<table>
<thead>
<tr>
<th>Title</th>
<th>A cis-acting element in the coding region of cyclin B1 mRNA couples subcellular localization to translational timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yasuda, Kyota; Kotani, Tomoya; Yamashita, Masakane</td>
</tr>
<tr>
<td>Citation</td>
<td>Developmental biology, 382(2): 517-529</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-10-15</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/53625</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>Yasuda_Manuscript_all.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
A cis-acting element in the coding region of cyclin B1 mRNA couples subcellular localization to translational timing

Kyota Yasuda¹, Tomoya Kotani², Masakane Yamashita²*

¹Biosystem Science Course, Graduate School of Life Science, ²Department of Biological Science, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

*Correspondence to: Department of Biological Sciences, Faculty of Science, Hokkaido University, North 10 West 8, Sapporo, Hokkaido 060-0810, Japan. Tel.: +81-11-706-4454 Fax.: +81-11-706-4456 E-mail: myama@sci.hokudai.ac.jp

Kyota Yasuda's present address: Dr. Stavroula Mili's lab, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, 2042 LCMB CCR, Bethesda, MD 20892-2028

Running title: Novel cis-element in cyclin B1 mRNA
Abstract

Subcellular localization of messenger RNAs (mRNAs) to correct sites and translational activation at appropriate timings are crucial for normal progression of various biological events. However, a molecular link between the spatial regulation and temporal regulation remains unresolved. In immature zebrafish oocytes, translationally repressed cyclin B1 mRNA is localized to the animal polar cytoplasm and its temporally regulated translational activation in response to a maturation-inducing hormone is essential to promote oocyte maturation. We previously reported that the coding region of cyclin B1 mRNA is required for the spatio-temporal regulation. Here, we report that a sequence, CAGGAGACC, that is conserved in the coding region of vertebrate cyclin B1 mRNA is involved in the regulation. Like endogenous cyclin B1 mRNA, reporter mRNAs harboring the sequence CAGGAGACC were localized to the animal polar cytoplasm of oocytes, while those carrying mutations in the sequence (with no change in the coding amino acids) were dispersed in the animal hemisphere of oocytes. Furthermore, translational activation of the mutant mRNAs was initiated at a timing earlier than that of endogenous and wild-type reporter mRNAs during oocyte maturation. Interaction of CAGGAGACC with proteins in vitro suggests that this sequence functions in collaboration with a trans-acting protein factor(s) in oocytes. These findings reveal that the sequence in the coding region of cyclin B1 mRNA plays an important role as a cis-acting element in both subcellular localization and translational timing of mRNA, providing a direct molecular link between the spatial and temporal regulation of mRNA translation.

Key words: RNA localization, cyclin B1, oocyte maturation, translational control
Introduction

Localization and translational regulation of messenger RNAs (mRNAs) have emerged as a common and important mechanism for the control of protein production at restricted regions and appropriate timings in various biological processes, including cell differentiation, body patterning and synaptic plasticity in a wide range of organisms (Martin 2004; Du et al. 2007; Holt and Bullock 2009). The spatio-temporal regulation of mRNA can be classified into two types, spatial regulation (short-term repression) and temporal regulation (long-term repression). In spatial regulation, mRNAs are transported from the nucleus to a specific site in the cytoplasm, during which time mRNAs are translationally repressed, but they are translated promptly when they have reached their final destination without any apparent stimuli. In this case, no time lag exists between the timing at which mRNA reaches the final destination and the timing at which translation of mRNA is initiated. In the temporal regulation, mRNAs remain repressed even after reaching their final destination and they are translationally activated only when the cell is stimulated by valid signals. In this case, the timing of mRNA translation would be delayed relative to the timing of mRNA settlement to its final destination. Both types of translational regulation rely on cis-acting elements usually located in the 3’ untranslated region (UTR) and trans-acting factors bound specifically to the cis-elements (Martin and Ephrussi 2009). Molecular mechanisms of the spatial regulation have been investigated using yeast and mammalian cells. It has been shown that trans-acting RNA-binding proteins, such as She2p in yeast and ZBP1 in mammalian cells, control both mRNA localization and translational repression,
demonstrating a direct link between the two events (Hüttelmaier et al. 2005; Du et al. 2008; Shen et al. 2009). In contrast, mechanisms underlying temporal regulation are largely unknown. Indeed, it remains to be elucidated what mechanism couples the localization of mRNA with the timing of translational activation.

Oogenesis and oocyte maturation are typical processes in which temporal regulation of mRNA translation operates. During oogenesis, translationally repressed mRNAs are stored in the oocyte cytoplasm. In response to a maturation-inducing hormone (MIH), full-grown oocytes undergo oocyte maturation, during which time mRNAs stored in oocytes, such as mos, cyclin B1 and wee1, are translationally activated at a timing specific to each mRNA (Charlesworth et al. 2000; see also review, Mendez and Richter 2001; de Moor et al. 2005). The translational activation of cyclin B1 mRNAs is well known to play an important role in initiating oocyte maturation and assuring meiotic metaphase I to II transition without DNA replication (Kondo et al. 1997; Ihara et al. 1998; Hochegger et al. 2001; Ledan et al. 2001; Kotani and Yamashita 2002; Haccard and Jessus 2006; Gaffré et al. 2011). In immature zebrafish oocytes, translationally repressed cyclin B1 mRNAs are localized to the animal polar cytoplasm as an aggregation (Kondo et al. 2001; Yasuda et al. 2010). When oocytes are stimulated with an MIH, the aggregated cyclin B1 mRNAs are dispersed and translationally activated to synthesize Cyclin B1 proteins, which, in turn, bind directly to preexisting Cdc2 proteins to form a maturation-promoting factor (MPF), the final trigger of oocyte maturation (Kondo et al. 1997; Kondo et al. 2001; see also review, Nagahama and Yamashita 2008).
To analyze molecular and cellular mechanisms of temporally regulated translation of *cyclin B1* mRNA, we developed a genetic experimental system in zebrafish, in which reporter mRNAs are transcribed in the nucleus from transgenes (Yasuda et al. 2010). Translational activation of reporter mRNAs can be visualized in real time by a fluorescence dye, ReAsH, which emits fluorescence immediately after binding to a nascent tetra cysteine (TC) tag encoded by reporter mRNAs. This experimental system revealed that the coding region of *cyclin B1* mRNA is involved in both correct anchoring (aggregation) of mRNA at the animal polar cytoplasm and in translational activation at the accurate timing after MIH stimulation, although the presence of a 3’ UTR is a prerequisite for mRNA transport to the animal hemisphere and for translational control (Yasuda et al. 2010). However, it is still not known whether the mRNA anchoring and translational timing are regulated by different elements or by a single element existing in the coding region and what molecules link the two mechanisms.

