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Little work on the void fraction behaviors along structural materials with poor-wettability 

for liquid metals has been performed.  In the present study, void fraction behaviors around a 

single cylinder with non-wetting surface condition were quantitatively discussed by using a 

gas jet-cylinder system where the impinging jet flow, the boundary layer flow, the separation 

flow, and the wake flow appear.   

One cylinder with a non-wetting surface and two cylinders with a wetting surface were 

used to vary the wettability for liquid sodium, and void fraction distributions were measured 

around the cylinders.  In the case of wetting condition, void fraction distributions around the 

cylinder decrease clearly in the backward region of the cylinder, and liquid-rich region is 

formed due to bubble separation from the cylinder surface.  On the other hand, under 

non-wetting condition, because of two-phase flow without bubble separation on the cylinder 

surface, void fraction distributions show almost steady values around the cylinder compared 
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to those with wetting surface.  The void behaviors on a non-wetting surface were also 

confirmed by a visualization experiment conducted in water.  The observed differences can 

be basically attributed to the work of adhesion required for liquid-solid interfacial separation.   

 

KEYWORDS: wetting, non-wetting, two-phase flow, void fraction, liquid sodium, single 

cylinder, gas jet 
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1. Introduction 

Numerous studies on gas-liquid two-phase flow for many geometric configurations used 

in the energy industries have been carried out by using water as liquid phase, which makes 

wetting of structural materials at ordinary temperatures.  Because of the experimental 

difficulty in liquid metal systems, the results of these studies apply to them based on the 

similarity.  The results by Joo and Dhir, and Inoue et al. focusing on a bubbly cross flow 

around a circular cylinder are therefore compared to the present results at wetting surface 

condition as shown later [1], [2].   

However, for complex systems the similarity is not assured, experiments using liquid 

metals are required.  Studies by Mishima et al. and Saito et al. on visualization and void 

fraction measurement of gas-liquid metal two-phase flow performed by using neutron 

radiography and image processing techniques are typical examples [3], [4].  The exact 

similarity between liquid metals and water is also not assured under the condition of 

non-wetting liquid metal systems.   

It is reported that the gas-water two-phase flow in a non-wetting tube is significantly 

different from that in a wetting tube.  Takamasa et al. observed in an upward gas-liquid 

two-phase flow that the water flows in the center core in a non-wetting tube, whereas the 

water flows in the vicinity of the tube wall in a wetting tube [5].  This is a typical example.  

Although the different behavior of gas-liquid metal two-phase flow between wetting condition 

and non-wetting condition has been pointed out, little work quantitatively clarified has been 

performed.  In particular, liquid sodium, which is employed as a coolant of fast breeder 

reactors, is known that the wettability varies depending on temperature and structural 

materials [6], [7].  Basic understanding for the difference in two-phase flow between wetting 

and non-wetting conditions is primarily important from the viewpoint of thermal hydraulic 

design and safety evaluation in both normal and accidental conditions.   
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In the present study focusing on inert gas-liquid sodium two-phase flow, the difference in 

void fraction behaviors around a single cylinder between non-wetting and wetting condition is 

examined.  A gas jet-cylinder system, which consists of the impinging jet flow and the 

boundary layer flow in the forward region, and the separation flow and the wake flow in the 

backward region, is selected for quantitative examination on the difference in both conditions. 

By using the single system, the characteristics in each flow field as well as the relationship 

between flow fields, which have not been quantitatively discussed so far, are obtained.  The 

local void fraction around a single cylinder with wetting condition or non-wetting condition 

was measured by using resistivity probes.   

 

2. Experiment 

2.1. Experimental apparatus 

Figure 1 shows a schematic diagram of experimental apparatus.  The apparatus 

consisted of a test vessel, a sodium storage tank, a sodium mist trap, and an argon gas heater.  

All sections were made of stainless steel, of which surfaces were covered with thermal 

insulators after assuring air tightness and installing sheathed heaters.  The test vessel was 

1000 mm high with 80 mm in inner diameter.  Circulation pipes were installed on the test 

vessel to reduce temperature gradient in the vertical direction.  Sodium in the storage tank 

could be heated up to a desired temperature by using the sheathed heaters.  After a few times 

gas displacement in the test vessel with high-purity argon gas, sodium was charged from the 

storage tank to the test vessel by high-purity argon gas pressure and the liquid level in the test 

vessel was adjusted to 700 mm in height.  The sodium temperature in the storage tank was 

kept to be 110°C during the charging process, so that oxygen solubility in the test vessel was 

expected to be less than 10 ppm during measurement.  The argon gas heated up to a desired 

temperature by the gas heater section was injected in the upward direction into the stationary 
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liquid sodium from a gas nozzle located below a test cylinder.  The mist trap was installed to 

catch sodium vapor and/or sodium mist which were included in the exhaust.   

