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Abstract

For a general class of boson–fermion Hamiltonians H acting in the tensor prod-
uct Hilbert space L2(Rn) ⊗ ∧(Cr) of L2(Rn) and the fermion Fock space ∧(Cr)
over Cr (n, r ∈ N), we establish, in terms of an n-dimensional conditional oscil-
lator measure, a functional integral representation for the trace Tr (F ⊗ zNfe−tH)
(F ∈ L∞(Rn), z ∈ C\{0}, t > 0), where Nf is the fermion number operator on ∧(Cr).
We prove a Golden–Thompson type inequality for |Tr (F ⊗ zNfe−tH)|. Also we dis-
cuss applications to a model in supersymmetric quantum mechanics and present an
improved version of the Golden–Thompson inequality in supersymmetric quantum
mechanics given by Klimek and Lesniewski (Lett. Math. Phys. 21 (1991), 237–
244). An upper bound for the number of the supersymmetric states is given as well
as a sufficient condition for the spontaneous supersymmetry breaking. Moreover,
we derive a functional integral representation for the analytical index of a Dirac
type operator on Rn (Witten index) associated with the supersymmetric quantum
mechanical model.

Keywords: boson–fermion system, conditional oscillator measure, Dirac operator, func-
tional integral, Golden–Thompson inequality, ground state energy, supersymmetric quan-
tum mechanics.
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1 Introduction

In their interesting paper [9], Klimek and Lesniewski derived a Golden–Thompson inequal-
ity for a model in supersymmetric quantum mechanics on the n-dimensional Euclidean
vector space Rn = {x = (x1, . . . , xn)|xj ∈ R, j = 1, . . . , n} with n ∈ N (the original
versions of Golden–Thompson inequality are given in [7, 18]; for abstract generalizations,
see, e.g., [13, p.320]). In the present paper, we improve their result and extend it to a gen-
eral class of boson–fermion systems with finite degrees of freedom which, as special cases,
includes supersymmetric quantum mechanical ones (e.g., [17]). We also discuss some
consequences of the main results and application to supersymmetric quantum mechanics.

One of the motivations for the present work comes from trying to improve the Golden–
Thompson inequality by Klimek and Lesniewski [9] in two aspects: The one is that it is
not best possible in a sense as is explained in Example 1.1 below. The other one, which is
related to the first one, lies in that the inequality does not have a form suitable for infinite
dimensional extensions. In fact, we originally have been interested in infinite dimensional
versions of Golden–Thompson type inequalities which may play important roles in statis-
tical mechanics of quantum fields. As for a general class of Bose fields, Golden–Thompson
type inequalities have been established in a previous paper [3]. But it seems to be still
left open to establish such inequalities for quantum field models which describe boson–
fermion interactions (partial results related to the subject have been obtained in [1, 2]
where general mathematical frameworks for supersymmetric quantum field models are
formulated and a functional integral representation for the analytical index of an infinite
dimensional Dirac type operator is given).

With the motivation mentioned above and from a view-point aiming at generality and
unification, it would be more natural to study a general (not necessarily supersymmetric)
boson-fermion system with finite degrees of freedom. This is the idea underlying the
present work. A boson-fermion system with finite degrees of freedom is interesting not
only as a generalization of ordinary quantum mechanical systems with spin, but also as a
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finite mode approximation of a quantum field model with a Bose field and a Fermi field
(e.g., the Witten model in supersymmetric quantum mechanics [20, 21], which is a boson-
fermion model with finite degrees of freedom, is heuristically obtained as the so-called
dimensional reduction of a supersymmetric quantum field model).

The Hilbert space of the boson–fermion system we consider in this paper is the tensor
product Hilbert space

H := L2(Rn) ⊗ ∧(Cr) (1.1)

of L2(Rn) and the fermion Fock space

∧(Cr) := ⊕r
p=0 ∧p (Cr) = {ψ = (ψ(p))r

p=0|ψ(p) ∈ ∧p(Cr), p = 0, 1, . . . , r} (1.2)

over the r-dimensional complex Hilbert space Cr, where ∧p(Cr) is the p-fold anti-symmetric
tensor product of Cr. In what follows, we mainly use the following natural isomorphism:

H ∼= L2(Rn;∧(Cr)), (1.3)

the Hilbert space of ∧(Cr)-valued square integrable functions on Rn.
To explain in what sense the Golden–Thompson inequality in [9] is unsatisfactory, we

first review it briefly. We consider the case r = n as in [9]. We denote the multiplication
operator by a Borel measurable function F on L2(Rn) by the same symbol F . Let P be
a real polynomial of n variables x1, . . . , xn ∈ R, ∆ be the generalized Laplacian acting in
L2(Rn) and bj (j = 1, . . . , n) be the fermion annihilation operator on the fermion Fock
space ∧(Cn), i.e., it is a linear operator on ∧(Cn) whose adjoint b∗j satisfies

(b∗jψ)(0) = 0, (b∗jψ)(p) =
√

pAp(ej ⊗ ψ(p−1)), 1 ≤ p ≤ n, j = 1, . . . , n,

where Ap is the antisymmetrization operator on the p-fold tensor product ⊗pCn of Cn and
{ej}n

j=1 is the standard orthonormal basis of Cn. The operators bj’s satisfy the canonical
anti-commutation relations

{bj, bk} = 0, {bj, b
∗
k} = δjk (j, k = 1, . . . , n),

where {A,B} := AB + BA and δjk is the Kronecker delta. The Hamiltonian HKL of the
supersymmetric quantum mechanical model considered in [9] has the following form:

HKL = −~2

2
∆ − ~

2
∆P +

1

2
|∇P |2 +

n∑
j,k=1

~(∂j∂kP )b∗jbk, (1.4)

acting in H with r = n, where ~ > 0 is a parameter denoting physically the Planck
constant divided by 2π, ∂j := ∂/∂xj (j = 1, . . . , n) and ∇ := (∂1, . . . , ∂n) (in the paper
[9], a physical unit system is taken such that ~ = 1, but we make explicit the dependence
on ~ so that the behavior of the classical limit ~ → 0 may be visible). The Golden–
Thompson inequality proved in [9] is as follows:

Tr e−tHKL ≤ 1

(2πt)n/2~n

∫
Rn

det(I + e−t~∇⊗∇P (x))e−
t
2(|∇P (x)|2−~∆P (x))dx (1.5)
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for all t > 0 such that the integral on the right hand side is finite, where Tr (resp. det)
denotes trace (resp. determinant), I denotes identity, and ∇ ⊗ ∇P (x) (x ∈ Rn) is the
n × n matrix whose (j, k) component is equal to ∂j∂kP (x) (j, k = 1, . . . , n).

We note that inequality (1.5) is not best possible in the following sense. Namely, in
the case where HKL is the Hamiltonian of a supersymmetric quantum harmonic oscillator
with n degrees of freedom (Example 1.1 just below), the equality in (1.5) does not hold,
i.e., the left hand side is less than the right hand side. For the reader’s convenience and
for a preparation for later sections, we demonstrate this fact as an example:

Example 1.1 Consider the case where

P (x) =
1

2

n∑
i=1

ωix
2
i , x ∈ Rn

with constants ωi > 0, i = 1, · · · , n. Then HKL takes the form

Hω := Hb + Hf (1.6)

with

Hb := −~2

2
∆ − ~

2

n∑
j=1

ωj +
1

2

n∑
j=1

ω2
j x

2
j , (1.7)

Hf :=
n∑

j=1

~ωjb
∗
jbj. (1.8)

The operator Hb (resp. Hf) is the Hamiltonian of an n-dimensional quantum harmonic
oscillator (resp. a Hamiltonian of n free fermions). The operator Hω is called the Hamil-
tonian of a supersymmetric quantum harmonic oscillator with n degrees of freedom.

For a Hilbert space K, we denote by I1(K) the set of trace class operators on K.
It follows from the well known spectral property of Hb and Hf that, for all t > 0,

e−tHb ∈ I1(L
2(Rn)) with

Tr e−tHb =
1∏n

j=1 (1 − e−t~ωj)
(1.9)

and

Tr e−tHf =
n∏

j=1

(
1 + e−t~ωj

)
. (1.10)

Hence, for all t > 0, e−tHω is in I1(H) and

Tr e−tHω =
(
Tr e−tHb

) (
Tr e−tHf

)
=

n∏
j=1

1 + e−t~ωj

1 − e−t~ωj
=

n∏
j=1

coth
t~ωj

2
.

On the other hand, denoting the right hand side of (1.5) by IP (t), one has

IP (t) =
1

(2πt)n/2~n

∫
Rn

{
n∏

j=1

(I + e−t~ωj)

}
e−t

Pn
j=1 ω2

j x2
j/2+t~

Pn
j=1 ωj/2dx
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=
n∏

j=1

cosh
t~ωj

2
t~ωj

2

.

But sinh χ > χ for all χ > 0, which implies that Tr e−tHω < IP (t). Thus, in the present
case, the equality in (1.5) does not hold.

As is well known, a free supersymmetric quantum field model (a model describing a
quantum system with supersymmetry consisting of a free Bose field and a free Fermi field)
may be viewed as an infinite system of a supersymmetric quantum harmonic oscillator with
one degree of freedom. An example of the Hamiltonian of such a model is symbolically
expressed as Hω with n = ∞. Hence, from a view point of supersymmetric quantum field
theory, it would be natural to find a Golden–Thompson type inequality which attains the
equality in the case where the Hamiltonian is that of a supersymmetric quantum harmonic
oscillator.

To derive (1.5), Klimek and Lesniewski [9] employed, for the boson system, a functional
integral representation based on the n-dimensional conditional Wiener measure . But,
for our purpose mentioned in the preceding paragraph, it turns out that a conditional
oscillator measure is suitable. Thus we use an n-dimensional conditional oscillator measure
to represent quantities of the boson system in terms of functional integrals.

The outline of the present paper is as follows. In Section 2 we introduce a general
class of boson–fermion systems with finite degrees of freedom with the Hilbert space of
each system being H given by (1.1). The boson system is given by a perturbation of
an n-dimensional quantum harmonic oscillator by a potential V : Rn → R so that the
Hamiltonian of the boson system takes the form

Hb,V := Hb + V (1.11)

and the interaction of the boson system with a fermion system is induced by an r × r
matrix-valued function U on Rn. We prove some basic facts on the Hamiltonian H(V, U)
of the boson–fermion system, including its self-adjointness and the nuclearity of the heat
semi-group e−tH(V,U) with t > 0 (Lemma 2.3).

In Section 3 we introduce an n-dimensional conditional oscillator process which allows
one to derive a functional integral representation for the trace of quantities formed out
of e−sHb (s > 0) and bounded multiplication operators (Lemma 3.1). As an application
of such functional integral representations, we prove a Golden–Thompson type inequality
for Tr e−tHb,V (Theorem 3.5). This inequality attains the equality in the case V = 0 (the
quantum harmonic oscillator case). In this sense, it is better than the standard Golden–
Thompson inequality for Tr e−t(−~2∆/2+V ) (e.g., [15, Theorem 9.2]), which does not attain
the equality for the quantum harmonic oscillator case. Moreover, the limit ωj → 0
(j = 1, . . . , n) of the new Golden–Thompson type inequality yields the standard Golden–
Thompson inequality (Corollary 3.6). We also derive functional integral representations of
traces of quantities formed out of e−sHb,V (s > 0) and bounded multiplication operators
on L2(Rn) (Theorem 3.8). Also some consequences of the derived Golden–Thompson
inequality are presented: Corollary 3.9 (A lower bound for the Helmholtz free-energy
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function of Hb,V ), Corollary 3.11 (an upper bound for the number of eigenvalues of Hb,V

less than or equal to a given number) and Corollary 3.12 (an estimate for the lowest
eigenvalue of Hb,V from below).

In Section 4 we establish a functional integral representation for Tr FzNfe−tH(V,U) (t >
0) in terms of the conditional oscillator measure (Theorems 4.2 and 4.6), where F is
a bounded multiplication operator on L2(Rn), z ∈ C \ {0} and Nf =

∑r
k=1 b∗kbk is the

fermion number operator.
As a corollary to the result in Section 4, we derive, in Section 5, a Golden–Thompson

type inequality for the boson–fermion system under consideration (Theorem 5.1). As
desired, this inequality attains the equality in the case where the quantum system consists
of an n-dimensional quantum harmonic oscillator and r free fermions (see Remark 5.2)).
As in the case of the boson system, we obtain results on the following aspects (Corollary
5.3): A lower bound for the Helmholtz free-energy function of H(V, U), an upper bound
for the number of eigenvalues of H(V, U) less than or equal to a given number and an
estimate of the lowest eigenvalue of H(V, U) from below.

