Genetic analysis of putative triploid *Miscanthus* hybrids and tetraploid *M. sacchariflorus* collected from sympatric populations of Kushima, Japan

1 Field Science Center for Northern Biosphere, Hokkaido University
2 Energy Biosciences Institute, University of Illinois
3 Department of Biology, University of Florida
4 Department of Crop Sciences, University of Illinois
5 Faculty of Agriculture, Miyazaki University
6 The Graduate School of Agriculture, Kyoto University
7 Department of Plant & Wildlife Sciences, Brigham Young University

* Corresponding author

E-mail address of the corresponding author: yamada@fsc.hokudai.ac.jp
Abstract

Miscanthus × giganteus, which is a triploid hybrid between tetraploid *M. sacchariflorus* and diploid *M. sinensis*, has considerable potential as a bioenergy crop. Currently only one genotype is widely cultivated, increasing its vulnerability to diseases during production. Finding new hybrids is important to broaden genetic resources of *M. × giganteus*. Three putative triploid hybrids were discovered in sympatric population of tetraploid *M. sacchariflorus* and diploid *M. sinensis* in Kushima, Japan. The hybrid nature of the triploids was determined by morphological analysis and sequencing the ribosomal DNA internal transcribed spacer region. The triploids had awns on their florets, which is a common characteristic of diploid *M. sinensis*, and sheath hairs, which is typical of tetraploid *M. sacchariflorus*. All triploids showed heterozygosity in their ribosomal DNA internal transcribed spacer sequences. Based on these results, it is confirmed that the triploids are hybrids and novel genotypes of *M. × giganteus*. Natural crossing between tetraploid *M. sacchariflorus* × diploid *M. sinensis* may also lead to the production of tetraploid hybrids.

ITS analysis of tetraploid plants showed that one maternal parent of the triploid hybrids, K-Ogi-1 had heterozygous ITS, which was different to the other analyzed tetraploid *M. sacchariflorus*. Thus, K-Ogi-1 was likely of hybrid origin. These tetraploid hybrids can also be utilized as parents in *M. × giganteus* breeding. Since all hybrids identified in this study had tetraploid *M. sacchariflorus* as maternal parents, collecting and analyzing seeds from tetraploid *M. sacchariflorus* in sympatric areas could be an effective strategy to identify natural *Miscanthus* hybrids that can be used as bioenergy crops.
Introduction

A widespread increase in consumption of easily extractable crude oil, which is a rapidly diminishing resource, has been implicated in helping accelerate global warming [1-3]. Due to these factors, interest in renewable, carbon-neutral sources of energy, such as highly productive feedstock crops and wild plant species, has considerably increased in recent years [1,4,5]. Miscanthus ×giganteus Greef & Deuter ex Hodkinson & Renvoise, which is a perennial triploid grass native to Japan, exhibits promise as a bioenergy crop because of its high energy-conversion efficiency due to C4 photosynthesis [6], high biomass productivity [7], low fertilizer requirements [8,9], tolerance of low winter temperatures [6,7], and minimal likelihood for invasive spread by seed due to its sterile nature [10]. However, presently only one genotype of M. ×giganteus is widely cultivated [7], increasing the risk of widespread mortality due to diseases or pests [7,11]. Therefore, finding new genotypes of M. ×giganteus from natural populations will provide much-needed genetic variation that can be used for bioenergy production.

