinematic eddy viscosity

Using the velocity fluctuations to express the Reynolds stress, the lateral kinematic eddy

viscosity in the equilibrium stage, ν̃T , is expressed using Boussinesqs hypothesis as,

−ρŨ ′Ṽ ′ = ρν̃T
dŨ

dỹ
. (7.5)

The above expression is a dimensional form of (7.2).

Fig. 7-12 depicts a comparison between the lateral eddy viscosity determined from

(7.5) and the lateral eddy viscosity measured by Ikeda et al. (1991). While the value of ν̃T

determined by Ikeda et al. (1991) is assumed to be constant along the transverse direction

and valid in the regions far from the shear layer, the lateral kinematic eddy viscosity in

the perturbed stage obtained herein is only defined at the shear layer and varies along the

transverse direction. The values of ν̃T from the present study and from Ikeda et al. (1991)

corresponding to runs 2, 3 and 4 showed good agreements. On the other side, the maximum

values of ν̃T determined herein from runs 1 and 5 were around 60% of the values from Ikeda

et al. (1991).

The sub-depth ν̃T determined from (2.11), and ν̃T determined by Ikeda et al. (1991)

(which correspond to the broken lines in Fig. 7-12) are presented in Table 7.6. The sub-
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Figure 7-12: Predicted (continuous lines) and measured (broken lines) lateral kinematic
eddy viscosity: (a) runs 1–3; (b) runs 4–5, (Ikeda et al. (1991)).
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Table 7.6: Kinematic eddy viscosity employed in the St. Venant shallow water equations.
Run, Ikeda et al. (1991) 1 2 3 4 5

ν̃T (cm2), present study 1.24 1.84 1.40 0.61 1.82

ν̃T (cm2), Ikeda et al. (1991) 7.39 5.73 3.18 1.83 7.53

depth eddy viscosity employed herein is significantly smaller because it does not include

the effect of the large-scale vortices.

In order to evaluate the growth of the kinematic eddy viscosity from the sub-depth scale

to the large scale, we normalize ν̃T using the friction velocity and the flow depth sufficiently

far from the vegetated zone, (Ũ∞ and H̃∞, respectively), as follows:

σ =
ν̃T

Ũf∞H̃∞
. (7.6)

Using the above normalization, the value of σ corresponding to the sub-depth eddy viscos-

ity in the present study is κ/6 (∼= 0.067).

Fig. 7-13 shows the kinematic eddy viscosity using the above normalization for runs

1–5 from Ikeda et al. (1991). As expected, all curves surpasses the value of 0.067 around

y = 0.

The values of σ around y = 0 approach the range of 0.15–0.20, which has been em-

ployed by Chen and Jirka (1997), Ghidaoui and Kolyshkin (1999) and Prooijen and Uijt-

tewaal (2002). Therefore, the disturbed eddy viscosity determined herein after performing

a nonlinear stability analysis approaches the values of eddy viscosity which were initially

assumed in the shallow-water formulation of previous studies. This indicates that the de-

velopment of the linear theory in these studies, including the base state formulation, made

use of values of eddy viscosity which may be affected by the large-scale vortices.
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Figure 7-13: Lateral kinematic eddy viscosity σ versus y, at the vicinity of y = 0. Runs
1–5 (Ikeda et al. (1991)).
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Chapter 8

Conclusions

In this study, we propose new linear and nonlinear stability analyses of flow with a lateral

velocity gradient due to the presence of vegetation on one side of an open channel. In

the analysis, we employ the St. Venant shallow water equations, and include the Reynolds

stresses represented by the kinematic eddy viscosity, which characterizes the sub-depth

scale turbulence generated by the bottom friction. In the base state, the velocity distribu-

tions inside and outside vegetation are expressed by hyperbolic cotangent and hyperbolic

tangent functions squared respectively. These functions are determined analytically, by

considering as the base state not the average flow, but the flow without the effects of the

large-scale horizontal vortices.

We performed a temporal linear stability analysis by imposing small perturbations on

the base state flow velocities and depth. We obtained a set of instability diagrams with re-

spect to six non-dimensional parameters, including a kinematic eddy viscosity parameter,

following that we did not employ a formulation for inviscid flow. Our results indicate that,

while the base state flow field is unstable in the range of typical, moderate values of the

hydraulic parameters, stability is retained in the range of sufficiently small and large vege-

tation densities, small widths of the vegetated zone, large bed shear effect, large sub-depth

eddy viscosity effect, and moderate Froude numbers where the flow is stable to both the

transverse mixing and the gravity. The growth rate of perturbations could be evaluated for

Froude numbers far from zero because the rigid-lid assumption was not used. The use of a

theoretical sub-depth kinematic eddy viscosity unaffected by the lateral motions permitted
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a consistent estimation of the growth rate of perturbations. Assuming that the character-

istic wavenumber and frequency of perturbations associated with maximum perturbation

growth rate correspond to those of vortices realized in experiments, we compare predicted

and observed vortex shedding frequencies. The analysis was shown to be capable of pre-

dicting the order of magnitude of the vortex shedding frequencies, yet there is a systematic

discrepancy in the predicted frequencies when compared to the observed frequencies. This

discrepancy, typically in the range of a factor of approximately two, may be caused by the

limitation of linear stability analysis.

The nonlinear stability analysis was performed in order to theoretically obtain the fully

developed stage of perturbations of a shear flow in a partially vegetated open-channel.

