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Abstract This paper presents a new method to improve performance of SVM-based classification, which contains a target object detection

scheme. The proposed method tries to detect target objects from training images and improve the performance of the image classification by

calculating the hyperplane from the detection results. Specifically, the proposed method calculates a Support Vector Machine (SVM) hyperplane,

and detects rectangular areas surrounding the target objects based on the distances between their feature vectors and the separating hyperplane in

the feature space. Then modification of feature vectors becomes feasible by removing features that exist only in background areas. Furthermore,

a new hyperplane is calculated by using the modified feature vectors. Since the removed features are not part of the target object, they are not

relevant to the learning process. Therefore, their removal can improve the performance of the image classification. Experimental results obtained

by applying the proposed methods to several existing SVM-based classification method show its effectiveness.
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1. Introduction

Image classification, which assigns an image to its be-

longing class, is one of the fundamental problems in the field

of computer vision. In order to realize image classification, a

successful image representation and accurate classifiers are

necessary.

In image representation, local features are typically ex-

tracted from images. Since SIFT1) and HOG2) are capable to

capture distinctive details of the images, they have become

popular features for image representation. However, since

they are sensitive to noise, such features are rarely fed into

classifiers directly3). Instead, a common strategy is to inte-

grate the local features into a global image representation.

Specifically, the Bag of Features (BoF) based approaches

have been mainly applied because of their simplicity and ef-

fectiveness3), and have performed to yield good performance

onmany challenging classification tasks4) 9)˜ . In addition, fur-

ther two improvements have been widely adopted. One is

coding methods, which avoid information loss in the fea-

ture quantization for training BoF5)8)9). The other is Spatial

Pyramid Matching, which considers information about the

spatial layout of local features4)6)7). Although these improve-

ments reduce the influence of noisy local features, there still

exists a problem that classifiers are sensitive to them. There-

fore, we need to reduce noisy features when learning a clas-
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sifier for each class.

These noisy features tend to be extracted from areas

which do not include target objects such as background ar-

eas. Thus, removal of areas other than the target objects

in feature extraction step is effective for learning a classi-

fier. However, since images are captured in various envi-

ronments, object conditions, such as size, location and pose

are generally unknown, and then, we have to estimate ar-

eas including target objects from only the provided training

images.

In this paper, we propose a new method to improve

the performance of SVM classification by removing non-

relevant features to the target object. In the proposed

method, we adopt the following two novel procedures: (i)

detection of target objects and (ii) calculation of a hyper-

plane from modified feature vectors. First, in (i), areas in-

cluding the target objects are detected by monitoring dis-

tances between their feature vectors and the separating hy-

perplane. This hyperplane is calculated by Support Vector

Machine (SVM)10) using entire training images including the

target objects. Since the monitored distance provides “the

probability of membership in a particular class correspond-

ing to the target object”11), the detection of the target objects

becomes feasible. Therefore, in (ii), we can modify feature

vectors by removing features that exist only in background

areas. Then a new hyperplane can be also obtained as an

updated classifier by using these feature vectors. Since the

classifier can be obtained from the target objects, the other

background areas do not affect the learning process. Then
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the problems of the conventional methods, specifically sen-

sitivity to noisy features are solved, and the performance of

image classification can be improved.

This paper is organized as follows. Section 2 pro-

vides a brief review of SVM. Section 3 presents the pro-

posed method, which improves the SVM-based image clas-

sification performance based on a target object detection

scheme. Section 4 provides experimental results that verify

the performance of the proposed method. Finally, Section 5

presents concluding remarks.

