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Abstract

TEXgs - and s7/-derived paleotemperatures, and isoprenoid glycaialkyl glycerol
tetraether (GDGT), and alkenone concentrations exaenined for ODP Site 1239 in the
eastern equatorial Pacific (EEP) for the last 4865 kWe propose that the difference
between TEXs'- and Us;-derived temperature@AT) and the abundance ratio of
GDGTs to alkenones (GDGT/alkenone ratio) are pakapwelling indices which show
a consistent results with other upwelling indicBse AT and GDGT/alkenone ratio were
maximal during the last five deglaciations, suggestintensified upwelling. The
intensification of upwelling in the EEP coincidedtiwthose at the Peru margin and in the

Southern Ocean. This coincidence suggests thatrabeganization of the Southern
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Hemisphere atmospheric circulation induced thensifeeation of the subtropical high-
pressure cell, causing stronger southeast tradeswatong the west coast of South
America and the southern westerlies over the Sout@eean, enhancing upwelling in

both regions.

1. Introduction

The eastern equatorial Pacific (EEP) is a regidwé&en subtropical gyres of the
North and South Pacific and contains the easteamimnels of the equatorial current
system of the Pacific (Kessler et al., 2006). Ti@gion is important for its roles in
climate variability as a result of the El Nifio-Soeitn Oscillation (ENSO) and its
significance for global carbon cycle (Fiedler aralrin, 2006).

Glacial-interglacial changes in the oceanic cooditiof the EEP have been
reconstructed by various studies, including ofagdace temperature (SST) (e.g., Lyle et
al., 1992), salinity (e.g., Lea et al., 2000), exgwoduction (e.g., Lyle et al., 1988), and
intermediate water properties (e.g., Spero and 2@@2; Ganeshram et al., 2000). These
studies have provided evidence for an early repbyshe EEP to orbital forcing (e.qg.,
Imbrie et al., 1992), and the EEP is thus thoughglay an important role in amplifying
climatic changes through positive feedback mecinasis

ENSO-like variability has often been used to intetpchanges in the oceanic
condition of the EEP (e.g., Lea et al., 2000; Kwataet al., 2002), but different proxy
records have led to different conclusions. Somearhers, for instance, have suggested
that the glacial EEP was El Nifio-like based on ifurdaferal Mg/Ca ands*®O (e.g.,

Koutavas et al., 2002; Koutavas and Lynch-Stieg®203), but others have inferred a
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glacial La Nifia-like condition (e.g., coccolith assblages by Beaufort et al., 2001,
foraminiferal assemblages by Martinez et al., 2@0Benones by Rincon-Martinez et al.,
2010). This disagreement has been attributed ferdiices in the behavior of different
proxies (e.g., Dubois et al., 2009).

In this paper, we present temperature records etbfivom TEX¢' and U3/ for
Ocean Drilling Program (ODP) Site 1239 and interpine U‘s7 and TEXs" records for
the last 430,000 years. On the basis of this im¢agion, we propose the difference
between TEXs'- and Us37/-derived temperatures and the abundance ratio yaierl
dialkyl glycerol tetraethers (GDGTs) to alkenones pmtential upwelling indices and

discuss the response of the EEP upwelling systesrbital forcing.

Modern physical oceanography

The zonal surface current system in the eastepicabPacific (ETP) consists of
westward- and eastward-flowing currents (Fig. T)e Tmain westward currents are the
North Equatorial Current (NEC; 8°N and 20°N) and 8outh Equatorial Current (SEC,;
3°N to 10°S). The SEC originates as a combinatibrthe waters from the North
Equatorial Counter Current (NECC), the Equatoridndercurrent (EUC), and the
Peruvian Undercurrent (Kessler, 2006) through exigt upwelling, mixing and
advection. Two main lobes of the SEC are observéatioude of about 3°S to just north
of the equator. The NECC, an eastward current flpgs north of the equator and is
centered at about 5°N (Wyrtki, 1967; Talley et 2011). This current transports warmer
water from the western Pacific warm pool to the E&gion. Between the SEC and the