In this study, we found a novel cis-acting element consisting of 9 nucleotides (nts), CAGGAGACC, in the coding region of *cyclin B1* mRNA by examining the localization and translational timings of reporter mRNAs carrying deletions in the coding region or mutations in this sequence. The 9-nt sequence is required for *cyclin B1* mRNA to be anchored at the animal polar cytoplasm and activated at the accurate timing during oocyte maturation. An electrophoretic mobility shift assay showed that the 9-nt sequence interacts with proteins in vitro. These findings suggest that, in cooperation with a trans-acting protein(s), the 9-nt sequence dictates both the correct anchoring
(aggregation) and accurate timing of translation of cyclin B1 mRNA, providing a direct link between the localization and temporal regulation of translation.

Materials and methods

Construction of reporter genes

Fragments of the coding sequence of zebrafish cyclin B1 were amplified by PCR with a full-length zebrafish cyclin B1 cDNA (Kondo et al. 1997) and the following primers (underlines indicating BstBI sites): 1-523 with cycB1-ORF-f1 (5′-TTC GAA ATG ATG GCT CTC CGG TGT C-3′) and cycB1-region1-R (5′-TTC GAA AGT CGA TAA GAA TGG CAC GC-3′); 524-1197 with cycB1-region2-F (5′-TTC GAA GGC TTG TGC AAG TCC AGA TT-3′) and cycB1-ORF-r1 (5′-TTC GAA CTG TGA GGA TCT GCT TAG CC-3′); 524-736 with cycB1-region2-F (5′-TTC GAA GGC TTG TGC AAG TCC AGA TT-3′) and cycB1-region3-R (5′-TTC GAA TGG TGT ATG CAC GGT CTG TC-3′); 737-949 with cycB1-region4-F (5′-TTC GAA CCA GTC AGA TCC GGG AGA TG-3′) and cycB1-region4-R (5′-TTC GAA CAT AAG CAC TGG CCA TC-3′); 949-1197 with cycB1-region5-F (5′-TTC GAA CCC TGA CCC TGA AGG TCT TC-3′) and cycB1-ORF-r1 (5′-TTC GAA CTA TGA GGA TCT GCT TAG CC-3′). The PCR products were inserted into the ClaI site of the tg3′ construct (Yasuda et al. 2010). The tgo^3′ construct was produced using a QuikChange Site-Directed Mutagenesis Kit (Agilent Technologies) with a primer set of ORF-mut-F (5′-GTT TAG GCT TCA AGA AAC GAT GTA CAT GAC TGT TGC C-3′) and ORF-mut-R (5′-GGC AAC AGT CAT GTA CAT CGT TTC TTG AAG CAG CCT AAA C-3′) and the tgo3′ construct
(Yasuda et al. 2010) as a template. Similarly, the \textit{tgcis-3'} construct was produced with a primer set of GFP-cis-F (5’-

\texttt{GGACGAGCTGTACAAGCAGGAGACCTAAAGCGGCCGCCACCGGCG -3’})

and GFP-cis-R (5’-

\texttt{CCGCGGTGGCGGCCGCTTTAGGTCTCCTGCTTGTACAGCTCGTCC-3’})

and the \textit{tg3'} construct as a template. The SV40 reporter gene was produced by inserting the full-length \textit{cyclin B1} ORF into the \textit{tgs} construct.

\textit{Preparation of oocytes}

All animal experiments in this study were approved by the Committee on Animal Experimentation, Hokkaido University (permission No. 08-0013). Oocytes were manually isolated from ovaries with a pair of fine forceps in zebrafish Ringer's solution (116 mM NaCl, 2.9 mM KCl, 1.8 mM CaCl$_2$, and 5 mM HEPES; pH 7.2) under a dissecting microscope.

\textit{Injection of reporter constructs into the nucleus of zebrafish oocytes}

Manually isolated full-grown oocytes were used to inject 25 pg of reporter constructs into the nucleus using a microinjector, CellTram vario (Eppendorf), as reported previously (Kress et al. 2004; Lin et al. 2010). After injection, oocytes were incubated in zebrafish Ringer's solution for 4 hours. The oocytes were fixed with 4% paraformaldehyde in phosphate buffered saline (4% PFA/PBS) (PBS: 137 mM NaCl,
2.7 mM KCl, 10 mM Na₂HPO₄, and 2 mM KH₂PO₄; pH 7.2) overnight at 4°C and used for whole-mount *in situ* hybridization.

Production of transgenic zebrafish

Transgenic zebrafish were produced by using *Tol2* transposon-mediated germline transmission (Kotani et al. 2006). One nanoliter of a solution containing 250 µg/ml of reporter constructs and 250 µg/ml of *in vitro*-synthesized mRNAs encoding the *Tol2* transposase was injected into one-cell stage embryos. The injected embryos were raised and crossed with wild-type fish. F1 embryos were screened by GFP fluorescence under an M165FC fluorescence stereomicroscope (Leica). The embryos expressing GFP were raised to adulthood and the ovaries from F1 to F8 females were used for whole-mount and section *in situ* hybridization analyses and real-time imaging.

Whole-mount and section in situ hybridization analyses

Digoxigenin (DIG)-labeled anti-sense probes for the *gfp* coding region and full-length *cyclin B1*, *cyclin B2* and *cyclin A1* coding regions were synthesized with DIG RNA labeling mix (Roche) according to the manufacturer's instructions. Whole-mount *in situ* hybridization analysis of oocytes injected with reporter constructs or derived from transgenic zebrafish was performed according to the procedure reported previously (Schulte-Merker et al. 1992). Section *in situ* hybridization analysis of ovaries was performed according to the procedure reported previously (Kondo et al. 2001).
Real-time PCR

Reporter mRNA expression in full-grown oocytes was quantified by using a real-time PCR system with SYBR green PCR Master Mix (Applied Biosystems) as described previously (Yasuda et al. 2010).

Real-time imaging

To detect translation of reporter mRNAs in oocytes, 1 nl of 0.2 mM ReAsH in zebrafish Ringer's solution was injected into full-grown oocytes using the CellTram vario. Oocyte maturation was induced by stimulation with 17α,20β-dihydroxy-4-pregnen-3-one (final concentration, 1 µg/ml), an MIH in fish. The ReAsH fluorescent signal was observed under an M165FC fluorescent stereomicroscope (Leica) using a filter set of Texas Red and photographed by using a VB-7010 cooled CCD color camera (Keyence) at intervals of 15 min after MIH stimulation.

