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Global dynamics of a stochastic neuronal oscillator
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(Received 5 August 2013; published 13 November 2013)

Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These
oscillators, which are called neuronal oscillators, share some common response structures with other biological
oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an
impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic
noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density
evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to
a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes
the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that
describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal
oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate
the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of
spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of
spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed
into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This
allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient
responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our
analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength,
and the impulsive input parameters.

DOI: 10.1103/PhysRevE.88.052709 PACS number(s): 87.19.lc, 87.19.ls, 02.50.Fz, 05.10.Gg

I. INTRODUCTION

In nervous systems, information is transmitted via spikes;
however, the question of whether information is carried via
detailed spike patterns (temporal or timing coding) or simply
by the number of spikes in a given time period (rate coding) is
a subject of active debate [1]. Each neuron in a neural network
receives inputs from other neurons or outside of the neural
network and transforms the inputs into spikes based on the
intrinsic dynamics of the neuron. In the theory of artificial
neural networks, the inputs are transformed by a function
(for example, sigmoid function) and information carrier in
an artificial neural network depends on the selection of the
function. Thus, it is important to investigate how each neuron
transforms the inputs into spikes. One necessary condition for
temporal coding is that the spike generation of a neuron must
not depend substantially on the past spike generation. Thus,
the duration of the transient regime in neuronal activity must
be short enough to achieve this independence. This means
that the properties of the transient regime of the neuronal
activity may then offer insights into whether the pattern of
spikes is a possible information carrier in nervous systems.
Because information processing in nervous systems may occur
in the transient regime, the transient dynamics of neurons and
neuronal models [2–5], and those of neural networks [6,7], are
the focus of analysis.

Nonlinear oscillators have been used to model neurons
that fire periodically in the absence of input [8,9]. These
nonlinear oscillators are called neuronal oscillator and are
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a subclass of nonlinear oscillators that are also found in
a wide variety of biological and complex systems such as
cardiac cells [10,11], respiratory rhythm generation [12,13],
Josephson junctions [14], and climate dynamics [15]. In
biological systems, the system may converge slowly to the
asymptotic dynamics. In this case, the transient dynamics of
the system can occur far from the asymptotic structure. Thus,
it is important to analyze the global dynamics of the nonlinear
oscillators to understand the transient dynamics. However, as
the global dynamics are difficult to understand, higher-order
dynamics are usually analyzed after a reduction to lower-order
dynamics. The most successful approach has been the phase
reduction method [16,17]. If a nonlinear oscillator is weakly
perturbed, the trajectories will be in the neighborhood of the
limit cycle of the nonlinear oscillator. Thus, the dynamics can
be approximated by a vector field on the limit cycle, and this
makes it possible to represent the limit-cycle dynamics in a
higher-dimensional phase space by a one-dimensional (1D)
variable called the phase.

The impulse-driven nonlinear oscillators are often used in
the analysis of neuronal or biological oscillators [4,17–25],
and depending on the relaxation rate to the limit cycle,
the state points of the nonlinear oscillator can be far from
the limit cycle. For example, Glass and Sun [20] analyzed the
dependence of the bifurcation structure of an impulse-driven
nonlinear oscillator on the relaxation rate. For their analysis,
they used a 2D extension of the phase transition curve for
the nonlinear oscillator, which represents the phase shift due
to a single isolated impulse. However, it is usually only
the dynamics in the asymptotic regime that are analyzed since
there are few available tools for analyzing the dynamics in the
transient regime.
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Noise will also affect the dynamics, since intrinsic noise,
e.g., ion channel noise [26], might restrict the accuracy of
the spike generation. In general, nonlinear systems are often
influenced by stochastic fluctuations. In our previous study, we
introduced a Markov operator for an impulse-driven stochastic
neuronal oscillator that can approximate the density evolution
in the entire phase space of the oscillator driven by time-
varying impulses [5].

In this paper, we analyze the global dynamics of a
stochastic neuronal oscillator driven by time-varying impulses
by changing the relaxation rate to the limit cycle, intrinsic
noise strength, and input impulse parameters. We introduce
a Markov operator for an infinite relaxation rate using the
small disturbance asymptotic theory [27,28], and this operator
describes the stochastic dynamics around the limit cycle. We
investigate the dynamics of the entire phase space without
input impulses using our Markov operator for finite and infinite
relaxation rates and analyze the response of the stochastic
neuronal oscillator to impulsive inputs by examining the
effects of the relaxation rate, intrinsic noise strength, and input
impulse parameters. For both the finite and infinite cases, the
response of the stochastic neuronal oscillator to time-varying
impulses is described by the product of the Markov operators.
We can decompose the Markov operator into stationary and
transient components based on the properties of eigenvalues
and eigenfunctions to identify the components that affect
the current response. Moreover, we introduce a stochastic
rotation number to relate the dynamics of the oscillator to
the number of spikes per unit time and the interspike interval
(ISI) density to understand the steady state dynamics of
the oscillator. Specifically, we analyze the components of the
stochastic rotation number based on the properties of the
Markov operator. In relation to the information carrier in
nervous systems, we show how the past activity of the
stochastic neuronal oscillator affects the current firing rate.
We demonstrate that there can exist the long-range depen-
dence of the current neuronal activity on the past activity
depending on the relaxation rate, the noise strength, and input
parameters.

II. METHODS

A. Stochastic Poincaré oscillator

The Poincaré oscillator and its variant are a member of a
set of systems that are widely used in the analysis of neuronal
or biological oscillators [4,9,17–24,29–31]. Based on [5,20],
we introduce the Poincaré oscillator here and summarize
its properties. The oscillator can be described in polar
coordinates as

dR
(0)
t

dt
= KR

(0)
t

(
1 − R

(0)
t

)
,

d�
(0)
t

dt
= 1, (1)

where R
(0)
t ∈ {x; x > 0,x ∈ R} is the radial coordinate, and

�
(0)
t ∈ S1 (S1 is the unit circle) is the normalized angular

coordinate that varies in [0,1); the superscript (0) indicates
the deterministic case and the subscript represents the time
t. The positive parameter K is the relaxation rate to the
limit cycle; the stable limit cycle is the unit circle with
period 1. Trajectories starting from any initial point in the

phase plane, except the origin, wind counterclockwise around
the origin and converge to the limit cycle as t → ∞. We
define X

(0)
t = R

(0)
t cos(2π�

(0)
t ) as the “membrane potential”

and Y
(0)
t = R

(0)
t sin(2π�

(0)
t ) as the “refractoriness.” The spike

occurs when the state point crosses the positive x axis (For
the detailed reasons to use the Poincaré oscillator, see the
Appendix.) We consider the relationship between the state
point just before the nth impulse and that just before the (n +
1)th impulse. Following [20], we define the nth impulsive
stimulation by an instantaneous horizontal shift by an amount
An, where n denotes the nth impulse. If an impulse with
amplitude An shifts a state point (rn,φn) to the point (r ′

n,φ
′
n),

the relation becomes

r ′
n = FR(rn,φn) = [

r2
n + A2

n + 2Anrn cos(2πφn)
]1/2

,
(2)

φ′
n = F�(rn,φn) = 1

2π
arccos

rn cos(2πφn) + An

FR(rn,φn)
,

where the subscripts R and � denote the shift in the directions
of the radial and normalized angular coordinates, respectively.
To evaluate the arc-cosine function, we should take 0 < φ′

n <

0.5 for 0 < φn < 0.5 and 0.5 < φ′
n < 1 for 0.5 < φn < 1.

Equation (2) is the 2D version of the phase transition curve of
this oscillator, which represents the phase shift due to a single
isolated impulse.

After the nth interimpulse interval In, the state point starting
from the initial point (r ′

n,φ
′
n), as determined by Eq. (1), is

expressed as follows:

rn+1 = R
(0)
In

= r ′
n/{(1 − r ′

n)e−KIn + r ′
n},

(3)
φn+1 = �

(0)
In

= φ′
n + In (mod 1).

In the case of K → ∞, the dynamics of the oscillator are
described only by the normalized angular coordinate. Thus,
the effect of the nth impulse is

φ′
n = F̃�(φn) = 1

2π
arccos

cos(2πφn) + An√
1 + A2

n + 2An cos(2πφn)
,

(4)

which defines the phase transition curve for this model.
F̃�(φn) − φn corresponds to the phase response curve, which
shows the phase shift due to an impulse, and the shape of
the phase response curve is biphasic if |A| < 1 [9]. The
biphasic phase response curves are observed experimentally
(for example, [32]). The tilde denotes the function as K → ∞.
In what follows, we use the tilde for functions and variables
when it is necessary to indicate that K → ∞. Using this phase
transition curve, the state point just before the (n + 1)th
impulse becomes

φn+1 = �̃
(0)
In

= φ′
n + In (mod 1), (5)

where φ′
n = F̃�(φn). In previous study, we transform Eq. (1)

into Cartesian coordinates and include a noise term in the
expression for the membrane potential. In polar coordinates,
the Poincaré oscillator with the noise term can be expressed
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as [5]

dR
(ε)
t = KR

(ε)
t

(
1 − R

(ε)
t

)
dt + ε2

2

sin2
(
2π�

(ε)
t

)
R

(ε)
t

dt

+ ε cos
(
2π�

(ε)
t

)
dWt,

d�
(ε)
t = dt + ε2

4π

sin
(
4π�

(ε)
t

)
R

(ε)
t

2 dt − ε

2π

sin
(
2π�

(ε)
t

)
R

(ε)
t

dWt ,

(6)

where the superscript indicates the dependence of the random
variables on the strength of the noise term ε ∈ (0,1], for which
ε = 0 gives the deterministic case. The 1D standard Wiener
process is denoted by Wt . We refer to Eq. (6) as a stochastic
Poincaré oscillator.