NECC there is a narrow equatorial front (EF) thegiagates warm low-salinity waters in
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the north from cool high-salinity waters in the g8o(Fig. 1; Strub et al., 1998). This front
is observable from July to September at about 2.%itd a strong meridional SST
gradient. In contrast, the EF position is uncleanf January to April, when the southeast
trades winds collapse and SST south of the Equatogases owing to reduced upwelling.
The condition of the EF is correlated with the thspment of the intertropical
convergence zone (ITCZ) (e.g., Pak and Zaneveld4;18helton et al., 2001; Raymond
et al., 2004). The ITCZ reaches its northernmogtrexin the month of August (~12°N)
when southeast trade winds are stronger; the ITCIodated closest to the equator in
April (~2°N) when northeast trade winds are stror{féaliser and Gautier, 1993).

The most influential subsurface current in thisioagis the EUC that flows
eastward beneath the SEC. The EUC is fed by thmesdlew Guinea Coastal
Undercurrent at its the western boundary (Talleyalet 2011) and flows within the
equatorial thermocline and shoal as it approadmesSalapagos Islands (Kessler, 2006).
When it reaches the Galapagos Islands, it splits two branches (Steger et al., 1998)
with the main branch flowing southward to mergewtite Peruvian Undercurrent, which
provides a for source of the Peru coastal upwellBronk et al., 1983), the other branch
continues to flow eastward, merging with the NEGRy(tki, 1967; Fieldler and Tally,
2006; Kessler, 2006).

The EEP is a region that has been impacted by aoagtvelling. Coastal
upwelling in the EEP is driven by Ekman transpaherated by southeast trade winds
that blow along the west coast of South AmericaytWyr 1981). The Ekman transport
moves surface water offshore, away from the codstahdary and replaces it with water

from below the thermocline to maintain the massahet. Seasonally, coastal upwelling
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is at its highest intensity when the strongest lsmadt trade winds blow over this region
in boreal summer, and is reduced when southead¢ tnands are relatively weak in
boreal winter (Wrytki, 1975, 1981; Kessler, 200B)e seasonal variability in the EEP is
superimposed by interannual El Nifio events (Wang Biedler, 2006), which occur
every 2—7 years and last for 6-18 months (Peningibral., 2006). Hydrological
conditions that characterize El Nifio (La Nifia) p#sas the EEP are a deeper (shallower)
thermocline and weaker (stronger) upwelling (Kas<606).

Modern observation shows a clear seasonal ancamrtaal SST variability in the
EEP region (Fig. 2a). Seasonally, higher SST isragx during boreal winter (February),
and the lowest SST is recorded in boreal summegyatl). The vertical temperature
gradient is larger in boreal winter than that imda summer. Interannually, higher SST
is observed in strong El Nifio years and lower SSdhserved in strong La Nifia years

(Fig. 2a). The thermocline depth at the studyisiegpproximately 30—-50 m (Fig. 2b).

2. Materialsand methods

ODP Site 1239 (0°40.38, 82°4.86W; 1414 m water depth) is located near the
eastern crest of the Carnegie Ridge and ~120 krtheftoast of Ecuador (Fig. 1). The
sediments are dominated by light to dark olive dgagminifera-nannofossil ooze with
varying amounts of diatoms, clay, and micrite (Mbal., 2003). The age-depth model of
this core was established by Rincon-Martinez e(2010) based on correlation of the
80 record of the benthic foraminifetibicidoides wuellerstorfi with the LR04 global
stack (Lisiecki and Raymo, 2005). In total, 236 pke® were taken from 0.02 to 14.73