Section 6 is devoted to applications of the results obtained in the preceding sections
to a model of supersymmetric quantum mechanics with Hamiltonian HSS. We derive a
Golden–Thompson inequality and a functional integral representation for |Tr FzNfe−tHSS|
with z ∈ C \ {0} and F being a bounded multiplication operator on L2(Rn) (Theorem
6.3). The Golden–Thompson inequality for Tr e−tHSS improves (1.5). As applications, we
prove an inequality for the number of supersymmetric states (Corollary 6.5) and give a
sufficient condition for the spontaneous supersymmetry breaking (Corollary 6.6).

In the last section, we consider a Dirac operator associated with the model in Section
6 and prove a formula for the analytical index of it (Witten index) in terms of a functional
integral (Theorem 7.2).

In Appendix, we collect and prove some facts in operator theory used in the text of
the present paper. They may have independent interests.

2 A General Class of Boson–Fermion Hamiltonians

For a linear operator T , we denote its domain by D(T ). If T is closable, we denote its
closure by T . For a subspace D ⊂ D(T ), T ¹ D denotes the restriction of T to D.

We denote by Dj the generalized partial differential operator in the variable xj and
set

pj := −i~Dj (2.1)

as an operator on L2(Rn) (i is the imaginary unit) with D(pj) = D(Dj) = {Ψ ∈
L2(Rn)|DjΨ ∈ L2(Rn)}, which physically denotes the j-th momentum operator on L2(Rn).
As is well known, pj is self-adjoint and essentially self-adjoint on C∞

0 (Rn), the set of in-
finitely differentiable functions on Rn with compact support. Let ωj > 0 (j = 1, . . . , n).
Then one can define the following closed operators:

aj :=
i√

2~ωj

(pj − iωjxj) ¹ C∞
0 (Rn), j = 1, . . . , n, (2.2)
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which is called the annihilation operator of the j-th boson (the adjoint a∗
j of aj is called

the creation operator of the j-th boson). The operators {a1, . . . , an} obey the canonical
commutation relations

[aj, a
∗
k] = δjk, [aj, ak] = 0 (j, k = 1, . . . , n)

on C∞
0 (Rn), where [A,B] := AB − BA.

In terms of aj (j = 1, . . . , n), the Hamiltonian Hb defined by (1.7) is written as

Hb =
n∑

j=1

~ωja
∗
jaj. (2.3)

We fix a real-valued Borel measurable function V on Rn which is finite a.e (almost
everywhere) with respect to the Lebesgue measure on Rn. We take Hb,V defined by (1.11)
as a bosonic Hamiltonian. We assume the following:

(A.1) Hb,V is self-adjoint and bounded below.

(A.1′) For some t0 > 0, e−t0Hb,V is in I1(L
2(Rn)).

Remark 2.1 (i) If one treats only a bosonic theory, then the self-adjointness of Hb,V in
(A.1) may be weakened to the essential self-adjointness of Hb,V on C∞

0 (Rn) (see Section
3). But, in the boson-fermion theory we consider below, we use the self-adjointness of
Hb,V .

(ii) In (A.1), V is not necessarily bounded below (if V is bounded below, then it is
obvious that Hb,V is bounded below). Also the following fact should be kept in mind.
Suppose that V is bounded below and satisfies

∫
|x|≤R

|V (x)|2dx < ∞ for all R > 0

(i.e., V ∈ L2
loc(Rn)) . Then the function: x 7→

∑n
i=1 ω2

i x
2
i /2 + V (x) is in L2

loc(Rn) and
bounded below. Hence, by a general theorem [11, Theorem X.28], Hb,V is essentially self-
adjoint on C∞

0 (Rn) and bounded below. As already mentioned in Introduction, e−tHb is in
I1(L

2(Rn)) for all t > 0. In the present case, e−tV is bounded. Hence e−tHb/2e−tV e−tHb/2

is in I1(L
2(Rn)). Therefore, by a general theorem [13, p.320, Corollary], e−tHb,V is trace

class on L2(Rn). Hence (A.1′) holds with Hb,V replaced by Hb,V and t0 > 0 arbitrary. But
it may depend on V if Hb,V = Hb,V , i.e., Hb,V is self-adjoint ( we shall use the closedness
of Hb,V below).

(iii) In general, if a self-adjoint operator A on a Hilbert space K satisfies e−t0A ∈ I1(K)
for some t0 > 0, then A is bounded below and, for all t ≥ t0, e−tA ∈ I1(K). Hence (A.1′)
implies that Hb,V is bounded below and, for all t ≥ t0, e−tHb,V ∈ I1(L

2(Rn)) (hence, if
(A.1′) is assumed, then the condition of the lower-boundedness of Hb,V in (A.1) is not
needed).

For j, k = 1, . . . , r, let Ujk ∈ L2
loc(Rn) such that Ujk(x)∗ = Ukj(x) for all j, k = 1, . . . , r

and a.e.x ∈ Rn (for a complex number z ∈ C, z∗ denotes the complex conjugate of z ∈ C)
and define an r × r Hermitian matrix-valued function:

U := (Ujk)j,k=1,...,r. (2.4)
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Then the operator

Hf,U :=
r∑

j,k=1

Ujkb
∗
jbk =

∫ ⊕

Rn

r∑
j,k=1

Ujk(x)b∗jbkdx, (2.5)

acting in H is symmetric with D(Hf,U) ⊃ C∞
0 (Rn)⊗̂ ∧ (Cr) (⊗̂ means algebraic tensor

product), where, in the second equality of (2.5), we have used the natural identification
H ∼=

∫ ⊕
Rn ∧(Cr)dx, the constant fibre direct integral with fiber ∧(Cr) and base space

(Rn, dx) (e.g., [13, pp.280–286]). We take this operator as an operator describing an
interaction of n bosons with r fermions.

Remark 2.2 If each Ujk is essentially bounded on Rn, then Hf,U is a bounded self-adjoint
operator on H. In general, if the operator-valued function (

∑r
j,k=1 Ujk(·)b∗jbk + i)−1 is

measurable (e.g., the case where each Ujk is continuous on Rn), then it follows from a
general theorem [13, Theorem XIII.85] that Hf,U is self-adjoint.

The total Hamiltonian of the boson–fermion system we consider is given by

H(V, U) := Hb,V + Hf,U. (2.6)

We call it a boson–fermion Hamiltonian.
In addition to (A.1) and (A.1′), we assume the following too:

(A.2) There exist constants α ∈ [0, 1) and a, b > 0 such that

|Ujk(x)|2 ≤ a|V (x)|2α + b, x ∈ Rn, j, k = 1, . . . , r. (2.7)

Lemma 2.3

(i) Assume (A.1) and (A.2). Then H(V, U) is self-adjoint and bounded below.

(ii) Assume (A.1), (A.1′) and (A.2). Then, for all t > t0, e−tH(V,U) is in I1(H).

Proof. (i) For a bounded linear operator T on a Hilbert space, we denote by ‖T‖ the
operator norm of T . It is easy to see that

‖bj‖ = 1, ‖b∗j‖ = 1, j = 1, . . . , r. (2.8)

By this fact and (2.7), we have for all Ψ ∈ D(V )

‖Hf,UΨ‖ ≤
r∑

j,k=1

‖UjkΨ‖ ≤ r2(
√

a‖|V |αΨ‖ +
√

b‖Ψ‖).

Since 0 ≤ α < 1, for every ε > 0, there exists a constant bε > 0 such that

‖|V |αΨ‖ ≤ ε‖V Ψ‖ + bε‖Ψ‖.
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Let ε0 be the infimum of the spectrum of Hb,V . Then Hb,V − ε0 ≥ 0. By the closedness
of Hb,V , there exists a constant c > 0 such that

‖V Ψ‖ ≤ c‖(Hb,V − ε0 + 1)Ψ‖, Ψ ∈ D(Hb,V ). (2.9)

Thus Hf,U is infinitesimally small with respect to Hb,V . Hence, by the Kato–Rellich
theorem (e.g., [11, Theorem X.12]), H(V, U) is self-adjoint and bounded below.

(ii) Let 0 < κ < 1. Then we have

H(V, U) = (1 − κ)Hb,V + κHb,V + Hf,U.

Since Hf,U is infinitesimally small with respect to Hb,V as is shown in part (i), it follows
that Hf,U is infinitesimally small with respect to κHb,V . Hence, by the Kato–Rellich
theorem again, κHb,V + Hf,U is self-adjoint and bounded below. By Remark 2.1-(iii),
e−t(1−κ)Hb,V is in I1(H) for all t ≥ t0/(1 − κ). Hence, by a general theorem [13, p.320,
Corollary], e−tH(V,U) is in I1(H) for all t ≥ t0/(1 − κ). Since κ ∈ (0, 1) is arbitrary, it
follows that e−tH(V,U) ∈ I1(H) for all t > t0.

3 Functional Integral Representations for the Boson

System

In this section, for a class of V such that Hb,V is essentially self-adjoint on C∞
0 (Rn) and

bounded below, we shall prove that, for all t > 0, e−tHb,V is in I1(Rn) and derive, in terms

of functional integrals, trace formulae for quantities formed out of e−sHb,V (s > 0) and
bounded multiplication operators on L2(Rn) as well as a Golden–Thompson inequality.
Also we discuss some consequences of the Golden–Thompson inequality.

As mentioned in Introduction, we use a functional integration based on an n-dimensional
conditional oscillator process, which is constructed from an n-dimensional oscillator pro-
cess [15, pp.34–38]. This is a point different from the methods in [9] where the n-
dimensional conditional Wiener process is used.

3.1 Trace formulae based on a conditional oscillator measure

For t > 0 and j = 1, . . . , n, we define a function K
(j)
t on R × R by

K
(j)
t (xj, yj) :=

√
ωj

2π~
e~ωjt/2√
sinh ~ωjt

exp

(
−ωj

2~
(x2

j + y2
j ) coth ~ωjt +

ωj

~ sinh ~ωjt
xjyj

)
,

(xj, yj) ∈ R × R. (3.1)

For convenience, we set

K
(j)
0 (xj, yj) := δ(xj − yj), j = 1, . . . , n, (3.2)

the delta distribution on R × R.
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We define

Kt(x, y) =
n∏

j=1

K
(j)
t (xj, yj), t ≥ 0, x, y ∈ Rn. (3.3)

It is obvious that Kt(·, ·) is a symmetric function on Rn × Rn:

Kt(x, y) = Kt(y, x), x, y ∈ Rn, t > 0. (3.4)

It follows from a well known formula for the integral kernel of e−tHb with n = 1 (e.g., [15,
pp.37–38], [6, Theorem 1.5.10]) that e−tHb is an integral operator with an integral kernel
equal to Kt(x, y):

(e−tHbf)(x) =

∫
Rn

Kt(x, y)f(y)dy, f ∈ L2(Rn), x ∈ Rn, t > 0. (3.5)

We already know that, for all t > 0, e−tHb is a positive trace class operator on L2(Rn).
It is easy to see that, for all t > 0, Kt(x, y) is continuous in (x, y) ∈ Rn × Rn. Hence, by
a general fact (e.g., [12, p.65, Lemma]), we have

Tr e−tHb =

∫
Rn

Kt(x, x)dx, t > 0. (3.6)

This can be shown also by computing the right hand side explicitly and using (1.9).
For each a, c ∈ Rn and t > 0, there exist random variables {q(s)|s ∈ [0, t]} such that,

for all m ∈ N, the joint distribution for (q(s1), · · · , q(sm)) (0 ≤ s1 ≤ s2 ≤ · · · ≤ sm ≤ t) is

Kt(a, c)−1Ks1(a, x1)Ks2−s1(x1, x2) · · ·Ksm−sm−1(xm−1, xm)Kt−sm(xm, c)dx1 · · · dxm.

We denote by Pa,c;t the corresponding probability measure and define a finite measure
µa,c;t by

dµa,c;t := Kt(a, c)dPa,c;t. (3.7)

We call {q(s)|s ∈ [0, t]} a conditional oscillator process associated with Hb and µa,c;t its
conditional oscillator measure. Note that∫

1 dµx,y;t = Kt(x, y), x, y ∈ Rn.

For a complex Hilbert space K, we denote by 〈·, ·〉 and ‖ · ‖ the inner product (linear
in the second variable) and norm of K respectively. We denote by L∞(Rn) the set of es-
sentially bounded Borel measurable functions on Rn and by ‖f‖∞ the essential supremum
of |f |.

Lemma 3.1 Let 0 < s1 < · · · < sm < t and fj ∈ L∞(Rn) (j = 1, . . . ,m). Then
e−s1Hbf1e

−(s2−s1)Hbf2 · · · fme−(t−sm)Hb is in I1(L
2(Rn)) and

Tr
(
e−s1Hbf1e

−(s2−s1)Hbf2 · · · fme−(t−sm)Hb
)

=

∫
Rn

dx

(∫
f1(q(s1)) · · · fm(q(sm))dµx,x;t

)
.