Jasplakinolide treatment

Manually isolated oocytes were incubated with 5 µM jasplakinolide or 0.5% DMSO in zebrafish Ringer’s solution at room temperature for 140 min. Half of them were simultaneously stimulated with MIH. For detection of *cyclin B1* and *tgo3’* mRNAs, the oocytes were fixed 140 min after MIH and jasplakinolide treatment and analyzed by section *in situ* hybridization. For real-time detection of translation of *tgo3’* and *tgo^{M3’}* mRNAs, 1 nl of 0.2 mM ReAsH was injected into full-grown oocytes using the
microinjector CellTram vario. The oocytes were incubated with jasplakinolide and MIH, observed under an M165FC fluorescent stereomicroscope, and photographed by using a VB-7010 cooled CCD color camera. For detection of Cdc2 and Cyclin B1 by immunoblotting, the oocytes were homogenized with ice-cold extraction buffer (100 mM β-glycerophosphate, 20 mM HEPES, 15 mM MgCl₂, 5 mM EGTA, 1 mM DTT, 300 µM PMSF, 3 µg/ml leupeptin; pH 7.5). Extracts were precipitated with Suc1 beads. The samples were separated by SDS-PAGE, blotted onto an Immobilon membrane, and probed with anti-Cdc2 (MC2-21) (Tanaka and Yamashita 1995) and anti-goldfish Cyclin B1 (B112) (Katsu et al. 1993) monoclonal antibodies.

Electrophoretic mobility shift assay (EMSA)

EMSA was performed as described previously (Shcherbakov and Piendl 2007; Zamore et al. 1997). Briefly, 50 oocytes were extracted with 50 µl of binding buffer 1 (20 mM HEPES-KOH; pH 7.4, 100 mM KCl, 0.1 mM EDTA, 0.02% (w/v) Tween-20 and 0.1 mg/ml BSA) containing protease inhibitors [1 mM dithiothreitol (DTT), 300 µM (p-amidinophenyl) methanesulfonyl fluoride (PMSF), 30 µg/ml leupeptin]. Using total RNAs extracted from zebrafish, frog (*Xenopus laevis*) or mouse oocytes, cDNA fragments including 524-574 nts of zebrafish *cyclin B1*, 567-617 nts of frog *cyclin B1* and 599-647 nts of mouse *cyclin B1* were amplified by RT-PCR and cloned into pGEM T-easy vector (Promega). RNA probes were synthesized with T7 RNA polymerase (Invitrogen) and diluted in distilled water. The RNA probes (250 ng per reaction) were incubated with the oocyte extracts diluted in binding buffer 2 (1 mM EDTA, 10 mM
HEPES; pH 7.4, 50 mM KCl, 2 mM DTT, 0.5 unit of RNAsin plus (Promega), 0.1 mg/ml BSA and 0.01% (w/v) Tween-20) to 20 µl of total reaction volume at room temperature for 20 minutes. After added loading buffer of the EMSA kit (Molecular probes), the samples were loaded in 6% non-denaturing polyacrylamide gel under a constant current condition (16 mA/gel) for 30-50 minutes. The RNA probes were stained with SYBR green EMSA nucleic acid gel stain (Molecular probes) according to the manufacturer’s instructions. SYBR green fluorescence was detected by using LAS-3000 (Fujifilm).

Results

Sequences in the cyclin B1 coding region responsible for mRNA aggregation

In addition to the 3’UTR of cyclin B1 mRNA, the coding region is crucial for the correct subcellular localization of mRNA (Yasuda et al. 2010). To identify sequences involved in this mRNA localization, we constructed reporter genes that contain variously truncated coding regions of cyclin B1 (Fig. 1A). Since the production of transgenic zebrafish, in which reporter mRNAs are stably transcribed in oocytes, is time-consuming, we used an easy way as a first step toward identification of the region involved in mRNA localization. We previously reported that mRNAs transcribed in the nucleus from transgenes recapitulate the localization of endogenous mRNAs, although those synthesized in vitro and injected directly into the oocyte cytoplasm do not (Yasuda et al. 2010). We therefore injected reporter genes into the oocyte nucleus and analyzed the localization of transcribed mRNAs by whole-mount in situ hybridization with a gfp
probe. Endogenous cyclin B1 mRNAs are localized as an aggregation to a space less than 200 µm in diameter at the animal polar cytoplasm beneath the micro-pile, a single opening of the egg chorion through which the fertilizing spermatozoon enters the oocytes (Figs. 2A, 4A). Since the extents of mRNA localization in the oocytes varied in reporter mRNAs, signals less than 200 µm in diameter were defined as 'aggregation' and those wider than 200 µm were defined as 'dispersion'.

Oocytes injected with distilled water showed no signals, while oocytes injected with a reporter gene containing a full-length cyclin B1 (referred to as tgo3’; Yasuda et al. 2010) exhibited aggregated signals in the animal polar cytoplasm (Fig. 2B, C; Table 1), confirming that the reporter mRNAs transcribed in the nucleus recapitulate the behavior of endogenous mRNAs. Reporter mRNAs containing 524-1197 nts were aggregated in the cytoplasm at the animal pole as in the case of tgo3’, whereas those containing 1-523 nts were dispersed widely in the animal hemisphere of oocytes (Fig. 2D, E; Table 1). These results indicate that 524-1197 nts contain an element(s) responsible for the correct localization (anchoring at the animal polar cytoplasm as an aggregation) of cyclin B1 mRNA. We then divided 524-1197 nts into three fragments. Reporter mRNAs containing 524-736 nts were aggregated, whereas those containing 737-949 or 949-1197 nts were not (Fig. 2F-H; Table 1). Therefore, 524-736 nts in the cyclin B1 coding region are required for the anchoring.