Figure 2 shows a schematic of the test section.  A test cylinder was inserted horizontally 

into the test vessel.  The outer diameter of the cylinder was 20 mm.  The nozzle consisted 

of a head and a pipe made of stainless steel, and the nozzle hole diameter, d , was 3.5 mm.  

The distance from the nozzle exit to the forward stagnation point of the cylinder was 25 mm.  

Void fraction distributions were measured with four void probes set parallel to the test 

cylinder as shown in Figure 2.  It consists of a stainless-steel wire (0.5 mm O.D.) and two 

silicone rubber tubes (1 mm O.D. and 0.5 mm I.D.).  The stainless steel wire is insulated 

electrically with the silicone rubber tubes except the detection part of 1 mm long.  The four 

void probes were placed using ring-shaped spacers at the distances from the cylinder surface, 

δ = 1, 2, 3, and 4 mm, respectively.  Every detection part was set in the plane with the 

cylinder cross section through the jet axis.  Two spacers were mounted on the cylinder with 

80 mm distance from each other; corresponding to the inner diameter of the cylindrical vessel.  

In order to keep the probe positions against high speed gas jets, the probes were strained 

through the spacers.  The test cylinder was designed to be capable of rotating around its axis 

together with the four void probes.  This means the void fractions could be measured at any 

azimuthal angle, θ, as shown in Figure 2.  Thus the circumferential distributions of local 

void fraction in the plane with the cylinder cross section through the gas jet axis could be 

obtained by rotating them in 360 degrees.  In addition to these probes, as shown in Figure 2, 

an I-shaped probe movable in the vertical direction through the jet axis of the nozzle was also 

set.   

The circuit for local void fraction measurement consisted of an AC power source, a 

discriminator, and a data logger.  The AC of 3 V in 10 kHz was supplied between the test 

cylinder and the probe detection part.  When the probe detection part is in contact with gas, a 
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high voltage, almost corresponding to the source voltage, is output.  When it is in contact 

with water including small amount of sodium chloride or liquid sodium, output voltages were 

almost zero.  The threshold value to distinguish gas and liquid was set at 80% of the input 

voltage for both water and sodium experiments.  Both signals of gas and liquid were 

automatically distinguished by the discriminator and recorded by the data logger.  After the 

influence of the measuring time on local void fraction due to a long-period circulation of the 

flow field was examined, the signals were obtained at a total measurement time of 5 seconds.  

Local void fraction, α, was determined as the ratio of summation of bubble dwell time, ti (time 

required for a bubble to pass the detection part of a void probe), to total measurement time, 

ttotal:   

 totali tt . (1) 

The accuracy of the present system for void fraction measurement was checked by a 

preliminary experiment conducted in a water pool.  In the preliminary measurement using 

the I-shaped probe movable in the both vertical and radial directions, the vertical and radial 

void fraction distributions of upward gas-free-jet, without the test cylinder, were checked to 

be a good agreement with an empirical correlation proposed by Castillejos and Brimacom 

using a stainless steel detection part of 0.3 mm in diameter within ± 15% [8].  

Because of the non-wettability of the probe detection part in liquid sodium, as described 

later, the response for phase change at the probe detection part in liquid sodium are faster than 

that in water.  Thus the void fraction measurements in liquid sodium are considered to be 

more accurate.  In addition to that, the effect of the shape of the wire probes on the flow field 

was examined by comparing the void fraction values measured by the wire probes and the 

I-shaped probe vertically inserted from the top of the test vessel as shown in Figure 2.  These 

values were measured at δ = 1, 2, 3, and 4 mm respectively in the backward stagnation point 

of the test cylinder (θ = 180°) in liquid sodium.  The results from these probes show a good 
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agreement within ± 15 %.   