meters composite depth (mcd) at 2-10 cm intervals.
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Extraction and separation of lipids followed thedified method of Yamamoto et
al. (2000) and Yamamoto et al. (2008). Freeze-daled homogenized samples (~2 Q)
were extracted using an Accelerated Solvent Exire2®0 (ASE 200, DIONEX) with a
mixture of dichloromethane and methanol (6/4 vivi@0°C. The extract was separated
into four fractions of lipid sequences in ordermalarity, F1 (3 ml hexane), F2 (3 ml 3/1
viv hexane—toluene), F3 (4 ml toluene), and F4 (33fh v/v toluene—-methanol), by
column chromatography (Sivith 5% distilled water; i.d., 5.5 mm; length, ABn).

The F3 fraction was analyzed with a Hewlett—Packatddel 6890 gas
chromatograph with on-column injection and eledtrgoressure control inlet systems
and a flame ionization detector (FID). Helium wased as carrier gas with the flow
velocity maintained at 30 cmtsThe column was a Chrompack CP-Sil5CB capillafy (6
m; i.d., 0.25 mm; thickness, 0.25 um). The ovenperature was programmed from 70 to
290°C at 20°C min, from 290 to 310°C at 0.5°C mitn and then held for 30 min.
Quantification of di- and tri-unsaturate@- alkenones were achieved by comparing the
peak areas with that of an internal standar@4sH74) on the gas chromatogram.

The alkenone unsaturation indeXsy was computed from the concentrations of
di-unsaturated (&2 MK) and tri-unsaturated #3MK) alkenones using the following

equation by Prahl et al. (1988):

UXs7 = [Ca7.MK] / ([C 37:dMK] + [C 372MK])

The temperature was calculated according to antiequderived by Prahl et al. (1988)

based on experimental results for cultured strae & Emiliania huxieyi:
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UXs7 = 0.034T + 0.039

where T = temperature (°C). Analytical accuracy @&s1°C in our laboratory.

An aliquot of F4 was dissolved in hexane-2-propaf®@8/1, v/v). GDGTs were
analyzed using high-performance liquid chromatolgyagnass spectrometry (HPLC-MS)
with an Agilent 1100 HPLC system connected to akBruDaltonics micrOTOF-HS time-
of-flight mass spectrometer. Separation was comdugsing a Prevail Cyano column (2.1
x 150 mm, @m; Alltech) maintained at 30°C following the methotlHopmans et al.
(2000) and Schouten et al. (2007). Detection wdsesed by atmospheric pressure
positive ion chemical ionization—-mass spectrom@MyCI-MS) with full scan mode (m/z
500-1500). Compounds were identified by compariragsnspectra and retention times
with those of GDGT standards (formed from the maospholipids ofThermoplasma
acidophilum via acid hydrolysis).

Quantification was achieved by integrating the summed-peak areas in the
(M+H)" and the isotopic (M+H+1I)ion traces and comparing these to the peak araa of
internal standard (&g GDGT) in the (M+H) ion trace, following to the method of Huguet
et al. (2006). The correction value of ionizatiofficeency between GDGTs and the
internal standard was obtained by comparing th& peeas ofT. acidophilum-derived
mixed GDGTs and & GDGT of known amountsThe standard deviation of a replicate
analysis was 3.0% of the concentration for each pamd. Concentration TEY

(applicable in warm water) were calculated from ¢bacentrations of GDGT-1, GDGT-2,
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GDGT-3, and a regioisomer of crenarchaeol usingahewing expressions (Schouten et

al., 2002; Kim et al., 2010):

TEXgs = ([GDGT-2] + [GDGT-3] + [Crenarchaeol regioisorfjer
(|[GDGT-1] + [GDGT-2] + [GDGT-3] + [Crenareleol regioisomer])

TEXse ' = log (TEXge)

Temperature was calculated according to the foligvaquation based on a global core-

top calibration (Kim et al., 2010):

T = 68.4TEXg" + 38.6 (when T > 15°C)

where T = temperature (°C). The analytical accuraay 0.45 °C in our laboratory.