2. Support Vector Machine

This section briefly shows Support Vector Machine

(SVM)10) for two-class classification. Given a training

dataset consisting of N vectors xi ∈ Rd(i = 1, 2, · · · ,N) and
their corresponding class labels yi ∈ {−1, 1}, the feature vec-
tors xi are mapped into a high-dimensional feature space to

obtain Φ(xi) ∈ Rd′ (d′ � d). Then the separation of the two

different classes becomes feasible through an optimal hyper-

plane defined by a weight factor w ∈ Rd′ and a bias b ∈ R.
Specifically, the optimal hyperplane is defined as:

f svm(x) = wTΦ(x) + b, (1)

where x is an input vector whose class label is unknown. The

class label of x is determined according to y = sign[ f svm(x)].

If y is positive, x belongs to the positive class whose label is

1. Otherwise, it belongs to the negative class of −1.
The aim of SVM is finding the optimal hyperplane

which minimizes the cost function consisting of two crite-

ria, namely margin maximization and error minimization.

The final result of Eq. (1) using a Lagrangian formulation is

shown as follows12):

f svm(x) =
N∑

i=1

αiyiK(xi, x) + b, (2)

where K(·, ·) is a kernel function, which defines an inner
product in the feature space Rd

′
. Next, the coefficients αi

are obtained by solving the following convexQuadratic Pro-

gramming (QP) problem:

Maximize
∑N
i=1 αi − 1

2

∑N
i, j=1 αiα jyiy jK(xi, x j),

subject to
∑N
i=1 αiyi = 0,

0 <= αi <= C, (i = 1, 2, · · · ,N), (3)

where αi are the Lagrange multipliers and C is a constant

which represents a tradeoff between the number of misclas-

sified samples in the training set and separation of the rest

samples with maximum margin.

It should be noted that the output values f svm(x) in Eq. (2)

is obtained based on the distance between Φ(x) and the hy-

perplane, and it can represent the degree of how the input

feature vectors are likely to positive examples11). Therefore,

in this paper, we focus on the output values of f svm(x) to

realize target object detection by using these values.

3. Classification Performance Improvement Us-
ing Target Object Detection

This section shows the performance improvementmethod

of image classification. Given a set of images, which con-

tain positive examples including target objects and negative

examples not including them, we first calculate a separating

hyperplane of SVM as shown in the previous section. In

order to improve the image classification performance, we

adopt a target object detection scheme. Specifically, the pro-

posed method performs the following two procedures:

Step 1 Detection of areas where target objects are in-

cluded based on distances from the hyperplane of SVM

Step 2 Calculation of a new hyperplane from modified

feature vectors which are extracted from the detected

areas

First, in Step 1, local blocks, which contain the target object,

are detected from the positive examples by using the hyper-

plane of SVM. These blocks are called “positive-blocks”,

hereafter. Next, in Step 2, a new hyperplane is calculated by

using modified feature vectors obtained from these positive-

blocks. Since the classifiers can be obtained from only

the target objects, the other background areas do not affect

the learning process. Therefore, by automatically narrow-

ing down the area where the target objects are located in

the training images, the classification performance improve-

ment can be realized.

In this section, we first explain the details of the SVM-

based detection of the positive-blocks (Step 1) in 3. 1. Sec-

ondly, we show the calculation of a new hyperplane of SVM

by using the modified feature vectors of detected positive-

blocks (Step 2) in 3. 2. Finally, multiclass image classifica-

tion using the proposed method is presented in 3. 3.

3. 1 Detection of Positive-Blocks

In this subsection, we explain the detection of positive-

blocks. Let Fposi (i = 1, 2, · · · ,N) denote the positive ex-
amples, i.e., images including target objects, in the training

dataset, where N is the number of the positive examples.

First, for each image Fposi , the proposed method clips local

blocks of various sizes, and these clipped blocks are defined

as gposi,s,m(s = 1, 2, · · · , S ,m = 1, 2, · · · ,Mpos
i,s ). Note that since

the notation of the clipped local blocks gposi,s,m is complicated,

we explain its details below.