The gas jet velocities at the nozzle exit, u, were obtained by dividing gas flow rates, V, by 

the cross-sectional area of the nozzle:   

 
42d

V
u


 . (2) 

The experimental conditions are summarized in Table 1.  The sodium temperature was 

always kept at 200°C for assuring the reliability as electrical insulator of silicone rubber tubes 

used in the present resistivity probes.  Because large generation of sodium mist and sodium 

vapor was expected under high gas jet velocity conditions, the maximum gas jet velocity in 

liquid sodium was limited to be lower than that in water.   

In this study, we employed a gas jet-cylinder system.  Although void fraction 

distributions around a cylinder in bubbly flow have been investigated by a few workers, no 

data has been obtained in the gas jet- cylinder systems even in water.  Thus the void fraction 

distributions were firstly measured in water to investigate the dependency of void fraction 

distributions on the experimental geometry.  Then the measurements were conducted in 

liquid sodium with different wettability.  In the case of water experiments, a small amount of 

sodium chloride was added into water in order to keep the electrical conductivity. 

 

2.2. Test cylinders with wetting and non-wetting surface 

Liquid sodium has a property that its contact angle, θc, changes with the wall materials 

and temperature.  For example, a sodium droplet in low temperature at iron and nickel 

surfaces shows non-wetting property, θc > 90°, as shown in Figure 3(a), due to the existence 

of a thin oxide film.  However, when the sodium temperature increases, complete reduction 

of the oxide film due to the chemical reactions takes place and the clean metal surface is well 

wetted by liquid sodium.  According to the study of Addison et al. using the vertical plate 
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method, the contact angle sharply changes to zero within a few degrees of “the critical wetting 

temperature” [6]. The critical wetting temperatures for iron and nickel were reported to be 

140°C and 195°C, respectively.  The behavior of austenitic stainless steels is different from 

iron and nickel.  Hodkin et al. observed in their work with the sessile drop method that 

sodium droplet at stainless steel surfaces shows a non-wetting property of θc = 140° below 

280°C and above 280°C the contact angle gradually decreases and reaches to a value of 20° 

above 550°C, as qualitatively shown in Figure 3(a) [7].  

In our preliminary experiment, it was confirmed that gas phase signals from the resistivity 

void probe using stainless steel wire suddenly disappear at around 300 °C.  This means that 

the detection part of the void prove is steady covered (wetted) with sodium.  In addition to 

this, the reliability as electrical insulator of silicone rubber tubes used in the present resistivity 

probes is assured up to 200°C.  Above the temperature, because of the degradation of 

silicone rubber tube, its performance for electrical insulator and non-wettability against 

sodium would not be expected.  Based on these results, our resistivity probes were used at 

200°C non-wettable for sodium.   

For the experiment under non-wetting condition, stainless steel was chosen for cylinder 

material because its non-wettability against sodium is assured at 200°C.  For wetting 

condition, a nickel-plated stainless steel cylinder was prepared.  The sodium temperature 

was adjusted at 200°C, which is greater than the critical wetting temperature of nickel, so that 

the surface is wetted by liquid sodium.   

We employed another test cylinder with an iron oxide film, on which surface wetting 

against sodium is expected.  According to Montemor et al., an external iron oxide region is 

produced on the surface of austenitic stainless steels during two-hour heating at temperatures 

between 250°C and 450°C in air [9].  The thickness of an external iron oxide region is 

around 20 nm and thus the nickel and chromium rich region exists inside the iron oxide region.  
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Based on their study, the stainless steel cylinder with an iron oxide film, which was heated at 

300°C for 4 hours in the atmosphere, was prepared as a wetting cylinder.  The sodium 

temperature during the experiment was again adjusted at 200°C, which is greater than the 

critical wetting temperature of iron, 140°C.  Thus it is expected that the oxygen in the iron 

oxide region is easily reduced due to formation of Na2O and the resulted iron-rich surface is 

wetted by liquid sodium with a very low θc. 

The wettability of cylinder surface against liquid sodium was confirmed after each 

experiment.  Figure 4 compares the appearances of sodium droplets on the stainless steel 

cylinder and the iron-rich surface cylinder after draining process of liquid sodium.  These 

pictures were taken in the atmosphere after the temperature of the experimental apparatus was 

cooled down to the room temperature.  Because of the irreversibility of wettability, it is 

reasonable to consider that the contact angles of liquid droplets were maintained during the 

cooling process [10].  For the stainless steel cylinder, spherical-shaped droplets were 

observed and θc ≈ 125° was measured from the picture.  Although the measured contact 

angle was somewhat lower than the result obtained by Hodkin et al., non-wetting of stainless 

steel against liquid sodium was confirmed.  On the other hand, for the iron-rich surface 

cylinder, flat shaped droplets with θc ≈ 20° were observed.  This proves an excellent wetting 

of the iron-rich surface with liquid sodium during the experiment.   