Currently propagated M. ×giganteus clones, such as the widely cultivated Illinois clone [12,13] originated from a plant that was introduced to Denmark in 1935 from Yokohama, Japan by a Danish plant collector, Aksel Olsen [14]. The taxon is a natural allotriploid hybrid (3n=57) derived from a cross between tetraploid M. sacchariflorus (Maxim) Hack. (4n=76) and diploid M. sinensis Anderss. (2n=38) [13,15-18]. Based on chloroplast DNA analysis, M. ×giganteus has tetraploid M. sacchariflorus as its maternal parent [18]. Other natural hybrids between diploid M. sinensis and tetraploid M. sacchariflorus were discovered in central (Hyogo and Gifu Prefectures) and southern (Kumamoto Prefecture) Japan [19-21]. Honda [19] identified a putative hybrid from the Kuma River Basin in Kumamoto Prefecture, which he named Miscanthus ogiformis Honda. M. ogiformis exhibited similar aboveground growth as M. sacchariflorus, but the spikelets had awns similar to that of M. sinensis. Hirayoshi et al. [20] identified two triploid hybrids, which were grown from seeds collected from M. sinensis near Gifu, Japan. Their morphological features were apparently similar to that of M. sacchariflorus, and their triploid nature was confirmed by cytological analysis. Two natural Miscanthus triploids were also collected near Akashi and Sasayama in Hyogo Prefecture, Japan [21]. We postulate that more natural hybrids can be found in overlapping populations of M. sinensis and M.
sacchariflorus across Japan [22,23]. These natural hybrids can be identified and characterized by morphological and molecular methods. Recently, triploids were identified from seeds collected from tetraploid M. sacchariflorus plants, which were in a sympatric population with diploid M. sinensis plants near Kushima, Miyazaki Prefecture, Japan [23]. The nuclear DNA contents of the triploids ranged from 6.7±0.1 to 7.0±0.1 pg·2C⁻¹, which were close to that of the Illinois clone of M. ×giganteus (7.0±0.1 pg·2C⁻¹) [12, 23]. It is hypothesized that the triploids were hybrids between diploid M. sinensis and tetraploid M. sacchariflorus [23], but the flow cytometry data needs to be further validated by molecular and morphological methods for hybrid detection.

Nuclear ribosomal DNA internal transcribed spacer (ITS) region is widely utilized for detecting hybrid origins of plant taxa [24]. ITS region of plants with hybrid origin is generally homogenized toward one parent type over cycles of sexual reproduction (concerted evolution) [24]. The maternal parents of putative triploid hybrids, tetraploid M. sacchariflorus, were suggested to have a hybrid origin between diploid M. sinensis and diploid M. sacchariflorus [15,18]. Therefore, the ITS sequence of tetraploid M. sacchariflorus may be homogenized toward diploid M. sinensis. However, M. ×giganteus possessed two types of ribosomal DNA ITS regions, one of which corresponds to that of diploid M. sinensis and the other that of diploid M. sacchariflorus, indicating that ITS sequence of diploid M. sacchariflorus is still retained in tetraploid M. sacchariflorus [18]. Therefore, we postulated that it is possible to use ITS sequence in determining hybrid nature of putative triploid hybrids.

In addition to determining ITS region of the putative triploid hybrids, the ITS regions of maternal plants were also determined. Tetraploid M. sacchariflorus plants from Kushima had higher seed set compared to tetraploid M. sacchariflorus in Miyazaki, Tsukuba, Gifu, and Tomakomai sympatric populations [23]. Tetraploid M. sacchariflorus usually propagates by spreading rhizomes [23], but high seed set indicates that tetraploid M. sacchariflorus plants also propagate through sexual reproduction. Considering that Miscanthus genus shows high self-incompatibility [25], the high seed set was not the result of self-fertilization. Therefore, there is a possibility that crossings occur frequently between two tetraploid M. sacchariflorus plants or between tetraploid M. sacchariflorus and diploid M. sinensis in Kushima sympatric populations. Hybridization between diploid M. sinensis
var. condensatus as mother and tetraploid M. sacchariflorus produced not only triploid but also a tetraploid plant that was morphologically similar to tetraploid M. sacchariflorus [26]. If tetraploid hybrids occur frequently, tetraploid plants in the population in Kushima may consist of tetraploid hybrids and tetraploid M. sacchariflorus, which are genetically distinct from tetraploid M. sacchariflorus from Miyazaki, Gifu, Tsukuba, and Tomakomai sympatric populations. Different genotypes of tetraploid plants are valuable parental sources for breeding new M. ×giganteus.

The first objective of this study was to confirm the hybrid nature of triploid Miscanthus plants by comparing morphological characteristics to diploid M. sinensis and tetraploid M. sacchariflorus, and by determining their nuclear ribosomal DNA ITS sequences. The second objective was to determine whether there are genetic differences, as reflected in their ITS and chloroplast DNA sequences, between maternal parents of putative triploid hybrids with tetraploid M. sacchariflorus from Miyazaki, Gifu, Tsukuba, and Tomakomai sympatric populations.