B. Stochastic phase transition operator

In our previous study [5], we introduced a Markov operator
that relates the density of the state points just before the nth
impulse to that just before the (n + 1)th impulse. We called
this Markov operator a stochastic phase transition operator
(SPTO). In what follows, we derive SPTOs for infinite K.
According to Eq. (2), the state point just before the nth impulse
(rn,φn) shifts to (r ′

n,φ
′
n) after the nth impulse. After this shift,

the dynamics of the state point are described by the following
integral equation with the initial condition (r ′

n,φ
′
n) defined by

Eq. (2):

R
(ε)
In

= r ′
n + K

∫ In

0
R(ε)

s

(
1 − R(ε)

s

)
ds

+ ε2

2

∫ In

0

sin2
(
2π�(ε)

s

)
R

(ε)
s

ds + ε

∫ In

0
cos

(
2π�(ε)

s

)
dWs,

�
(ε)
In

= φ′
n + In + ε2

4π

∫ In

0

sin
(
4π�(ε)

s

)
R

(ε)
s

2 ds

− ε

2π

∫ In

0

sin
(
2π�(ε)

s

)
R

(ε)
s

dWs, (mod 1). (7)

In the case of K → ∞, the dynamics of the stochastic Poincaré
oscillator can be described by the dynamics on the limit cycle.
As K → ∞, R

(ε)
In

= 1 and the dynamics of �
(ε)
t are given by

�
(ε)
t = �̃

(ε)
In

= φ′
n + In + ε2

4π

∫ In

0
sin

(
4π�̃(ε)

s

)
ds

− ε

2π

∫ In

0
sin

(
2π�̃(ε)

s

)
dWs, (mod 1), (8)

where φ′
n is defined by Eq. (4). We call Eq. (8) a phase equation

and note that it includes the modification term suggested by
Yoshimura and Arai [33] since we take K → ∞ after the
coordinate transform.

We introduce a new random variable �
(ε)
t = �

(ε)
t (mod 1)

that takes a value in R and explicitly indicates the rotation
around the origin. Equation (7) then becomes

R
(ε)
In

= r ′
n + K

∫ In

0
R(ε)

s

(
1 − R(ε)

s

)
ds

+ ε2

2

∫ In

0

sin2
(
2π�(ε)

s

)
R

(ε)
s

ds + ε

∫ In

0
cos

(
2π�(ε)

s

)
dWs,

�
(ε)
In

= φ′
n + In + ε2

4π

∫ In

0

sin
(
4π�(ε)

s

)
R

(ε)
s

2 ds

− ε

2π

∫ In

0

sin
(
2π�(ε)

s

)
R

(ε)
s

dWs. (9)

Similarly, for Eq. (8), we introduce the random variable �̃
(ε)
In

=
�̃

(ε)
In

(mod 1), and Eq. (8) becomes

�̃
(ε)
In

= φ′
n + In + ε2

4π

∫ In

0
sin

(
4π�̃(ε)

s

)
ds

− ε

2π

∫ In

0
sin

(
2π�̃(ε)

s

)
dWs. (10)

In what follows, we call �
(ε)
In

and �̃
(ε)
In

a lifted angular
coordinate. To calculate the stochastic kernels of the SPTO,
i.e., the transition density corresponding to a given stochastic
differential equation, we apply the small disturbance asymp-
totic theory, which is an asymptotic expansion of the stochastic
processes [27,28]. To apply this theory, we assume that the
diffusion coefficients in Eqs. (9) and (10) are not zero for any
s > 0. This assumption guarantees the asymptotic expansion
of the transition density around the normal distribution density.
Thus, we have to apply the theory to Eqs. (9) and (10)
separately to calculate the transition density. We derived the
stochastic kernel for the full equation [Eq. (9)] in our previous
study [5]. Here, we derive the stochastic kernel of the SPTO
for Eq. (10). We first expand �̃

(ε)
t with respect to ε as

�̃
(ε)
In

= �̃
(0)
In

+ εA1�̃In
+ o(ε),

where �̃
(0)
In

is a deterministic solution of Eq. (10) and A1�̃In
=

∂�̃
(ε)
In

∂ε
|ε=0, where the subscript �̃In denotes the derivative of

�̃
(ε)
In

explicitly. The derivative is

A1�̃In
= − 1

2π

∫ In

0
sin

(
2π�̃(0)

s

)
dWs.

To consider the stochastic dynamics around the deterministic
solution �̃

(0)
In

, we introduce a new random variable S̃
(ε)
In

=
(�̃(ε)

In
− �̃

(0)
In

)/ε. The expansion of S̃
(ε)
In

with respect to ε gives

S̃
(ε)
In

= A1�̃In
+ o(1).

The asymptotic expansion of the characteristic function of S̃
(ε)
In

with respect to ε is

�(ξ ) = E
[

exp
{
iξ

(
A1�̃In

+ o(1)
)}]

= E
[

exp
(
iξA1�̃In

){1 + o(1)}]
= E

[
exp

(
iξA1�̃In

)] + o(1)

= exp
{− 1

2

(

�̃In

(φn)ξ 2
)} + o(1), (11)

where ξ ∈ R and 
�̃In
(φn) = E[A2

1�̃In
] = ( 1

2π
)3{πIn −

1
2 cos[2π (2F̃�(φn) + In)] sin(2πIn)}. In Eq. (11), the second
equality is derived from the expansion of the exponential
function with respect to ε. The fourth equality is derived from
the Gaussianity of A1�̃In

. Using the inverse Fourier transform
of Eq. (11), we obtain

f
S̃

(ε)
In

(s) = n
[
s; 0,
�̃In

(φn)
] + o(1), (12)
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where s ∈ R and n[s; 0,
�̃In
(φn)] is the density of a 1D

Gaussian distribution with zero mean and a variance of

�̃In

(φn); the subscript denotes the density of the random

variable S̃
(ε)
In

. Equation (12) is derived by expanding around

the solution �̃
(0)
In

, and the obtained density is the 1D Gaussian
distribution in the direction of �̃. We use Eq. (12) to
approximate the density of �̃

(ε)
In

as

f
�̃

(ε)
In

(θ ; φn) � n
[
θ ; �̃(0)

In
(φn), ε2
�̃In

(φn)
]
, (13)

where s = (θ − �
(0)
In

)/ε. The dependence on φn is explicit in

the term �̃
(0)
In

(φn), and the function n[θ ; �̃(0)
In

(φn),ε2
�̃In
(φn)]

depends on φn via Eqs. (4) and (5). In this way, the difficulty
of the discontinuity caused by the impulse is avoided when
approximating f

�̃
(ε)
In

(θ ; φn). Using Eq. (13), the stochastic
kernel for the phase equation is given by

g∞,ε,An,In
(φ; φn) =

p=+∞∑
p=−∞

n
[
φ + p; �(0)

In
(φn), ε2
�̃In

(φn)
]
,

(14)

where φ = θ (mod 1). The summation with respect to φ takes
into account multiple rotations around the origin, and the
dependence of the stochastic kernel on K → ∞, ε, An, and In

is denoted explicitly using the subscript.
Using this stochastic kernel, the evolution of the density

just before the nth impulse to that just before the (n + 1)th
impulse is determined by

hn+1(φ) =
∫ 1

0
g∞,ε,An,In

(φ; φn)hn(φn)dφn =P∞,ε,An,In
hn(φ),

(15)

where hn is the density of the phase equation just before the
nth impulse. We call the P∞,ε,A,I operator a 1D SPTO.

Using the stochastic kernel for the full equation [see Eq. (8)
in [5]], the SPTO that expresses the relationship between the
density just before the nth impulse and that just before the
(n + 1)th impulse is written as

hn+1(r,φ) =
∫ 1

0

∫ ∞

0
gK,ε,An,In

(r,φ; rn,φn)hn(rn,φn)drndφn

= PK,ε,An,In
hn(r,φ), (16)

where hn is the density just before the nth impulse for the full
equation. It should be noted that we use h as the density for
both the full and phase equations. When these densities need
to be distinguished, we show the variables of h explicitly. The

PK,ε,A,I operator is referred to as a 2D SPTO, which is a 2D
generalization of the phase transition curve with a stochastic
term. In what follows, we use PK,ε,A,I for K ∈ (0,∞].

C. Spectral properties of the SPTO

The SPTO is a linear operator and contains all the
information about the density evolution. In what follows, we
discretize the SPTO to analyze its properties. We use numerical
integration to approximate the integral equations, Eqs. (15)
and (16). In the case of Eq. (16), we first truncate the integration
range of the r axis, since the density in the direction of r
decreases rapidly to zero as r increases. The integration range
for rn is large enough to approximate the integral equation as

hn+1(r,φ) �
∫ 1

0

∫ a

0
gK,ε,An,In

(r,φ; rn,φn)hn(rn,φn)drndφn.

(17)

We then discretize Eq. (17) using quadrature rules:

hn+1(rk,φl) �
Nφn∑
j=1

Nrn∑
i=1

w
rn

i w
φn

j gK,ε,An,In
(rk,φl ; rn,i ,φn,j )

×hn(rn,i ,φn,j ). (18)

Legendre-Gauss quadrature for the integration with respect to
rn and the trapezoidal rule for the integration with respect to
φn are used; the same nodes are used for the approximation,
i.e., the pair (rn,φn) and (r,φ) have the same nodes.

The numerical calculations were performed with MATLAB.
To calculate the density evolution, we set the discretization of
the density h(r,φ) as follows:⎛

⎜⎝
h(r1,φ1) . . . h

(
r1,φNφn

)
...

. . .
...

h
(
rNrn

,φ1
)

. . . h
(
rNrn

,φNφn

)
⎞
⎟⎠. (19)

We transform this matrix as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(r1,φ1)
...

h
(
rNrn

,φ1
)

...
h
(
r1,φNφn

)
...

h
(
rNrn

,φNφn

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

To calculate the density evolution using Eq. (20), we con-
structed the corresponding stochastic matrix given as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gK,ε,A,I,1,1,1,1 . . . gK,ε,A,I,1,1,Nrn ,1 . . . gK,ε,A,I,1,1,1,Nφn
. . . gK,ε,A,I,1,1,Nrn ,Nφn

...
. . .

...
. . .

...
. . .

...
gK,ε,A,I,Nrn ,1,1,1 . . . gK,ε,A,I,Nrn ,1,Nrn ,1 . . . gK,ε,A,I,Nrn ,1,1,Nφn

. . . gK,ε,A,I,Nrn ,1,Nrn ,Nφn

...
. . .

...
. . .

...
. . .

...
gK,ε,A,I,1,Nφn ,1,1 . . . gK,ε,A,I,1,Nφn ,Nrn ,1 . . . gK,ε,A,I,1,Nφn ,1,Nφn

. . . gK,ε,A,I,1,Nφn ,Nrn ,Nφn

...
. . .

...
. . .

...
. . .