 

3. Results and discussion 

3.1. Void fraction distribution in water 

As mentioned above, the gas jet-cylinder system was employed in this study.  However, 

even in water, there have been no previous studies which measured void fraction distributions 

around a cylinder with gas jet impingement.  Thus it is needed to investigate the differences 

of flow characteristics between the present system and bubbly flow-cylinder system which 



 9 

has been studied by Joo and Dhir, and Inoue et al. [1], [2].  For that reason, void fraction 

distributions around a cylinder were measured in water-argon gas system by using the test 

section shown in Figures 1 and 2.  The contact angle between the cylinder surface of 

stainless steel without surface treatment and water was confirmed by direct reading from the 

pictures of water droplets and it was 30°.  Therefore, a typical result under wetting condition 

was obtained.   

Figure 5 shows circumferential void-fraction distributions around a single cylinder in 

water for different gas jet velocities.  The gas jet velocities were 93, 186, and 372 m/s, 

respectively.  Since the measured results are almost symmetrical about the center line of the 

gas jet, the averaged values in the range from θ = 0° to 180° are shown in the figure.  In all 

cases shown here, the void fractions are highest at θ = 0° and lowest at θ = 180°.  In the 

forward region of the cylinder (0° < θ < 90°), void fractions keep relatively higher value and 

then steeply decreases toward θ = 180°.  For higher gas jet velocities, u = 186 and 372 m/s, 

the void fractions at the forward stagnation point of the cylinder (θ = 0°) show unity without 

depending on the distance from the cylinder surface.  The region from the gas nozzle exit to 

the forward stagnation point of the cylinder is considered to be filled with gas phase because a 

large volume of gas is injected from the nozzle under the high gas jet velocity conditions.  

However, for the lower gas jet velocity of u = 93 m/s, void fractions at θ = 0° are not reached 

α = 1 due to a small amount of water entrained into the gas jet.   

Focusing on the cylinder backward region (90° < θ < 180°), void fractions steeply 

decrease toward the backward stagnation point of the cylinder.  When focusing on the 

distance from the cylinder surface, the decrease of void fraction in the backward of the 

cylinder begins from the vicinity of the surface and void fractions at some distance from the 

cylinder surface is higher than those near the surface.  Therefore the rapid decrease in void 

fractions can be attributed to the bubble separation from the cylinder surface and the presence 
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of liquid-rich region was confirmed in the backward of the cylinder.   

Joo and Dhir measured void fraction distributions around a cylinder horizontally set in a 

bubbly flow with a free stream void fraction of 0.25 [1].  For their low velocity results, the 

void fractions near the forward region showed values higher than the free stream void fraction 

due to the stagnant behavior of bubbles in the region, while the void fractions in the backward 

region showed values lower than the free stream void fraction due to the separation of bubbly 

flow from the cylinder surface.  In the present system, the impingement of the gas jet makes 

the highest void fraction for the forward stagnation point.  For their high velocity results, the 

void fraction value measured at δ = 4 mm of the forward stagnation point showed the lowest 

value lower than the value of the backward stagnation point, which would be attributed to the 

stagnant behavior of water trapped in the region.  The interesting fact observed by them was 

not observed in the present results because the inertial force of gas jet with high velocities 

prevents the accumulation of water in the forward stagnation point.   

Inoue et al.also studied the wake region of uniform bubbly flows across a cylinder and 

reported the existence of liquid-rich region behind the cylinder [2].  They suggested that the 

liquid-rich region is formed by the balance between buoyancy force of bubbles and the 

reverse flow in the wake.  The same type of balance also causes the liquid-rich region in the 

gas jet-cylinder system selected in the present study.  Therefore, the existence of the 

liquid-rich region near the backward region irrespective of geometrical difference between the 

gas jet-cylinder system and the uniform bubbly flow-cylinder one can be considered a 

common behavior of water-gas flow across a cylinder with wetting surface.   

 

3.2. Void fraction distribution in liquid sodium 

Figure 6 shows void fraction distributions around a stainless steel cylinder in liquid 

sodium.  As mentioned above, the test cylinder and the nozzle made of stainless steel was 
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non-wetting because of the measurement at low temperature liquid sodium.  The gas jet 

velocities were 90, 150, and 300 m/s, respectively.  For only u = 90 m/s, the probe of δ = 3 

mm failed to obtain void fraction at θ = 180° due to a large disturbance for the signals.  