First, s represents an index which indicates a group which
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s = 1

s = 2

s = 3

s = 4

gposi,1,1 gposi,1,2 gposi,1,3 gpos
i,1,M

pos
i,1

gposi,2,1 gposi,2,2 gposi,2,3 gpos
i,2,M

pos
i,2

gposi,3,1 gposi,3,2 gposi,3,3 gpos
i,3,Mpos

i,3

gposi,4,1 gposi,4,2 gposi,4,3 gpos
i,4,Mpos

i,4

Fposi

gposi,s,m

As pixels

The set of local blocks whose group is As

Clipping of the local blocks gposi,s,m from Fposi

Fig. 1 An example of clipping local-blocks gposi,s,m from the positive

example Fposi .

Table 1 Four kinds of groups As(s = 1, 2, 3, 4), whose areas are

(0.8)sA0 (pixels), used in our method, where A0 = 65536.

A1 A2 A3 A4
0.8A0 (0.8)2A0 (0.8)3A0 (0.8)4A0

Table 2 Aspect ratios (vertical:horizontal) used for clipping local

blocks of each group As.

4 : 1 3 : 1 2 : 1 3 : 2 1 : 1 2 : 3 1 : 2 1 : 3 1 : 4

has the same area, i.e., “the same number of pixels within

clipped local blocks”. In our method, local blocks of var-

ious sizes and aspect ratios are clipped from each positive

example Fposi . Then we group local images, whose areas are

the same, together and represent this group as A s by using

the index s as shown in Fig. 1. In the proposed method, we

set S = 4, i.e., the four groups As(s = 1, 2, 3, 4) including

different areas are used as shown in Table 1. For each group

As, local blocks with several aspect ratios are obtained from

the positive example Fposi . Specifically, we use local win-

dows of nine kinds of aspect ratios shown inTable 2 and clip

the local blocks gposi,s,m(m = 1, 2, · · · ,Mpos
i,s ) by using these lo-

cal windows. Note that Mpos
i,s represents the number of the

clipped local blocks, whose group is As(s = 1, 2, · · · , S ),
in the positive example F posi . As described above, Mpos

i,s lo-

cal images have various aspect ratios, but the areas, i.e., the

numbers of pixels, within the blocks are the same. In this

way, we obtain Mpos
i,s local blocks for each group As from

Fposi . This means
∑S

s=1 M
pos
i,s local blocks are obtained for

each positive example F posi as shown in an example of Fig. 1.

In the proposedmethod, we calculate feature vectors x posi,s,m

from gposi,s,m. Then, for each positive example F
pos
i , S kinds of

positive blocks bposi,s (s = 1, 2, · · · , S ) are calculated. Specif-
ically, for each group As(s = 1, 2, · · · , S ), its positive-block
is obtained as follows:

bposi,s = g
pos

i,s,mopti,s

, (4)

where

mopti,s = arg max
m=1,2,··· ,Mpos

i,s

f svm(xposi,s,m). (5)

Fposi

bposi,1

bposi,2

bposi,3

bposi,4

Fig. 2 An example of positive-blocks bposi,s detected from the positive

example Fposi .

In the above equation, f svm(xposi,s,m) is the output value of

SVM as shown in Eq. (2) of the previous section. Note that

the hyperplane of the SVM is calculated from the positive

examples Fposi (i = 1, 2, · · · ,N) and other negative examples.
From Eq. (4), the proposed method selects the positive-

block bposi,s for each group As(s = 1, 2, · · · , S ). Therefore,
S kinds of the positive-blocks are obtained for each positive

example Fposi as shown in Fig. 2.

As shown in the previous section, the output value

f svm(xposi,s,m) is based on the distance between the vector

Φ(xposi,s,m) and the hyperplane in the high-dimensional fea-

ture space. Furthermore, f svm(xposi,s,m) represents the degree

of how the input feature vectors xposi,s,m are likely to the posi-

tive examples corresponding to the target object. Therefore,

by selecting the local blocks whose outputs of SVM become

maximum, the detection of the positive-blocks including the

target objects becomes feasible.