...
gK,ε,A,I,Nrn ,Nφn ,1,1 . . . gK,ε,A,I,Nrn ,Nφn ,Nrn ,1 . . . gK,ε,A,I,Nrn ,Nφn ,1,Nφn

. . . gK,ε,A,I,Nrn ,Nφn ,Nrn ,Nφn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)
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where we set gK,ε,A,I,i,j,k,l = gK,ε,A,I (νi,φj ; rk,φl)wr
kw

φ

l for a
concise representation of the matrix. Usually, the stochastic
matrix is defined as a square matrix in which each row
consists of nonnegative real numbers that sum to 1. However,
for convenience, we set the stochastic matrix, which is a
discretization of the SPTO, to a square matrix whose columns
consist of non-negative real numbers and for which each
column sums to 1.

Similarly, we approximate Eq. (15) using the trapezoidal
rule as

hn+1(φk) �
Nφn∑
j=1

w
φn

j g∞,ε,An,In
(φk; φn,j )hn(φn,j ). (22)

In this case, the representations of the matrix and vectors are
easily deduced from Eq. (22).

Let us fix the input parameters A and I of the SPTO.
We analyze the spectral properties of the discretized SPTO
because the dynamics of the SPTO matrix are determined
by the eigenvalues and eigenfunctions (eigenvectors). Let
{αi} and {ei} be the eigenvalues of the discretized SPTO,
sorted in descending order according to their moduli, and the
corresponding eigenfunctions, respectively [i = 1,2, . . . ,Nφn

or Nφn
Nrn

, where Nφn
and Nφn

Nrn
are the dimensions of the

discretized SPTOs in Eqs. (15) and (16), respectively]. Since
the stochastic kernel is positive and the discretized SPTO is a
positive stochastic matrix, the properties of the matrix can be
summarized as follows [34]:

I: α1 = 1 and has a multiplicity of 1. The corresponding
eigenfunction has a unique invariant density h∗

K,ε,A,I or is e1

with positive coordinates, i.e., the discretized SPTO is ergodic.
II: |αi | < 1 for all eigenvalues different from 1.
Hence, the eigenvalues αi and eigenfunctions ei with i � 2

have transient dynamics or contain the “dynamic” information
of the discretized SPTO, whereas the invariant density h∗

K,ε,A,I

or e1 has stationary dynamics or “static” information of the
discretized SPTO. In other words, the invariant density shows
the response of the oscillator to periodic impulses as time goes
to infinity. Based on these properties, the discretized SPTO is
decomposed into two parts:

PK,ε,A,I = VK,ε,A,I + QK,ε,A,I , (23)

where VK,ε,A,I represents the stationary dynamics, i.e., for a
density h, VK,ε,A,I h = h∗

K,ε,A,I , and QK,ε,A,I corresponds to
the transient dynamics. It should be noted that the spectral
decomposition in Eq. (23) also holds for the “original”
SPTO, since the SPTO is a constrictive Markov operator. The
constrictiveness means thatPn

K,ε,A,I h does not concentrate on a
set of very small or vanishing measures as n → ∞ (see [35,36]
for an explanation of constrictiveness and Proposition 5.3.2
in [35] to verify the constrictiveness of the SPTO). In short,
since the stochastic kernel of the SPTO is positive, the SPTO
is asymptotically stable [35] and thus constrictive.

For Eq. (16), the discretization of VK,ε,A,I in Eq. (23) is
expressed as follows:

h∗
K,ε,A,I 1T , (24)

where T denotes the transpose, 1 represents an (Nrn
× Nφn

)
vector of 1’s, and h∗

K,ε,A,I is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h∗
K,ε,A,I (r1,φ1)

...

h∗
K,ε,A,I

(
rNrn

,φ1
)

...

h∗
K,ε,A,I

(
r1,φNφn

)
...

h∗
K,ε,A,I

(
rNrn

,φNφn

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

D. Stochastic phase locking

Let us set the eigenvalues of the discretized SPTO αi =
ρi exp(2πjκi), with j as the imaginary unit and where ρi

and κi are the modulus and angle of αi , respectively, and the
corresponding eigenfunctions ei to fixed values. Applying the
discretized PK,ε,A,I to ei for a total of k times yields

Pk
K,ε,A,I ei = αk

i ei = ρk
i exp(2πjkκi)ei (k = 1,2, . . .).

Based on the dynamic information of the discretized PK,ε,A,I ,
that is, eigenvalues αi and eigenfunctions ei with i � 2,
Doi et al. [37] defined stochastic bifurcation as the abrupt
(not smooth) change of the eigenvalues of the operator from
complex to real values at a possible stochastic bifurcation
point. Furthermore, they also defined stochastic phase locking
as the response that satisfies the following condition in addition
to the stochastic bifurcation condition: In a certain range, there
exists an i that satisfies

Pp

K,ε,A,I ei = α
p

i ei = ρ
p

i exp(2πjpκi)ei = ρ
p

i ei (i � 2).

In this study, we use the second eigenvalue of the operator to
define the stochastic bifurcation and stochastic phase locking
for categorizing the dynamics of the stochastic Poincaré
oscillator. The definition of the stochastic bifurcation is still in
an active debate. For the detailed discussion of the stochastic
bifurcation, please see [37–43].

E. Contribution to the current state from the past states

Let us consider a sequence of n impulses and
the corresponding product of discretized SPTOs Hn,1 =
PK,ε,An,In

PK,ε,An−1,In−1 . . .PK,ε,A1,I1 that describes the re-
sponse of the stochastic Poincaré oscillator to the impulses.
We set the current state to the state just before the (n +
1)th impulse, which is represented by hn+1(=Hn,1h1). Since
the current density is determined by the product of the
discretized SPTOs, the current density depends on the past
activity of the stochastic Poincaré oscillator. The structure of
the products PK,ε,An,In

PK,ε,An−1,In−1 . . .PK,ε,A1,I1 tells us how
the past activity affects the current density.
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Using Eq. (23), the product is expressed as follows [5]:

hn+1 = Hn,1h1

=
⎧⎨
⎩VK,ε,An,In

+
n−1∑
i=1

⎛
⎝n−i−1∏

j=0

QK,ε,An−j ,In−j

⎞
⎠VK,ε,Ai ,Ii

+
n−1∏
l=0

QK,ε,An−l ,In−l

}
h1

= h∗
K,ε,An,In

+
n−1∑
i=1

⎛
⎝n−i−1∏

j=0

QK,ε,An−j ,In−j

⎞
⎠ h∗

K,ε,Ai ,Ii

+
n−1∏
l=0

QK,ε,An−l ,In−l
h1, (26)

where h∗
K,ε,Ai ,Ii

is the invariant density of PK,ε,Ai ,Ii
, (1 �

i � n). It should be noted that Eq. (26) holds for both
“original” and “discretized” SPTOs since Eq. (23) holds for
both. Equation (26) suggests that the invariant density at the
last impulse, e.g., the invariant density of PK,ε,An,In

, always
appears in the equation of the product as is. If all the transient
components of each discretized SPTO in the product are zero
matrices, then the density is always equal to the invariant
density at the last impulse. The second term in Eq. (26)
shows the effect of the difference between adjacent invariant
densities, as the following equation holds for each term in the
second term:

QK,ε,Ai ,Ii
VK,ε,Ai−1,Ii−1h1 = QK,ε,Ai ,Ii

h∗
K,ε,Ai−1,Ii−1

= PK,ε,Ai ,Ii
h∗

K,ε,Ai−1,Ii−1
− h∗

K,ε,Ai ,Ii
.

(27)

This means that the contribution of this term becomes small
if the difference between adjacent invariant densities is small.
The third term in Eq. (26) describes the dependence on the
initial density.

Figure 1 illustrates how each term in the second and third
terms of Eq. (26) affect the current density. For example,
QK,ε,An,In

VK,ε,An−1,In−1 is produced by PK,ε,An,In
PK,ε,An−1,In−1 ,

since VK,ε,Ai ,Ii
and QK,ε,Ai ,Ii

are from PK,ε,Ai ,Ii
(1 � i � n),

respectively. In other words, QK,ε,An,In
VK,ε,An,In

is determined
by the input parameters of the nth and (n − 1)th impulses.
Thus, we treat the term QK,ε,An,In

VK,ε,An−1,In−1 as the effect
produced by the (n − 1)th and nth impulses as in Fig. 1. In
this way, we can attribute the past neuronal activity of the
stochastic Poincaré oscillator to the components in Eq. (26).
To evaluate the relative contribution of each term that contains
information about past activity, we use the following one-norm
of a discretized operator B = (bij ):

‖B‖1 = sup
x	=0

‖Bx‖1

‖x‖1
= max

1�j�m

m∑
i=1

|bij |wi, (28)

where x is a vector, and ‖x‖1 = ∑m
i=1 |xi |wi (m is the

dimension of x and wi is determined by Eq. (22) for K = ∞
and by Eqs. (18)–(21) for finite values of K , since the
trapezoidal rule and quadrature are used for the numerical
integration). Since the discretized SPTO is a positive matrix,
the product of discretized SPTOs is weakly ergodic [44,45].

Vn

QnQn−1 · · · Q2V1 + QnQn−1 · · · Q2Q1

QnQn−1 · · · Q3V2

QnQn−1Vn−2

QnVn−1

FIG. 1. Schematic diagram explaining the dependence of the
current density on the past activity of the stochastic Poincaré
oscillator. The terms of the product of operators on the right-hand
side of the second equation in Eq. (26) are plotted as a function of
the input impulse number. The dynamics of the stochastic Poincaré
oscillator are governed by the product of the stochastic phase
transition operators (SPTOs) [for a detailed explanation of the SPTO,
see Eqs. (15) and (16)], and the SPTO PK,ε,Ai ,Ii expresses the
relationship between the density just before the ith impulse to that
just before the (i + 1)th impulse: PK,ε,Ai ,Ii = VK,ε,Ai ,Ii + QK,ε,Ai ,Ii ,
where VK,ε,Ai ,Ii denotes the stationary dynamics and QK,ε,Ai ,Ii

represents the transient dynamics. In this figure, the operators Vi and
Qi denote VK,ε,Ai ,Ii and QK,ε,Ai ,Ii , respectively. If all the transient
components of each PK,ε,Ai ,Ii in the product are zero operators,
then the current density is determined by the invariant component
of the last impulse Vn. The “output” is the membrane potential of
the stochastic Poincaré oscillator, and the “input” shows the input
impulses added to the stochastic Poincaré oscillator. Abscissa is time.

The weak ergodicity leads to the following property for any
densities h and h′:∥∥Hn,n0h − Hn,n0h

′∥∥
1 → 0 for all n0, as n → ∞, (29)

where Hn,n0 = PK,ε,An,In
PK,ε,An−1,In−1 . . .PK,ε,An0 ,In0

, and n0

and n are positive integers with n � n0. This means that the
product of discretized SPTOs loses its dependence on the
initial density. Because the third term in Eq. (26) is the only
term that depends on the initial density, the one-norm of this
term goes to zero as n → ∞.