Compared to the results in water with the wetting cylinder, void fractions around the 

non-wetting cylinder show a limited variation from 0.5 to 0.9.  In addition, void fraction 

distributions show a weak dependency on the gas jet velocity under the present experimental 

condition.   

The most obvious differences of void fraction distributions between water and liquid 

sodium are seen at θ = 0° and 180°.  Void fraction at θ = 0° shows 0.6 < α < 0.8 even at the 

highest gas jet velocity (u = 300 m/s).  The void fractions at θ = 180° also remain 0.5 < α < 

0.8 in all cases.  Therefore the void fractions under the non-wetting condition do not show a 

rapid decrease toward θ = 180° as seen in water.  It is easily supposed that the gas jet flowing 

along the cylinder circumference from the forward stagnation point to the backward one 

without separation results in a narrow variation in void fractions around the non-wetting 

cylinder.  Focusing on the distance from the cylinder surface, void fractions at δ = 1 mm are 

higher than those at δ = 4 mm in most angles.  This result indicates that bubbles mainly flow 

near the surface along the cylinder.  Therefore the higher void fraction at the backward 

region of the cylinder can be attributed to the no bubble separation from the surface.   

Figure 7 shows the void fraction distributions around the iron-rich surface cylinder and 

the nickel-plated cylinder in liquid sodium under wetting condition, the nozzle was also 

wetted.  The gas jet velocities were 30, 90, and 150 m/s, respectively.  The measuring 

points of void fraction in the iron-rich surface cylinder and the nickel plated cylinder were 

reduced to δ = 2 and 4 mm, and δ = 4 mm, respectively.  It is obvious for all cases of 30, 90, 

and 150 m/s that the void fraction distributions measured at δ = 4 mm in the nickel-plated 

cylinder are a fairly good agreement with those measured at δ = 4 mm in the iron-rich surface 
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cylinder.  It is therefore reasonable to regard that the void fraction data obtained in the two 

cylinders have a fairly good accuracy for discussing the difference in void fraction 

distributions between wetting and non-wetting conditions.   

In comparison of Figure 7 with Figure 6 for void fraction distributions at 90 and 150 m/s, 

a difference between the wetting condition and the non-wetting conditionis clearly observed 

in the backward region.  The void fractions under wetting condition decrease from θ = 120° 

and reach to values of α < 0.3 at θ = 180° as show in Figure 7, while the void fractions at δ = 

2 and 4 mm under non-wetting condition are almost constant values of 0.55 to 0.65 in the 

same region as shown in Figure 6.  It is also obvious in Figure 7 under wetting condition that 

the highest void fraction always appears in the forward stagnation point.  The characteristic 

in the forward stagnation point is not observed in Figure 6 under non-wetting condition.  The 

behavior of void fraction distributions in the three cases of u = 30, 90, 150 m/s shown in 

Figure 7 is therefore reasonable to be qualitatively similar to those of u = 93 m/s in water 

shown in Figure 5, except for the inverse relationship for values at δ = 2 and 4 mm in the 

backward region between Figure 7 and Figure 5.   

Figures 8 and 9 compare the void fraction distributions of water and sodium under 

wetting condition with those of sodium under non-wetting condition at δ = 2 and 4 mm, 

respectively, from the viewpoint of Reynolds number and Weber number based on the nozzle 

exit condition.  The Reynolds number and the Weber number of gas jet at the nozzle exit in 

water at u = 19 and 56 m/s are 1.4 times and 1.1 times as large as those in sodium at u = 30 

and 90 m/s, respectively. This means the inertial force of gas jet in water at u = 19 and 56 m/s 

is larger than that in sodium at u = 30 and 90 m/s, respectively.  From this physical aspect, it 

is qualitatively reasonable in Figures 8 and 9 that the void fraction distributions in water at u 

= 19 and 56 m/s always show values larger than those in liquid sodium under wetting 

condition at u = 30 and 90 m/s in the forward region of 0° < θ < 90° except for somewhat 
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small values of water at δ = 2 mm in u = 19 m/s.   