(3.8)
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Proof. Since e−sHb is trace class for all s > 0 and each fj is bounded as a multiplication
operator on L2(Rn), the operator

M := e−s1Hbf1e
−(s2−s1)Hbf2 · · · fme−(t−sm)Hb

is trace class on L2(Rn). By (3.5), M is an integral operator with integral kernel

M(x, y) =

∫
Rnm

Ks1(x, x1)Ks2−s1(x1, x2) · · ·Kt−sm(xm, y)f1(x1) · · · fm(xm)dx1 · · · dxm.

We note that M is not necessarily a nonnegative operator. Hence one can not immediately
conclude that the heuristic form “Tr M =

∫
Rn M(x, x)dx” is true (cf. [12, pp.65–66,

Lemma]). Thus we take another route. Let {g`}∞`=1 be a complete orthonormal system of
L2(Rn). Then

Tr M =
∞∑

`=1

〈g`, Mg`〉 =
∞∑

`=1

∫
Rn

dxg`(x)∗
(∫

Rn

M(x, y)g`(y)dy

)
.

We have∫
Rn×Rn

|g`(x)∗M(x, y)g`(y)|dxdy

≤
∫

(Rn)m+2

|g`(x)∗Ks1(x, x1)Ks2−s1(x1, x2) · · ·Kt−sm(xm, y)f1(x1) · · · fm(xm)g`(y)|

×dxdx1 · · · dxmdy

≤

(
m∏

j=1

‖fj‖∞

) 〈
|g`|, e−tHb |g`|

〉
< ∞.

Hence, by Fubini’s theorem, we have

Tr M = lim
N→∞

∫
Rnm

FN(x1, xm)Ks2−s1(x1, x2) · · ·Ksm−sm−1(xm−1, xm)

×f1(x1) · · · fm(xm)dx1 · · · dxm,

where

FN(x1, xm) :=
N∑

`=1

〈g`, Ks1(·, x1)〉 〈Kt−sm(xm, ·), g`〉 .

By the Schwarz inequality with respect to the sum
∑N

`=1 and the Bessel inequality, we
have

|FN(x1, xm)| ≤ ‖Ks1(·, x1)‖‖Kt−sm(xm, ·)‖ =
√

K2s1(x1, x1)
√

K2(t−sm)(xm, xm),

where we have used (3.4) and∫
Rn

Ks(x, y)Ks′(y, z)dy = Ks+s′(x, z) (s, s′ > 0, x, z ∈ Rn). (3.9)
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Hence

|FN(x1, xm)Ks2−s1(x1, x2) · · ·Ksm−sm−1(xm−1, xm)f1(x1) · · · fm(xm)|

≤

(
m∏

j=1

‖fj‖∞

)√
K2s1(x1, x1)

√
K2(t−sm)(xm, xm)

×Ks2−s1(x1, x2) · · ·Ksm−sm−1(xm−1, xm).

Using (3.9), we have∫
(Rn)m

√
K2s1(x1, x1)

√
K2(t−sm)(xm, xm)

×Ks2−s1(x1, x2) · · ·Ksm−sm−1(xm−1, xm)dx1 · · · dxm

=

∫
Rn×Rn

√
K2s1(x1, x1)

√
K2(t−sm)(xm, xm)Ksm−s1(x1, xm)dx1dxm,

which is finite, because the function hs : x 7→
√

Ks(x, x) is in L2(Rn) (note that the right
hand side is written

〈
h2s1 , e

−(sm−s1)Hbh2(t−sm)

〉
). Moreover, we have

lim
N→∞

FN(x1, xm) = 〈Kt−sm(xm, ·), Ks1(·, x1)〉 =

∫
Rn

Ks1(x, x1)Kt−sm(xm, x)dx.

Thus, by the Lebesgue dominated convergence theorem, we obtain

Tr M =

∫
Rnm

(∫
Rn

Ks1(x, x1)Kt−sm(xm, x)dx

)
Ks2−s1(x1, x2) · · ·Ksm−sm−1(xm−1, xm)

×f1(x1) · · · fm(xm)dx1 · · · dxm.

Using Fubini’s theorem again, we have

Tr M =

∫
Rn

dx

∫
Rnm

Ks1(x, x1)f1(x1)Ks2−s1(x1, x2)f2(x2) · · ·Ksm−sm−1(xm−1, xm)

×fm(xm)Kt−sm(xm, x)dx1 · · · dxm.

The right hand side is equal to that of (3.8). Thus (3.8) holds.

Lemma 3.2 Suppose that V is in L2
loc(Rn) with

V0 := ess.infx∈RnV (x) > −∞. (3.10)

Then Hb,V is essentially self-adjoint on C∞
0 (Rn) and bounded below. Moreover, for all

t > 0, e−tHb,V is in I1(L
2(Rn)) and

Tr e−tHb,V ≤ e−tV0Tr e−tHb . (3.11)

Proof. The statements except (3.11) have already been shown in Remark 2.1-(ii). By
the generalized Golden-Thompson inequality [13, p.320, Corollary], we have for all t > 0

Tr e−tHb,V ≤ Tr
(
e−tHb/2e−tV e−tHb/2

)
,

which, together with the fact that e−tV ≤ e−tV0 , implies (3.11).
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Lemma 3.3 Suppose that V1, . . . , Vm+1 (m ∈ N) are in L2
loc(Rn) and bounded below. Let

0 < s1 < · · · < sm < t and fj ∈ L∞(Rn) (j = 1, . . . ,m). Then

e−s1Hb,V1f1e
−(s2−s1)Hb,V2f2 · · · fme−(t−sm)Hb,Vm+1

is in I1(L
2(Rn)) and

Tr
(
e−s1Hb,V1f1e

−(s2−s1)Hb,V2f2 · · · fme−(t−sm)Hb,Vm

)
=

∫
Rn

dx

(∫
f1(q(s1)) · · · fm(q(sm))e−

Pm+1
j=1

R sj
sj−1

Vj(q(s))dsdµx,x;t

)
, (3.12)

where s0 = 0, sm+1 = t.

Proof. We prove the lemma only for the case where V1, . . . , Vm are continuous. The
extension to the case where Vj ∈ L2

loc(R) (j = 1, . . . ,m) is routine work (e.g., see [15,
p.51]).

By Lemma 3.2, e−s1Hb,V1 is in I1(L
2(Rn)) and f1e

−(s2−s1)Hb,V2f2 · · · fme−(t−sm)Hb,Vm is
bounded. Hence the first statement of the lemma follows.

By the Trotter product formula (e.g., [10, Theorem VIII.31]), we have

e−tHb,Vj = s- lim
N→∞

Aj
N(t), t > 0

with
Aj

N(t) :=
(
e−tHb/Ne−tVj/N

)N
,

where s- lim means strong limit. Let L be the left hand side of (3.12). Then, by Proposition
B.1 in Appendix, we have

L = lim
N1→∞

· · · lim
Nm+1→∞

Tr
(
A1

N1
(s1)f1A

2
N2

(s2 − s1)f2 · · ·Am
Nm

(sm − sm−1)fmAm+1
Nm+1

(t − sm)
)

.

By Lemma 3.1, we have

Tr
(
A1

N1
(s1)f1A

2
N2

(s2 − s1)f2 · · ·Am
Nm

(sm − sm−1)fmAm+1
Nm+1

(t − sm)
)

=

∫
Rn

dx

∫
f1(q(s1)) · · · fm(q(sm)) exp

(
− s1

N1

N1∑
k=1

V1(q(ks1/N1))

)

exp

(
−(s2 − s1)

N2

N2∑
k=1

V2(q(s1 + k(s2 − s1)/N2))

)

· · · exp

(
−(t − sm)

Nm+1

Nm+1∑
k=1

Vm+1(q(sm + k(t − sm)/Nm+1))

)
dµx,x;t (3.13)

The integrand on the right hand side is bounded by ‖f1‖∞ · · · ‖fm‖∞e−
Pm+1

j=1 (sj−sj−1)cj

with cj := infx∈Rn Vj(x). Hence, by the Lebesgue dominated convergence theorem, we
obtain

L =

∫
Rn

dx

∫
f1(q(s1)) · · · fm(q(sm))e−

R s1
0 V1(q(s))dse

−
R s2

s1
V2(q(s))ds · · · e−

R t
sm

Vm+1(q(s))dsdµx,x;t.

Thus (3.12) follows.
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3.2 Golden–Thompson inequality and generalization of trace
formulae

In what follows, we take an additional assumption:

(A.3) The function V is in L2
loc(Rn) and, for all t > 0,∫

Rn

Kt(x, x)e−tV (x)dx < ∞. (3.14)

We remark that, in (A.3), V is not necessarily bounded below. If V is bounded below,
then (3.14) holds for all t > 0.

Lemma 3.4 Under Assumption (A.3), the following inequality holds:∫
Rn

dx

∫
e−

R t
0 V (q(s))dsdµx,x;t ≤

∫
Rn

Kt(x, x)e−tV (x)dx. (3.15)

Proof. By Jensen’s inequality, we have

e−
R t
0 V (q(s))ds ≤ 1

t

∫ t

0

e−tV (q(s))ds.

Since e−tV (q(s)) is a positive function, one can use Fubini’s theorem to obtain∫
e−

R t
0 V (q(s))dsdµx,x;t ≤ 1

t

∫ t

0

ds

∫
e−tV (q(s))dµx,x;t

=
1

t

∫ t

0

ds

∫
Rn

e−tV (x1)Ks(x, x1)Kt−s(x1, x)dx1.

Hence, using (3.9) and Fubini’s theorem again, we obtain∫
Rn

dx

∫
e−

R t
0 V (q(s))dsdµx,x;t ≤

∫
Rn

e−tV (x1)Kt(x1, x1)dx1.

Thus (3.15) holds.

As we shall show below, as far as we treat only a bosonic theory, we do not need (A.1).
The following weakned one is sufficient:

(A.4) The bosonic Hamiltonian Hb,V is essentially self-adjoint on C∞
0 (Rn) and bounded

below.

For a self-adjoint operator A on a Hilbert space K, we denote its form domain by
Q(A):

Q(A) :=

{
ψ ∈ K|

∫
R
|λ|d‖EA(λ)ψ‖2 < ∞

}
,

where EA is the spectral measure of A. If two self-adjoint operators A and B on K satisfy
that Q(B) ⊂ Q(A) and

∫
R λd 〈ψ,EA(λ)ψ〉 ≤

∫
R λd 〈ψ,EB(λ)ψ〉 for all ψ ∈ Q(B), then we

write A ¹ B.
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Theorem 3.5 (Golden–Thompson inequality for the boson system) Assume (A.3) and

(A.4). Then, for all t > 0, e−tHb,V is in I1(L
2(Rn)) and

Tr e−tHb,V ≤
∫

Rn

Kt(x, x)e−tV (x)dx (3.16)

and

Tr e−tHb,V =

∫
Rn

dx

∫
e−

R t
0 V (q(s))dsdµx,x;t. (3.17)

Proof. We prove the theorem only for the case where V is continuous on Rn. The
extension to V satisfying the original assumption of the theorem is routine work (see, e.g.,
[15, p.51]).

For N ∈ N, let VN := V + V 2/N and

HN := Hb,VN
= Hb,V +

1

N
V 2. (3.18)

Since VN is in L2
loc(Rn) and bounded below, we can apply Lemm 3.2 with V replaced by

VN to conclude that HN is essentially self-adjoint on C∞
0 (Rn), bounded below, and e−tHN

is in I1(L
2(Rn)). It is easy to see that Hb,V ¹ HN for all N ∈ N. By Lemma 3.3, we have

Tr e−tHN =

∫
Rn

dx

∫
e−

R t
0 V (q(s))dse−

R t
0 V (q(s))2ds/Ndµx,x;t.

One can estimate the right hand side by Lemma 3.4 with e−
R t
0 V (q(s))2ds/N < 1 to obtain

Tr e−tHN ≤
∫

Rn

dx

∫
e−

R t
0 V (q(s))dsdµx,x;t ≤

∫
Rn

Kt(x, x)e−tV (x)dx < ∞.

Hence, by the monotone convergence theorem, we obtain

lim
N→∞

Tr e−tHN =

∫
Rn

dx

∫
e−

R t
0 V (q(s))dsdµx,x;t.

By these facts, we can apply Lemma B.2 in Appendix with AN = HN , A = Hb,V and

D = C∞
0 (Rn) (H = L2(Rn)) to conclude that e−tHb,V ∈ I1(L

2(Rn)) and

Tr e−tHb,V = lim
N→∞

Tr e−tHN .

Hence (3.17) and (3.16) hold.