Results of experiments in which reporter genes were injected into the nucleus revealed that 524-736 nts in the cyclin B1 coding region are required for correct anchoring of cyclin B1 mRNA at the animal polar cytoplasm. We confirmed this result
by producing transgenic zebrafish that stably transcribe reporter mRNAs in oocytes (Yasuda et al. 2010). We produced transgenic lines carrying reporter genes containing the full length, 1-523, 524-1197, 524-736, 737-949 or 949-1197 nts of the cyclin B1 coding region by Tol2 transposon-mediated germ-line transmission (Kotani et al. 2006). To avoid the effects of sites in the genome to which the transgenes were inserted, we analyzed more than two transgenic lines carrying the same reporter gene by whole-mount (Fig. 3) and section (Fig. 4) in situ hybridizations and confirmed that the same reporter gene provided equivalent results. Quantification of reporter mRNAs by real-time PCR showed no statistical differences (Fig. 3K). Consistent with the results of injection experiments, reporter mRNAs containing full length, 524-1197 or 524-736 nts were aggregated (Fig. 3B, D, E; Table 2) in the animal polar cytoplasm (Fig. 4B, D, E), as in the case of endogenous cyclin B1 mRNAs (Figs. 3A, 4A). In contrast, reporter mRNAs containing 1-523, 737-949 or 949-1197 nts were shown to be dispersed throughout the animal hemisphere of oocytes by whole-mount in situ hybridization (Fig. 3C, F, G; Table 2), and clear signals were not found in the cytoplasm beneath the micro-pile by section in situ hybridization (Fig. 4C, F, G), probably because the concentration of reporter mRNAs decreased to undetectable levels by dispersion in the cytoplasm. In agreement with our previous finding that a reporter mRNA, tgs, lacking cyclin B1 3’ UTR shows no localization (Yasuda et al. 2010), a reporter mRNA that contains SV40 3’ UTR instead of cyclin B1 3’ UTR (Fig. 3J; cf. tgo3’ in Fig. 1A) showed no aggregation (Fig. 3I), indicating that the presence of cyclin B1 3’ UTR is a prerequisite for mRNA localization. We therefore concluded that the 524-736 sequence
of the *cyclin B1* coding region is responsible for anchoring (correct localization) of the mRNA in the presence of the 3’ UTR.

Requirement of 524-736 nts of the cyclin B1 coding region for translational activation at accurate timing during oocyte maturation

We previously reported that, although translational repression of *cyclin B1* mRNA is primarily dependent on the 3’UTR, accurate timing of translational activation after induction of oocyte maturation requires the coding region (Yasuda et al. 2010). To identify the sequence responsible for the temporal regulation of mRNA translation, we analyzed the timings of translational activation of reporter mRNAs by real-time imaging (Yasuda et al. 2010). Since oocytes derived from different females undergo germinal vesicle breakdown (GVBD) at different timings after induction of oocyte maturation (60 to 150 min), the time when the oocytes initiate GVBD after MIH stimulation is expressed as $T_{GVBD} = 100$, and the timing of translation is expressed relative to this time.

The timings of translational activation of reporter mRNAs containing the full length (*tgo3’*), 524-1197 or 524-736 nts of the *cyclin B1* coding region were similar ($T_{GVBD} = 51.3 \pm 2.6$ for *tgo3’*, 46.0 ± 2.1 for 524-1197, and 54.6 ± 8.6 for 524-736) (Fig. 5A, C, D, H). In contrast, reporter mRNAs containing 1-523, 737-949 or 949-1197 nts were translated at a significantly earlier timing ($T_{GVBD} = 21.0 \pm 3.0$ for 1-523, 25.8 ± 3.2 for 737-949, and 18.0 ± 3.3 for 949-1197) (Fig. 5B, E, F, H). Therefore, the 524-736 sequence that is responsible for the anchoring of *cyclin B1* mRNA (Figs. 2-4) is also
involved in translational timing during oocyte maturation.

Evolutionally conserved sequence responsible for both anchoring and translational timing of cyclin B1 mRNA

Since cyclin B1 mRNAs exhibit subcellular localization in immature oocytes of zebrafish and frogs (Kondo et al. 2001; Groisman et al. 2000; Yausda et al. 2010), we predicted that a sequence responsible for mRNA localization might be evolutionally conserved. Alignment of 524-736 nts of the zebrafish cyclin B1 coding region with corresponding sequences of human, mouse, and frog cyclin B1 enabled identification of a conserved sequence, CAGGAGACC, at 559-567 nts of the zebrafish coding region (Fig. 1B). This sequence encodes amino acids of Gln, Glu and Thr (Fig. 1C). Despite the fact that the third nucleotide of each codon can be replaced with an A in the first and second codons and with an A, G or U in the third codon, all of the third nucleotides are completely conserved, suggesting that this sequence not only encodes evolutionally conserved amino acids but also provides a basis for translational regulation through the RNA sequence itself.

To determine whether the 9-nt sequence functions as a cis-acting element in mRNA anchoring and translational timing regulation, we constructed a reporter gene containing a full-length cyclin B1 with mutations in the sequence CAGGAGACC (CAAGAAACG, underlines indicating mutated sites), which encodes amino acids identical to those encoded by the original sequence (referred to as tgo$^{M3}'$, Fig. 1A). We first injected the tgo$^{M3}'$ construct into the nucleus of zebrafish oocytes and examined mRNA localization
by whole-mount *in situ* hybridization. The *tgo^M^3*’ reporter mRNAs were dispersed in the cytoplasm of the animal hemisphere (Fig. 2I; Table 1), suggesting a function of CAGGAGACC in mRNA anchoring. We then produced transgenic zebrafish carrying this reporter gene and examined the localization and translational timing of reporter mRNAs in oocytes. The *tgo^M^3*’ mRNAs were not aggregated in the animal polar cytoplasm beneath the micro-pile (Fig. 4H) but were widely distributed in the animal hemisphere of oocytes (Fig. 3H; Table 2). Furthermore, the *tgo^M^3*’ mRNAs were translated at a timing earlier than that of *tgo3*’ mRNAs after MIH stimulation (T_{GVBD} = 23.3 ± 1.2 for *tgo^M^3*, 51.3 ± 2.6 for *tgo3*) (Fig. 5G, H). These results indicate that the sequence CAGGAGACC is a *cis*-acting element required for both anchoring and translational timing of *cyclin B1* mRNA.

Sufficiency of the CAGGAGACC element for mRNA anchoring

We previously reported that a reporter mRNA containing the *cyclin B1* 5’ UTR, *gfp* ORF and *cyclin B1* 3’ UTR but not *cyclin B1* ORF (named *tg3*) failed to anchor at the animal polar cytoplasm (Yasuda et al. 2010). We examined the sufficiency of the CAGGAGACC element for mRNA anchoring by injection into oocyte nuclei of a variant form of *tg3*, in which CAGGAGACC was inserted immediately before the stop codon of *gfp* (*tgcis-3’, Fig. 2K). Although the percentage of oocytes having aggregated *tgcis-3’* signals seemed to be smaller than that of *tgo3’, 524-1197* and *524-736*, it was evident that the *tgcis-3’* mRNA anchored at the animal polar cytoplasm (Fig. 2J; Table 1), indicating that the CAGGAGACC element can confer mRNA anchoring.
Linkage of actin filament-dependent aggregation to translational repression of mRNA