Differences of void fraction distributions between sodium under wetting condition and 

water at δ = 2 and 4 mm in the backward region of 120° < θ < 180° would mainly originate in 

the different behavior between bubbles in sodium and those in water in the process of the 

separation of two-phase jet flow decelerating along the cylinder surface because the surface 

tension of sodium is around 3 times as large as that of water.  This different behavior should 

be examined in the future study.  It is also mentioned that the difference in sodium data 

between wetting and non-wetting conditions near the forward stagnation point would 

originate in the difference of gas jet behavior between the wetting nozzle and the non-wetting 

nozzle, and the difference of stagnant behavior of bubbles between wetting surface and 

non-wetting surface.  This point is again considered in Section 3.3.   

 

3.3. Visualization with water 

In this section, the interaction between bubbles and solid surfaces under wetting and 

non-wetting conditions, which governs the separation behavior in sodium and water, is again 

discussed, based on the visualization experiment at u = 19 m/s using water shown in Figures 

10 and 11.  The experimental geometry is the same as that shown in Figure 2, except for 

using a rectangular aquarium made of acrylic.  Visualized images of gas-liquid two-phase 

flow were taken by a high-speed camera at a frame speed of 2000 fps.   

In this experiment, a new wetting cylinder was made of acrylic and exposed to plasma 

(provided by NISSIN Inc.) to produce low contact angle.  A non-wetting cylinder was made 

of polycarbonate and a water-repellent coating (provided by Ascot Corp.) was applied to the 

surface to produce high contact angle.  According to these suppliers, the contact angles 

against water on the wetting and non-wetting surfaces are approximately 10° and 150°, 

respectively, which are near those in the sodium experiments shown in Figure 4.  The details 
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of the mechanisms to control contact angles are described, for example, in Reference [11].  

Two types of gas nozzles were also employed.  In the case of wetting condition, stainless 

steel nozzle was used and the contact angle was confirmed to be approximately 30°.  In the 

case of non-wetting condition, stainless steel nozzle coated with the water-repellent material 

was used and the contact angle was approximately 150°.  The coating was conducted on the 

end, side, and inner surfaces of the nozzle.  The soundness of coating for the cylinder and the 

nozzle was confirmed before and after each run by reading the contact angles from pictures of 

water droplets remaining on the surfaces.   

3.3.1 Wetting condition 

Figure 10 shows visualized images of gas jet behavior around the wetting cylinder at u = 

19 m/s.  A typical bubble just before being detached from the wetting nozzle is vertically 

elongated to the forward stagnation point of the cylinder (0 ms).  The bubble is divided by 

the cylinder in the horizontal direction (40 ms) and rises along the cylinder circumference (60 

ms).  The bubble flow is then bended into the tangential direction at θ = 120° without rising 

straight up from the cylinder surface of θ = 90° (80 ms).  This behavior may attribute to the 

Coanda effect; the tendency of fluid to flow along a curved surface.  In other words, the gas 

jet under the present experimental condition may have a property of so called “wall jet.”   

In the backward region of the cylinder, bubbles are separated from the cylinder surface at 

the vicinity of θ = 120° (100 ms).  Then the separated bubbles are directed toward the center 

line.  As a result a triangle shaped liquid-rich region is formed near the backward stagnation 

point (100 ms).  The separation behavior of bubbles is well correspondent to a steep gradient 

from θ = 120° and 140° for the void fraction distribution of δ = 2 and 4 mm, respectively, at u 

= 19 m/s shown in Figures 8 and 9.  A bubble just after being detached from the wetting 

nozzle gets into touch with the forward region of the cylinder again (120 and 140 ms).  The 

behavior is correspondent to that between 0 and 40 ms.  
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3.3.2 Non-wetting condition 

Figure 11 shows visualized images of gas jet behavior around the non-wetting cylinder at 

u = 19 m/s.  A typical bubble just before being detached from the non-wetting nozzle gets 

into touch with the forward stagnation point of the cylinder (0 ms).   The forefront of bubble 

smoothly enters the backward region (40ms) and reaches to the region near the backward 

stagnation point with a sliding-motion along the cylinder circumference (60 ms).  Compared 

to the bubble behavior until this time period, it is obvious that the bubble at 40 ms and 60 ms 

in Figure 10 shows a stagnant behavior because of wetting surface cylinder.  The bubbles 

cover the backward region without the separation as shown at 80 ms and then move to wake 

region with an adhesive behavior to the backward surface (100 and 120 ms).  In addition, it 

should be also mentioned from the adhesive behavior that a small part of the large bubbles, 

which already passed through the cylinder, remains on the surface near θ = 180° (40 ms and 

140 ms).   