Materials and Methods

Morphological characterization of putative triploid hybrids

Triploid Miscanthus plants, which were labeled Hy-1, Hy-2, and Hy-3, were collected as seed from the inflorescence of tetraploid M. sacchariflorus. In the previous study [23] Hy-1, Hy-2, and Hy-3 were labeled as Ogi63, Ogi79, and Ogi80, respectively. Hy-1 was collected as seed from the inflorescence of a tetraploid M. sacchariflorus labeled as K-Ogi-1, whereas Hy-2 and Hy-3 were collected from the inflorescence of a tetraploid M. sacchariflorus labeled as K-Ogi-2. Two M. sinensis plants located adjacent to K-Ogi-1 and K-Ogi-2 were identified as putative pollen parents, and labeled as K-Susuki-1 and K-Susuki-2, respectively. The detailed location of the plants in the sympatric area of Kushima, Miyazaki, Japan is described in Nishiwaki et al. [23]. The Hy-1, Hy-2, and Hy-3 plants, which were morphologically characterized, were propagated from the original genotypes as rhizomes with 2-3 shoots. The plants were established in 10-L pots containing Andisol soil at a research farm adjacent to the University of Miyazaki in April 2011. The
Illinois clone of *M. ×giganteus* [12, 13], K-Susuki-1, K-Susuki-2, K-Ogi-1, and K-Ogi-2 were also grown as rhizomes with 2-3 shoots in pots under similar conditions as the triploid plants in spring 2010.

Hodkinson et al. [27] provided morphological keys to identify several species of *Miscanthus*. Two characters, the presence or absence of awns on florets, and the presence or absence of sheath hairs can be used as keys to distinguish diploid *M. sinensis* and tetraploid *M. sacchariflorus* grown in pots. Diploid *M. sinensis* has awns on florets but no sheath hairs, whereas tetraploid *M. sacchariflorus* shows the opposite (i.e., no awns on florets but has sheath hairs). The presence/absence of awns on florets observation was carried out after flowering time in October 2011. The presence/absence of leaf sheaths hair was examined in October 2011. Relatively young and thick stems were chosen for the observation of the presence/absence of leaf sheath hairs.

ITS region sequencing

The ITS sequences of Hy-1, Hy-2, Hy-3, Illinois clone of *M. ×giganteus*, maternal parents (K-Ogi-1 and K-Ogi-2), and putative pollen parents (K-Susuki-1 and K-Susuki-2) were sequenced. In addition, the ITS sequences of tetraploid *M. sacchariflorus* and diploid *M. sinensis* from four sympatric populations in Japan (Miyazaki, Gifu, Tsukuba, and Tomakomai) were sequenced. One accession of each species was analyzed for each population. The geographical coordinates of the sympatric populations were described in Nishiwaki et al. [23]. DNA was extracted from leaves using a DNeasy Plant Mini Kit (Qiagen, Tokyo, Japan) following the protocol of the manufacturer. The forward and reverse primers were designed following Sun et al. [28] to amplify the ITS regions of each *Miscanthus* taxon. The polymerase chain reaction (PCR) was carried out with the primer set and ExTaq DNA polymerase (TaKaRa Bio Inc., Shiga, Japan). Both reactions consisted of an initial denaturation at 94°C for 3 min; followed by 38 cycles of denaturation (94°C for 30 s), annealing (55°C for 30 s), and extension (72°C for 80 s); then a final extension at 72°C for 7 min. Amplification products were confirmed by electrophoresis on 1.0% agarose gel containing ethidium bromide. The electrophoresis was conducted at 100 V for 30 min. PCR products were purified with ExoSAP-IT prior to the sequencing analysis. Sequencing was
performed using a BigDye Terminator Cycle Sequencing Kit (Applied Biosystems, Tokyo, Japan) on an ABI Prism 3100 Genetic Analyzer (Applied Biosystems) following the protocol of the manufacturer. Sequence heterogeneity was found within PCR amplification products of Hy-1, Hy-2, and Hy-3. To obtain two different ITS sequences, the PCR amplification products were cloned into the pGEM-T Easy vector (Promega Corp., Tokyo, Japan). Vectors containing DNA fragments were amplified using *Escherichia coli* strain JM109 (Promega Corp.) After overnight culture, plasmids were isolated using High Pure Plasmid Isolation Kit (Roche Applied Science). Plasmids were sequenced using ABI Prism 3130 Genetic Analyzer (Applied Biosystems).