3. 2 Calculation of New Hyperplane from Modified

Feature Vectors

This subsection shows the update of the hyperplane of

SVM by using the positive-blocks bposi,s (i = 1, 2, · · · ,N, s =
1, 2, · · · , S ) detected in the previous subsection. As shown
in Fig. 2, S positive-blocks bposi,s (s = 1, 2, · · · , S ) are de-
tected for each positive example F posi . They have different

areas, i.e., different number of pixels, but tend to include

the target object. Before updating the hyperplane of SVM,

the proposed method adopts one procedure which selects

one optimal positive-block from bposi,1 , b
pos
i,2 , · · · , bposi,S for each

positive example Fposi . This procedure aims to select the

smallest positive-block which circumscribes the target ob-

ject. If the positive-blocks are larger than the target object,

they also include other background areas. On the other hand,

if positive-blocks are smaller than the target object, they

may lose important information of the target object. There-

fore, in the proposed method, we try to select the smallest

positive-block circumscribing the target object. Specifically,

as shown in Fig. 3, the smallest s satisfying

f svm(xposi,s ) − f svm(xposi,s+1) > 0. (6)
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f svm(xposi,s )

sopti = 3

1 2 3 4 5

s

Fig. 3 An example of “the relationship between s and f svm(xposi,s )” and

“the detection of sopti ”.

is selected as sopti to provide the optimal positive-block

bpos
i,sopti

, where xposi,s is a feature vector of b
pos
i,s . Generally, for

s(s < sopti ), their positive-blocks tend to include the back-

ground, and the output of SVM tends to become smaller. On

the other hand, for s(s > sopti ), their positive-blocks cannot

include the whole area of the target object, and the output

of SVM tends to also become smaller as shown in Fig. 3.

Therefore, the proposedmethod selects sopti by using Eq. (6).

In this way, we can obtain the optimal positive-block b pos
i,sopti

for each positive example F posi . Therefore, the proposed

method updates the hyperplane of SVM from these positive-

blocks bpos
i,sopti

(i = 1, 2, · · · ,N) circumscribing the target ob-
jects. Note that feature vectors obtained from bpos

i,sopti

corre-

spond to the modified feature vectors in this paper. Then

improvement of the classification performance can be ex-

pected by using the updated hyperplane.

3. 3 Multiclass Image Classification

This subsection presents the multiclass classification

based on the proposedmethod. Traditionaly, the SVM-based

multiclassification has been proposed4), and we also follow

this scheme.

By using the procedures shown in the previous subsec-

tions, the proposedmethod can update the classifier from the

positive-blocks bpos
i,sopti

. In the multiclass classification prob-

lem including the two class problem, we generally prepare

training samples for each class. Given K classes, we denote

each class as k(k = 1, 2, · · · ,K) and define its training ex-
amples as Fki (i = 1, 2, · · · ,Nk,Nk is the number of training

examples belonging to class k).

First, for each class k, we calculate an initial hyperplane

Hk of SVM by using Fk
i (i = 1, 2, · · · ,Nk) as positive exam-

ples and Fk′
i (k

′ = {1, 2, · · · ,K |k′ � k}, i = 1, 2, · · · ,Nk′) as

negative examples. Next, by using the obtained hyperplane

Hk, the calculation of the optimal positive-blocks bk
i,sopti

is

performed, and the updated hyperplane Ĥk is obtained for

each class k. Note that the updated hyperplane is calcu-

Ca
lte

ch
 1

01
Ca

lte
ch

 2
56

Fig. 4 Example images of Caltech 101 and Caltech 256 datasets.

lated by using bk
i,sopti

as positive examples and “Fk′
i and b

k′
i,sopti

”

(k′ = {1, 2, · · · ,K |k′ � k}, i = 1, 2, · · · ,Nk′) as negative ex-

amples. Then, for all classes k(k = 1, 2, · · · ,K), the pro-
posed method can provide the classifiers which can consider

their target objects.