Identification of the 9-nt sequence as a dual cis-acting element necessary for both correct anchoring (aggregation) and accurate timing of translational activation of cyclin B1 mRNA during oocyte maturation suggests a functional link between the two mechanisms. Our previous studies using an actin filament-destabilizing drug, cytochalasin B, showed that behavior of cyclin B1 mRNA is dependent on a network of actin filaments (Kondo et al. 2001). Consistent with this finding, the aggregation of cyclin B1 mRNA failed to disperse when MIH-treated oocytes were further treated with an actin filament-stabilizing drug, jasplakinolide (Fig. 6A), and these oocytes did not undergo de novo synthesis of Cyclin B1 proteins and activation of Cdc2 proteins, processes indispensable for promoting oocyte maturation in zebrafish oocytes (Fig. 6E). Like endogenous cyclin B1 mRNAs, jasplakinolide inhibited the MIH-induced dispersion of aggregation (Fig. 6B) and translational activation (Fig. 6C) of tgo3’ mRNAs. However, the drug had no effect on the translational activation of tgoM3’ mRNAs, which did not aggregate in the animal polar cytoplasm (Fig. 2I, 3H; Table 1, 2); the tgoM3’ mRNAs were translated after MIH stimulation at a timing similar to that in jasplakinolide-untreated oocytes (Fig. 6D). These results suggest that the repression of cyclin B1 mRNAs is achieved by two successive processes, the 3’ UTR-dependent but actin filament-independent process and the 9-nt sequence- and actin filament-dependent process. When stopped at the first process, cyclin B1 mRNAs are localize to the animal hemisphere of oocytes and translated at an earlier timing after
MIH stimulation. The first process must be a prerequisite for the second process, in which cyclin B1 mRNAs are aggregated in the animal polar cytoplasm and translated at the accurate timing after MIH treatment, the process probably making a great contribution to the prevention of precocious translational activation of cyclin B1 mRNA to assure the normal progression of oocyte maturation.

Association of proteins with the sequence CAGGAGACC in vitro

As a first step to elucidate the molecular mechanisms of cyclin B1 mRNA anchoring and translational regulation mediated by the sequence CAGGAGACC, we examined whether this element interacts with sequence-specific RNA-binding proteins by electrophoretic mobility shift assays. RNA probes consisting of 524-574 nt of the zebrafish cyclin B1 coding region and those carrying mutations in CAGGAGACC were incubated with extracts from full-grown oocytes. The wild-type probe showed a retarded mobility (upward shift) when incubated with the extracts, while the mutant probe did not (Fig. 7). It is likely that the upward shift of the wild-type probe was caused by an interaction with proteins, because it was inhibited when the extracts were treated with proteinase K. We also examined the binding activity of 567-617 nts of frog cyclin B1 and 599-647 nts of mouse cyclin B1, which are equivalent to 524-574 nts of zebrafish cyclin B1. The wild-type frog and mouse RNA probes, but not the mutant probes, interacted with zebrafish oocyte extracts (Fig. 7). These results suggest that the CAGGAGACC element regulates the translation via a trans-acting protein(s) by a mechanism conserved in vertebrates.
Secondary structure of cyclin B1 mRNAs around the sequence CAGGAGACC

It is known that secondary structures of target RNAs are important for recognition by RNA binding-proteins (Bullock and Ish-Horowicz 2001; Jambhekar et al. 2005). Since zebrafish, frog and mouse cyclin B1 mRNAs interacted with zebrafish oocyte proteins (Fig. 7), we examined whether these mRNAs have similar secondary structures around the sequence CAGGAGACC. However, the secondary structures predicted by the CentroidFold program (Sato et al. 2009) have no similarity (Fig. 8), suggesting that the primary RNA sequence of CAGGAGACC, rather than its secondary structure, is critical for recognition by trans-acting proteins.

Subcellular localization of cyclin A1 and B2 mRNAs

Similar to zebrafish cyclin B1 mRNA, cyclin B2 mRNA harbors the CAGGAGACC sequence, whereas cyclin A1 mRNA does not. To obtain further insights into the role of CAGGAGACC in mRNA anchoring, we examined the localization of these mRNAs in zebrafish full-grown oocytes. Consistent with the presence of CAGGAGACC, cyclin B2 mRNA co-localized to the animal polar cytoplasm with cyclin B1 mRNA, while cyclin A1 mRNA did not show clear subcellular localization (Fig. 9).

Discussion

Although temporally regulated translation of localized mRNAs has been recognized as an important and universal mechanism for the control of gene expression, its
molecular details remain largely unresolved because of the limitation in technology that enables precise determination of the time and site of translational activation of localized mRNAs in the cell. Our genetic experimental system in combination with real-time imaging of translational activation provides an insight into the molecular mechanisms of temporally regulated translation of cyclin B1 mRNAs that localize to the animal polar cytoplasm of oocytes. We propose that an evolutionally conserved sequence, CAGGAGACC, within the coding region of vertebrate cyclin B1 mRNA is responsible for the mRNA to be anchored at the correct sites in the oocyte cytoplasm and to be translationally activated at the accurate timing during oocyte maturation, providing a direct molecular link between the two events.

Function of CAGGAGACC sequence in cyclin B1 mRNA localization

Although mRNA localization is controlled by cis-acting elements usually located in its 3’ UTR (Martin and Ephrussi 2009), recent studies have demonstrated that the coding sequences of ASH1, ATP2 and ABP140 mRNAs are involved in mRNA localization in yeast (Gonzalez et al. 1999; Garcia et al. 2009; Kilchert and Spang 2011). For example, the N-terminal fragment of ABP140 protein that includes the actin-binding domain must be synthesized to transport mRNA to the distal pole of the mother cell via actin filaments in budding yeast (Kilchert and Spang 2011). Similarly, Dia1 mRNA localizes to the perinuclear endoplasmic reticulum in chicken embryonic fibroblasts depending on the translation of nascent peptides encoded by the mRNA (Liao et al. 2010). In striking contrast to these cases, zebrafish cyclin B1 reporter
mRNAs that contain a stop codon downstream of gfp and upstream of the cyclin B1 initiation codon localize to the animal polar cytoplasm of oocytes, similar to endogenous cyclin B1 mRNA (Figs. 2-4). The reporter mRNAs produce TC-tagged GFP but not Cyclin B1 protein. It is thus apparent that the localization of cyclin B1 mRNA is independent of the nascent protein product encoded by the mRNA.

We demonstrated that the sequence CAGGAGACC within the cyclin B1 coding region is required for mRNA anchoring in the presence of the 3' UTR (Figs. 2I, 3H, 4H). In addition to this requirement, we also suggested the sufficiency of CAGGAGACC by demonstrating that tgg3' mRNA, which was dispersed throughout the animal hemisphere of oocytes (Yasuda et al. 2010), was anchored at the animal polar cytoplasm when the CAGGAGACC sequence was introduced to the end of the gfp ORF (tgcis-3', Fig. 2J). However, it seemed that the extent of anchoring of tgcis-3' mRNA was not comparable to that of tgo3', 524-1197 and 524-736 mRNAs (Table 1). The position of CAGGAGACC in the coding region may be important for the element to function properly.