Chloroplast analysis

Four chloroplast DNA regions (*psbC-trnS*, *trnS-trnT*, *trnL-trnF*, and *rpl20-rps12*) of the triploid hybrids, maternal parents (K-Ogi-1 and K-Ogi-2), putative pollen parents (K-Susuki-1 and K-Susuki-2) and *M. × giganteus* were sequenced. DNA was extracted from leaves using a DNeasy Plant Mini Kit (Qiagen). Chloroplast regions were amplified by PCR using specific primer pairs shown in Table 1. The PCR was carried out with the primer set (Table 1) and ExTaq DNA polymerase (TaKaRa Bio). PCR reactions, electrophoresis and sequencing methods were identical to that done for the ITS region analysis.

Sequence data analysis

Sequencing data were aligned using version 2.6 of the SeqScape software (Applied Biosystems) and adjusted manually as necessary. We analyzed a combined data set including all four chloroplast DNA regions. We determined chloroplast DNA haplotypes from nucleotide substitutions and insertions or deletions (indels). Indels were treated as single-mutation events. The ITS sequences were aligned using the same software, and adjusted manually when necessary. The following sequences have been deposited in DNA Data Bank of Japan with ID number in parentheses: *psbC-trnS* of K-Susuki-1 (AB670333), K-Susuki-2 (AB670332), K-Ogi-1 (AB670334); *trnS-trnT* of K-Susuki-1 (AB670340),...
K-Susuki-2 (AB670339), K-Ogi-1 (AB670341); \textit{trnL-trnF} of K-Susuki-1 (AB670347),
K-Susuki-2 (AB670346), K-Ogi-1 (AB670348); and \textit{rpl20-rps12} of K-Susuki-1
(AB670354), K-Susuki-2 (AB670353), K-Ogi-1 (AB670355).

Results

Comparison of morphological characteristics of the putative triploid hybrids compared to M. ×giganteus, diploid M. sinensis, and tetraploid M. sacchariflorus

Diploid \textit{M. sinensis} plants did not have hairs on their sheaths, but had awns on their florets (Figure 1A, B). The tetraploid \textit{M. sacchariflorus} plants had hairs on the sheaths, but no awns on their florets (Figure 1A, B). The Illinois clone of \textit{M. ×giganteus} had hairs on their sheaths but no awns on its florets (Figure 1A, B). Hy-1, Hy-2, and Hy-3 possessed hairs on their sheaths as in tetraploid \textit{M. sacchariflorus} (Figure 1A). All putative hybrids had awns on their florets as observed in \textit{M. sinensis} (Figure 1B).

Comparison of ITS sequences between putative triploid hybrids, M. ×giganteus, diploid M. sinensis, and tetraploid M. sacchariflorus

Direct sequences of ITS regions of Hy-1, Hy-2, and Hy-3 showed that all putative hybrids had heterozygous sequences. Clones of the ITS sequences indicated that Hy-1 had two types of ITS sequences, one matched that of K-Susuki-2 and the other was a typical ITS sequence of tetraploid \textit{M. sacchariflorus} (Table 2). Likewise, the ITS sequences of Hy-2 and Hy-3 were heterozygous. One of the ITS sequences of Hy-2 and Hy-3 matched that of K-Susuki-2 and the other matched that of K-Ogi-2 (Table 2). There were several distinct nucleotide polymorphisms between the ITS sequences of Hy-1, Hy-2, and Hy-3 to that of \textit{M. ×giganteus}. At ITS-177, the genotype of \textit{M. ×giganteus} was ‘G’, whereas the genotypes of the all triploids were ‘A/G’. The genotypes of Hy-2 and Hy-3 were ‘A/G’ at ITS-274, whereas the genotypes of Hy-1 and \textit{M. ×giganteus} were ‘A’ at ITS-274. K-Ogi-1 (the
maternal parent of Hy-1) showed heterozygosity in the ITS sequence at ITS-177 (‘A/G’),
ITS-291 (‘A/G’), ITS-331 (‘C/T’), ITS-337 (‘C/T’), and ITS-525 (‘GT/AGGG’) (Table 2).
K-Ogi-2 also showed heterozygosity at ITS-274 (‘A/G’) and ITS-285 (‘C/T’) (Table 2). In
contrast to K-Ogi-1 and K-Ogi-2, tetraploid M. sacchariflorus from Tomakomai, Tsukuba,
Gifu and Miyazaki were homozygous in their ITS sequences. The sequence was specific to
tetraploid M. sacchariflorus and can be differentiated with the ITS sequences of diploid M.
sinensis based on polymorphisms at ITS-291, ITS-331, ITS-337, and ITS-525 (Table 2). The
genotypes of diploid M. sinensis accessions from Kushima, Miyazaki, Gifu, Tsukuba and
Tomakomai at ITS-291, ITS-331, ITS-337, and ITS-525 were ‘G’, ‘T’, ‘T’, and ‘GT’
respectively; whereas the genotypes of tetraploid M. sacchariflorus accessions from
Miyazaki, Gifu, Tsukuba and Tomakomai were ‘A’, ‘C’, ‘C’, and ‘AGGG’ respectively.