Finally, the proposed method performs classification of

a new sample by using the obtained hyperplane Ĥk(k =

1, 2, · · · ,K). Given a feature vector x of a target sample
whose belonging class is unknown, the proposedmethod de-

termines its class k̂ as follows:

k̂ = arg max
k=1,2,··· ,K

f svmk (x), (7)

where f svmk (·) is the function of class k, i.e., it represents the
hyperplane Ĥk. Then, by using Eq. (7), image classification

becomes feasible.

4. Experimental Results

In this section, we verify the performance of the proposed

method by using the general object datasets including Cal-

tech 10113) and Caltech 25614).

4. 1 Datasets Used for Verification

In this subsection, we explain the details of the datasets

Caltech 101 and Caltech 256, in which each image contains

a certain object and a cluttered background. Their details are

shown as follows.

(i) Caltech 101

This dataset (collected by Fei-Fei et al.13)) contains

9, 144 images in 101 object categories including ani-

mals, vehicles, flowers, buildings, etc. The number of

images per category varies from 31 to 800. The signif-

icance of this dataset is its large inter-class variability.

(ii) Caltech 256
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ant ibis car-side

helicopter cougar-body crocodile

swan butterfly toad

zebra goat tower-pisa

Fig. 5 An examples of target object detection from Caltech 101 and Caltech 256. Categories “ant”, “ibis”, “car-side”, “helicopter”,

“cougar-body”, “crocodile” are included in Caltech 101. All categories shown in this figure are included in Caltech 256.

This means Caltech 256 includes Caltech 101.

This dataset (collected by Griffin et al.14)) contains

30, 607 images from 256 object categories, and each

category contains at least 80 images. Caltech 256 is

an extension of Caltech 101. The significance of this

dataset is its large inter-class variability, as well as a

larger intra-class variability than Caltech 101. Further-

more, there is no alignment among the object cate-

gories.

Fig. 4 gives some example images. Compared with Caltech

101, Caltech 256 presents much greater variation in object

size, location and pose.

4. 2 Image Classification Results

In this subsection, we first verify the efficiency of the tar-

get object detection realized by the proposed method. Fig. 5

shows detection results of the optimal positive-blocks. As

shown in this figure, it can be seen that the proposed method

Table 3 Classification accuracy (%) comparison on Caltech 101 and

Caltech 256.

Methods Datasets Conventional method Proposed method

SVM10) Caltech 101 44.8 ± 0.7 46.2 ± 0.9
Caltech 256 11.6 ± 0.5 13.2 ± 0.9

SVDD15) Caltech 101 38.8 ± 0.6 39.9 ± 0.8
Caltech 256 10.1 ± 0.7 11.1 ± 0.5

SVM-KNN16) Caltech 101 64.6 ± 0.3 65.3 ± 0.5
Caltech 256 32.3 ± 0.5 33.1 ± 0.8

Lazebnik SPM4) Caltech 101 64.2 ± 0.3 65.6 ± 0.7
Caltech 256 31.1 ± 0.8 32.5 ± 0.6

Bosch SVM17) Caltech 101 71.2 ± 0.3 72.8 ± 0.5
Caltech 256 36.3 ± 0.5 37.6 ± 0.7

can detect blocks circumscribing the target objects.

Next, we show the image classification results obtained

by using the two datasets, Caltech 101 and Caltech 256. We

followed the experimental setup of Grauman and Darrell 18)

and J. Zhang et al.19), namely, we trained on 30 images per
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Fig. 6 Relationship between the number of training examples per class and the mean recognition rate per class.

class and tested on the rest. For efficiency, we limit the num-

ber of test images to 50 for Caltech 101 and 25 for Caltech

256 per class. Table 3 provides the resultant classification

performance on these two datasets. Note that we repeated

this verification three times and then calculated the average

classification accuracy and the corresponding standard devi-

ation.