3. Results
3.1 GDGTsand TEXgs

The isoprenoid GDGTs detected in ODP 1239 sedimanisist of caldrachaeol
(GDGT-0), GDGT-1, GDGT-2, GDGT-3, crenarchaeol, @sdegioisomer (Appendix I).
The total concentration of isoprenoid GDGTs in seglit varied between 0.6 and 12.8
Hg.g* with an average of 5.8fg.g" (Fig. 3b). The relative abundances of different
isoprenoid GDGTs were nearly uniform with range8d£54% for crenarchaeol, 26—-35%

for caldarchaeol and 15-35% for others.
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The TEXs -derived temperature of the core-top sample (25.5%Eeed with the
mean annual SST at the study site (24.5°C, Locaetial., 2010). TEXs -derived SST
varied between 20.2 and 27.2°C and was generalyehiduring interglacials and lower
during glacials (Fig. 3a).

The branched isoprenoid tetraether (BIT) index,iraticator of soil bacteria
contribution (see Hopmans et al.,, 2004), variedwbeh 0.01 and 0.06 (Fig. 3d)
suggesting a low contribution of soil organic maitethe study samples. Weijers et al.
(2006) noted that samples having high BIT (>0.4)y slaow anomalously high TEX'-

derived temperatures, but this concern was notaelefor the samples used in this study.

3.2. Alkenones and U*3;’

The total concentration ofs&Csg alkenones in sediment varied between 0.5 and
28.7ng.g" with an average of 8.89.g" (Fig. 3b). The alkenone concentration tended to
be higher in the interval between 400 ka and 24thé&a in the intervals between 430 and
400 ka and between 240 and 0 ka.

The U‘s7/-derived temperature of the core-top sample (25.6f@eed with the
mean annual SST."g/-derived SST varied between 21.5 and 26.6°C andgensrally
higher in interglacials and lower in glacials (F&). The U3/ record obtained in this

study was nearly identical to a record for the gtsite by Rincon-Martinez et al. (2010).

4. Discussion

4.1. Differencein proxy-derived temperatures
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The variation of TEX -derived temperature is roughly consistent withséhof
the U‘s/-derived temperature at the study site (Fig. 3}, dignificant difference was
observed in the intervals of late MIS 11, and MG and MIS-6 when the 't4/-derived
temperature was a maximum of 5.5°C higher thariTt¥ss -derived temperature (Fig.
3a).

Dubois et al. (2009) and Kienast et al. (2012) amslithat U3/ reflects mean
annual SST because the"iJ-derived temperature in EEP core-top sediments
corresponded to mean annual SST. A sediment tragy st two sites in the central
tropical Pacific showed no significant difference the sinking flux of alkenone
producers Emiliania huxleyi and Gephyrocapsa oceanica) between strong and weak El
Niflo periods (Broerse, 2000), suggesting that tloelyction of alkenone is not sensitive
to upwelling intensity. We thus assume th&gdoes reflect the mean annual SST at the
study site.

The behavior of Thaumarchaeota and the producfi@DdsTs are not fully clear
in the EEP. Thaumarchaeota (GDGTs producer) amguitbus and abundant throughout
the seawater column (e.g., Massana et al., 200neikaet al., 2001). In the central
equatorial Pacific, GDGTs are mainly produced i tthermocline layer (TL) (Turich et
al., 2007). Recent case studies assumed that the¢THerived temperatures in EEP
sediments reflect the temperature of the thermed89-50 m) rather than SSTs (Ho et
al., 2011; Seki et al.,, 2012). Thaumarchaeota irrimeaenvironments have been
recognized to be both heterotrophs (e.g., Ouveamsl Fuhrman, 2000; Agogué et al.,
2008; Zhang et al., 2009) and chemoautotrophidfierts (e.g., Knneke et al., 2005;