The different behavior between wetting and non-wetting surfaces in water shown in 

Figures 10 and 11 can be understood by considering the physics for the adhesion of water on 

these surfaces.  As shown in Figure 3, a water droplet on a wetting surface spreads with a 

small contact angle whereas a gas bubble on a non-wetting surface spreads with a large 

contact angle.  The work of adhesion, W, is defined as the necessary work required for 

making a liquid-solid interface separation and expressed by following Young-Dupré’s 

equation: 

 )cos1( cW   ,  (3)  

where σ is surface tension [12].  The work of adhesion on wetting surface (θc < 90°) is larger 

than that on non-wetting surface (θc > 90°).  Therefore, under wetting condition, a bubble in 

liquid is difficult to produce a new gas-solid interface because the work of adhesion is larger 

than the surface tension for making the bubble.  On the other hand, when a bubble contacts a 
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solid surface under non-wetting condition (θc > 90°), making a gas-solid interface is more 

energetically stable rather than making a gas-liquid interface (a bubble). 

Because of the small work of adhesion, gas bubbles under non-wetting condition tend to 

stay on the surface and show a sliding-motion along the cylinder circumference.  This is the 

reason that a two-phase jet flow field without separation from the cylinder surface, similar to 

the well-known inviscid flow around a cylinder, is observed in Figure 11.  Based on this 

consideration, it is reasonable that the gas jet-sodium two-phase flow across a cylinder under 

non-wetting condition causes the monotonous void fraction distributions without decreasing 

in the backward region as shown in Figure 6.   

3.3.3 Effects of nozzle wettability 

The effects of nozzle surface wettability on the void fraction distributions should be taken 

into account.  Sano and Mori suggested from their experiments in both nitrogen-mercury and 

oxygen-molten silver systems, which were intended for a bottom-blown converter in steel 

making process, that the outer diameter of the nozzle should be the characteristic length for a 

single bubble growth behavior because the bubble entirely spreads over nozzle surface due to 

the non-wettability of liquid metals [13].  However, the range of application of their 

suggestion is limited in the single bubble regime where the bubble formation at the nozzle 

exit is governed by a static balance of surface tension and buoyancy force acting on a bubble.   

The same kind of behavior was also confirmed in Figure 11 conducted by using the 

non-wetting nozzle.  Bubbly jet discharged at a low velocity of 19 m/s in the range of the 

bubbling regime shows sliding-motion along the nozzle end surface and side surface, and 

occasionally spread to the lower side of the nozzle as shown at 20, 40 and 120 ms in Figure 11.  

Related to this unstable motion at the nozzle exit, the bubble behavior between the nozzle exit 

and the forward stagnation point of cylinder is also unstable compared to that in Figure 10 

conducted by using the wetting nozzle.  Therefore the profile lines of bubbles shown in the 
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right-hand side at each time step of Figure 11 get clearly distorted compared to those in Figure 

10.  In addition, four large bubbles numbered impinge to the cylinder in Figure 11 while 

three large bubbles numbered impinge to the cylinder in Figure 10.  The increase for number 

of large bubbles produced during the same time period would also originate in the instability 

of gas jet on the non-wetting nozzle.   

This behavior also suggests an easy water entrainment into the gas jet injected from 

non-wetting nozzle.  The water entrainment into bubbly jet flows is basically caused through 

the bottom side of bubbles downstream due to the relative velocity between the bubbles 

downstream decelerated and the bubbles upstream injected with a high velocity from the 

nozzle.  The main water-entrainment in the bubbling regime is basically same in high gas-jet 

velocity.  Therefore there is a possibility that the low void fractions, corresponding to a high 

sodium entrainment into the gas jet, near the forward stagnation point observed in Figures 8 

and 9 for sodium under non-wetting condition, as well as the low values there in Figure 6, 

originate in the same kind of instability on a non-wetting stainless steel nozzle.  Based on 

this consideration, void fraction distributions higher than those in Figure 6 are expected in the 

experiment with non-wetting cylinder and wetting nozzle for sodium.  An experiment to 

separate the effect of nozzle should be conducted in the future study.   