A trans-acting protein(s) may mediate the anchoring, because RNA probes carrying the CAGGAGACC sequence, but not those carrying mutated sequences, interacted with oocyte proteins. As well as a zebrafish RNA probe, corresponding RNA probes derived from frog and mouse cyclin B1 mRNAs also interacted with zebrafish oocyte proteins (Fig. 7), implying generality of the CAGGAGACC-mediated anchoring mechanism of cyclin B1 mRNA in vertebrate oocytes. Taken together, our results suggest the following scenario leading to the localization of cyclin B1 mRNA to the animal polar cytoplasm:
The 3’ UTR dictates the mRNA to be transported to the cytoplasm beneath the animal pole, and then the 9-nt sequence in the coding region directs the transported mRNA to be anchored there with the aid of a trans-acting RNA-binding protein(s).

Since the sequence CAGGAGACC is distinct from any cis-acting elements responsible for mRNA behavior so far recognized (Lewis et al. 2004; see also review, Chabanon et al. 2004), it is difficult to predict proteins bound to this sequence specifically. Recent studies have demonstrated that secondary structures of target RNAs are important for recognition by RNA-binding proteins (Bullock and Ish-Horowicz 2001; Jambhekar et al. 2005). However, computationally predicted secondary structures of zebrafish, frog and mouse cyclin B1 mRNAs have no apparent similarity (Fig. 8). We therefore speculate that the primary RNA sequence of CAGGAGACC, not its secondary structure, is important to function as a cis-acting element. To understand molecular details, biochemical identification of proteins bound to the sequence CAGGAGACC is in progress.

Function of CAGGAGACC sequence in temporally regulated translation

Temporally regulated translation of localized mRNA is crucial for various biological processes, including gametogenesis, embryonic development and neuronal plasticity (Mendez and Richter 2001; Martin 2004). Recent studies have revealed several cis-acting elements responsible for mRNA localization, including a 395-nt sequence in the 3’ UTR of vasopressin mRNA for localization to neuronal dendrites (Mohr et al. 2001) and a 66-nt element in the 5’ UTR of sensorin mRNA for localization to neuronal
synapses (Meer et al. 2012). These localized mRNAs are translationally activated in response to neuronal stimuli, but it is uncertain whether the localization is a prerequisite for translational activation.

Taking advantage of our genetic experimental system in combination with real-time imaging of translation, we comprehensively analyzed the relationship between cyclin B1 mRNA localization and temporal control of translation after induction of oocyte maturation. In the presence of 5’ and 3’ UTRs, the 524-736 sequence in the cyclin B1 coding region was sufficient to assure correct anchoring at the animal polar cytoplasm and accurate timing of translational activation after induction of oocyte maturation (Figs. 4E, 5D). We identified the core sequence involved in both the spatial and temporal regulation as CAGGAGACC, indicating that the localization of cyclin B1 mRNA is tightly linked to the timing of translational activation during oocyte maturation via a single cis-acting element, CAGGAGACC. Experiments using the actin filament-stabilizing drug jasplakinolide also provided an insight into the relationship between mRNA localization and translational timing. When oocytes having an aggregation of tgo3’ mRNAs were treated with jasplakinolide, neither MIH-induced dispersion of the aggregation nor translational activation of the mRNAs occurred, as in the case of endogenous cyclin B1 mRNA. In striking contrast to this, tgoM3’ mRNAs, which do not form an aggregation in the animal polar cytoplasm, were translated at the original timing (earlier timing than that of endogenous and tgo3’ mRNAs) even in the presence of jasplakinolide (Fig. 6). These findings highlight the significance of the CAGGAGACC- and actin filament-dependent localization (aggregation) of cyclin B1
mRNA in the translational timing during zebrafish oocyte maturation.

Function of evolutionally conserved coding sequence in mRNA regulation

In general, evolutionally conserved coding sequences encode evolutionally conserved amino acid sequences. Indeed, the sequence CAGGAGACC encodes evolutionally conserved amino acids Gln, Glu and Thr (Fig. 1C). However, it should be noted that the sequence CAGGAGACC is completely conserved in vertebrates despite the fact that each codon can be replaced with CAA (first codon), GAA (second codon) and ACA, ACG or ACU (third codon). The conservation of CAGGAGACC is not due to a preference of the codon usage for Gln, Glu and Thr. Human Cyclin B1 protein possesses 19 Glns, but the number of Glns encoded by CAG is only 9 (47.3%). Similarly, the numbers of Glus and Thrs in human Cyclin B1 protein are 33 and 23, respectively, but the number of Glus encoded by GAG and Thr by ACC are 10 (30.3%) and 3 (13%), respectively. Besides encoding conserved amino acid sequences, the sequence CAGGAGACC itself might have a role in the regulation of mRNA localization and translation in a wide range of vertebrate species.

We found that *cyclin B1* and *cyclin B2* mRNAs, both of which contain the 9-nt sequence, localized to the animal polar cytoplasm but that *cyclin A1* mRNA lacking the sequence did not (Fig. 9), confirming the correlation between presence of the 9-nt sequence and occurrence of mRNA anchoring. Besides *cyclin B1* and *B2* mRNAs, however, the animal polar cytoplasm of zebrafish full-grown oocytes harbors *cth1, mos, notch1a, pabp, pou-2, taram-a, vg1* and *zorba* mRNAs (Howley and Ho, 2000; Suzuki
et al. 2009), which do not have the 9-nt sequence. It is thus apparent that the 9-nt sequence is not essential for mRNA anchoring at the animal polar cytoplasm. A BLAST search for the existence of transcripts that have the sequence CAGGAGACC revealed that they account for 4.4%, 9.4%, 8.5% and 11.8% of zebrafish, frog, mouse and human transcripts. The transcripts encode various proteins with diverse functions, and their subcellular localizations remain to be elucidated. Further studies are necessary to evaluate the prevalence of the 9-nt sequence-mediated mechanism in vertebrates.

Conclusions

Translational activation of cyclin B1 mRNAs plays a crucial role in oocyte maturation, but its molecular mechanism remains to be elucidated. We identified a novel 9-nt sequence, CAGGAGACC, in the coding region of cyclin B1 mRNA as a cis-acting element involved in both correct localization of mRNA in the animal polar cytoplasm of zebrafish oocytes and in translational activation at the accurate timing during oocyte maturation. Since the 9-nt element is highly conserved in the coding region of vertebrate cyclin B1 mRNA, the mechanism mediated by this element might function commonly in vertebrates.