Hallam et al., 2006). Organic matter and {\&fle produced by phytoplankton and by the

10
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decay of organic matter in surface and subsurfaggerw which explains why
Thaumarchaeota are produced in both the surfacedrayer (SML) and TL. We thus
assume that TEX" reflects a mixed temperature signal from the SMH AL (Fig.4).
The production of Thaumarchaeota is fueled by thgply of organic matter and NH
Both are more enhanced by phytoplankton produdtiarpwelling periods. Yamamoto et
al. (2012) observed that enhanced sinking flux BIG3's is linked with phytoplankton
bloom in the mid-latitude northwestern Pacific. GD@bundance thus may reflect
primary production and upwelling intensity.

TEXse' showed higher temperatures thaf\s¥) during the some deglaciations
(Fig. 3a), but this does not mean that the integr&ST of the SML and TL was higher
than the SST of the SML. The calibration of T&Xto SST was conducted by comparing
core-top TEX%s ' with mean annual SST (Kim et al., 2010). If thepbmenon of TEX"
recording both the SST and thermocline temperaigresmmon in tropical oceans, then
calibration requires a comparison between coreTB)gs' and integrated temperatures
of the SML and TL; this calibration should give tmoestimates. The temperature
reversal during the last deglaciation is thus fatted to the overestimation of TEX-

derived temperature.

4.2. GDGT/alkenoneratio and AT as upwelling indices

The relative abundance of isoprenoid GDGTs to alkes (GDGT/alkenone
ratio) was enhanced during the last five deglamnti(Fig. 5a), suggesting an enhanced
production of GDGTs. When upwelling intensifies, GD production increases due to

increasing NH and organic matter. In contrast, when upwellingakens, GDGT

11
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production decreases. The GDGT/alkenone ratio tars be used as an index of
upwelling intensity.

The difference between TEX- and s/-derived temperaturesAT) was
computed by subtracting g/-derived SST from TE -derived temperatureAl =
TEXss' — US37). U</ reflects the temperature of the SML and BEXreflects
integrated temperatures from the SML and the TL.eWhipwelling intensifies, the
temperature gradient between the SML and TL deese@sSig. 4), and\T shifts in a
positive direction. In contrast, when upwelling Weas, the temperature gradient
between the SML and TL increases, anll shifts in a negative direction. We thus
assume thaAT is a potential index of upwelling intensity.

AT varied between -6.2 and 4.1°C and showed maxim®,a50, 127, 213, 243,
260, 274, 310, 330, 340 and 427 ka. The maximabatl27, 243, 340, and 427 ka
correspond to glacial terminations (Fig. 5a). Mialrpeaks oAAT occurred at 33, 86, 179,
237, 289, and 386 ka. The variationAil is very similar to that in the GDGT/alkenone
ratio, although there are some mismatches in MEh@ MIS 11. This correspondence
suggests that both are robust indices of upwelhtensity.

Positive AT and an elevated GDGT/alkenone ratio at the stsitly during
deglaciations are associated with headt® of subsurface-dwelling foraminifera (Pena
et al., 2008) and increased export production (Rede 1983; Lyle et al., 1988; Kienast
et al., 2006) in the EEP. Pena et al. (2008) shotat thermocline wates'?0 (DT-
5'0,,) at ODP Site 1240, reconstructed from the subsertavelling foraminifera
Neogloboquadrina dutertrei, was maximized during the last three deglaciat{®g. 5d).

This suggests intensified upwelling in those pesioflbrupt increases in organic carbon

12



275 content during deglaciations were reported fromssR6 (Pedersen, 1983), V19-28 (Lyle
276 et al., 1988), and MEOOO5A-24JC and 27JC (Kientsli.e2006) in the EEP (Fig. 5b),
277 suggesting that export production was maximizednduthe last two deglaciations. The
278 elevated AT and GDGT/alkenone ratio at the study site indicatot only the
279 intensification of local upwelling, but also thetensification of regional upwelling
280 associated with thermocline shoaling and enhangpdreproduction in the EEP during
281 deglaciations.