F. Stochastic rotation number

To connect the density evolution and the firing rate of
the stochastic Poincaré oscillator, we calculate a stochastic
rotation number for the phase equation in Eq. (8) and the
full equation in Eq. (7) following the definition in [23,46].
Considering the case for which the nth impulse is added at
φn, the lifted angular coordinate from Eq. (13) just before the
(n + 1)th impulse is distributed as follows:

n
[
θ ; �̃(0)

In
(φn), ε2
�̃In

(φn)
]
, (30)

where it should be noted that θ ∈ R. That is, θ includes
multiple rotations around the origin. The mean difference in
the lifted angular coordinates of two consecutive impulses
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becomes

w∞,An,In
(φn) =

∫ ∞

−∞
(θ − φn)n

[
θ ; �̃(0)

In
(φn), ε2
�̃In

(φn)
]
dθ

= F̃�(φn) − φn + In, (31)

where the subscripts show the dependence on the parameters,
the subscript ∞ denotes K → ∞, and the mean angular
coordinate difference depends on An via F̃�(φn). We define
an “instantaneous” stochastic rotation number in the interval
just before the nth to just before the (n + 1)th impulses for
the phase equation as follows:

�∞,ε,An,In
= 1

In

∫ 1

0
w∞,An,In

(φn)hn(φn)dφn

= 1 + 1

In

∫ 1

0
(F̃�(φn) − φn)hn(φn)dφn, (32)

where the subscripts of �∞,ε,An,In
represent the dependence of

the instantaneous stochastic rotation number on the parameters
K → ∞, ε, An, and In, respectively. The instantaneous
stochastic rotation number depends on ε via hn(φn). Note that
1 : 1 correspondence between the set of input parameters An,
In, and �∞,ε,An,In

is achieved when ε is fixed. If the impulse
amplitude and interimpulse interval do not vary with time, then

the “steady-state” stochastic rotation number is

�∞,ε,A,I = 1 + 1

I

∫ 1

0
(F̃�(φ) − φ)h∗

∞,ε,A,I (φ)dφ, (33)

where the subscripts ∞, ε, A, and I define K → ∞, the noise
strength, a constant amplitude, and a constant interimpulse
interval, respectively; h∗

∞,ε,A,I is the invariant density of
P∞,ε,A,I .

Similarly, we define these stochastic rotation numbers for
the full equation. In this case, we have to include the difference
caused by the radial component of the density because the state
points can move across the entire phase plane. According to
Eq. (8) in [5], the state point just before the (n + 1)th impulse
is distributed as

n
[
(r,θ ); U(0)

In
(rn,φn),ε2
In

(rn,φn)
]

+n
[
(−r,θ + 0.5); U(0)

In
(rn,φn),ε2
In

(rn,φn)
]
, (34)

where U(0)
In

(rn,φn) = (R(0)
In

(rn,φn),�(0)
In

(rn,φn)) shows the
explicit dependence on (rn,φn) (the state point just before the
nth impulse), r ∈ {x; x > 0,x ∈ R}, and θ ∈ R. Please note
that the lifted angular coordinate is used in Eq. (34). The mean
difference in the lifted angular coordinates of the nth and (n +
1)th impulses is

wK,ε,An,In
(rn,φn) =

∫ ∞

0

∫ ∞

−∞
(θ − φn)n

[
(r,θ ); U(0)

In
(rn,φn),ε2
In

(rn,φn)
]
dθdr

+
∫ ∞

0

∫ ∞

−∞
(θ − φn)n

[
(−r,θ + 0.5); U(0)

In
(rn,φn),ε2
In

(rn,φn)
]
dθdr

= [F�(rn,φn) − φn + In]
∫ ∞

0
n
[
r; R(0)

In
(rn,φn),ε2E

[
A2

1RIn

]]
dr

+ [F�(rn,φn) − (φn + 0.5) + In]
∫ ∞

0
n
[−r; R(0)

In
(rn,φn),ε2E

[
A2

1RIn

]]
dr, (35)

where the subscript of w shows the dependence on the parameters K , ε, the nth impulse amplitude An, and the nth impulse
interimpulse interval In. The stochastic rotation number between the nth and (n + 1)th impulses is

�K,ε,An,In
= 1

In

∫ 1

0

∫ ∞

0
wK,ε,An,In

(rn,φn)hn(rn,φn)drndφn. (36)

This value is an instantaneous stochastic rotation number for the full equation. We can also define the steady-state stochastic
rotation number for the full equation as follows:

�K,ε,A,I = 1

I

∫ 1

0

∫ ∞

0
wK,ε,A,I (r,φ)h∗

K,ε,A,I (r,φ)drdφ, (37)

where h∗
K,ε,A,I is the invariant density of PK,ε,A,I . Since �K,ε,An,In

is the stochastic rotation number between the nth and (n + 1)th
impulses, it corresponds to an impulse amplitude An and input interval In. Using this definition of the stochastic rotation number,
an instantaneous input rate corresponds to a specific output rate. In this way, one can construct the instantaneous firing rate of
the Poincaré oscillator as a function of the instantaneous input rate.

Furthermore, using the decomposition of hn(rn,φn) by Eq. (26), Eq. (36) can be written as

�K,ε,An,In
=

∫ 1

0

∫ ∞

0
wK,ε,An,In

(rn,φn)h∗
K,ε,An−1,In−1

(rn,φn)drndφn

+
∫ 1

0

∫ ∞

0
wK,ε,An,In

(rn,φn)
n−2∑
i=0

(
n−i−2∏
j=0

QK,ε,An−1−j ,In−1−j

)
h∗

K,ε,Ai ,Ii
(rn,φn)drndφn

+
∫ 1

0

∫ ∞

0
wK,ε,An,In

(rn,φn)
n−2∏
l=0

QK,ε,An−1−l ,In−1−l
h1(rn,φn)drndφn, (38)
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where the operatorQK,ε,A,I is from the original SPTO, i.e., not from the discretized SPTO. Equation (38) tells us that the stochastic
rotation number is determined by three terms. The first term is a contribution by the invariant density at the (n − 1)th impulse. The
second term is the contribution produced by the invariant densities corresponding to the input parameters {A1,I1}, . . . ,{An−2,In−2}
with a weight determined by the corresponding transient components of the SPTO. The third component is from the initial density.
The contribution of the initial density is also weighted by the transient components of the SPTO corresponding to given input
impulses. Similarly, the decomposition of Eq. (32) becomes

�∞,ε,An,In
=

∫ 1

0

∫ ∞

0
w∞,An,In

(φn)h∗
∞,ε,An−1,In−1

(φn)drndφn

+
∫ 1

0

∫ ∞

0
w∞,An,In

(φn)
n−2∑
i=0

(
n−i−2∏
j=0

Q∞,ε,An−1−j ,In−1−j

)
h∗

∞,ε,Ai ,Ii
(φn)dφn

+
∫ 1

0

∫ ∞

0
w∞,An,In

(φn)
n−2∏
l=0

Q∞,ε,An−1−l ,In−1−l
h1(φn)dφn. (39)

In what follows, we use �K,ε,A,I for K ∈ (0,∞], and we cal-
culate �K,ε,A,I using the same numerical integration methods
explained in the calculation of the spectral properties of the
SPTO.

G. Interspike interval density

The ISI density is used to characterize the spiking activity
of neurons in the steady state. Nesse et al. [46] calculated
the ISI density of the phase model with multiplicative noise
by considering a population of neuronal oscillators. We extend
their idea to the case in which the neuronal dynamics is written
in terms of the stochastic differential equations. Specifically,
we derive the ISI density for the reduced model Eq. (10).
According to [46], the ISI density is derived in two steps:
(1) calculation of the relative spike density that gives the
time of the next input impulse arrival after a spike of the
reduced model, and (2) calculation of the conditional ISI
density relative to the first input impulse time. To calculate the
ISI density, we make the same two assumptions as Nesse et al.
[46]. The first assumption is that an impulse does not produce
the normalized angular coordinate shift across unity. This is
satisfied by assuming that an impulse makes an instantaneous
horizontal shift by an amount equal to the impulse amplitude.
The second assumption is that the interimpulse interval is large
enough such that the normalized angular coordinate of the next
impulse is not behind that of the previous impulse.

We consider impulses with a constant amplitude and
interimpulse interval. For the calculation of the relative spike
density, we set the density just before the first input impulse to
the invariant density h∗

K,ε,A,I , where A and I are the constant
input amplitude and interimpulse interval, respectively. We
write the relative spike density as pSp,Im(τ ), where τ is the
relative time from the spike of the reduced model (Sp) to
the next impulse (Im). To calculate pSp,Im(τ ), we have to take
into account the possibility that the phase model does not fire
during some input impulses (refer to Fig. 1 in [46]). Using
the derivation method outlined in [46], pSp,Im(τ ) for the phase
equation is given as

pSp,Im(τ ) =
∞∑

j=1

p
j

Sp,Im(τ ),τ ∈ [0,min{I,1}), (40)

where

PK,ε,A,I,ph(φ) =
∫ 1

0
n
[
φ + p; �̃(0)

I (φ),ε2
�̃I
(φ)

]
h(φ)dφ,

(41)

PK,ε,A,I =
p=+∞∑
p=−∞

PK,ε,A,I,p, (42)

pk
Sp,Im(τ ) = PK,ε,A,I,1P (k−1)

K,ε,A,I,0h
∗
K,ε,A,I (τ ), (43)

and PK,ε,A,I,ph(φ) is the probability density of neurons that
fire p times between two input impulses with constant A and
I . The superscript (k − 1) in Eq. (43) indicates that PK,ε,A,I,0

is raised to the (k − 1) power, and p
j

Sp,Im(τ ) is the density of
the relative time from the current spike to the next impulse
after the preceding j impulses.