The ratio between the undisturbed velocities in the channel was taken as the parameter

for expansion in the non-linear analysis, and the corresponding wavenumber for maximum

instability was adjusted to this expansion. The theoretical results were validated through a

comparison with experimental measurements from previous studies.

The nonlinear model was able to predict the shear layer width and the maximum friction

velocity reasonably well. The lateral gradient of the time-averaged velocity was also well

represented by the model. The eddy viscosity as a function of the perturbed velocity could

be derived and it was found to be coherent with the laterally-disturbed eddy viscosity from

previous studies. Therefore, the present model was shown to be capable of predicting the

large-scale eddy viscosity from a formulation which included a sub-depth eddy viscosity

completely unaffected by the large-scale lateral motions.
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Appendix A

Notation

The following symbols are used in this paper:

A = amplitude;

Ae = equilibrium amplitude;

AR = aspect-ratio of the non-vegetated zone;

a = vegetation density parameter;

B = non-vegetated zone width;

Bv = vegetated zone width;

Cd = vegetation drag coefficient;

Cf = bed friction coefficient;

Dx, Dy = streamwise and transverse vegetation drag components, respectively;

d = diameter of cylinders;

F = Froude number;

G,Gn, J, Jn, K,Kn, Ln, P, Pn = linear operators;

g = gravity acceleration;

H = flow depth;

k = wavenumber;

ks = roughness height;

lx, ly = distances between two adjacent cylinders in x and y directions;

S = streamwise bed slope of the channel;

T = period;
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Tbx, Tby = streamwise and transverse bed shear stress components, respectively;

Ti,j (i, j = x, y) = Reynolds stress tensor;

Tj(ξ), Tj(ζ) = Chebyshev polynomials in ξ and ζ of degree j;

t = time;

t1 = time in the slow scale;

U, V = streamwise and transverse velocities, respectively;

U0 = base state flow velocity;

U1, V1, H1, U11, V11, H11, U00, U20, V20, H20, U22, V22, H22, U31, V31, H31, U33, V33, H33 = eigenfunctions;

Uf = friction velocity;

x, y, z = streamwise, transverse and depth coordinates, respectively;

α = vegetation drag parameter;

β = bed friction parameter;

ε = sub-depth eddy viscosity parameter;

ζ = expansion parameter in the multiple scale analysis;

η0 = linear growth rate of the amplitude;

η1 = first Landau constant;

Θ = shear layer width;

κ = Kármán constant;

µ = equilibrium amplitude phase;

νT = kinematic eddy viscosity;

ρ = water density;

σ = kinematic eddy viscosity normalized by the friction velocity and flow depth suffi-

ciently far from the vegetation;

φ = ratio between the undisturbed velocities in the vegetated zone and the non-vegetated

zone;

ψ = base state flow velocity at the interface between the non-vegetated and vegetated

zones;

Ω = growth rate of the perturbations;

ω = ωr + iΩ = angular frequency.

Subscripts:
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∞,−∞ = far field in the non-vegetated and vegetated zones, respectively;

c = located on the neutral curve;

M = fully developed stage of the perturbations;

m = most unstable mode.
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Appendix B

Terms I(1)
20 , I(2)

20 , I(3)
20 , I(1)

22 , I(2)
22 , I(3)

22

I
(1)
20 =


(

2βU0cU11H
∗
11 − V ∗11

dU11

dy

)
+ c.c.− β

(
2H11H

∗
11U

2
0c + 2U11U

∗
11 + V11V

∗
11

)
if 0 ≤ y ≤ 1,

1

1 + αc

(
2βU0cU11H

∗
11 − V ∗11

dU11

dy

)
+ c.c.− β

(
2H11H

∗
11U

2
0c

1 + αc
+ 2U11U

∗
11 + V11V

∗
11

)
if −Bv ≤ y ≤ 0,

(B.1)

I
(2)
20 =


(
βU0cV11H

∗
11 − V11

dV ∗11
dy
− βU11V

∗
11

)
+ c.c + ikcU11V

∗
11 − c.c. if 0 ≤ y ≤ 1,[

1

1 + αc

(
βU0cV11H

∗
11 − V11

dV ∗11
dy

)
− βU11V

∗
11

]
+ c.c +

ikcU11V
∗
11

1 + αc
− c.c. if −Bv ≤ y ≤ 0,

(B.2)
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I
(3)
20 = −

[(
V11

dH∗11
dy

+H11
dV ∗11
dy

)
+ c.c.

]
(B.3)

I
(1)
22 =


2βU0cU11H11 − V11

dU11

dy
− βU2

0cH
2
11 − ikcU

2
11 − βU2

11 −
β

2
V 2
11 if 0 ≤ y ≤ 1,

1

1 + αc

(
2βU0cU11H11 − V11

dU11

dy
− βU2

0cH
2
11 − ikcU

2
11

)
− βU2

11 −
β

2
V 2
11 if −Bv ≤ y ≤ 0,

(B.4)

I
(2)
22 =


βU0cV11H11 − V11

dV11
dy
− ikcU11V11 − βU11V11 if 0 ≤ y ≤ 1,

1

1 + αc

(
βU0cV11H11 − V11

dV11
dy
− ikcU11V11

)
− βU11V11 if −Bv ≤ y ≤ 0,

(B.5)

I
(3)
22 = −2ikcU11H11 − V11

dH11

dy
−H11

dV11
dy

(B.6)
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