282

283 4.3.Hydrological evolution in the EEP

284 The AT record mirrors sedimentafy°N records from the Peru margin (Fig. 5c),
285 which have been suggested to reflect the intewnsitenitrification regulated by Peruvian
286 coastal upwelling (Ganeshram et al., 2000). Thedtria 5*°N at the Peru margin was
287 slightly different from those in the EEP (DuboisdaikKienast, 2011) and at the Mexican
288 margin (Ganeshram et al., 2000) (Fig. 5c). The maxbf §*°N at terminations are
289 significant at the Peru margin but not in the EERatothe Mexican margin, suggesting
290 that3™N in the eastern Pacific margin was determinedhieydenitrification in the Peru
291 margin and modified by local factors (Robinson &f 8009). The correspondence
292 betweenAT and the Peru margisi°N records suggests that the upwelling at the study
293 site was closely linked with Peruvian coastal upivwgl The study site is located in a
294 region influenced by the coastal upwelling systanrytki, 1981; Pennington et al.,
295 2006; Talley et al., 2011). Because the southeagétwinds are a principal agent driving

296 coastal upwelling along the west coast of South Aeaa continent (Wrytki, 1981;
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Kessler, 2006), it is highly likely that the soudlse trade winds intensified during
deglaciations owing to the stronger South PaciighH

The paleo-position of the ITCZ was approximatechgsiust fluxes across the
equator over the last 30 ka (McGee et al., 200f¢ rBsults of that analysis suggest that
the ITCZ did not shift southward during the lasigideiation. Xie and Marcantonio
(2012) precisely estimated the paleo-position & ICZ using neodymium isotopes
(Eng) derived from transect dust obtained by McGed.g2807). The averaggyg values
from the last glacial and Holocene show similardgeats throughout the equatorial
transect, but the latitudinal gradient was strongexd a steeper interval was evident
during the last deglaciation between 5°N and 7°Nis Buggests more northerly mean
position of the ITCZ.

Yamamoto et al. (2007) reconstructed the intensitythe California Current
during the last 150,000 years and showed that ub&apical high-pressure cell in the
North Pacific weakened during the last two deglzmies. Lyle et al. (2012) suggested
that high precipitation in the Great Basin of thestern United States during the last
deglaciation was not caused by the southward shiftesterly storms, but instead by the
northward transport of moist air masses from tbeital Pacific because of the weaker
North Pacific High. This presumes that the northéesle winds were not intensified
under the condition of the weaker North PacificiHig

The stronger South Pacific High, combined with wWesmker North Pacific High
and northward shift of the ITCZ during the last kde@tion was an asymmetrical
atmospheric phenomenon between the Northern anth&ouhemispheres. This anti-

phase variation in the subtropical high-pressurdls cef both hemispheres was

14
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presumably caused by changes in the heat balahwedrethe hemispheres (Fig. 6).

The ENSO model has been applied to understand logical evolution of the
EEP (e.g., Lea et al., 2000; Koutavas et al., 26@fjtavas and Lynch-Stieglitz, 2003;
Martinez et al., 2003; Pena et al., 2008; RincormtMez et al., 2010). Pena et al. (2008)
proposed the deep thermocline seawatd® (DT-5'%0s.,) based orNeogloboquadrina
dutertrei 5'°0 at Site 1240 and suggested that EEP hydrologychasacterized by a La
Nifla-like condition during deglaciations. Howevehe zonal gradient of SST was
inconsistent with a La Nifia-like state during tlaetl deglaciation (Fig. 5e). The DT-
8804, at ODP Site 1240 showed maximum peaks during diegians(Pena et al., 2008),
but the Mg/Ca-SST, between the western and ea$teaific did not show a large
temperature gradient typical of La Nifia (Lea et2000). Also, the weaker North Pacific
High evidenced during the last deglaciation (Yamenet al., 2007; Lyle et al., 2012) is
not consistent with a La Nifa-like state; a wealMerth Pacific High is typical of the
modern El Nifio condition (Bogad and Lynn, 2001).e Wus suggest that intensified
upwelling shown by enhanced 320, at Site 1240 was not linked to a La Nifia-like
state, and an ENSO analogy cannot to be appliekptain hydrological conditions in
the Pacific during the last deglaciation.