The conditional ISI density relative to the first impulse
time τ is denoted by pSp,Sp(T |τ ), where T is the time
between successive output spikes of the reduced model
relative to τ . When the reduced model receives a single impulse
between consecutive spikes, i.e., T ∈ (τ,I + τ ), we obtain the
following relations (refer to Fig. 2 in [46]):

T = I + τ − ψ, (44)

1 + ψ = F̃�(τ ) + I + εA1�̃I , (45)

where we have approximated Eq. (10) as

�̃
(ε)
I � �̃

(0)
I + εA1�̃I = F̃�(τ ) + I + εA1�̃I , (46)

to derive Eq. (45). Equation (44) is a result of the relationship
between the ISI and impulses’ normalized angular coordinate,
while Eq. (45) comes from the relationship between the
normalized angular coordinates ψ and τ . If the model is given
by stochastic differential equations, then the approximation in
Eq. (46) is necessary so that the density of A1�̃I is included
in the following calculation. Using the probability density of
A1�̃I , i.e., the first term in Eq. (12), we obtain the conditional
ISI density for T ∈ (τ,I + τ ):

p1
Sp,Sp(T |τ ) = n[T ; 1 + τ − F̃�(τ ),ε2
�̃I (τ )]. (47)
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In a similar manner, if two impulses exist between consecutive
spikes (i.e., T ∈ [I + τ,2I + τ )), then

T = 2I + τ − ψ, (48)

1 + ψ = F̃�(φ1) + I + εA1�̃I , (49)

φ1 = F̃�(τ ) + I + εA1�̃I . (50)

The conditional density for this case is

p2
Sp,Sp(T |τ ) =

∫ ∞

I

n[T ; t ′ + τ − [F̃�(φ1(t ′ + τ ))

−φ1(t ′ + τ )],ε2
�̃I (φ1(t ′ + τ ))]

×p1
Sp,Sp(t ′ + τ |τ )dt ′, (51)

where T ∈ [I + τ,2I + τ ), and φ1(t) = 1 − (t − τ ) + I . In
general, the conditional ISI density for T ∈ [(j − 1)I +
τ,jI + τ ) is

p
j

Sp,Sp(T |τ ) =
∫ ∞

(j−1)I
n[T ; t ′ + τ − [F̃�(φ(j−1)(t

′ + τ ))

−φ(j−1)(t
′ + τ )],ε2
�̃I (φ(j−1)(t

′ + τ ))]

×p
(j−1)
Sp,Sp(t ′ + τ |τ )dt ′, (52)

where φj (t) = 1 − (t − τ ) + jI .
The conditional ISI density relative to the first impulse time

τ is then given by

pSp,Sp(T |τ ) = p
j

Sp,Sp(T |τ ), T ∈ [(j − 1)I + τ,jI + τ ).

(53)

For the case in which there are two consecutive spikes of
the reduced model,

∫ 1
0 pSp,Im(T |τ )dτ reveals the fraction of

reduced models that receive at least one impulse, while 1 −∫ 1
0 pSp,Im(τ )dτ reveals the fraction that receive no impulse.

Reduced models that receive no impulse generates spikes with
a mean period of 1. If the reduced model receives two impulses
with zero amplitude at normalized angular coordinates of 0 and
1, then Eq. (46) means that the following relation should hold:

1 = I + εA1�̃I . (54)

Since these two zero-amplitude impulses are added at the
normalized angular coordinates of 0 and 1, the interimpulse
interval I is equal to the ISI, T = I . Thus, the ISI density
without impulses is

n[T ,1,ε2
�̃I (0)]. (55)

Note that we have not made an approximation with the δ

function as in [46], since the ISI density without impulses
cannot be derived in this way. Thus, the ISI density pSp,Sp(T )
becomes

pSp,Sp(T ) =
∫ 1

0
pSp,Sp(T |τ )pSp,Im(τ )dτ

+ n[T ; 1,ε2
�̃I (0)]

(
1 −

∫ 1

0
pSp,Im(τ )dτ

)
.

(56)

We used the trapezoidal rule to calculate Eq. (56) for the
results presented here. For the full equation [Eq. (9)], the
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FIG. 2. Stochastic kernels. Stochastic kernels with (a) K = 0.25
and (b) K = 1. In (c), stochastic kernel with K = ∞ (indicated by
two arrows with K = ∞) and marginal stochastic kernels of the
normalized angular coordinate corresponded to stochastic kernels
in (a) (indicated by an arrow with K = 0.25) and (b) (indicated
by an arrow with K = 1), respectively. In (a) and (b), stochastic
kernels were calculated using Eq. (8) in [5] and, in (c), stochastic
kernel was calculated using Eq. (14). Marginal stochastic kernels of
the normalized angular coordinate were calculated by numerically
integrating Eq. (8) in [5] with respect to the radial coordinate. For the
integration, Legendre-Gauss quadrature was used. The parameters
for the stochastic kernels were A = 0.95, I = 0.95, ε = 0.3, with
initial conditions of (r1,φ1) = (0.3,0.2) for (a), (b) and φ1 = 0.2
for (c). In (a) and (b), the abscissa and ordinate are the normalized
angular coordinate and radial coordinate of the stochastic Poincaré
oscillator, respectively. The color bar shows the probability density
of the stochastic kernel. In (c), the abscissa is the normalized angular
coordinate, and the ordinate is the probability density of the stochastic
kernel or the marginal stochastic kernels.
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variance-covariance matrix that corresponds to 
�̃I (0) in
Eq. (56) depends on the radial variable. Thus, the ISI density
cannot be derived as in the case of the reduced model. We
derive the ISI density for the full equation by solving the full
equation using Euler-Maruyama method.

H. Input impulses

To examine the relation between the changing speed
of input rate and the dynamics of the stochastic Poincaré
oscillator, we use impulses whose amplitudes are constant,
and the instantaneous input rate changes according to

fn = 1/In = fstart + (fend − fstart)

N
(n − 1), (57)

fstep = (fend − fstart)/N, (58)

where n = 1, . . . ,N + 1. The input rate of the 1st impulse and
that of the (N + 1)th impulse are fstart and fend, respectively.
Here, N determines the number of interimpulse intervals, and
fstep denotes the step size of the input rate change. By changing

fstart, fend, and N, we can investigate the response of the
stochastic Poincaré oscillator to time-varying impulses.

III. RESULTS

A. Stochastic kernels

Figure 2 shows the stochastic kernels for K = 0.25 in (a),
1 in (b), and ∞ in (c) calculated from the same initial state
(in the case of K = ∞, the same initial normalized angular
coordinate as in the finite K case is used). Comparing the
stochastic kernels for the finite relaxation rates, K = 0.25 and
1, we see that the shape of the kernel with the larger relaxation
rate has induced a sharper unimodal density. To see the effect
of the radial coordinate dynamics, in Fig. 2(c), we showed
the marginal stochastic kernels of the normalized angular
coordinate corresponded to the stochastic kernels in Figs. 2(a)
and 2(b), respectively. The peak position of the stochastic
kernel for K = ∞ and the ones of the marginal stochastic
kernels were different. The peak values of the marginal
stochastic kernels near φ = 1 decreased as K increased.

φ

φ

φ

φ

φ

φ

FIG. 3. Statistical global dynamics of the stochastic Poincaré oscillator without any impulse. The statistical phase plane dynamics of the
stochastic Poincaré oscillator are shown by the probability density [left column; calculated using Eq. (18) for (a) and (b) and Eq. (22) for (c)],
the corresponding transient components [middle column; Eq. (23)], and the corresponding invariant density [right column; Eq. (23)] without
any impulses, i.e., A = 0 after a time interval of I = 2.75 for (a), (b), and (c). The relaxation rates were (a) K = 0.25, (b) K = 1, and (c)
K = ∞. For (a) and (b), the initial density h1(r1,φ1) was a uniform distribution with a support of (r1,φ1) ∈ (0,3.5] × [0,1), and for (c), the
initial density h1(φ1) was a uniform distribution with a support of φ1 ∈ (0.2,0.8]. In all cases, ε = 0.3. The color bar shows the probability
density or the corresponding transient component. In (a) and (b), abscissae and ordinates are the membrane potential and refractoriness of the
stochastic Poincaré oscillator, respectively. In (c), the abscissa is the normalized angular coordinate and the ordinate is probability density (left
and right panels) or transient component (middle panel).

052709-10



GLOBAL DYNAMICS OF A STOCHASTIC NEURONAL . . . PHYSICAL REVIEW E 88, 052709 (2013)

0

0.2

0.4

0.6

0.8

1

m
od

ul
us

(a) K=1.0, A=0.95,
    ε=0.3

1:1

1:2

1:1
1:2

0.5 1 21.5 2.5 3
input rate

0

0.2

0.4

0.6

0.8

1

m
od

ul
us

−4

−2

0

2

4

an
gl

e 
(ra

d)

3:2

3:2

(b) K=∞, A=0.95,
    ε=0.3

1:1

1:2

1:1

1:2
3:2

3:2

(c) K=1.0, A=0.95,
    ε=0.6

1:1

1:2

1:1
1:2

3:2

3:2

(d) K=1.0, A=0.25,
    ε=0.3

1:1

1:2

1:1
1:2

3:2

3:2

2:1

α2
α3

α4

α5

α2

α3

α2

α3

α2
α3

α4

α5

α4

α5

α4
α5

α2

α3

α2

α3

α2

α3

α2

α3

α4

α5

α4

α5

α4

α5

α4

α5

−4

−2

0

2

4

an
gl

e 
(ra

d)

0.5 1 21.5 2.5 3
input rate

0.5 1 21.5 2.5 3
input rate

0.5 1 21.5 2.5 3
input rate

FIG. 4. Moduli and angles of the eigenvalues of the discretized SPTO as a function of the input rate. The eigenvalues were calculated using
Eq. (18) for finite K and Eq. (22) for infinite K . For each set of parameters, the moduli and angles of the second to fifth eigenvalues are plotted.
Some stochastic phase-locking regions are labeled with their locking ratio. The parameters are shown in each panel. The input rate is on the
abscissa and the moduli or angles of the eigenvalues of the discretized SPTO are on the ordinate.

B. Density evolution

If A = 0, then the SPTO describes a density evolution that
reflects the dynamics of the stochastic Poincaré oscillator it-
self. The spectral decomposition of the SPTO also decomposes
the density into a transient component and an invariant density.
Figure 3 shows the densities and corresponding transient
components and invariant densities for different values of K.
(The evolutions of the densities and transient components are
shown in video S1 of the Supplemental Material [47].) Since
the deterministic Poincaré oscillator has a stable limit cycle,
the densities evolve toward this limit cycle and then converge
to the corresponding invariant densities that are distributed
around the limit cycle. The convergence speed depends on the
relaxation rate of the stochastic Poincaré oscillator. That is,
a larger relaxation rate is associated with a smaller transient
component.