As shown in Table 3, we applied the proposed method to

several conventional classification methods based on SVM.

In order to confirm the improvement by our method, we

show the classification results with those of individual clas-

sification methods. Note that in this experiment, SVM in10)

and Support Vector Data Description(SVDD) in15) adopted

SIFT features for constructing their classifiers. The settings

of SIFT features were based on those in17). In addition, ex-

perimental settings of SVM-KNN16), Lazebnik SPM4) and

Bosch SVM17) were followed in each reference.

When detecting positive-blocks by the proposed method,

we used different image representation with those used in

the conventional methods. Specifically, we used two repre-

sentations17), Pyramid Histogram Of visual Words (PHOW)

and Pyramid Histograms Of Gradients (PHOG) which are

calculated based on SIFT and HOG, respectively. Note that

in this calculation, we used the same settings shown in17). In

this experiment, HOG is discretized into 40 orientation bins.

Furthermore, SPM kernel4) with three levels of 1 × 1, 2 × 2
and 4× 4 is adopted. After detecting the positive-blocks, we
calculated the classifiers by the conventional methods based

on the same conditions shown in the above.

From the results shown in Table 3, we can see that the use

of the proposed method always outputs better performance

than the individual one. In addition, for both datasets, we

randomly select 5, 10, 15, 20, 25, 30 images for training, re-

spectively, and test on the rest. In this experiment, we verify

the robustness of the image classification performance based

on the proposed and conventional methods for the number

of training images. This verification scheme was adopted

among several reports4)14)16), and thus, we also adopted it in

this experiment. Fig. 6 shows our results and the results ob-

tained by others as the number of training images is varied.

It can be also seen that the performance improvement is real-

ized by introducing our method into those SVM-based con-

ventional classification methods.

From the above experimental results on the two datasets,

we can verify the effectiveness of the proposed method.

Then performance improvements of SVM-based classifica-

tion methods can be achieved by the proposed method.

5. Conclusions

This paper has presented a method to improve perfor-

mance of SVM-based classification, which contains a tar-

get object detection scheme. The proposed method is com-

posed of two procedures, detection of target objects and cal-

culation of a hyperplane from modified feature vectors. By

using these procedures, we can obtain blocks circumscrib-

ing the target objects and calculate the new hyperplane of

SVM by the modified feature vectors which extracted from

these blocks. Then improvements of the classification per-

formance becomes feasible by using the modified hyper-

plane. Experimental results using the two datasets, Caltech

101 and Caltech 256, have shown the effectiveness of the

proposed method.

ITE Trans. on MTA Vol. 1,  No. 3 (2013)

242



Acknowledgment

This work was partly supported by Grant-in-Aid for Sci-

entific Research on Innovative Areas 24120002 from the

MEXT.

References

1) D.G.Lowe: “Distinctive image features from scale-invariant keypoints”, Int. J.
Comput. Vis., 60, 2, pp. 91-110, (2004)

2) N. Dalal and B. Triggs: “Histograms of oriented gradients for human detection”,
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1, pp. 886-893, (2005)

3) Li. F.-F. and P. Perona: “A Bayesian hierarchical model for learning natural scene
categories”, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, 2, pp. 524-531,
(2005)

4) S. Lazebnik, C. Schmid and J. Ponce: “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories”, in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit, 2, pp. 2169-2178, (2006)

5) J. van Gemert, J. Geusebroek, C. Veenman and A. Smeulders: “Kernel code-
books for scene categorization”, in Proc. Eur. Conf. Comput. Vis., pp. 696-709,
(2008)

6) J. Yang, K. Yu, Y. Gong and T. Huang: “Linear spatial pyramid matching using
sparse coding for image classification”, in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit, pp. 1794-1801, (2009)

7) S. Gao, I. Tsang, L. Chia and P. Zhao: “Local features are not lonely Laplacian
sparse coding for image classification”, in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit, pp. 3555-3561, (2010)