Funding

This work was supported by Grants-in-Aid for JSPS Fellows (236666 to Y.K), Scientific Research on Priority Areas (23013001 to T.K.) and Scientific Research
References

Figure legends

Fig. 1. Structures of reporter genes. (A) All reporter genes contain cyclin B1 5’ UTR (5’ UTR), coding sequences of TC-tag (TC) and EGFP (GFP), a stop codon and cyclin B1 3’UTR (3’UTR). The full length and various parts of the cyclin B1 coding region were inserted downstream of the stop codon and upstream of the 3’UTR. The numbers of nucleotides (nts) of the cyclin B1 coding sequence are indicated on the left. The tgo^M3’ reporter contains mutations (indicated by red characters) in the CAGGAGACC sequence in the cyclin B1 coding region (arrow). All of the reporter genes were transcribed under the control of the Xenopus EF1α promoter. The results of in situ hybridization (Aggregation) and real-time imaging of translation (Timing of translation) of reporter mRNAs transcribed from each reporter gene are summarized on the right. (B) Alignment of the coding sequences of zebrafish cyclin B1 (GenBank accession: NM_131513) at 524-736 nts with the corresponding sequences of human (NM_031966), mouse (NM_172301) and frog (NM_001086727) cyclin B1. Asterisks indicate identical nucleotides. The blue box indicates the highly conserved 9-nt sequence. (C) Amino acid sequences encoded by the sequences are highlighted with grey and blue boxes in B.

Fig. 2. Localization of cyclin B1 reporter mRNAs that were transcribed from reporter genes injected into oocyte nuclei. (A) Whole-mount in situ hybridization of full-grown oocytes probed with cyclin B1. Aggregation of cyclin B1 mRNAs is found in the region indicated by dotted lines (200 µm). (B-J) Whole-mount in situ hybridization probed with gfp. Shown are oocytes injected with distilled water (DW) (B), reporter
genes containing the full length (tgo3’, C), 1-523 (D), 524-1197 (E), 524-736 (F), 737-949 (G) and 949-1197 (H) nts of the cyclin B1 coding region, tgoM3’ reporter gene (I) and tgcis-3’ reporter gene (J). The oocytes injected with distilled water showed no signals (B). The tgo3’, 524-1197, 524-736 and tgcis-3’ mRNAs were aggregated in the animal polar cytoplasm (C, E, F, J). In contrast, the 1-523, 737-949, 949-1197 and tgoM3’ mRNAs were dispersed in the animal hemisphere of oocytes (D, G, H, I). Arrows indicate the signals of reporter mRNAs. Bars, 100 µm. (K) Structure of the tgcis-3’ reporter gene, which contains cyclin B1 5’ UTR (5’UTR), coding sequences of TC-tag (TC) and EGFP (GFP), CAGGAGACC element (E), a stop codon and cyclin B1 3’ UTR (3’UTR).

Fig. 3. Localization of cyclin B1 reporter mRNAs in oocytes of transgenic zebrafish. Whole-mount in situ hybridization of full-grown oocytes probed with cyclin B1 (A) or gfp (B-I). Shown are oocytes expressing tgo3’ (B), 1-523 (C), 524-1197 (D), 524-736 (E), 737-949 (F), 949-1197 (G), tgoM3’ (H) and SV40 (I) mRNAs. The tgo3’, 524-1197 and 524-736 mRNAs were aggregated in the animal polar cytoplasm (B, D, E). In contrast, the 1-523, 737-949, 949-1197 and tgoM3’ mRNAs were dispersed in the animal hemisphere (C, F, G, H) and the SV40 mRNAs were dispersed throughout the oocyte (I). Arrows indicate signals of cyclin B1 (A) and reporter mRNAs (B-H). Bars, 100 µm. (J) Structure of the SV40 reporter gene, which contains cyclin B1 5’ UTR (5’UTR), coding sequences of TC-tag (TC) and EGFP (GFP), a stop codon, cyclin B1 coding region and SV40 3’ UTR (SV40). (K) Quantification of reporter mRNAs
(normalized to β-actin mRNA) in full-grown transgenic oocytes by real-time PCR. No statistically significant difference was found in the contents of reporter mRNAs. Error bars indicate mean ± s.e.m. (n = 3).

Fig. 4. Localization of cyclin B1 reporter mRNAs in the animal polar cytoplasm of transgenic zebrafish oocytes. (A) Section *in situ* hybridization of a full-grown oocyte probed with cyclin B1. The cyclin B1 mRNAs were localized to the animal polar cytoplasm of the oocyte beneath the micro-pile as an aggregation (arrow). (B-H) Section *in situ* hybridization probed with gfp, showing full-grown oocytes of transgenic zebrafish expressing tgo3′ (B), 1-523 (C), 524-1197 (D), 524-736 (E), 737-949 (F), 949-1197 (G) and tgoM3′ (H) mRNAs. The tgo3′, 524-1197 and 524-736 mRNAs were aggregated beneath the micro-pile (arrows) (B, D, E), whereas the 1-523, 737-949, 949-1197 and tgoM3′ mRNAs had no signal (C, F, G, H). Arrowheads indicate the micro-pile. Dotted lines encircle aggregated mRNAs. Bars, 100 µm.

Fig. 5. Real-time imaging of temporally regulated translation. (A-G) Real-time imaging of temporally regulated translation of tgo3′ (A), 1-523 (B), 524-1197 (C), 524-736 (D), 737-949 (E), 949-1197 (F) and tgoM3′ mRNAs (G). The times after MIH stimulation are shown as standardized time TGVBD. Arrows indicate ReAsH signals detected at the first time after MIH stimulation. Dotted circles indicate the GV. Bars, 100 µm. (H) Translational timings of the reporter mRNAs after MIH stimulation. Error bars indicate mean ± s.e.m. (n = 3 for 1-523, 524-736 and tgoM3′; n = 5 for 949-1197; n
= 6 for 524-1197; n = 7 for tgo3’, 737-949). Transgenes indicated by B are translated earlier than those indicated by A, with statistically significant difference (P < 0.05, Student’s t-test).