C. Spectral properties of the SPTO

If K → ∞ and ε = 0, the Poincaré oscillator is known
to exhibit typical structure in response to impulses with a
constant A and I. In particular, for |A| < 1, the dynamics
of the stochastic Poincaré oscillator are described by the
1D phase transition curve of Eq. (4), which is an invertible

diffeomorphism of the circle. For this case, the responses are
classified into two categories: a phase locking, in which q
impulses correspond to p spikes (p and q are integer values),
and a quasiperiodic response, where one impulse rotates the
Poincaré oscillator an irrational number of times [20].

Using the definition of stochastic phase locking based on
the eigenvalues of the discretized SPTO, we evaluated the
effect of the relaxation rate, noise strength, impulse amplitude,
and inverse of the interimpulse interval (input rate) on the
response of the impulse-driven stochastic Poincaré oscillator.
Figures 4(a) and 4(b) show the moduli and angles of the
eigenvalues as a function of the input rate for different values
of K. The overall trend of the moduli for both cases was to
increase as the input rate increased, and some larger stochastic
phase-locking regions survived even in the presence of noise.
As K increased, there was an overall decrease in the moduli
of the eigenvalues, and the stochastic phase-locking regions
became wider. In some stochastic phase-locking regions,
the modulus of the second eigenvalue became larger as K

increased (for example, in the 1 : 2 and 3 : 2 stochastic phase-
locking regions). Furthermore, in some regions, the modulus
of the second eigenvalue took a value that was slightly smaller
than 1, as can be seen in the 1 : 2 stochastic phase-locking
region. This indicates that the corresponding eigenfunction
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largely affects the dynamics in this region. In fact, the density
tends to rotate in the phase plane, and the response can have a
long transient regime even though this phenomenon depends
on the initial density.

A comparison of Figs. 4(a) and 4(c) reveals how the moduli
and angles of the eigenvalues of the discretized SPTO change
in response to an increase in the noise strength, i.e., there
was an overall decrease in the moduli of the eigenvalues
but an increase in the modulus of the second eigenvalue
around the 1 : 1 and 2 : 1 stochastic phase-locking regions. The
stochastic phase-locking regions also became narrower. Thus,
the detailed stochastic bifurcation structure disappears when
the noise strength is increased.

Furthermore, the dependence of the moduli and angles
of the eigenvalues of the discretized SPTO on the impulse
amplitude can be seen in a comparison of Figs. 4(a) and 4(d). In
this study, we concentrated on the impulse amplitude |A| < 1,
since an Arnold tongue structure exists in this range, at least
for infinite K [20], and this structure is a general structure of
nonlinear oscillators. A comparison shows that the stochastic
phase-locking region narrows when the impulse amplitude
decreases. This is similar to the narrowing of the deterministic
phase-locking region that is seen when the amplitude of the
impulse decreases for |A| < 1 and infinite K . An increase
in the impulse amplitude resulted in an overall decrease in
the moduli of the eigenvalues. However, the modulus of the
second eigenvalue of the 1 : 2 and 3 : 2 stochastic phase-locking
regions increased as an increase in the impulse amplitude.

To understand the type of stochastic bifurcation of the
stochastic Poincaré oscillator with a finite relaxation rate,
Fig. 5 shows the distribution of the first 15 eigenvalues of
the discretized SPTO for finite K (K = 1). Some eigenvalues,
whose moduli were not in the vicinity of zero and less than
1, are located on the positive part of the x axis throughout the
stochastic bifurcation. We did not observe these eigenvalues
in the case of the SPTO for K = ∞. These eigenvalues and
the corresponding eigenfunctions describe the contribution
of the radial transient component without oscillation by the
application of the same SPTO. In relation to the definition
of the stochastic bifurcation in terms of the distribution
of the eigenvalues of the transition operator (in our case,
this corresponds to the SPTO) [43], we also examined the

eigenvalue distribution as a function of the input rate. We found
that as the input rate decreased, the eigenvalue distribution
exhibited “zipping” behavior, as shown in Fig. 5. That is, in
a similar manner to closing a zip, the complex eigenvalues
converge to real values as the input rate increases (left to right
panel). It would seem that several spirals exist around the zero
point but we were unable to determine the detailed structure
around the zero point because the accuracy of the eigenvalues
in this region was insufficient.

In the neighborhood of the stochastic 1 : 1 phase-locking
region, the second and third eigenvalues were complex con-
jugates that correspond to stochastic quasiperiodic responses
(these eigenvalues are indicated by the arrows in Fig. 5, left
panel). For an input rate of 1.096 30, the second eigenvalue
was real, and for an input rate of 1.0, eigenvalues with moduli
smaller than that of the second eigenvalue were real. Thus,
a stochastic bifurcation occurs as the input rate decreases.
We checked and confirmed that similar changes occur with
a change in the input rate in the 1 : 2 stochastic phase-
locking case. Thus, the Poincaré oscillator shows a stochastic
saddle-node bifurcation, as defined in [37]. In addition, the
shapes of the invariant densities did not change abruptly as
a function of the input rate as has been reported for other
systems [37–39,41,48] (the change in the invariant density
as a function of the input rate is shown in video S2 of the
Supplemental Material [47]).

D. Stochastic rotation number

The firing rate is an important statistic in spike-train
analysis, and here, the counterparts of the firing rate are the
instantaneous and steady-state stochastic rotation numbers. We
used these numbers to understand the difference between the
responses in the steady and transient states.

The curves in Fig. 6 show how the steady-state stochastic
rotation number changes as a function of the input rate.
In a p : q stochastic phase-locking region, the slope of the
stochastic rotation number was close to p/q. Since the invariant
density changed smoothly as a function of the input rate,
the steady-state stochastic rotation number did not show any
abrupt changes at the edges of the stochastic phase-locking
regions. As K decreased, the stochastic phase-locking regions
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FIG. 5. Stochastic saddle-node bifurcation. The first 15 eigenvalues of the discretized SPTO [Eq. (18)] are plotted in the complex plane for
the input rate indicated in each panel. The other parameters were A = 0.95, ε = 0.3, and K = 1. Angles of the eigenvalues of the discretized
SPTO are in radians. In the left-hand panel, the arrows indicate the second and third eigenvalues. In the middle panel, the arrow indicates the
second eigenvalue. As the input rate decreased, the second and third eigenvalues coincide, which is the stochastic saddle-node bifurcation. For
more details about the stochastic bifurcation, see the text.
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FIG. 6. Stochastic rotation number as a function of the input rate. The curves show the steady-state stochastic rotation number as a function

of the input rate [calculated using Eq. (33) or (37)] and the asterisks show the instantaneous stochastic rotation number as a function of the
input rate for different parameters [calculated using Eq. (32) or (36)]. We varied the relaxation rate, noise strength, and amplitude of the
input impulse. (a) Standard input-output rate plot. The starting and final input rates were fstart = 0.5 and fend = 1/0.3, 36 impulses (N = 35)
with an amplitude of A = 0.95 were considered along with a relaxation rate of K = 1 and noise strength of ε = 0.3. The initial density
h1(r1,φ1) was a uniform distribution with a support of (r1,φ1) ∈ (0,3.5] × [0,1). In (b)–(i), the effects of various parameters on the stochastic
rotation numbers are calculated by varying one parameter while the other parameters and initial density are the same as those in (a). Stochastic
rotation numbers for (b) fstart = 1/0.3 and fend = 0.5 to investigate the effect of fstep in Eq. (58), (c) the initial density with a support of
(r1,φ1) ∈ (0,3.5] × [0.25,0.75) to examine the effect of the initial density, (d) N = 23, (e) N = 500, (f) K = ∞, (g) K = 0.6, (h) ε = 0.6, and
(i) A = 0.25. Arrow indicates the direction of the input rate in each panel.

narrower, and regions in which the slope was close to p/q
also narrowed [compare the curve in Fig. 6(a) for K = 1 with
that in Fig. 6(f) for K = ∞]. Furthermore, an increase in the
noise strength and a decrease in the impulse amplitude in the
|A| < 1 range narrowed regions in which the slope was close
to p/q [compare Fig. 6(a) with Fig. 6(h) for the noise strength
and Fig. 6(a) with Fig. 6(i) for the impulse amplitude].

If the time-varying impulses defined by Eq. (57) are added,
then the response will have different properties from those of
the steady state. We set fstep to different values by changing N,
fstart, and fend in Eq. (58) to investigate the dependence of the
response on fstep. Figures 6(a) and 6(b) show the instantaneous
stochastic rotation number (asterisks) for different signs of
fstep, but the absolute values of fstep, as well as the minimum
and maximum input rates, were the same in both cases.
Depending on whether the input rate increased or decreased,
the stochastic rotation number showed different behavior. For
example, if the input rate entered the 1 : 1 stochastic phase-
locking region, then the instantaneous stochastic rotation
number crossed the curve, that is, the steady-state stochastic

rotation number, and took a smaller (larger) value than the
steady-state stochastic rotation number as the input rate
increased (decreased).

Figure 6(c) shows the instantaneous stochastic rotation
numbers that originate from the different initial densities from
Fig. 6(a) for the impulses whose input rates start from 0.5.
After the first five impulses, the effect of the initial density
was negligible.

If |fstep| was small enough, then the instantaneous stochastic
rotation number took a similar value to that of the steady
state even though the modulus of the second eigenvalue was
slightly smaller than 1, as seen, for example, in the 1 : 2
stochastic phase-locking region [Fig. 6(e)]. Furthermore, since
the product of the discretized SPTOs is weakly ergodic, the
initial density is “forgotten” if the number of impulses is large
enough, and this leads to the third term in Eq. (38) going to
zero. Moreover, the invariant density changed smoothly as a
function of the input rate, and thus the density h∗

K,ε,An−1,In−1

was similar to h∗
K,ε,An,In

in Eq. (38). Furthermore, according
to Eq. (27), the individual terms in the second term of
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Eq. (38) become small if |fstep| is small enough. This makes
the instantaneous stochastic rotation number similar to the
steady-state counterpart.

In the region where the modulus of the second eigenvalue
was slightly less than 1, the response produced by the
discretized SPTO had a large transient component. This
property induced a response that was different from the
steady-state response even though the response depends on
the initial density [Fig. 6, except for panel (e)]. For example,
in Figs. 6(a)–6(c), the instantaneous stochastic rotation number
oscillated and was largely different from the steady-state
counterpart when the instantaneous input rate was roughly
within [1.5,1/0.3]. The larger eigenvalues of the discretized
SPTO in this range take mostly complex values, and their
absolute values were close to 1. This property leads to a
difference in the instantaneous and steady-state stochastic
rotation numbers and the oscillation of the instantaneous
stochastic rotation number.