Theorem 3.5 implies the standard Golden–Thompson inequality for the Schrödinger
operator with potential V (e.g., [15, Theorem 9.2]):

Corollary 3.6 Assume (A.4) and that

HV := −~2

2
∆ + V (3.19)
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is essentially self-adjoint on C∞
0 (Rn) and bounded below. Suppose that V is in L2

loc(Rn)
and, for some t > 0, ∫

Rn

e−tV (x)dx < ∞ (3.20)

Then e−tHV is in I1(L
2(Rn)) and

Tr e−tHV ≤ 1

(2πt)n/2~n

∫
Rn

e−tV (x)dx (3.21)

Proof. It is easy to see that

Kt(x, x) =
n∏

j=1

√
ωj

2π~
e~ωjt/2√
sinh ~ωjt

exp

(
−ωj

~
x2

j tanh
~ωjt

2

)
. (3.22)

Hence, for each constant χ0 > 0,

0 < Kt(x, x) ≤ 1

(2πt)n/2~n

(
sup

0<χ<χ0

√
χ

sinh χ
eχ/2

)n

< ∞, 0 < ωj ≤
χ0

~t
(j = 1, . . . , n)

(3.23)
and

lim
ω→0

Kt(x, x) =
1

(2πt)n/2~n
, (3.24)

where ω = (ω1, . . . , ωn) ∈ Rn. By (3.23) and (3.20), (A.3) holds. Hence, by Theorem
3.5, (3.16) holds. By (3.23), (3.24) and the Lebesgue dominated convergence theorem, we
obtain

lim
ω→0

∫
Rn

Kt(x, x)e−tV (x)dx =
1

(2πt)n/2~n

∫
Rn

e−tV (x)dx.

It is easy to see that, for all f ∈ C∞
0 (Rn), s- limω→0 Hb,V f = HV f . Hence, it follows from

an application of Lemma B.2 in Appendix that e−tHV is in I1(L
2(Rn)) and

Tr e−HV ≤ lim inf
ω→0

Tr e−tHb,V .

Thus (3.21) follows.

Remark 3.7 Suppose that V is in L2
loc(Rn) with∫

Rn

e−t
Pn

i=1 ω2
i x2

i /2e−tV (x)dx < ∞

for some t > 0 and Hb,V is bounded below. Then, applying (3.21) with V replaced by∑n
i=1 ω2

i x
2
i /2 −

∑n
i=1 ~ωi/2 + V (x), we have

Tr e−tHb,V ≤ 1

(2πt)n/2~n
et

Pn
i=1 ~ωi/2

∫
Rn

e−t
Pn

i=1 ω2
i x2

i /2e−tV (x)dx.
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But this does not imply (3.16), because the right hand side is not necessarily less than or
equal to

∫
Rn Kt(x, x)e−tV (x)dx. For example, for V = 0, we have

Tr e−tHb =

∫
Rn

Kt(x, x)dx <
1

(2πt)n/2~n
et

Pn
i=1 ~ωi/2

∫
Rn

e−t
Pn

i=1 ω2
i x2

i /2dx.

Thus the Golden–Thompson type inequality (3.16) is more general than the standard one
(3.21) in the sense of Corollary 3.6.

The next theorem gives functional integral representations for the trace of quanti-
ties formed out of e−sHb,V (s > 0) with V not necessarily bounded below and bounded
multiplication operators:

Theorem 3.8 Let V1, . . . , Vm ∈ L2
loc(Rn) be such that, for all t > 0 and j = 1, . . . ,m,∫

Rn

Kt(x, x)e−tVj(x)dx < ∞,

Hb,Vj
is essentially self-adjoint on C∞

0 (Rn) and bounded below. Let 0 < s1 < · · · < sm < t
and fj ∈ L∞(Rn) (j = 1, . . . ,m). Then

e−s1Hb,V1f1e
−(s2−s1)Hb,V2f2 · · · fme−(t−sm)Hb,Vm

is in I1(L
2(Rn)) and

Tr
(
e−s1Hb,V1f1e

−(s2−s1)Hb,V2f2 · · · fme−(t−sm)Hb,Vm

)
=

∫
Rn

dx

(∫
f1(q(s1)) · · · fm(q(sm))e−

Pm+1
j=1

R sj
sj−1

Vj(q(s))dsdµx,x;t

)
, (3.25)

where s0 = 0, sm+1 = t.

Proof. By Theorem 3.5, e−(sj−sj−1)Hb,Vj is in I1(L
2(Rn)), from which the first half of

the theorem follows.
To prove (3.25), we first consider the case where each Vj is continuous on Rn. Let HNj

(Nj ∈ N) be the HN given by (3.18) with V (resp. N) replaced by Vj (resp. Nj). Then,
by Lemma 3.3,

Tr
(
e−s1HN1f1e

−(s2−s1)HN2f2 · · · fme−(t−sm)HNm+1

)
=

∫
Rn

dx

∫
f1(q(s1)) · · · fm(q(sm))e−

Pm+1
j=1

R sj
sj−1

Vj(q(s))dse−
Pm+1

j=1

R sj
sj−1

Vj(q(s))
2ds/Njdµx,x;t.

(3.26)

We have ∣∣∣f1(q(s1)) · · · fm(q(sm))e−
Pm+1

j=1

R sj
sj−1

Vj(q(s))dse−
Pm+1

j=1

R sj
sj−1

Vj(q(s))
2ds/Nj

∣∣∣
≤

(
m∏

j=1

‖fj‖∞

)
e−

Pm+1
j=1

R sj
sj−1

Vj(q(s))ds.
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Noting that
m+1∑
j=1

∫ sj

sj−1

Vj(q(s))ds =

∫ t

0

(
m+1∑
j=1

χ[sj−1,sj ](s)Vj(q(s))

)
ds,

where χ[s,s′] (s ≤ s′) is the characteristic function of the interval [s, s′] ⊂ R, one can apply
the method of proof in Lemma 3.4 to obtain∫

Rn

dx

∫
e−

Pm+1
j=1

R sj
sj−1

Vj(q(s))dsdµx,x;t ≤
1

t

m+1∑
j=1

(sj − sj−1)

∫
Rn

e−tVj(x)Kt(x, x)dx. (3.27)

Hence, by the Lebesgue dominated convergence theorem, we obtain

lim
N1→∞

Tr
(
e−s1HN1f1e

−(s2−s1)HN2f2 · · · fme−(t−sm)HNm+1

)
=

∫
Rn

dx

∫
f1(q(s1)) · · · fm(q(sm))e−

Pm+1
j=1

R sj
sj−1

Vj(q(s))dse−
Pm+1

j=2

R sj
sj−1

V (q(s))2ds/Njdµx,x;t.

On the other hand, by Proposition B.1 in Appendix, the left hand side is equal to

Tr
(
e−s1Hb,V1f1e

−(s2−s1)HN2f2 · · · fme−(t−sm)HNm+1

)
. Hence

Tr
(
e−s1Hb,V1f1e

−(s2−s1)HN2f2 · · · fme−(t−sm)HNm+1

)
=

∫
Rn

dx

∫
f1(q(s1)) · · · fm(q(sm))e−

Pm+1
j=1

R sj
sj−1

Vj(q(s))dse−
Pm+1

j=2

R sj
sj−1

Vj(q(s))
2ds/Njdµx,x;t.

In the same manner, taking the limit N2 → ∞, N3 → ∞, . . . Nm+1 → ∞ successively, we
obtain (3.25).

We next consider the case where V1 is in L2
loc(Rn) and V2, . . . , Vm+1 are continuous on

Rn. It is enough to prove (3.25) in the case where each fj is non-negative. Then one easily
sees that, with (3.27), the standard argument described in [15, p.51] works. Similarly one
can extend (3.25) successively to the case where V2, . . . , Vm+1 obey the assumption of the
theorem.

3.3 Some consequences

In this subsection, we discuss some implications of the Golden–Thompson inequality
(3.16). In general, for a self-adjoint operator H on a Hilbert space K such that e−βH

is trace class for all β > 0, the quantity

Fβ(H) := − 1

β
log Tr e−βH (3.28)

is called, in the context of quantum statistical mechanics, the Helmholtz free-energy
function of the quantum system [7] whose Hamiltonian is H, where β > 0 is a parameter
denoting physically the inverse temperature.
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Corollary 3.9 Under the same assumption as in Theorem 3.5,

Fβ(Hb,V ) ≥ − 1

β
log

(∫
Rn

Kβ(x, x)e−βV (x)dx

)
, β > 0. (3.29)

Proof. This follows from (3.16).

Remark 3.10 Under the same assumption as in Corollary 3.6, taking the limit ω → 0
in (3.29) yields the well known inequality for the Helmholtz free-energy function given by
Golden [7, Eq.(17)]. In this sense, (3.29) is more general than the standard one.

For a linear operator A on a Hilbert space, we denote its spectrum by σ(A). One says
that the spectrum of A is purely discrete if σ(A) consists of isolated eigenvalues of A with
finite multiplicity.

If A is self-adjoint and bounded below, then inf σ(A) is called (by abuse of words) the
ground state energy of A.

For each E ∈ R, we denote by NE(A) ≥ 0 the number of eigenvalues of A less than or
equal to E, counting multiplicities (if there exist no such eigenvalues, then NE(A) := 0).

Corollary 3.11 Under the same assumption as in Theorem 3.5, the spectrum of Hb,V is
purely discrete and, for each E ∈ R,

NE(Hb,V ) ≤ inf
t>0

∫
Rn

Kt(x, x)e−t(V (x)−E)dx. (3.30)

Proof. The pure discreteness of σ(Hb,V ) follows from the compactness of e−tHb,V

(t > 0). It is sufficient to consider the case where NE(Hb,V ) > 0. Let E1, · · · , EN be
distinct eigenvalues of Hb,V with E1 < . . . < EN ≤ E. We denote the multiplicity of Ej

by mj (j = 1, . . . , N). Then, for all t > 0,

NE(Hb,V ) =
N∑

j=1

mj ≤
N∑

j=1

mje
t(E−Ej) ≤ etETr e−tHb,V .

By this fact and (3.16), we obtain (3.30).

Corollary 3.12 In addition to the assumption of Theorem 3.5, suppose that, for some
E ∈ R, V (x) > E a.e. x ∈ Rn and, for some t0 > 0,

∫
Rn e−t0V (x)dx < ∞. Then

inf σ(Hb,V ) > E. (3.31)

Proof. We have limt→∞ Kt(x, x)e−t(V (x)−E) = 0 for a.e.x ∈ Rn and

Kt(x, x)e−t(V (x)−E) ≤ e−t0(V (x)−E)

n∏
j=1

√
ωj

π~
1√

1 − e−2~ωjt0
, t ≥ t0, a.e.x ∈ Rn.
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Hence, by the Lebesgue dominated convergence theorem, we obtain

lim
t→∞

∫
Rn

Kt(x, x)e−t(V (x)−E)dx = 0.

Therefore inft>0

∫
Rn Kt(x, x)e−t(V (x)−E)dx = 0. By this result and (3.30), we have NE(Hb,V ) =

0. This and the pure discreteness of σ(Hb,V ) imply (3.31).

Inequality (3.31) shows that the ground state energy of Hb,V is strictly more than E.

Remark 3.13 In the case V (x) > E for a.e.x ∈ Rn, it is obvious that Hb,V ≥ E. The
classical Hamiltonian

Hcl(x, p) =
p2

2
+

n∑
i=1

ω2
i x

2
i

2
−

n∑
i=1

~ωi

2
+ V (x), (x, p) ∈ Rn × Rn,

corresponding to Hb,V satisfies Hcl(x, p) ≥ Ecl := E−
∑n

i=1 ~ωi/2 and its infimum may be
Ecl (e.g., if V (0) = E, then Hcl(0, 0) = Ecl). Hence (3.31) means an enhancement of the
ground state energy due to quantization. This kind of phenomenon has been discussed in
[4] (cf. Theorem 1.3 therein) for a more general class of V . The class of V in Corollary
3.12 is more restricted than the one in [4, Theorem 1.3], but it gives a stronger result in
the sense that, in the case V (0) = E, the amount of the enhancement is strictly more
than

∑n
i=1 ~ωi/2.

4 A Trace Formula for the Boson–Fermion System

We next consider the heat semi-group {e−tH(V,U)}t≥0 generated by the boson-fermion
Hamiltonian H(V, U)) defined by (2.6).

The fermion number operator is defined by

Nf :=
r∑

j=1

b∗jbj, (4.1)

which is a bounded nonnegative self-adjoint operator satisfying Nf ¹ ∧p(Cr) = p for all
p = 0, . . . , r. Hence σ(Nf) = {0, 1, . . . , r}. Therefore, for all z ∈ C \ {0}, one can define
a linear operator zNf on ∧(Cr) by functional calculus and one has zNf ¹ ∧p(Cr) = zp

(p = 0, 1, . . . , r).