Fig. 6. Effects of actin filament stabilization on cyclin B1 mRNA aggregation and translational regulation. (A, B) Section in situ hybridization of wild-type oocytes probed with cyclin B1 (A) and tgo3’ mRNA-expressing oocytes probed with gfp (B). Oocytes were treated with jasplakinolide (+) or DMSO (-) and stimulated with (+) or without (-) MIH. The oocytes were fixed 140 min after MIH stimulation. Arrowheads indicate the micro-pile. Arrows indicate the signals of cyclin B1 mRNA (A) and tgo3’ reporter mRNA (B). (C, D) Real-time imaging of oocytes expressing tgo3’ (C) or tgoM3’ mRNAs (D) treated with jasplakinolide and MIH. The times after MIH treatment (min) are shown. Bars, 100 µm. Dotted circles show the GV. Arrow indicates the initial translation signal. Similar results were obtained from six oocytes expressing tgo3’ mRNAs and three oocytes expressing tgoM3’ mRNAs. (E) Anti-Cyclin B1 and anti-Cdc2 immunoblots of oocytes treated with jasplakinolide (+) or DMSO (-) in the presence (+) or absence (-) of MIH. Cdc2 protein is a loading control of this experiment. An arrow indicates an active form of Cdc2 (Kondo et al. 2001).

Fig. 7. Binding of proteins to CAGGAGACC. Electrophoretic mobility shift assay using RNA probes consisting of 524-574 nts of zebrafish cyclin B1, 567-617 nts of frog cyclin B1 and 599-647 nts of mouse cyclin B1 and corresponding mutant probes
(ZebrafishM, FrogM, MouseM). The RNA probes were incubated with binding buffer (Ext -) or extracts of 10 oocytes (Ext +). The reaction mixture was treated with (Pro K +) or without (Pro K -) proteinase K and loaded on 6% non-denaturing gels. The wild-type probes (but not the mutant probes) exhibit an upward shift (arrow) that was inhibited by proteinase K treatment. Asterisk indicates free RNA probes.

Fig. 8. Secondary structures of vertebrate cyclin B1 mRNAs around the CAGGAGACC sequence. Secondary structures of zebrafish cyclin B1 (524-736 nts, A), frog cyclin B1 (521-733 nts, B) and mouse cyclin B1 (599-811 nts, C) were computationally predicted. The possibility of nucleotide pairing is shown by color gradation (high in red and low in blue). The CAGGAGACC sequence is encircled by a magenta line.

Fig. 9. Localization of cyclin mRNAs in zebrafish oocytes. Serial sections (A and B, C and D) of a full-grown oocyte were subjected to \textit{in situ} hybridization analysis with cyclin B1 (A, C), cyclin B2 (B) and cyclin A1 (D) probes. Note the co-localization of cyclin B1 and B2 mRNAs, but not cyclin A1 mRNA, to the animal polar cytoplasm. Bars, 100 \(\mu\)m.
Yasuda et al., Figure 1

A

<table>
<thead>
<tr>
<th>Coding region</th>
<th>Aggregation</th>
<th>Timing of translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>tgo3'</td>
<td>3'UTR</td>
<td>+</td>
</tr>
<tr>
<td>5'UTR TC GFP</td>
<td>3'UTR</td>
<td>+</td>
</tr>
<tr>
<td>1-523</td>
<td>3'UTR</td>
<td>-</td>
</tr>
<tr>
<td>524-1197</td>
<td>3'UTR</td>
<td>+</td>
</tr>
<tr>
<td>524-736</td>
<td>3'UTR</td>
<td>+</td>
</tr>
<tr>
<td>737-949</td>
<td>3'UTR</td>
<td>-</td>
</tr>
<tr>
<td>949-1197</td>
<td>3'UTR</td>
<td>-</td>
</tr>
<tr>
<td>tgo9'3'</td>
<td>3'UTR</td>
<td>-</td>
</tr>
</tbody>
</table>

B

Human

<table>
<thead>
<tr>
<th>523</th>
<th>GGCTAGTACAGGTTCAAATGAAATTCAGGTTGTTGCAGGAGACCATGTACATGAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>623</td>
<td>677</td>
</tr>
</tbody>
</table>

Mouse

<table>
<thead>
<tr>
<th>599</th>
<th>GGCTAATACAGGTTCAGATGAAATTTAGGCTGCTTCAGGAGACCATGTACATGAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>599</td>
<td>653</td>
</tr>
</tbody>
</table>

Frog

<table>
<thead>
<tr>
<th>567</th>
<th>GGCTGGTCCAGGTGCAAATGAAGTTCCGTCTGCTGCAGGAGACCATGTTTATGAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>567</td>
<td>621</td>
</tr>
</tbody>
</table>

Zebrafish

<table>
<thead>
<tr>
<th>524</th>
<th>GGCTTGTGCAAGTCCAGATTAGTTAGGCTGCTTCAGGAGACCAGTATCATGAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>524</td>
<td>578</td>
</tr>
</tbody>
</table>

C

Human

<table>
<thead>
<tr>
<th>RLLQETMYM</th>
</tr>
</thead>
</table>

Mouse

<table>
<thead>
<tr>
<th>RLLQETMYM</th>
</tr>
</thead>
</table>

Frog

<table>
<thead>
<tr>
<th>RLLQETMFM</th>
</tr>
</thead>
</table>

Zebrafish

<table>
<thead>
<tr>
<th>RLLQETMYM</th>
</tr>
</thead>
</table>
Yasuda et al., Figure 2

A B C D
200 µm
261x523

cyclin B1
DW
tgo3'
1-523

E F G H
524-1197
524-736
737-949
949-1197

tgcis-3'

I J

200 µm

K

stop codon

```
tgcis-3' 5'UTR TC GFP E 3'UTR
```
Yasuda et al., Figure 3

Relative amount of reporter mRNA (GFP/β-actin)

Transgene:
- - 1-523 524-1197 524-736 737-949 949-1197 tgo^M3'
Yasuda et al., Figure 5

<table>
<thead>
<tr>
<th>Transgene</th>
<th>Translational timing (TGVBD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tgo3'1-523</td>
<td>524-1197</td>
</tr>
<tr>
<td>524-736</td>
<td>737-949</td>
</tr>
<tr>
<td>749-1197</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transgene</th>
<th>Translational timing (TGVBD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tgo3'M</td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td></td>
</tr>
</tbody>
</table>
Yasuda et al., Figure 6

A Jasplakinolide - Jasplakinolide +
MIH - MIH + MIH - MIH +

B Jasplakinolide - Jasplakinolide +
MIH - MIH + MIH - MIH +

C

D

E jasplakinolide - - + +
MIH - + - +
Cyclin B1
Cdc2
Yasuda et al., Figure 7

<table>
<thead>
<tr>
<th></th>
<th>Zebrafish</th>
<th>Zebrafish M</th>
<th>Frog</th>
<th>Frog M</th>
<th>Mouse</th>
<th>Mouse M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Pro K</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

![Image of gel electrophoresis results](image)
Yasuda et al., Figure 8

A

B

C
Yasuda et al., Figure 9

- A: cyclin B1
- B: cyclin B2
- C: cyclin B1
- D: cyclin A1