If we fix the range of the input rate and fstep and examine
results for a decrease in the impulse amplitude and an increase
in the noise strength, we see that this leads to a smaller
variation in the instantaneous stochastic rotation number
[compare Fig. 6(a) with Figs. 6(i), and 6(h), respectively].
We also investigated the dependence of the instantaneous
stochastic rotation number by changing the relaxation rate
[Fig. 6(a) for K = 1, Fig. 6(f) for K = ∞, and Fig. 6(g)
for K = 0.6]. As the relaxation rate increased beyond 0.4,
the variation of the instantaneous stochastic rotation number
around the input rate 2 decreased for finite K (we observed this
tendency by checking K ∈ [0.1,1.2] with step 0.1). However,

the variation around the input rate 2 increased as the relaxation
rate increased if we compared Fig. 6(a) with Fig. 6(f).

E. Interspike interval density

To understand the response in the steady state, we calculated
the ISI density. Figures 7(a)–7(c) show the ISI densities for
K = ∞ and various input rates. In the 1 : 1 stochastic phase-
locking region, the ISI density was unimodal, with the mean
ISI similar to the input period. As the input rate decreased, the
peak shifted to larger ISI values and decreased in magnitude;
a plateau also appeared [Fig. 7(b)]. A further decrease in the
input rate led to the appearance of three local maxima in the
ISI density [Fig. 7(c)]. Figures 7(b) and 7(c) show the densities
outside the 1 : 1 stochastic phase-locking region, and there is
a stochastic bifurcation point between the densities shown in
Figs. 7(a) and 7(b). However, the change in the ISI density was
smooth because the ISI density is based on the invariant density
of the corresponding SPTO. Figures 7(d)–7(f) show the ISI
densities for K = 1 with the same input rate as in Figs. 7(a)–
7(c), respectively. In the case of K = 1, if the input rate is
equal to 1/1.1, the second eigenvalue of the corresponding
Markov operator shows that the response is outside of 1 : 1
stochastic phase locking [Fig. 7(d)]. The peak of the ISI density
in Fig. 7(d) had a sharper peak than the one in Fig. 7(a). As the
input rate decreased, the peak shifted to larger ISI values as in
the case of K = ∞ and the magnitude decreased rapidly than
that of K = ∞. The appearance of the plateau and three local
maxima in the ISI density was also different, i.e., the shorter
plateau in Fig. 7(e) and the magnitude of the local maxima
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FIG. 7. Interspike interval density. Interspike interval densities of the reduced model calculated using Eq. (56) [K = ∞, (a), (b), and (c)]
and the full model by solving Eq. (6) using Euler-Maruyama method [K = 1, (d), (e), and (f)], respectively. (a) The interspike interval density
in the 1 : 1 stochastic phase locking region. Panels (b) and (c) show the densities outside the 1 : 1 stochastic phase locking region for I = 1.2
and I = 1.3, respectively. There is a stochastic bifurcation point between (a) and (b), but the interspike interval density changed smoothly
because the invariant density of the corresponding SPTO changed smoothly. In the case of K = 1, there is not a stochastic bifurcation point
between (d) and (e), there is a stochastic bifurcation point lower than I = 1.1. Plots are shown for A = 0.95 and ε = 0.3. Input rate is shown
in each plot. The abscissa and ordinate are interspike interval and probability density, respectively.
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decreased as the ISI decreased in Fig. 7(f). In the case of
K = ∞, the accuracy of the calculated ISI density depended
on the input rate, and especially for input rates higher than
1, calculating the ISI was difficult within the scope of the
reduced model, one reason being that the convergence of the
summation 
∞

j=1pSp,Im(τ ) in Eq. (40) was slow.

F. Dependence of the current instantaneous stochastic
rotation number on the past activity
of the stochastic Poincaré oscillator

To understand the effects of the past activity of the
stochastic Poincaré oscillator on the current instantaneous
stochastic rotation number, we calculated the past components
that determine the current instantaneous stochastic rotation
number. As an example, let us consider the instantaneous
stochastic rotation numbers corresponding to five impulses
with a fixed impulse amplitude A and four interimpulse
intervals denoted by I1, I2, I3, and I4. The equation that
determines the instantaneous stochastic rotation number at the
last interimpulse interval is

�K,ε,A,I4

=
∫ 1

0

∫ ∞

0
wK,ε,A,I4 (r,φ)h∗

K,ε,A,I3
(r,φ)drdφ

+
∫ 1

0

∫ ∞

0
wK,ε,A,I4 (r,φ)QK,ε,A,I3h

∗
K,ε,A,I2

(r,φ)drdφ

+
∫ 1

0

∫ ∞

0
wK,ε,A,I4 (r,φ)QK,ε,A,I3QK,ε,A,I2

×h∗
K,ε,A,I1

(r,φ)drdφ

+
∫ 1

0

∫ ∞

0
wK,ε,A,I4 (r,φ)QK,ε,A,I3QK,ε,A,I2QK,ε,A,I1

×h1(r,φ)drdφ. (59)

The first term in Eq. (59) is determined by the invariant density
that corresponds to the third impulse and the mean lifted
angular coordinate difference at the fourth impulse. Thus, the
first term depends on I3 and I4. We assign I3, that is, the oldest
interimpulse interval in this term, to this term to show that it
depends on the past activity from the third impulse. Similarly,
the second term of Eq. (59) depends on I2, I3, and I4, and we
assign I2 to the second term. The sum of the third and fourth
terms of Eq. (59) depends on I1, I2, I3, and I4, and we
assign I1 to the sum of these terms. This correspondence
shows the dependence of the current instantaneous stochastic
rotation number on the past activity of the stochastic Poincaré
oscillator, and this can also be seen in Fig. 8 as a function of
the input rate.

The components of the instantaneous stochastic rotation
number in response to impulses with a fixed amplitude are
shown in Fig. 8 (the components are denoted by asterisks,
and the filled square and open square show the current
instantaneous stochastic rotation number). Figures 8(a) and
8(b) use the same set of input rates but different signs of
|fstep|, i.e., the input rates change in opposite directions. The
difference in the sign of fstep induced a different dependence
of the current instantaneous stochastic rotation number on the
past activity of the stochastic Poincaré oscillator: Figure 8(a)
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FIG. 8. Dependence of the current instantaneous stochastic rota-
tion number on the past activity of the stochastic Poincaré oscillator.
Each component of the current instantaneous stochastic rotation
number explained in Eq. (59) is plotted as a function of the input
rates. The filled squares [filled square and open square in (e)] show
the current instantaneous rotation number in each panel. (a) Standard
plot for starting and final input rates of fstart = 0.5 and fend = 1/0.3,
N = 35 impulses with an amplitude of A = 0.95, a relaxation rate of
K = 1, and a noise strength of ε = 0.3. The initial density h1(r1,φ1)
was a uniform distribution with a support of (r1,φ1) ∈ (0,3.5] × [0,1).
In (b)–(j), the effects of various parameters are calculated by varying
one parameter while the other parameters and initial density are the
same as those in (a). The output components as a function of the
input rate for (b) fstart = 1/0.3 and fend = 0.5 to investigate the
effect of fstep in Eq. (58), (c) N = 23, (d) N = 500, (there is an
overlap of the filled square and the asterisk), and (e) fstart = 0.5,
fend = 0.823 81, and N = 4. In (e) results for two initial densities are
shown: the density in (a) (asterisks) and a uniform distribution with a
support of (r1,φ1) ∈ (0,3.5] × [0.25,0.75) (asterisks indicated by an
arrow). There are three overlaps between two responses, and the filled
square and open square show the corresponding current instantaneous
rates. Plots are also shown for (f) K = ∞, (g) K = 0.6, (h) ε = 0.6,
(i) A = 0.25, and (j) A = 0.45. In each panel, arrow under the label
“input rate” indicates the direction of the input rate and dashed line
indicates zero level of the output rate component.
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shows a relatively larger component value for input rates
between ∼1.0 and 2.0 and a weaker dependence on impulses
near the current input rate is seen, except for the component
just before the final input rate at which the current output rate
is shown. In contrast, Fig. 8(b) shows that the instantaneous
stochastic rotation number depended only on components near
the current input rate.

As the number of the impulses increased, the variation in
the components tended to decrease [compare Fig. 8(a) with
Figs. 8(c) and 8(d)]. Figure 8(d) shows the components of
the instantaneous stochastic rotation number corresponding
to Fig. 6(e). As the number of impulses determined by
Eq. (57) increases, the difference between adjacent invariant
densities corresponds to the input rate, and components that
depend on the initial density decrease in magnitude. Thus, the
contribution of components, apart from the component just
before the current input rate, subsequently decrease.

The instantaneous stochastic rotation number and compo-
nents at the fifth impulse are shown in Fig. 8(e) for two different
initial densities [the filled square and asterisks corresponds to
the case in Fig. 6(a) and the open square and asterisks to that
in Fig. 6(c)]. For some input rates, the components for the
two cases are superimposed. This difference would appear to
originate from the difference in the initial densities.

Furthermore, we checked the dependence of the current
instantaneous stochastic rotation number on the past activity
by changing the relaxation rate [Figs. 8(f) and 8(g)], the noise
strength [Fig. 8(h)], and the impulse amplitude [Figs. 8(i)
and 8(j)], respectively. For the finite relaxation rate, an
increase of the relaxation rate led to the lower variation of
the past components except the components corresponding to
the 17th–20th impulses [compare Fig. 8(a) with Fig. 8(g)].
However, for the infinite relaxation rate [compare Fig. 8(a)
and Fig. 8(f)], the variation of the components from the 8th
impulse to the 16th impulse was larger than that for the finite
relaxation rate and that of the components corresponding
to the 17th–20th impulses decreased. An increase in the
noise strength induced that, as can be seen in a comparison
of Figs. 8(a) and 8(h), a larger noise strength induced a
smaller variation in the components. As the impulse amplitude
increased until about 0.45 [compare Figs. 8(i) and 8(j)], the
variability of the past components around the input rate 1
increased. If the impulse amplitude increased beyond about
0.45 [compare Figs. 8(a) and 8(j)], the overall trend of the
variability around the input rate 1 decreased, and the vari-
ability of some components after the ninth impulse increased
slightly.