Lemma 4.1 Let T = (Tjk)j,k=1,...,r be an r × r complex matrix and z ∈ C \ {0}. Then

Tr zNfe
Pr

j,k=1 Tjkb∗j bk = det(I + zeT ). (4.2)

Proof. We first prove (4.2) with z = 1:

Tr e
Pr

j,k=1 Tjkb∗j bk = det(I + eT ). (4.3)
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We define a linear operator T̂ : Cr → Cr by

T̂ψ :=
r∑

j,k=1

Tjk 〈ek, ψ〉 ej, ψ ∈ Cr,

where {ej}r
j=1 is the standard orthonormal basis of Cr. Let T̂ (0) := 0 as a linear operator

on ∧0(Cr) = C and, for p = 1, . . . , r,

T̂ (p) :=

p∑
j=1

I ⊗ · · ·⊗
jth

T̂ ⊗ · · · ⊗ I

acting on ∧p(Cr). Then it is easy to see that

r∑
j,k=1

Tjkb
∗
jbk = ⊕r

p=0T̂
(p).

Hence

Tr e
Pr

j,k=1 Tjkb∗j bk =
r∑

p=0

Tr eT̂ (p)

= 1 +
r∑

p=1

Tr
(
∧peT̂

)
= det(I + eT̂ ),

where, in the last equality, we have used a well known formula (e.g., [13, p.322, (188)]) on
the determinant of a finite dimensional linear operator. Since the matrix representation of
T̂ with respect to the basis {ej}r

j=1 of Cr is given by the matrix T , we have det(I + eT̂ ) =
det(I + eT ). Thus (4.3) holds.

Letting Sjk := δjk log z + Tjk, we have

zNfe
Pr

j,k=1 Tjkb∗j bk = e
Pr

j,k=1 Sjkb∗j bk .

Hence, we can apply (4.3) with T replaced by S = (Sjk) to obtain (4.2).

Theorem 4.2 Assume (A.1), (A.2) and (A.3). Suppose that, for all t > 0,∫
V (x)<0

et
Pr

j,k=1 |Ujk(x)|e−tV (x)Kt(x, x)dx < ∞. (4.4)

Let z ∈ C \ {0} and F ∈ L∞(Rn). Then, for all t > 0, e−tH(V,U) is in I1(H) and

Tr
(
FzNfe−tH(V,U)

)
=

∫
Rn

dxF (x)

∫
det

(
I + ze−

R t
0 U(q(s))ds

)
e−

R t
0 V (q(s))dsdµx,x;t (4.5)

Proof. By the proof of Lemma 2.3, we have

‖Hf,UΨ‖ ≤ d1‖|V |αΨ‖ + d2‖Ψ‖, Ψ ∈ D(|V |α)

with some constants dj > 0 (j = 1, 2). By (2.9) and the Heinz inequality [14, Proposition
10.14], we have

‖|V |αΨ‖ ≤ cα‖(Hb,V − ε0 + 1)αΨ‖, Ψ ∈ D((Hb,V − ε0 + 1)α).
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Therefore, Hf,U is (Hb,V − ε0)
α-bounded. Thus we can apply Theorem B.5 in Appendix

to conclude that, for all t > 0, e−tH(V,U) is in I1(H) and

Tr
(
FzNfe−tH(V,U)

)
= Tr

(
FzNfe−tHb,V

)
+

∞∑
`=1

(−1)`

∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

s`−1

ds`

×Tr
(
FzNfe−s1Hb,V Hf,Ue−(s2−s1)Hb,V Hf,U · · · e−(s`−s`−1)Hb,V Hf,Ue−(t−s`)Hb,V

)
.

We have

Tr
(
FzNfe−s1Hb,V Hf,Ue−(s2−s1)Hb,V Hf,U · · · e−(s`−s`−1)Hb,V Hf,Ue−(t−s`)Hb,V

)
=

r∑
j1,k1,...,j`,k`=1

Tr (zNfb∗j1bk1 · · · b∗j`
bk`

)

×Tr (Fe−s1Hb,V Uj1k1e
−(s2−s1)Hb,V Uj2k2 · · · e−(s`−s`−1)Uj`k`

e−(t−s`)Hb,V )

=
r∑

j1,k1,...,j`,k`=1

Tr (zNfb∗j1bk1 · · · b∗j`
bk`

)

×
∫

Rn

dxF (x)

∫
Uj1k1(q(s1))Uj2k2(q(s2)) · · ·Uj`k`

(q(s`))e
−

R t
0 V (q(s))dsdµx,x;t

=

∫
Rn

dxF (x)

∫
Tr (zNfHf(s1) · · ·Hf(s`))e

−
R t
0 V (q(s))dsdµx,x;t,

where

Hf(s) :=
r∑

j,k=1

Ujk(q(s))b
∗
jbk, s ∈ [0, t].

By a well known formula (e.g., [1, Lemma 3.2]), one can show that Tr (zNfb∗j1bk1 · · · b∗j`
bk`

)
is symmetric for every permutation of (j1, k1), . . . , (j`, k`). Hence∫

Rn

dxF (x)

∫
Tr (zNfHf(s1) · · ·Hf(s`))de−

R t
0 V (q(s))dsµx,x;t

is symmetric in s1, . . . , s`. Therefore∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

s`−1

ds`

×Tr
(
FzNfe−s1Hb,V Hf,Ue−(s2−s1)Hb,V Hf,U · · · e−(s`−s`−1)Hb,V Hf,Ue−(t−s`)Hb,V

)
.

=
1

`!

∫ t

0

ds1 · · ·
∫ t

0

ds`

∫
Rn

dxF (x)

∫
Tr (zNfHf(s1) · · ·Hf(s`))e

−
R t
0 V (q(s))dsdµx,x;t

=
1

`!

∫
Rn

dxF (x)

∫
Tr (zNfZ(t)`)e−

R t
0 V (q(s))dsdµx,x;t,

where Z(t) :=
∫ t

0
Hf(s)ds. Hence

Tr (FzNfe−tH(V,U)) = lim
N→∞

∫
Rn

dxF (x)

∫ N∑
`=0

(−1)`

`!
Tr (zNfZ(t)`)e−

R t
0 V (q(s))dsdµx,x;t.

22



We have

‖Z(t)‖ ≤
r∑

j,k=1

∫ t

0

|Ujk(q(s)|ds.

Hence ∣∣∣∣∣
N∑

`=0

(−1)`

`!
Tr (zNfZ(t)`)

∣∣∣∣∣ ≤ (1 + |z|)re
Pr

j,k=1

R t
0 |Ujk(q(s))|ds.

To proceed further, we show that the integral

It :=

∫
Rn

Kt(x, x)et
Pr

j,k=1 |Ujk(x)|−tV (x)dx

is finite. This is done as follows. We write

It = I
(1)
t + I

(2)
t

with

I
(1)
t :=

∫
V (x)<0

Kt(x, x)et
Pr

j,k=1 |Ujk(x)|−tV (x)dx,

I
(2)
t :=

∫
V (x)≥0

Kt(x, x)et
Pr

j,k=1 |Ujk(x)|−tV (x)dx.

Then I
(1)
t is finite by (4.4). As for I

(2)
t , we note that, in the case where V (x) ≥ 0,

|Ujk(x)| ≤
√

aV (x)α +
√

b ≤ 1

r2
V (x) + cr,

where cr > 0 is a constant. Hence
∑r

j,k=1 |Ujk(x)| − V (x) ≤ r2cr, which implies that

I
(2)
t ≤

∫
Rn Kt(x, x)etr2crdx < ∞.

As in Lemma 3.4, we have∫
Rn

dx|F (x)|
∫

e
Pr

j,k=1

R t
0 |Ujk(q(s))|ds−V (q(s))dsdµx,x;t ≤ ‖F‖∞It.

Hence, by the Lebesgue dominated convergence theorem, we obtain

Tr (FzNfe−tH(V,U)) =

∫
Rn

dxF (x)

∫
Tr (zNfe−Z(t))e−

R t
0 V (q(s))dsdµx,x;t.

Since

Z(t) =
r∑

j,k=1

(∫ t

0

Ujk(q(s))ds

)
b∗jbk,

it follows from Lemma 4.1 that

Tr zNfe−Z(t) = det
(
I + ze−

R t
0 U(q(s))ds

)
.

Thus (4.5) follows.

In applications, it may be useful to find a general condition which does not require
condition (4.4). For this purpose, we consider the following condition:
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(A.5) There exists a nonnegative function Y ∈ L2
loc(Rn) satisfying:

(i) For all ε ∈ (0, δ) with some constant δ > 0, Hb,εY is self-adjoint.

(ii) For each η > 0, there exists a constant cη > 0 such that |V (x)|2 ≤ η2Y (x)2 +
c2
η, a.e.x ∈ Rn.

(iii) There exist constants α ∈ [0, 1) and a, b > 0 such that

|Ujk(x)|2 ≤ a|Y (x)|2α + b, a.e.x ∈ Rn, j, k = 1, . . . , r.

Lemma 4.3 Assume (A.5). Let ε ∈ (0, δ). Then: Hb,V +εY and H(V + εY, U) are self-
adjoint and bounded below.

Proof. By the closedness of Hb,εY , there exists a constant dε > 0 such that

ε‖Y Ψ‖ ≤ dε‖(Hb,εY + 1)Ψ‖, Ψ ∈ D(Hb,εY ) = D(Hb) ∩ D(Y ).

By (A.5)-(ii), we have for all Ψ ∈ D(Y )

‖V Ψ‖ ≤ η‖Y Ψ‖ + cη‖Ψ‖,

where η > 0 is arbitrary. Hence V is infinitesimally small with respect to Hb,εY . Hence, by
the Kato–Rellich theorem (e.g., [11, Theorem X.12]), Hb,V +εY = Hb,εY + V is self-adjoint
and bounded below.

Let Vε(x) := V (x) + εY (x). Then, for a.e.x ∈ Rn,

|Y (x)|2 ≤ 2

ε2
(|Vε(x)|2 + |V (x)|2) ≤ 2

ε2
(|Vε(x)|2 + η2|Y (x)|2 + c2

η).

Hence (
1 − 2η2

ε2

)
|Y (x)|2 ≤ 2

ε2
(|Vε(x)|2 + c2

η).

Take η > 0 such that 2η2/ε2 < 1. Then, by (A.5)-(iii), we obtain

|Ujk(x)|2 ≤ a′|Vε(x)|2α + b′

with constants a′, b′ > 0. Thus we can apply Lemma 2.3 with V replaced by Vε to conclude
that H(Vε, U) is self-adjoint and bounded below.

Lemma 4.4 Assume (A.5). Let ε ∈ (0, δ), z ∈ C \ {0} and F ∈ L∞(Rn). Suppose that,
for all t > 0, ∫

Rn

Kt(x, x) det(I + |z|e−tU(x))e−tV (x)e−tεY (x)dx < ∞. (4.6)

Then, for all t > 0, e−tH(V +εY,U) is in I1(H) and

Tr (FzNfe−tH(V +εY,U))

=

∫
Rn

dxF (x)

∫
det(I + ze−

R t
0 U(q(s))ds)e−

R t
0 V (q(s))dse−ε

R t
0 Y (q(s))dsdµx,x;t. (4.7)
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Proof. We have already seen that (A.1) and (A.2) holds with V replaced by Vε =
V + εY . Taking η > 0 such that ε > η, we have Vε + cη ≥ 0. Hence (4.4) with V replaced
by Vε + cη is trivially satisfied. Since det(I + |z|e−tU(x)) ≥ 1, we have∫

Rn

Kt(x, x)e−t(Vε(x)+cη)dx ≤
∫

Rn

Kt(x, x) det(I + |z|e−tU(x))e−tV (x)e−tεY (x)e−tcηdx < ∞.

Therefore we can apply Theorem 4.2 to obtain the desired result.

Lemma 4.5 Let z ∈ C \ {0} and t > 0 be fixed. Let Φ be a Borel measurable function on
Rn such that ∫

Rn

Kt(x, x) det(I + |z|e−tU(x))e−tΦ(x)dx < ∞. (4.8)

Then ∣∣∣∣∫
Rn

dx

∫
det(I + ze−

R t
0 U(q(s))ds)e−

R t
0 Φ(q(s))dsdµx,x;t

∣∣∣∣
≤

∫
Rn

Kt(x, x) det(I + |z|e−tU(x))e−tΦ(x)dx. (4.9)

Proof. Let Lh(Cn) be the real vector space of n × n Hermitian matrices. Then the
function: Lh(Cn) × R 3 (A, λ) 7→ eλ det(I + eA) is convex [9, Proposition 2.2]. Noting
that |z|eA = eA+log |z|, one sees that eλ det(I + |z|eA) also is convex in (A, λ) ∈ Lh(Cn)×R.
Hence, by Jensen’s inequality, we have

det(I + |z|e−
R t
0 U(q(s))ds)e−

R t
0 Φ(q(s))ds ≤ 1

t

∫ t

0

det(I + |z|e−tU(q(s)))e−tΦ(q(s))ds. (4.10)

We also note that, for every positive n × n matrix A

| det(I + zA)| ≤ det(I + |z|A).