8) J. Wang, J. Yang, K. Yu, F. Lv and T. Huang: “Locality-constrained linear coding
for image classification”, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit, pp.
3360-3367, (2010)

9) L. Liu, L. Wang and X. Liu: “In defense of soft-assignment coding”, in Proc. Int.
Conf. Comput. Vis., pp. 2486-2493, (2011)

10) Christopher J. C. Burges: “A Tutorial on Support Vector Machines for Pattern
Recognition”, Data Min. Knowl. Discov., 2, pp. 121-167, (1998)

11) J. C. Platt: “Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods”, In Advances In Large Margin Classifiers,
pp. 61-74, (1999)

12) V. N. Vapnik, “Statistical Learning Theory”, New York: Wiley, (1998)
13) Li. F.-F., R. Fergus and P. Perona: “Learning generative visual models from few

training examples: An incremental Bayesian approach tested on 101 object cate-
gories”, Comput. Vis. Image Understand., 106, pp.59-70, (2007)

14) G. Griffin, A. Holub and P. Perona: “Caltech-256 object category dataset”, Dept.
Comput. Sci., California Inst. Technology, Tech. Rep.7694, (2007)

15) David M. J. Tax and Robert P. W. Duin: “Support Vector Data Description”,
Mach. Learn., 54, pp. 45-66, (2004)

16) H. Zhang, A. C. Berg, M. Maire and J. Malik: “SVM-KNN: Discriminative near-
est neighbor classification for visual category recognition”, in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit, 2, pp. 2126-2136, (2006)

17) A. Bosch, A, Zisserman and X. Munoz: “Representing shape with a spatial
pyramid kernel”, Proc. ACM Conf. on Image and Video Retrieval, pp. 401-408,
(2007)

18) K. Grauman and T. Darrell: “The pyramid match kernel: Discriminative clas-
sication with sets of image features”, in Proc. Int. Conf. Comput. Vis., 2, pp,
1458-1465, (2005)

19) J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid: “Local Features and
Kernels for Classification of Texture and Object Categories: A Comprehensive
Study”, Int. J. Comput. Vision, 73, pp. 213-238, (2007)

Soh Yoshida received his B.S. degree in Electronics
and Information Engineering from Hokkaido University, Sap-
poro, Japan in 2012. He is currently pursuing an M.S. degree
at the Graduate School of Information Science and Technology,
Hokkaido University. His research interests include image and
video processing. He is a member of IEICE.

Hiroshi Okada received his B.S. andM.S. degrees in
Electronics and Information Engineering from Hokkaido Uni-
versity, Sapporo, Japan in 2009 and 2011, respectively. He is
currently working in Hokkaido Electric Power Company. His
research interests include digital image processing.

Takahiro Ogawa received his B.S., M.S. and Ph.D.
degrees in Electronics and Information Engineering from
Hokkaido University, Japan in 2003, 2005 and 2007, respec-
tively. He is currently an assistant professor in the Graduate
School of Information Science and Technology, Hokkaido Uni-
versity. His research interests are digital image processing and
its applications. He is a member of the IEEE, EURASIP,IEICE,
and Institute of Image Information and Television Engineers
(ITE).

Miki Haseyama received her B.S., M.S. and Ph.D.
degrees in Electronics from Hokkaido University, Japan in
1986, 1988 and 1993, respectively. She joined the Graduate
School of Information Science and Technology, Hokkaido Uni-
versity as an associate professor in 1994. She was a visiting
associate professor of Washington University, USA from 2005
to 2006. She is currently a professor in the Graduate School
of Information Science and Technology, Hokkaido University.
Her research interests include image and video processing and
its development into semantic analysis. She is a member of the
IEEE, IEICE, Institute of Image Information and Television En-
gineers (ITE) and Acoustical Society of Japan (ASJ).

243

Paper » A Method for Improving SVM-based Image Classification Performance Based on a Target Object Detection Scheme 