Chloroplast DNA sequence of K-Ogi-1, K-Ogi-2, tetraploid M. sacchariflorus and diploid M.
sinensis of Kushima

Chloroplast DNA sequence results are shown in Table 3. There are indel polymorphisms
after the position 669-bp in the region of trnL–trnF, but they were excluded from further
analysis because of alignment complexity. Diploid M. sinensis (K-Susuki-1, K-Susuki-2)
and tetraploid M. sacchariflorus (K-Ogi-1 and K-Ogi-2) could be distinguished by
nucleotide substitutions at position 57-bp in trnS-trnT region, 271-bp in trnL-trnF region,
and 671-bp in rpl20-rps12 region (Table 3). In addition, tetraploid M. sacchariflorus had 6
bp inserts at position 212-bp in trnS-trnT region, and 17 bp deletion at position 1002-bp in
the trnS-trnT region. The chloroplast DNA sequences of tetraploid M. sacchariflorus from
Miyazaki, Gifu, Tsukuba, and Tomakomai sympatric populations also showed 6 bp insert at
position 212-bp and 17 bp deletion at position 1002-bp in trnS-trnT region as in K-Ogi-1
and K-Ogi-2 (data not shown). Moreover, the tetraploid M. sacchariflorus plants also had
‘C’ at position 57-bp of trnS-trnT region, ‘G’ at position 271-bp in trnL-trnF region, and ‘A’
at position 671-bp in rpl20-rps12 region as in as in K-Ogi-1 and K-Ogi-2 (data not shown).
Meanwhile, the triploid hybrids and M. xgiganteus had chloroplast DNA typical of
tetraploid M. sacchariflorus.
Discussion

The morphological characteristics of the triploid accessions Hy-2 and Hy-3 appeared to be a combination of the characteristics of diploid *M. sinensis* and tetraploid *M. sacchariflorus*. The ITS regions of Hy-2 and Hy-3 were a combination of the sequences of maternal plant K-Ogi-2 with putative pollen parent K-Susuki-2. Based on these results and the karyotype analysis results reported in Nishiwaki et al. [23], we conclude that Hy-2 and Hy-3 are triploid hybrids of diploid *M. sinensis* and tetraploid *M. sacchariflorus*, and can be classified as *M. ×giganteus*.

The ITS sequences of Hy-1 were a combination between K-Ogi-1 and K-Susuki-2, but the maternal parent K-Ogi-1 also had heterozygous ITS sequences, which were identical to that of Hy-1. Consequently, the hybrid origin of Hy-1 cannot be determined based on ITS sequence data alone. Additional studies using molecular markers such as SSRs, EST-SSRs, or SNPs will confirm the present results. Hy-1 had awns on its florets, which is typical of *M. sinensis*, and had hairs on its leaf sheaths as in *M. sacchariflorus* (Table 3). In addition, the DNA content of Hy-1 was similar to that of *M. ×giganteus* [23]. Based on these results, we also conclude that Hy-1 can be classified as *M. ×giganteus*. Hy-1, Hy-2 and Hy-3 possessed *M. sacchariflorus* type of chloroplast DNA similar to *M. ×giganteus*. Along with morphological differences, Hy-1, Hy-2, and Hy-3 may vary to the widely cultivated *M. ×giganteus* in resistance to diseases or pests [29-32], lignin and cellulose composition [33], or mineral content [34-35]. Newly found triploid hybrids can serve as additional genetic sources of the widely cultivated *M. ×giganteus* clone.