Then, in the same manner as in the proof of Lemma 3.4, we obtain (4.9).

For generality, we introduce the following condition:

(A.6) The boson-fermion Hamiltonian H(V, U) is essentially self-adjoint on C∞
0 (Rn)⊗̂ ∧

(Cr) and bounded below.

This condition is satisfied, e.g., if (A.1) and (A.2) hold with the property that C∞
0 (Rn)

is a core of Hb,V .

Theorem 4.6 Let z ∈ C \ {0}. Assume (A.5) and (A.6) with∫
Rn

Kt(x, x) det(I + e−tU(x))e−tV (x)dx < ∞, ∀t > 0. (4.11)

Then, for all t > 0, e−tH(V,U) is in I1(H). Moreover, if∫
Rn

Kt(x, x) det(I + |z|e−tU(x))e−tV (x)dx < ∞, ∀t > 0, (4.12)

then, for all t > 0 and F ∈ L∞(Rn), (4.5) holds with H(V, U) replaced by H(V, U).

25



Proof. Let A := H(V, U) and AN := H(V + Y/N, U) (N ∈ N). Then A ¹ AN . Hence
AN ≥ inf σ(A). It is easy to see that limN→∞ ANΨ = AΨ for all Ψ ∈ C∞

0 (Rn)⊗̂ ∧ (Cr).
By (4.7) and (4.9) we have

Tr e−tAN ≤
∫

Rn

dxKt(x, x) det(I + e−tU(x))e−tV (x), (4.13)

which, by (4.11), is finite independently of N . Hence we can apply Lemma B.2 in Ap-
pendix to conclude that e−tA ∈ I1(L

2(Rn)) and limN→∞ ‖e−tAN − e−tA‖1 = 0, where ‖ · ‖1

denotes trace norm. Then, taking the limit N → ∞ in (4.7) with ε = 1/N , we obtain

Tr (FzNfe−tH(V,U))

= lim
N→∞

∫
Rn

dxF (x)

∫
det(I + ze−

R t
0 U(q(s))ds)e−

R t
0 V (q(s))dse−

R t
0 Y (q(s))ds/Ndµx,x;t.

We have ∣∣∣∣F (x)

∫
det(I + ze−

R t
0 U(q(s))ds)e−

R t
0 V (q(s))dse−

R t
0 Y (q(s))ds/Ndµx,x;t

∣∣∣∣
≤ ‖F‖∞

∫
det(I + |z|e−

R t
0 U(q(s))ds)e−

R t
0 V (q(s))dsdµx,x;t,

which is integrable by (4.12) and Lemma 4.5. Hence, using the Lebesgue dominated
convergence theorem, we obtain (4.5).

5 Golden–Thompson Type Inequalities

Now we can derive Golden–Thompson type inequalities for e−tH(V,U). It is easy to see
that, for all (x, y) ∈ R2n with xj 6= yj (j = 1, . . . , n) and t > 0, the integral

Lt(x, y) :=
1

t

∫ t

0

Ks(x, y)Kt−s(y, x)ds (5.1)

is finite.
We consider the following two cases:

(C.1) Conditions (A.1), (A.2), (A.3) and (4.4) hold.

(C.2) Conditions (A.5), (A.6) and (4.12) hold.

In the rest of this section, for notational simplicity, we denote H(V, U) in case (C.2) simply
by H(V, U).

Theorem 5.1 Assume (C.1) or (C.2). Let z ∈ C \ {0}, t > 0 and F ∈ L∞(Rn). Then∣∣Tr (FzNfe−tH(V,U))
∣∣ ≤ ∫

Rn

dx

∫
Rn

dy|F (x)|Lt(x, y) det(I + |z|e−tU(y))e−tV (y) (5.2)

In particular,

Tr e−tH(V,U) ≤
∫

Rn

dxKt(x, x) det(I + e−tU(x))e−tV (x). (5.3)
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Proof. By the present assumption, (4.5) holds. Hence, by applying (4.10) with Φ = V ,
we have∣∣Tr (FzNfe−tH(V,U))

∣∣ ≤ ∫
Rn

dx|F (x)|
∫

1

t

∫ t

0

ds det
(
I + |z|e−tU(q(s))

)
e−tV (q(s))dµx,x;t.

We note that, for each s ∈ [0, t],∫
det

(
I + |z|e−tU(q(s))

)
e−tV (q(s))dµx,x;t

=

∫
Rn

dy det
(
I + |z|e−tU(y)

)
e−tV (y)Ks(x, y)Kt−s(y, x).

Hence (5.2) follows. Inequality (5.3) follows from putting F = 1 and z = 1 in (5.2) (or
use (4.13)).

Remark 5.2 Consider the case where Ujk = δjkλj (λj > 0, j = 1, . . . , r) and V = 0.
Then

H(V, U) = Hb +
r∑

j=1

λjb
∗
jbj,

i.e., it is the Hamiltonian of an n-dimensional quantum harmonic oscillator and r free
fermions. In this case, we have

Tr (Fe−tH(V,U)) =
(
Tr Fe−tHb

) (
Tr e−t

Pr
j=1 λjb∗j bj

)
=

∫
Rn

F (x)Kt(x, x)dx ·
r∏

j=1

(1 + e−tλj).

(5.4)
On the other hand, in the present case, we have det(I +e−tU(y)) =

∏r
j=1(1+e−tλj). Hence,

using the easily proved equality∫
Rn

Lt(x, y)dy = Kt(x, x),

we see that the right hand side of (5.2) is equal to that of (5.4). Thus, in the present case,
equality in (5.2) holds.

Corollary 5.3 Assume (C.1) or (C.2). Then:

(i) For all β > 0,

Fβ(H(V, U)) ≥ − 1

β
log

(∫
Rn

dxKβ(x, x) det(I + e−βU(x))e−βV (x)

)
.

(ii) The spectrum of H(V, U) is purely discrete and, for each E ∈ R,

NE(H(V, U)) ≤ inf
t>0

∫
Rn

dxKt(x, x) det(I + e−tU(x))e−t(V (x)−E).
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(iii) Suppose, in addition, that, for some E ∈ R and a.e.x ∈ Rn,

V (x) − r2
√

a|V (x)|α − r2
√

b > E, (5.5)

where a, b and α are constants in (A.2), and
∫

Rn e−t0V (x)dx < ∞ for some t0 > 0.
Then inf σ(H(V, U)) > E.

Proof. The proof of (i) (resp. (ii)) is similar to that of Corollary 3.9 (redp. Corollary
3.11).

As for (iii), we first note that

det(I + e−tU(x)) ≤ (I + et‖U(x)‖)r ≤ 2rert‖U(x)‖.

On the other hand, we have

‖U(x)‖ ≤

√√√√ r∑
j,k=1

|Ujk(x)|2 ≤
√

r2(a|V (x)|2α + b) ≤ r
√

a|V (x)|α + r
√

b.

Hence
det(I + e−tU(x))e−tV (x) ≤ 2re−t(V (x)−r2√a|V (x)|α−r2

√
b).

Therefore

NE(H(V, U)) ≤ 2r

∫
Rn

Kt(x, x)e−t(V (x)−E−r2√a|V (x)|α−r2
√

b)dx.

Condition (5.5) implies that V (x) − E > 0 a.e.x ∈ Rn. Hence, for every ε ∈ (0, 1), there
exists a constant dε > 0 such that ε(V (x)−E)−r2

√
a|V (x)|α−r2

√
b ≥ −dε for a.e.x ∈ Rn.

Hence

V (x) − E − r2
√

a|V (x)|α − r2
√

b ≥ (1 − ε)(V (x) − E) − dε, a.e.x ∈ Rn.

Therefore, taking t′0 = t0/(1 − ε), one sees that
∫

Rn e−t′0(V (x)−E−r2√a|V (x)|α−r2
√

b)dx <
∞. Then, in the same manner as in the proof of Corollary 3.12, one can show that
NE(H(V, U)) = 0.

Remark 5.4 It may be interesting to note that, in Corollary 5.3-(iii), U(x) is not neces-
sarily bounded below.

6 Application to Supersymmetric Quantum Mechan-

ics

In this section we apply the results established in the preceding sections to a model in
supersymmetric quantum mechanics.

We consider the case r = n. Let Hb and Hf be given by (1.7) and (1.8) respectively.
Then the operator

H0 := Hb + Hf (6.1)
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is a nonnegative self-adjoint operator on the Hilbert space H = L2(Rn) ⊗ ∧(Cn). It is
easy to see that the operator

Q0 := i

n∑
j=1

√
~ωj(ajb

∗
j − a∗

jbj), (6.2)

is symmetric. By direct computations, we have

H0 = Q2
0 (6.3)

on C∞
0 (Rn)⊗̂ ∧ (Cn). Applying a general theorem in the theory of tensor products of

self-adjoint operators, H0 is essentially self-adjoint on C∞
0 (Rn)⊗̂ ∧ (Cn). Hence, it follows

from a well known fact (e.g., [11, p.341, Problem 28]) that Q0 is essentially self-adjoint
on C∞

0 (Rn)⊗̂ ∧ (Cn) with operator equality

H0 = Q
2

0. (6.4)

Let
τ := (−1)Nf . (6.5)

Then τ is a self-adjoint involution: τ ∗ = τ, τ 2 = I. It is easy to see that

{τ, b∗j} = 0, {τ, bj} = 0, j = 1, . . . , n.

It follows that
τQ0 ⊂ −Q0τ. (6.6)

Hence Q0 is a supercharge with respect to τ and H0 is the supersymmetric Hamiltonian
with supercharge Q0 (e.g., [17, p.140]). Mathematically Q0 is a Dirac type operator on
Rn.

We now consider a perturbation of Q0. Let W be a real distribution on Rn such that

Wj := DjW ∈ L4
loc(Rn), Wjk := DjDkW ∈ L2

loc(Rn) (j, k = 1, . . . , n).

Then one can define a symmetric operator

Q1 :=
i√
2

n∑
j=1

(
b∗jWj − bjWj

)
(6.7)

with D(Q1) ⊃ C∞
0 (Rn)⊗̂ ∧ (Cn). Hence

Q := Q0 + Q1 (6.8)

is a symmetric operator with D(Q) ⊃ C∞
0 (Rn)⊗̂ ∧ (Cn). We have

τQ ⊂ −Qτ. (6.9)

Hence Q also is a Dirac type operator on Rn. If Q is self-adjoint, then Q is a supercharge
with respect to τ .
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For the moment, we do not discuss the essential self-adjointness of Q. By von Neu-
mann’s theorem, the operator

HSS := Q
∗
Q (6.10)

is a nonnegative self-adjoint operator on H. If Q is self-adjoint, then HSS is the super-
symmetric Hamiltonian with respect to the supercharge Q.

To see a concrete form of HSS restricted to a subspace of D(HSS), let

ωx := (ω1x1, · · · , ωnxn) ∈ Rn, (6.11)

ΦW (x) := ωx · DW (x) +
1

2
|DW (x)|2 − ~

2
∆W (x), x ∈ Rn, (6.12)

where DW := (D1W, . . . , DnW ), and

Hb(W ) := Hb + ΦW , (6.13)

Hf(W ) = Hf + ~
n∑

j,k=1

Wjkb
∗
jbk. (6.14)

Then we have
HSS = Hb(W ) + Hf(W ) (6.15)

on C∞
0 (Rn)⊗̂ ∧ (Cn).

As for W , we assume the following too:

(W.1) There exists a nonnegative continuous function U ∈ L2
loc(Rn) satisfying the fol-

lowing conditions:

(a) For all ε ∈ (0, δ) with a constant δ > 0, Hb + εU is self-adjoint.

(b) For all η > 0, there exists a constant cη > 0 such that

|ΦW (x)|2 ≤ η2U(x)2 + c2
η, a.e.x ∈ Rn.

(c) There exist constants α ∈ [0, 1) and a, b > 0 such that

|Wjk(x)|2 ≤ aU(x)2α + b, a.e.x ∈ Rn, j, k = 1, . . . , n.

(d) D(Q) ∩ D(U1/2) is a core of Q.

We define
Hε := Hb(W ) + εU + Hf(W ), ε ∈ (0, δ). (6.16)

We set
W := (Wjk)j,k=1,...,n. (6.17)

We denote by Ω the n × n matrix such that

Ωjk = ωjδjk, j, k = 1, . . . , n. (6.18)

Lemma 6.1 Assume (W.1) and let ε ∈ (0, δ). Then:
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(i) Hε is self-adjoint and bounded below.

(ii) For all t > 0, e−tHε is trace class.