The intensification of upwelling in the EEP and #eru margin during the last
deglaciation coincided with intensification of ugdivey in the Southern Ocean
(Toggweiler et al., 2006; Anderson et al., 2009gc&use upwelling in the Southern
Ocean is regulated by the position of the southeesterlies (Russell et al., 2006;
Toggweiler et al., 2006), the synchronous inteaatfon of upwelling systems in the EEP,

the Peru margin, and the Southern Ocean suggedtththreorganization of atmospheric
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circulation in the Southern Hemisphere induced ititensification of the subtropical
high-pressure cell, causing stronger southease twadds along the west coast of South
America and southern westerlies over the Southeera), enhancing upwelling in both
regions.

The intensification of the South Pacific High caliseuthern westerlies to move
poleward and the ITCZ to shift northward during ldegtions (Fig. 6). In response, the
center of upwelling moved northward and cold tongymvelling in the EEP area
intensified. The stronger South Pacific High durthg last deglaciation caused a drier
climate in the Patagonia region of South Amerie@aRdrras et al., 2012), and the weaker
North Pacific High caused a wetter climate in thee&@ Basin of the western United
States (Lyle et al., 2012). This perspective isfulser understanding the hydrological

and climatological evolution of the eastern Paaifigion.

5. Conclusions

The abundance ratio of GDGTs to alkenone (GDGTralke ratio) and
difference between TE- and s/-derived temperatureAT) can be used as
upwelling indices in the EEP. Our new data show thngensification of upwelling
occurred in the EEP at each of the last five glaeiaminations. The result suggests that
the intensification of upwelling was a common pheeaon in the EEP at glacial
terminations. The similar timing of intensified ugling in the EEP, the Peru margin,
and the Southern Ocean suggests an intensificafiche South Pacific High during
deglaciations. This new perspective can help empla¢ hydrological evolution of the

eastern Pacific region during deglaciations.
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587 Figure 1. Map showing mean annual SST (Locarniralgt2010), the location of ODP

588 Site 1239 (this study), Sites 1240, ME24, ME27, R2€D38-02 and the surface and
589 subsurface ocean currents in the EEP. SEC = Sogtlat&rial Current, NEC = North
590 Equatorial Current, EUC = Equatorial UndercurreMECC = North Equatorial
591 Countercurrent; modified after Kessler (2006) ardrington et al. (2006).
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Figure 2. Records of (a) Nifio 3.4 index (averag8d &nomaly in the region 170°W-
120°W, 5°S-5°N) (Trenberth, 1997) and monthly S80.8°S, 82.5°W (Reynolds et al.,
2002) from January 1982 to December 2011 (see @nlidata at

http://iridl.Ideo.columbia.edu/SOURCES/.NOAA/.NCHE¥IC/.CMB/.GLOBAL/.Reyn

_SmithOIv2/.monthly/ for detail); (b) Seasonal veat water structure at 0.5°S, 82.5°W

(see online data at
http://iridl.Ideo.columbia.edu/SOURCES/.LEVITUSMONTHLY/.temp/)
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623 Figure 6. Ocean and atmospheric conditions in thsteen Pacific region during
624 deglaciations. The weaker North Pacific High and #tronger South Pacific High
625 resulted in the northward shift of the ITCZ, theigavard shift of the southern westerlies

626 and the intensification of upwelling in the EERg fheru margin and the Southern Ocean.
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