 

4. Conclusions 

The void fraction behaviors of gas-sodium two-phase flow across the non-wetting and 

wetting cylinders were experimentally investigated by using gas jet-cylinder systems, which 

are capable of investigating the characteristics of both the gas jet itself and the flow fields 

around the cylinder with different surface condition.  The following conclusions were 

obtained:   

1. Void fraction distributions around a non-wetting cylinder in liquid sodium show a very 
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narrow variation from the forward stagnation point to the backward one without showing 

bubble separation in the backward region.  On the other hand, void fraction distributions 

around a wetting cylinder in water shows a steep decrease in the backward region due to 

bubble separation.   

2. Void fraction distributions around wetting cylinders in liquid sodium are qualitatively 

similar to those around a wetting cylinder in water.  However the decrease of void 

fraction distributions in liquid sodium is milder than that in water in the backward region.   

3. The visualization experiments demonstrated that the difference in void fraction 

distributions between non-wetting surface and wetting surface is mainly attributed to the 

difference in the work of adhesion between them.  This means that viscous behavior 

with separation in two-phase jet flow appears on wetting surface whereas inviscid 

flow-like behavior without separation in two-phase jet flow appears on non-wetting 

surface.   

4. The difference of void fraction distributions between sodium under non-wetting condition 

and water and sodium under wetting condition near the forward stagnation point where 

the gas jet impinges is qualitatively understood by the entrainment of sodium into the gas 

jet originating in the instability on non-wetting nozzle.  The non-wetting and wetting   

effects of nozzle should be further discussed in the future paper.   

 

Nomenclature 

d :  nozzle diameter [mm] 

ti :  dwell time of i-th bubble [ms] 

ttotal :  total measurement time [ms] 

u :  gas jet velocity at nozzle exit [m/s] 

V :  volume flow rate of gas injection [m
3
/s] 
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W : work of adhesion [N/m] 

Greek Letters 

α : time averaged local void fraction [-] 

δ :  distance between probe and cylinder surface [mm] 

θ :  peripheral angle from the forward stagnation point of cylinder [degrees] 

θc : contact angle [degrees] 

σ :  surface tension [N/m] 
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Table 

 

Table 1 Experimental conditions in void fraction measurements 

 

Wetting Non-wetting 

 

Water Sodium Sodium 

Test cylinder Stainless steel 

Iron-rich surface 

Nickel coating  

Stainless steel 

Temperature [ºC] 20 200 200 

Gas jet velocity, u [m/s] 19 - 372 30 - 150 30 - 300 

Contact angle, θc [º] 30 20 125 
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Figure captions 

 

Figure 1 Schematic of experimental apparatus 

Figure 2 Schematic of test cylinder and void probes 

Figure 3 Contact angles of droplets and bubbles on wetting and non-wetting surfaces 

Figure 4 Solid droplets on cylinder surface taken after experiments 

Figure 5 Void fraction distributions around a wetting cylinder in water 

Figure 6 Void fraction distributions around a non-wetting cylinder in liquid sodium 

Figure 7 Void fraction distributions around a wetting cylinder in liquid sodium 

Figure 8 Comparison of void fraction distributions (δ = 2 mm) 

Figure 9 Comparison of void fraction distributions (δ = 4 mm) 

Figure 10 Visualized images of a gas jet around a wetting cylinder (u = 19 m/s) 

Figure 11 Visualized images of a gas jet around a non-wetting cylinder (u = 19 m/s) 

 



Figure 1 Schematic of experimental apparatus 
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Figure 2 Schematic of test cylinder and void probes 
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Figure 3 Contact angles of droplets and bubbles on wetting and non-wetting surfaces 
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Figure 4 Solid droplets on cylinder surface taken after experiments 

 

H. Kudoh:  

 

Void Fraction Distributions of Inert Gas Jets across a Single Cylinder with Non-Wetting 

Surface in Liquid Sodium 

10 mm10 mm

(b) Iron-rich surface
(wetting)

(a) Stainless steel
(non-wetting)

Sodium droplet



Figure 5 Void fraction distributions around a wetting cylinder in water 
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Figure 6 Void fraction distributions around a non-wetting cylinder in liquid sodium 
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Figure 7 Void fraction distributions around a wetting cylinder in liquid sodium 
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Figure 8 Comparison of void fraction distributions (δ = 2 mm) 
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Figure 9 Comparison of void fraction distributions (δ = 4 mm) 
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Figure 10 Visualized images of a gas jet around a wetting cylinder (u = 19 m/s) 
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Figure 11 Visualized images of a gas jet around a non-wetting cylinder (u = 19 m/s) 
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