Proof. (i) Assumption (W.1)-(b) implies that ΦW is infinitesimally small with respect
to U . Since Hb + εU is closed, it follows that ΦW is infinitesimally small with respect to
Hb + εU . Hence, by the Kato–Rellich theorem, Hb(W ) + εU is self-adjoint and bounded
below. Assumption (W.1)-(b) and (W.1)-(c) imply that there exist constants α ∈ [0, 1)
and a′, b′ > 0 such that

|Wjk(x)|2 ≤ a′|εU(x) + ΦW (x)|2α + b′, a.e.Rn, j, k = 1, . . . , n.

Hence, we can apply Lemma 2.3-(i) with V and U replaced by εU + ΦW and ~(Ω + W)
respectively to conclude that Hε is self-adjoint and bounded below.

(ii) It is obvious that, for all t > 0, e−t(Hb+εU) ∈ I1(L
2(Rn)). For each κ ∈ (0, 1), we

have
Hb(W ) + εU = (1 − κ)(Hb + εU) + κ(Hb + εU) + ΦW .

Then, in the same way as in the proof of Lemma 2.3-(ii), one sees that, for all t > 0, e−tHε

is in I1(H) (note that, in this reasoning, the finite dimensionality of ∧(Cn) is used).

Lemma 6.2 Assume (W.1). Let ε ∈ (0, δ), z ∈ C \ {0} and F ∈ L∞(Rn). Suppose that∫
Rn

Kt(x, x) det
(
I + |z|e−t~(Ω+W(x))

)
e−tΦW (x)−tεU(x)dx < ∞, ∀t > 0. (6.19)

Then:

(i) For all t > 0,

Tr (FzNfe−tHε) =

∫
Rn

F (x)

∫
det

(
I + ze−t~Ω−~

R t
0 W(q(s))ds

)
×e−

R t
0 ΦW (q(s))dse−ε

R t
0 U(q(s))dsdµx,x;t (6.20)

(ii) For all t > 0,∣∣Tr (FzNfe−tHε)
∣∣ ≤

∫
Rn

dx|F (x)|
∫

Rn

dyLt(x, y)

× det
(
I + |z|e−t~(Ω+W(y))

)
e−tΦW (y)−tεU(y). (6.21)

In particular, if (6.19) holds for z = 1, then

Tr e−tHε ≤
∫

Rn

dxKt(x, x) det
(
I + e−t~(Ω+W(x)

)
e−tV (x)−tεU(x). (6.22)

Proof. (i) Similar to the proof of Theorem 4.6.
(ii) Similar to the proof of Theorem 5.1.
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Theorem 6.3 Assume (W.1). Let z ∈ C \ {0} and F ∈ L∞(Rn).

(i) Suppose that∫
Rn

Kt(x, x) det
(
I + e−t~(Ω+W(x))

)
e−tΦW (x)dx < ∞, ∀t > 0. (6.23)

Then, for all t > 0, e−tHSS is trace class and the spectrum of HSS is purely discrete.
Moreover,

Tr e−tHSS ≤
∫

Rn

Kt(x, x) det(I + e−t~(Ω+W(x)))e−tΦW (x), ∀t > 0. (6.24)

(ii) Suppose that∫
Rn

Kt(x, x) det
(
I + |z|e−t~(Ω+W(x))

)
e−tΦW (x)dx < ∞, ∀t > 0. (6.25)

Then, for all t > 0,

|Tr (FzNfe−tHSS)| ≤
∫

Rn

dx|F (x)|
∫

Rn

dyLt(x, y)

× det
(
I + |z|e−t~(Ω+W(y))

)
e−tΦW (y) (6.26)

and

Tr (FzNfe−tHSS) =

∫
Rn

F (x)

∫
det

(
I + ze−t~Ω−~

R t
0 W(q(s))ds

)
×e−

R t
0 ΦW (q(s))dsdµx,x;t. (6.27)

Proof. (i) By (6.22) and the non-negativity of U , we have

Tr e−tHε ≤
∫

Rn

dxKt(x, x) det
(
I + e−t~(Ω+W(x))

)
e−tΦW (x).

The right hand side is finite by assumption (6.23) and independent of ε. Since Hε is self-
adjoint, it coincides with the self-adjoint operator HSS+̇εU (the form sum). Note that

D(H
1/2
SS ) = D(Q). Hence, by Assumption (W.1)-(d), D(H

1/2
SS )∩D(U1/2) = D(Q)∩D(U1/2)

is a core of H
1/2
SS . Therefore, we can apply a general fact [9, Proposition 2.3] to conclude

that e−tHSS is trace class and

lim
ε↓0

Tr e−tHε = Tr e−tHSS . (6.28)

Thus (6.24) holds.
(ii) By (6.21) and U ≥ 0, we have

|Tr (FzNfe−tHε)| ≤
∫

Rn

dx|F (x)|
∫

Rn

dyLt(x, y)

× det
(
I + |z|e−t~(Ω+W(y))

)
e−tΦW (y). (6.29)
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If δ > ε1 > ε2 > 0, then〈
H1/2

ε1
Ψ, H1/2

ε1
Ψ

〉
≥

〈
H1/2

ε2
Ψ, H1/2

ε2
Ψ

〉
≥ 0,∀Ψ ∈ D(H1/2

ε1
) = D(H

1/2
SS ) ∩ D(U1/2)

and
lim
ε↓0

‖H1/2
ε Ψ‖2 = ‖H1/2

SS Ψ‖2, Ψ ∈ ∩ε∈(0,δ)D(H1/2
ε ) = D(H

1/2
SS ) ∩ D(U1/2).

By Assumption (W.1)-(d), D(H
1/2
SS ) ∩ D(U1/2) is a core of H

1/2
SS . Hence, by a general

convergence theorem [8, Theorem 3.11], Hε converges to HSS in the strong resolvent
sense. This implies that e−tHε → e−tHSS strongly as ε ↓ 0. By this fact and (6.28), we can
apply Grümm’s convergence theorem [16, Theorem 2.19] to conclude that limε↓0 ‖e−tHε −
e−tHSS‖1 = 0, where ‖ · ‖1 denotes trace norm. Hence, for all bounded linear operators B
on H,

lim
ε↓0

Tr (Be−tHε) = Tr (Be−tHSS). (6.30)

This result and (6.29) imply (6.26).
(iii) By (6.30) and (6.20), we have

Tr (FzNfe−tHSS) = lim
ε↓0

∫
Rn

F (x)

∫
det

(
I + ze−t~Ω−~

R t
0 W(q(s))ds

)
×e−

R t
0 ΦW (q(s))dse−ε

R t
0 U(q(s))dsdµx,x;t.

Using the Lebesgure dominated convergence theorem, one sees that the right hand side
is equal to that of (6.27).

Remark 6.4 The supersymmetric Golden–Thompson inequality (6.24) includes (1.5) as
a limiting case in the following sense. Assume that the supersymmetric Hamiltonian

H0
SS(W ) := −~2

2
∆ − ~

2
∆W +

1

2
|DW |2 + ~

n∑
j,k=1

Wjkb
∗
jbk,

is essentially self-adjoint on C∞
0 (Rn) and∫

Rn

det(I + e−t~W(x))etc
Pn

j=1 |xjWj(x)|e−
t
2(|DW (x)|2−~∆W (x))dx < ∞

for some constant c > 0 (note that H0
SS(W ) is just HKL defined by (1.4) with P replaced

by W and obtained as a limit of HSS as ω → 0 in a suitable sense). Then, considering
the limit ω → 0 in (6.24), one has

Tr (e−tH
0
SS(W )) ≤ 1

(2πt)n/2~n

∫
Rn

det
(
I + e−t~W(x))

)
e−

t
2(|DW (x)|2−~∆W (x))dx, (6.31)

which is just (1.5) with P replaced by W . The proof of this fact is similar to that of
Corollary 3.6 (note that det(I + e−t~(Ω+W(x)) ≤ det(I + e−t~W(x)), since Ω is positive).
Thus, in the sense just described, (6.24) is more general than (1.5).
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A non-zero vector in ker Q is called a supersymmetric state. Hence, the number
of supersymmetric states is given by dim ker Q. One says that the supersymmetry is
spontaneously broken if there exist no supersymmetric states, i.e., ker Q = {0}.

Using the supersymmetric Golden–Thompson inequality (6.24), one can derive an
upper bound for the number of supersymmetric states:

Corollary 6.5 Assume (W.1) and (6.23). Then

dim ker Q ≤ inf
t>0

∫
Rn

Kt(x, x) det
(
I + e−t~(Ω+W(x))

)
e−tΦW (x)dx. (6.32)

Proof. We have ker Q = ker HSS and dim ker HSS ≤ Tr e−tHSS for all t > 0. These facts
and (6.24) imply (6.32).

The next corollary gives a sufficient condition for the supersymmetry to be broken
spontaneously:

Corollary 6.6 Assume (W.1) and (6.23). Suppose that

lim
t→∞

∫
Rn

Kt(x, x) det
(
I + e−t~(Ω+W(x))

)
e−tΦW (x)dx = 0. (6.33)

Then dim ker Q = {0}, i.e., the supersymmetry is spontaneously broken.

Proof. This is just a simple application of (6.32).

7 Functional Integral Representation for the Witten

Index

We continue to consider the case r = n. Then the Hilbert space H is decomposed as

H = H+ ⊕ H− =

{(
Ψ
Φ

)
|Ψ ∈ H+, Φ ∈ H−

}
(7.1)

with
H+ := ⊕[n/2]

p=0 L2(Rn;∧2p(Cn)), H− := ⊕[(n−1)/2]
p=0 L2(Rn;∧2p+1(Cn)),

where, for w > 0, [w] denotes the largest integer less than or equal to w.
Let Q be as in Section 6. Then, by (6.9), there exist densely defined closed linear

operators Q± from H± to H∓ such that

Q =

(
0 Q−

Q+ 0

)
, (7.2)

where the operator matrix is relative to the orthogonal decomposition (7.1).
We assume the following in addition to (W.1):

(W.2) The operator Q is essentially self-adjoint.
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Then Q is self-adjoint. Hence Q∗
+ = Q− and

HSS = Q
2

=

(
Q∗

+Q+ 0
0 Q+Q∗

+

)
. (7.3)

For a densely defined closed linear operator T , the integer

ind(T ) := dim ker T − dim ker T ∗

is called the analytical index of T , provided that at least one of dim ker T and dim ker T ∗

is finite.
In the context of supersymmetric quantum mechanics, ind(Q+) is called the Witten

index.

Lemma 7.1 Assume (W.1) and (W.2). Then Q+ is a Fredholm operator and

ind(Q+) = Tr τe−tHSS . (7.4)

Proof. Under the present assumption, e−tHSS ∈ I1(H) (Theorem 6.3-(i)). Hence we
can apply a general theorem [17, Theorem 5.19] to conclude that Q is Fredholm, which,
together with (7.2), imply that Q+ is Fredholm. Formula (7.4) follows from [17, Theorem
5.19].

Theorem 7.2 Assume (W.1), (W.2) and (6.23). Then, for all t > 0,

ind(Q+) =

∫
Rn

dx

∫
det

(
I − e−t~Ω−~

R t
0 W(q(s))ds

)
e−

R t
0 ΦW (q(s))dsdµx,x;t, (7.5)

independently of t.

Proof. This follows from (7.4) and (6.27) with F = 1 and z = −1.

Remark 7.3 If W = 0 (the case of the supersymmetric quantum harmonic oscillator),
then (7.5) implies that

ind(Q+) =

∫
Rn

dx

∫
det

(
I − e−t~Ω

)
dµx,x;t =

(
Tr e−tHb

)
det

(
I − e−t~Ω

)
= 1,

coinciding with the calculation by an operator theoretical method (it is easy to see that,
in the case W = 0, dim ker Q+ = 1, dim ker Q− = 0). But, for a general W , it is difficult
in general to calculate ind(Q+) explicitly (some examples of Q+ whose Witten index is
explicitly calculated are given, e.g., in [17, Section 5.11]; heuristic arguments to calculate
the Witten index of various concrete models in supersymmetric quantum mechanics are
found in the physics literature (e.g., [20, 21], [5] and references therein). Theorem 7.2
implies that

ind(Q+) = lim
t→∞

∫
Rn

dx

∫
det

(
I − e−t~Ω−~

R t
0 W(q(s))ds

)
e−

R t
0 ΦW (q(s))dsdµx,x;t
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and

ind(Q+) = lim
t↓0

∫
Rn

dx

∫
det

(
I − e−t~Ω−~

R t
0 W(q(s))ds

)
e−

R t
0 ΦW (q(s))dsdµx,x;t.

By computing the right hand sides, one may obtain more explicit forms of ind(Q+). But
this would require careful and elaborate mathematical analysis which may be the subject
of an independent article. Thus, in the present paper, we do not discuss this aspect and
leave it for future study.