Both K-Ogi-1 and K-Ogi-2 showed heterozygosity in their ITS sequences, but only the ITS sequence of K-Ogi-1 showed a combination between tetraploid *M. sacchariflorus* and diploid *M. sinensis* (Table 2). In addition, tetraploid *M. sacchariflorus* from Miyazaki, Gifu, Tsukuba, and Tomakomai possessed homozygous ITS sequences. The ITS sequence of tetraploid *M. sacchariflorus* can be distinguished to that of diploid *M. sinensis* based on nucleotide ITS-291, ITS-331, ITS-337, and ITS-525 (Table 2). Although tetraploid *M. sacchariflorus* is suggested to have a hybrid origin between diploid *M. sinensis* and diploid *M. sacchariflorus* [15, 36], it seems that only one ITS sequence retained in tetraploid *M. sacchariflorus*. Based on these results, K-Ogi-1 may be derived from a recent crossing event involving a tetraploid *M. sacchariflorus* and a diploid *M. sinensis*. In addition
to ITS sequence, the chloroplast DNA type of K-Ogi-1 was also determined. K-Ogi-1 had chloroplast DNA typical of tetraploid *M. sacchariflorus*, indicating that the maternal parent of K-Ogi-1 was possibly a tetraploid *M. sacchariflorus*, and the pollen parent was diploid *M. sinensis*. More tetraploid hybrids like K-Ogi-1 may be found in sympatric population of tetraploid *M. sacchariflorus* and diploid *M. sinensis*. Indeed, it was reported that artificial hybridization between diploid *M. sinensis* var. *condensatus* and tetraploid *M. sacchariflorus* produced tetraploid hybrids besides triploid hybrids [26]. Because of the difference in genome composition to tetraploid *M. sacchariflorus*, these tetraploid hybrids can also be utilized as parents in *M. ×giganteus* breeding programs.

In this study, three triploids were confirmed to be hybrids between tetraploid *M. sacchariflorus* and diploid *M. sinensis*. In addition, a maternal parent of one of the triploid hybrids also had hybrid origin. Finding both triploid hybrids and a tetraploid hybrid in Kushima sympatric population supported the suggestion by Nishiwaki et al. [23] that hybridization frequently occurs in the sympatric areas where tetraploid *M. sacchariflorus* shows high seed set. Further investigation in such sympatric areas may reveal more natural hybrids between tetraploid *M. sacchariflorus* and diploid *M. sinensis*. Based on previous result, hybrids may be found in Gifu sympatric population, where the seed set of tetraploid *M. sacchariflorus* was relatively high [23]. Indeed, triploid hybrids were identified in populations in Gifu in 1957 [20]. Gifu is also interesting because it is located northern of Kushima and has a colder climate, therefore the *Miscanthus* plants may have different flowering times, growth velocity, or higher tolerance to cold than the triploid hybrids identified in Kushima. Since hybrids identified in this study had tetraploid *M. sacchariflorus* as the maternal parent, collecting and analyzing seeds from tetraploid *M. sacchariflorus* in such areas is a good strategy to identify natural *Miscanthus* hybrids that can be used as bioenergy crops.

Acknowledgments

Funding was provided by a grant from the Energy Biosciences Institute.
References

Table 1 – Primer sets used to amplify chloroplast DNA regions of putative triploid hybrids, *M. x giganteus*, diploid *M. sinensis*, and tetraploid *M. sacchariflorus*

<table>
<thead>
<tr>
<th>Chloroplast DNA region</th>
<th>Direction</th>
<th>Primer sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>trnL - trnF</td>
<td>Forward</td>
<td>5’-CGAAATCGGTAGACGCTACG-3’</td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-ATTGGAAGTGGTGACACGAG-3’</td>
<td></td>
</tr>
<tr>
<td>psbC - trnS</td>
<td>Forward</td>
<td>5’-GGTCGCTGACCAAGAAACCAC-3’</td>
<td>[38]</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GGTTGGAACCTCCTCCTCTC-3’</td>
<td></td>
</tr>
<tr>
<td>trnS - trnT</td>
<td>Forward</td>
<td>5’-CGAGGGGTTCGAATCCCTC-3’</td>
<td>[38]</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-AGAGCCTGCATTTGTAATG-3’</td>
<td></td>
</tr>
<tr>
<td>rpl20 - rps12</td>
<td>Forward</td>
<td>5’-TTGGTTCATCGTGTCGCCGAC-3’</td>
<td>[39]</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GTCGAGGAACATGTACTAGG-3’</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 – Polymorphisms in ITS region sequences of the putative triploid hybrids, *M. xgiganteus*, diploid *M. sinensis*, and tetraploid *M. sacchariflorus*

<table>
<thead>
<tr>
<th>Accession</th>
<th>Origin</th>
<th>Copy</th>
<th>Position in ITS sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>177 274 285 291 331 337 525</td>
</tr>
</tbody>
</table>