IV. DISCUSSION

The transient regime should be short enough to encode
information in the spike pattern in nervous systems. The length
of the transient regime becomes an indicator of the extent
of the dependence on the past neural activity. By decomposing
the current instantaneous stochastic rotation number into
the past activity components, we were able to tackle this
problem. The results showed that the components of the current
instantaneous stochastic rotation number can be negative,
and components far from the current input rate can affect
the current instantaneous stochastic rotation number. Some

components depend on the difference between the invariant
densities of adjacent discretized SPTOs in the product of
discretized SPTOs, which determines the density in the equa-
tion of the current instantaneous stochastic rotation number.
A larger difference between invariant densities may increase
the values of the corresponding components. Furthermore, the
product of discretized SPTOs shows weak ergodicity, that is,
the stochastic Poincaré oscillator can forget the initial density,
and equally, the current instantaneous stochastic rotation
number can forget the initial density or initial condition. This
situation may arise in nervous systems if a neuron receives a
sufficient number of impulses.

The kernel density estimation is a method to estimate spike
rate [49–54]. In this method, the spike train is convoluted with
a kernel function to estimate the spike rate. Further analysis
of the past activity components of the current instantaneous
stochastic rotation number might lead to an adequate selection
of the kernel function, that is usually a non-negative function,
and its width to calculate the spike rate.

As shown by an examination of the stochastic rotation
number, the steady-state and transient responses can be
different. In a related experiment it was found that the response
of a pacemaker neuron in crayfish was different depending
on the past inputs [55–57]. We used the definition of the
instantaneous stochastic rotation number as given by Eqs. (32)
and (36), since we examined the input-output firing rate
relationship as shown in Fig. 6. This is a natural extension of
the stochastic rotation number in the steady state to that in the
transient state. This is also required in experiments to establish
the input-output rate relationship. In fact, past studies typically
relate the input and output rates empirically (see [55,56] for
examples). To define the SPTO and instantaneous stochastic
rotation number for a continuous input over a continuous
time period leads to the firing rate over that continuous time
period, and this is a topic for future study. Analysis using the
continuous-time version of the SPTO will yield the continuous
dependence of the current firing rate on the past activity of the
neuron model and give some insight into information coding
in nervous systems.

For the model dynamics, we showed that the contribution
of the past activity of the stochastic Poincaré oscillator to
the current density was defined by Eq. (26). The product
of the discretized SPTOs determines the response, i.e., the
current density, of the neuronal oscillator to time-varying
impulses. Alternatively, the effect of the terms in Eq. (26)
can be examined by using the one-norm, if necessary, and
these terms show the dependence of the current density on the
past neuronal activity.

A shorter dependence on the past activity is necessary
for carrying information via a spike pattern, and a longer
dependence on the past activity might lead to information
being carried with a weighted average of the number of
spikes that is determined by the transient dynamics of the
neuron. To understand the mechanism behind this dependence,
it is necessary to understand the spectral structure of the
discretized SPTO. A response of the stochastic Poincaré
oscillator, or a product of the discretized SPTOs, depends
on the discretized SPTOs selected by the input parameters.
Hence, it is an important problem to understand how each
discretized SPTO in a product of discretized SPTOs affects the
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spectral property of the product. Since the discretized SPTO is
a noncommutative matrix, the order of the multiplication also
affects this spectral property.

As mentioned in the Introduction, we focused on the tran-
sient dynamics of a neuronal oscillator. Usually, conventional
statistics such as the spike train power spectrum, Fano factor
of the spike count, and ISI density assume that the oscillator
is in the steady state. These statistics are not adequate for
quantifying the transient dynamics of the neuronal oscillator.
Furthermore, it is difficult to derive the evolution of the
transient ISI density from the current setting of the stochastic
Poincaré oscillator, and thus we did not calculate the interspike
interval serial correlation coefficient analytically. Instead, we
introduced the instantaneous stochastic rotation number in this
study and analyzed the corresponding components. In this way,
one can quantify the effect of the past activity of neuronal
oscillators. It is also a topic for future study to derive the
transient counterparts of the conventional statistics.

Equations (38) and (39) offer a way of determining the
components of the current instantaneous stochastic rotation
number experimentally. As an example, consider the instan-
taneous stochastic rotation numbers corresponding to five
impulses with fixed impulse amplitudes, i.e., the impulses
are characterized by four interimpulse intervals I1, I2, I3,
and I4 [Fig. 9 and Eq. (59)]. Consider first the instantaneous
stochastic rotation number corresponding to the last interim-
pulse interval. The equation that determines the stochastic

2I1I 3I 4I

L
1I 1I 1I 2I 3I 4I

L
2I 3I 4I2I 2I 2I

L
3I 4I3I 3I 3I

(a)

(b)

(c)

(d)

time

FIG. 9. Experimental procedure to determine the components
of the current instantaneous stochastic rotation number. (a) Five
impulses determined by a constant impulse amplitude A and four
interimpulse intervals of I1, I2, I3, and I4 are added repeatedly to a
spontaneously firing neuron with a recovery period. We decompose
the current firing rate, i.e., the firing rate during I4, into the
components determined by the past activity of the neuron. Impulses
to measure (b) the summation of the first, second, and third terms,
(c) the summation of the first and second terms, and (d) the first
term in Eq. (59). The firing rate during I4 needs to be measured
by repeatedly adding the impulses to the neuron with a recovery
period. Subtraction using the measured firing rates during I4 in (a)–(d)
leads to the decomposition of the firing rate during I4 in (a) into
the components in Eq. (59). In all panels, abscissa is time. See the
discussion for a detailed explanation.

rotation number at the last interimpulse interval is Eq. (59),
and to begin, we add five impulses with interimpulse intervals
of I1, I2, I3, and I4 and an intertrial interval repeatedly to
a spontaneously firing neuron with some noise to measure
the firing rate during the interimpulse interval I4, �K,ε,A,I4

[Fig. 9(a)]. After a recovery period, we add a sufficient
number of impulses with an interimpulse interval of I1 to
the neuron to achieve the corresponding steady state h∗

K,ε,A,I1

and then add four impulses with interimpulse intervals I2,
I3, and I4 and an intertrial interval to the same neuron
[Fig. 9(b)]. After repeating this procedure, the measured
firing rate during the interimpulse interval I4 (�K,ε,A,I4,b)
in Fig. 9(b) is equal to the summation of the first, second,
and third terms in Eq. (59), since h1(r,φ) = h∗

K,ε,A,I1
, and this

leads to QK,ε,A,I1h1(r,φ) = 0 [see the definition of QK,ε,A,I in
Eq. (23)]. That is, the fourth component in Eq. (59) is equal to
zero. Thus, �K,ε,A,I4 − �K,ε,A,I4,b is equal to the fourth term
in Eq. (59). After a recovery period, we then add a sufficient
number of impulses with an interval I2 to the same neuron
to achieve the corresponding steady state h∗

K,ε,A,I2
and then

add three impulses with interimpulse intervals of I3 and I4

and an intertrial interval. After repeating this stimulation, the
firing rate during the interimpulse interval I4 (�K,ε,A,I4,c) in
Fig. 9(c) is equal to the summation of the first and second
terms in Eq. (59). Thus, �K,ε,A,I4,b − �K,ε,A,I4,c is equal to
the third term in Eq. (59). Again, after a recovery period,
impulses with an interval I3 are added to the same neuron
to achieve the corresponding steady state h∗

K,ε,A,I3
, and two

impulses with an interimpulse interval of I4 are added to the
same neuron. After repeating this stimulation with an intertrial
interval, the firing rate during I4 (�K,ε,A,I4,d ) in Fig. 9(d)
is equal to the first term in Eq. (59). Thus, �K,ε,A,I4,c −
�K,ε,A,I4,d is equal to the second term in Eq. (59). In this way,
one can experimentally decompose the current instantaneous
stochastic rotation number. The intrinsic noise strength of a
neuron depends on the number of ion channels. The dynamic-
clamp technique is one possible way to change the channel
noise experimentally [58]. Combining this technique and the
above-mentioned stimulus makes it possible to decompose
the current instantaneous stochastic rotation number and
examine the effect of the intrinsic noise strength on the
decomposition.

An increase in the noise strength smoothed and decreased
the variation in the components of the instantaneous stochastic
rotation number, which means that the dependence on the
instantaneous stochastic rotation number may decrease as
the noise strength increases. However, temporal coding is
not possible in this case because the larger noise makes the
firing time inaccurate. Furthermore, the experimental results of
Perkel et al. [59] revealed phase locking in pacemaker neurons,
and to consider the larger impulse amplitude, it is necessary to
understand the global picture of the response of spontaneously
firing neurons.

In terms of the dynamics of a spontaneously firing neuron in
response to time-varying impulses, it is necessary to investigate
the statistical behavior of the neuron in response to impulses
with a constant amplitude and interimpulse interval. Thus,
it is necessary to develop a method of constructing the
SPTO or its analog experimentally. It appears to be clear
that if a spontaneously firing neuron is modeled by stochastic
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differential equations, this problem reduces to constructing the
SPTO using the given equations. The construction of the SPTO
from stochastic differential equations is not model dependent,
since the small disturbance asymptotic theory is general. Thus,
one can construct the SPTO for other impulse-driven biological
or nonlinear oscillators.

Finally, for the case in which the instantaneous stochastic
rotation number depends on the past activity, it is difficult
to encode information in the spike pattern since the spike
generation also depends on the past activity. Our method can
evaluate the dependence of the current state of a neuronal
oscillator on the past activity. The amount of the past activity
depended on the input parameters, the relaxation rate, and
noise strength. To evaluate the past dependency of various
neurons and their models using our method or its extension
would offer a way to gain insight into the information carrier
in nervous systems.
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APPENDIX

The considered model may not be general enough. How-
ever, it has been used as an important standard model
and is enough for the purpose in this paper. First of all,
analyses using the Markov operators are also applicable
to neuronal oscillators described by stochastic differential
equation with some regularity conditions of the drift and
diffusion coefficients. Second, as pointed out by Izhikevich
[9], “When a neuronal model is far from the subcritical
Andronov-Hopf bifurcation, its phase portrait may look similar
to the one corresponding to the supercritical Andronov-Hopf
bifurcation.” The Stuart-Landau oscillator is the normal form
of a supercritical Andronov-Hopf bifurcation and can be
transformed to the Poincaré oscillator [16,60]. Moreover, it
is shown that the modified Poincaré oscillators with slow and
fast dynamics reproduce the response of pacemaker neurons,
which can be transformed to the Poincaré oscillator [4,22]. In
these transformations, the effect of the relaxation dynamics of
the neural oscillators with refractory period can be put into the
perturbation term.
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