Appendix

In this appendix, we denote by H an abstract complex Hilbert space with inner product
〈·, ·〉 (linear in the second variable) and norm ‖·‖. We denote by B(H) the set of bounded
linear operators B on H with D(B) = H.

A Perturbation of a Self-adjoint Operator

Lemma A.1 Let A be a non-negative self-adjoint operator on H and B be a symmetric
operator on H which is relatively bounded with respect to Aα for some α ∈ [0, 1), i.e.,
D(Aα) ⊂ D(B) and there exist constants a, b ≥ 0 such that

‖BΨ‖ ≤ a‖AαΨ‖ + b‖Ψ‖, Ψ ∈ D(Aα). (A.1)

Then A + B is self-adjoint with D(A + B) = D(A) and bounded below.

Proof. We denote by EA the spectral measure of A. For all Ψ ∈ D(A), we have
‖AαΨ‖2 =

∫
[0,∞)

λ2αd‖EA(λ)Ψ‖2. Since 0 ≤ α < 1, for each ε > 0, there exists a

constant cε ≥ 0 such that λ2α ≤ ε2λ2 + c2
ε for all λ ≥ 0. Hence ‖AαΨ‖2 ≤ ε2‖AΨ‖2 +

c2
ε‖Ψ‖2. Therefore, by (A.1), ‖BΨ‖ ≤ aε‖AΨ‖ + (acε + b)‖Ψ‖, Ψ ∈ D(A). Hence B

is infinitesimally small with respect to A. Thus, by the Kato-Rellich theorem (e.g., [11,
Theorem X.12]), A + B is self-adjoint with D(A + B) = D(A) and bounded below.

B Trace of Operators

In this section, we assume that H is separable. We denote the set of trace class operators
on H by I1(H) and the trace of T ∈ I1(H) by Tr T .

Proposition B.1 Let An, A ∈ B(H) (n = 1, 2, . . .) and s- limn→∞ An = A, where s- lim
means strong limit. Then, for all T ∈ I1(H),

lim
n→∞

Tr (AnT ) = Tr (AT ). (B.1)
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Proof. By a general theorem (e.g., [10, Theorem VI.22-(h)]), there exist Hilbert–
Schmidt operators S and R such that T = SR. Let {ek}∞k=1 be a complete orthonormal
system of H (we give a proof only for the case where H is infinite dimensional). Then we
have

Tr (AnT ) = Tr (RAnS) =
∞∑

k=1

〈R∗ek, AnSek〉 .

It follows from the strong convergence of {An}n to A and the principle of uniform bound-
edness that C := supn≥1 ‖An‖ < ∞. Hence | 〈R∗ek, AnSek〉 | ≤ C‖R∗ek‖‖Sek‖. Since
R∗ and S are Hilbert–Schmidt, it follows that

∑∞
k=1 ‖R∗ek‖‖Sek‖ < ∞. Hence, by the

dominated convergence theorem, we obtain

lim
n→∞

Tr (AnT ) =
∞∑

k=1

〈R∗ek, ASek〉 = Tr (RAS) = Tr (AT ).

We denote the trace norm of T ∈ I1(H) by ‖T‖1.

Lemma B.2 Let {An}n∈N be a sequence of self-adjoint operators on H satisfying the
following:

(a) There exists a constant c ∈ R such that, for all n ∈ N, c ≤ An.

(b) For some t > 0 and all n ∈ N, e−tAn ∈ I1(H) with T0 := supn∈N Tr e−tAn < ∞.

Suppose that there exist a self-adjoint operator A on H and a core D of A with the
following property: D ⊂ ∩n∈ND(An) and, for all ψ ∈ D. limn→∞ Anψ = Aψ. Then:

(i) e−tA ∈ I1(H) and
Tr e−tA ≤ lim inf

n→∞
Tr e−tAn . (B.2)

(ii) If A ¹ An (∀n ∈ N) in addition (for the symbol ¹, see the paragraph just before
Theorem 3.5), then

lim
n→∞

Tr e−tAn = Tr e−tA (B.3)

and
lim

n→∞
‖e−tAn − e−tA‖1 = 0. (B.4)

In particular, for all B ∈ B(H),

lim
n→∞

Tr (Be−tAn) = Tr (Be−tA). (B.5)

Proof. (i) The assumption for {An}n implies that A is bounded below with A ≥ c.
Hence, by a general convergence theorem [10, Theorem VIII.25(a), Theorem VIII.20(b)],

s- lim
n→∞

e−tAn = e−tA. (B.6)
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Let {ek}∞k=1 be a complete orthonormal system of H. Then , for all N ∈ N, Tr e−tAn ≥∑N
k=1

〈
ek, e

−tAnek

〉
. Hence

T0 ≥ lim inf
n→∞

Tr e−tAn ≥
N∑

k=1

〈
ek, e

−tAek

〉
.

Taking the limit N → ∞, we obtain

∞∑
k=1

〈
ek, e

−tAek

〉
≤ lim inf

n→∞
Tr e−tAn ≤ T0.

Thus e−tA ∈ I1(H) and (B.2) holds.
(ii) It follows from A ¹ An (∀n ∈ N) and the min-max principle (cf. [13, p.364, Prob-

lem 1]) that Tr e−tAn ≤ Tr e−tA for all n ∈ N. Hence lim supn→∞ Tr e−tAn ≤ Tr e−tA. By
this fact and (B.2), we obtain (B.3). Since e−tAn and e−tA are positive self-adjoint, (B.4)
follows from (B.6), (B.2) and Grümm’s convergence theorem [16, Theorem 2.19]. Formula
(B.5) follows from the well known inequality |Tr (BT )| ≤ ‖B‖‖T‖1 (∀B ∈ B(H),∀T ∈
I1(H)).

Lemma B.3 Let A be a nonnegative self-adjoint operator on H such that, for all t > 0,
e−tA ∈ I1(H). Let Bj (j = 1, . . . , n) be a linear operator on H which is relatively bounded
with respect to Aαj with some αj ∈ [0, 1). Let

cj := ‖Bj(A + 1)−αj‖, dj := max
λ≥1

λαje−λ, (B.7)

and 0 < s1 < s2 < · · · < sn < t. Then the operator

K(s1, . . . , sn) := e−s1AB1e
−(s2−s1)AB2 · · · e−(sn−sn−1)ABne−(t−sn)A (B.8)

is in I1(H) and

‖K(s1, . . . , sn)‖1 ≤ et/4‖e−tA/4‖1

n∏
j=1

4αjcjdj

(sj+1 − sj)αj
, (B.9)

where sn+1 := t.

Proof. Throughout the proof, we set K := K(s1, . . . , sn). Let

Kj := e−(sj−sj−1)A/2Bje
−(sj+1−sj)A/2 (j = 1, . . . , n)

with s0 := 0. Then we have

K = e−s1A/2K1K2 · · ·Kne
−(t−sn)A/2.

On the other hand, Bje
−(sj+1−sj)A/2 is bounded, because it is the product of two bounded

operators:
Bje

−(sj+1−sj)A/2 = Bj(A + 1)−αj · (A + 1)αje−(sj+1−sj)A/2.
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Hence Kj is trace class. Therefore K is trace class.
As usual, for a bounded linear opeartor T and p > 0, we set ‖T‖p := (Tr |T |p)1/p (the

Schatten p-norm). By Hölder’s inequality for the trace norm [16, Theorem 2.8], we have

‖K‖1 ≤ ‖etA/2‖s1/t
1

n∏
j=1

‖Kj‖t/(sj+1−sj).

We note that

‖Kj‖t/(sj+1−sj) ≤ ‖e−(sj+1−sj)A/4‖t/(sj+1−sj)‖e−(sj−sj−1)A/2Bje
−(sj+1−sj)A/4‖

= ‖e−tA/4‖(sj+1−sj)/t
1 ‖e−(sj−sj−1)A/2Bje

−(sj+1−sj)A/4‖.

Hence

‖K‖1 ≤ ‖e−tA/4‖1

n∏
j=1

‖e−(sj−sj−1)A/2Bje
−(sj+1−sj)A/4‖.

For all r, s > 0, we have

‖e−sABje
−rA‖ = ‖e−sABj(A + 1)−αj(A + 1)αje−r(A+1)‖er

≤ cjdj
er

rαj
.

Thus (B.9) follows.

Lemma B.4 Let A be a nonnegative self-adjoint operator on H and B be a symmetric
operator on H which is relatively bounded with respect to A. Suppose that A + B is
self-adjoint and bounded below. Then, for all t > 0,

e−t(A+B) = e−tA −
∫ t

0

e−sABe−(t−s)(A+B)ds, (B.10)

where the integral on the right hand side is taken in the sense of strong Riemann integral.

Proof. A simple application of a general formla in perturbation theory of semi-groups
(e.g., [8, p.502, (2.22)]).

The following theorem gives a mathematically rigorous basis for the heuristic pertur-
bation expansion for e−t(A+B) in the trace norm:

Theorem B.5 Let A and B as in Lemma A.1. Suppose that, for all t > 0, e−tA ∈ I1(H).
Then, for all t > 0, e−t(A+B) is in I1(H) and

e−t(A+B) = e−tA +
∞∑

n=1

(−1)n

∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

×e−s1ABe−(s2−s1)AB · · · e−(sn−sn−1)ABe−(t−sn)A (B.11)

in the trace norm. Moreover, for all bounded linear operators S on H,

Tr
(
Se−t(A+B)

)
= Tr

(
Se−tA

)
+

∞∑
n=1

(−1)n

∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

×Tr
(
Se−s1ABe−(s2−s1)AB · · · e−(sn−sn−1)ABe−(t−sn)A

)
(B.12)
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Proof. By Lemma A.1, A + B is self-adjoint and bounded below. As is shown in the
proof of Lemma A.1, B is infinitesimally small with respect to A. Hence, for all κ > 0,
κA + B is self-adjoint and bounded below. Let 0 < κ < 1 and write

A + B = (1 − κ)A + (κA + B).

For all t > 0, e−t(1−κ)A/2e−t(κA+B)e−t(1−κ)A/2 is trace class. Hence, by a general theorem
[13, p.320, Corollary], e−t(A+B) is trace class. Iterating (B.10), we have

e−t(A+B) = e−tA +
N∑

n=1

(−1)n

∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

×e−s1ABe−(s2−s1)AB · · · e−(sn−sn−1)ABe−(t−sn)A + RN , (B.13)

where

RN := (−1)N+1

∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sN

dsN+1

×e−s1ABe−(s2−s1)AB · · · e−(sN+1−sN )ABe−(t−sN+1)(A+B).

By Lemma B.3, e−s1ABe−(s2−s1)AB · · · e−(sn−sn−1)ABe−(t−sn)A (0 < s1 < · · · < sn < t) is
trace class and

‖e−s1ABe−(s2−s1)AB · · · e−(sn−sn−1)ABe−(t−sn)A‖1 ≤ etCn‖e−tA/4‖1

n∏
j=1

1

(sj+1 − sj)α
,

(B.14)
where C := ‖B(A + 1)−α‖ · 4α supλ≥1 λαe−λ.

It is easy to prove the following integral formula:∫ t

a

1

(s − a)p(t − s)q
ds =

B(1 − p, 1 − q)

(t − a)p+q−1
, 0 < a < t, 0 ≤ p, q < 1, (B.15)

where B(·, ·) is the Beta function. Using this formula, we obtain∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

n∏
j=1

1

(sj+1 − sj)α
=

Γ(1 − α)n

n(1 − α)Γ(n(1 − α))
tn(1−α),

where Γ(·) is the Gamma function. Hence∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn‖e−s1ABe−(s2−s1)AB · · · e−(sn−sn−1)ABe−(t−sn)A‖1

≤ etCn‖e−tA/4‖1
Γ(1 − α)n

n(1 − α)Γ(n(1 − α))
tn(1−α).

Thereore, each term in the sum
∑N

n=1 on the right hand side of (B.13) is trace class. ¿From
the proof of Lemma B.3, we see that (B.14) with (t − sn)A replaced by (t − sn)(A + B)
holds. Hence RN is trace class and

‖RN‖1 ≤ etCN+1‖e−tA/4‖1
Γ(1 − α)N+1

(N + 1)(1 − α)Γ((N + 1)(1 − α))
t(N+1)(1−α).
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As is well known (e.g., [19, p.279]),

Γ((N + 1)(1 − α)) ∼
√

2πe−(N+1)(1−α)((N + 1)(1 − α))(N+1)(1−α)−1/2 (N → ∞).

Hence it follows that limN→∞ ‖RN‖1 = 0. Thus (B.11) holds in the trace norm. Formula
(B.12) follows from the continuity of the mapping Tr (S·) on I1(H) and estimate (B.14)
which allows one to interchange between the trace operation Tr and the iterated integral∫ t

0
ds1

∫ t

s1
ds2 · · ·

∫ t

sn−1
dsn.
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