Putative hybrids

Hy-1 Kushima 1 A A C G T T GT

2 G A C A C C AGGG

Hy-2 Kushima 1 A A C G T T GT

2 G G C A C C AGGG

Hy-3 Kushima 1 A A C G T T GT

2 G G T A C C AGGG

M. xgiganteus

M. xgiganteus Illinois G A C A/G C/T C/T GT/AGGG

M. sinensis
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Susuki-1</td>
<td>Kushima</td>
<td>A</td>
<td>A</td>
<td>T</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>K-Susuki-2</td>
<td>Kushima</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>1062</td>
<td>Tomakomai</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>1145</td>
<td>Tsukuba</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>1042</td>
<td>Gifu</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>T</td>
</tr>
<tr>
<td>1001</td>
<td>Miyazaki</td>
<td>A/G</td>
<td>A</td>
<td>C</td>
<td>G</td>
<td>T</td>
</tr>
</tbody>
</table>

M. sacchariflorus

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Ogi-1</td>
<td>Kushima</td>
<td>A/G</td>
<td>A</td>
<td>C</td>
<td>A/G</td>
<td>C/T</td>
</tr>
<tr>
<td>K-Ogi-2</td>
<td>Kushima</td>
<td>G</td>
<td>A/G</td>
<td>C/T</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>42</td>
<td>Tomakomai</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>89</td>
<td>Tsukuba</td>
<td>G</td>
<td>A/G</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>Gifu</td>
<td>G</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>Miyazaki</td>
<td>G</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 3 – Chloroplast type of putative triploid hybrids, Illinois clone of *M. ×giganteus*, diploid *M. sinensis* and tetraploid *M. sacchariflorus* collected from Kushima sympatric population

<table>
<thead>
<tr>
<th>Accession</th>
<th>psbC-trnS</th>
<th>trnS-trnT</th>
<th>trnL-trnF (^{a})</th>
<th>rpl20-rps12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>183</td>
<td>216</td>
<td>441</td>
<td>1158</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>394</td>
<td>622</td>
<td>1002</td>
</tr>
<tr>
<td></td>
<td>271</td>
<td>389</td>
<td>394</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>671</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Putative hybrids

Hy-1, Hy-2, Hy-3

| A | T | C | G | C | 6bp | G | T | - | G | C | T | G | A |

M. ×giganteus

| A | T | C | G | C | 6bp | G | T | - | G | C | T | G | A |

M. sinensis

K-Susuki-1

| A | T | C | A | A | - | A | T | 17bp \(^{2}\) | T | A | A | G | C |

K-Susuki-2

| A | T | C | A | A | - | A | T | 17bp | T | C | A | T | C |

M. sacchariflorus

K-Ogi-1

| A | T | C | G | C | 6bp \(^{3}\) | G | T | - | G | C | T | G | A |

K-Ogi-2

| A | T | C | G | C | 6bp | G | T | - | G | C | T | G | A |
a) The indel polymorphisms at position 669 bp in trnL-trnF region was excluded from further analysis because of the alignment complexity. 17 bp insertion: AGTAACACAAAAAATGG, 6 bp insertion: GGGGAA
Figure 1. Three putative triploid hybrids (Hy-1, Hy-2, and Hy-3), Illinois clone of *M. ×giganteus*, tetraploid *M. sacchariflorus* (K-Ogi-1 and K-Ogi-2) and diploid *M. sinensis* (K-Susuki-1 and K-Susuki-2) were examined for the presence or absence of leaf sheath hairs and awns on florets. A) Leaf sheaths of putative triploid hybrids (Hy-1, Hy-2, and Hy-3), *M. ×giganteus*, tetraploid *M. sacchariflorus* (K-Ogi-1 and K-Ogi-2) and diploid *M. sinensis* (K-Susuki-1 and K-Susuki-2). Number 1, 2, 3, 4, 5, 6, 7, and 8 were K-Susuki-1, K-Susuki-2, *M. ×giganteus*, Hy-1, Hy-2, Hy-3, K-Ogi-1, and K-Ogi-2, respectively. K-Susuki-1 and K-Susuki-2 do not have leaf sheath hair whereas other plants have. B) Awns on florets of putative triploid hybrids (Hy-1, Hy-2, and Hy-3), *M. ×giganteus*, tetraploid *M. sacchariflorus* (K-Ogi-1 and K-Ogi-2), and diploid *M. sinensis* (K-Susuki-1 and K-Susuki-2).