<table>
<thead>
<tr>
<th>Title</th>
<th>Anthomyiid flies from Sakhalin (Diptera: Anthomyiidae)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suwa, Masaaki; Suwa, Masaaki</td>
</tr>
<tr>
<td>Citation</td>
<td>Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 69: 133-194</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-10</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/53644</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>133-194p.pdf</td>
</tr>
</tbody>
</table>
ANTHOMYIID FLIES FROM SAKHALIN (DIPTERA: ANTHOMYIIDAE)

By Masaaki Suwa

Abstract

Specimens of anthomyiid flies recently collected in Sakhalin were examined and 57 species were recognized. Together with 13 species already recorded in the literature and a species newly found in the collection of the Hokkaido University Museum, 60 species in total are enumerated as occurring in Sakhalin. Distributional patterns of the species of Sakhalin and adjacent territories are briefly discussed. Three species are described as new to science, Alliopsis lobata, Chiastocheta sachalinensis and Delia curvistylata.

Author’s address. Hokkaido University Museum, Kita-10 Nishi-8, Kita-ku, Sapporo, 060-0810 Japan.
INTRODUCTION

The family Anthomyiidae is worldwide in distribution and well developed in temperate to boreal or mountainous regions of the Northern Hemisphere. Faunal information of the family is, however, insufficient in eastern half of Eurasia, especially in Siberia and northern areas of the Far East. From Kamchatka 54 species are known (Suwa et al., 2000), and from Sakhalin 13 species (Suwa, 1981b; Pellmyr, 1992). These numerals are much smaller than we expect there. In North America, 210 species are confirmed in the Yukon Territory and Alaska exclusive of the Panhandle (Griffiths, 1998b), and in Japan 228 species have been recorded (Suwa, 1999, and others).

In summer of 2002 I had a chance to collect flies in Sakhalin for about three weeks. Among the material obtained 57 species of Anthomyiidae were recognized. Together with the published records and a newly found species in the collection of the Hokkaido University Museum, 60 species of the family are now known to occur in Sakhalin. These are enumerated in the following text. Distributional patterns of the species of Sakhalin and adjacent territories are briefly discussed. Three species are described as new to science.

MATERIAL AND METHODS

The present work is mainly based on specimens collected by myself in connection with the Research Trip in Sakhalin, 2002, supported in part by the Japan Society for the Promotion of Science, and partly on specimens preserved in the collection of the Hokkaido University Museum.

The specimens used are preserved in dried condition. Male and female terminalia, and sometimes legs, were macerated in 10% KOH solution as necessary. Male terminalia were observed and photographed in glycerin. Ovipositors and abdominal sternites other than the male 5th were mounted on microscope slides with Canada balsam for photographing. Photographs were made with a digital camera (Olympus DP20-5)

Figs 1–5. Adia cinerella (Fallén), ♀, surstylus, showing variation in apical notching. 1, Sakhalin; 2, Sakhalin; 3, Spain; 4, Sicily; 5, Sicily.
mounted on a stereomicroscope (Olympus SZX16).

The holotypes of the new species described in this paper are preserved in the Hokkaido University Museum. Some duplicates will be deposited in the Institute of Biology and Soil Science, Vladivostok, Russia.

Abbreviations in terminology are as follows: – Head: A₃, 3rd antennal segment; if, interfrontal seta; ori, frontal seta; ors, orbital seta. Thorax: dc, dorsocentral seta; mpl, mesopleural seta; nptl, notopleural seta; ph, posthumeral seta; pra, prealar seta; pre-acr, presutural acrostichal seta; pstg, prostigmatic seta; stpl, sternopleural seta. Legs: f₁, f₂, f₃, fore, mid and hind femur respectively; t₁, t₂, t₃, fore, mid and hind tibia respectively. Wings: h, humeral crossvein; dm-cu, discal medial-cubital crossvein. Terms of genital structures of both sexes are as in Suwa and Darvas (1998) except for the usage of “pregonite” and “postgonite” instead of “gonopod” and “paramere”, respectively.

Enumeration

1. Adia cinerella (Fallén, 1825)
(Figs 1–5)

Material examined. Southern Sakhalin: Sokol, Field Station, 8 km south of Dolinsk, 1♂, 1♀, 4.viii.2002; Prigorodnoye, 8 km east of Korsakov, mouth of Mereya River, 10♂, 9♀, 15–16. viii.2002. Central Sakhalin: Pervomayskoye, alt. 150 m, 40 km northeast of Smirnykh, 1♀, 10.viii.2002.

Distribution. Holarctic and Oriental regions.

Remarks. According to Suwa (2011b) the surstyli of *A. cinerella* are notched apically in the European form, but barely so in the Asian. In the Sakhalin form the surstyli are usually (in five of seven dissected males) unnotched apically (Fig. 1), but sometimes (in two of the seven) distinctly notched (Fig. 2). And I have recently found a male specimen from Sicily, Italy, having unnotched surstyli (Fig. 5). Further investigations are necessary to know the actual state of variation in the apical notching of surstyli of *A. cinerella*.

2. Alliopsis lobata sp. nov.
(Figs 6–17)

Type material. Central Sakhalin: Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirnykh, 1♂ (holotype), 11.viii.2002.

Distribution. Sakhalin.

♂. Wing length 6.4 mm. Body including appendages black in ground colour, with pollinosity pale grey and more or less bluish. Haustellar mentum polished. Mesonotum rather thinly pollinose except on densely pollinose peripheral regions, and broadly darkened when viewed from frontal angle and also from caudal. Abdomen with median vitta much narrower than tibial diameter on 2nd and 3rd tergites, broadening posteriorly on 4th and obscure on 5th; fore-marginal bands rather broad on 2nd tergite, narrow

* The species with an asterisk is new to Sakhalin.

135
on 3rd, and hardly discernible on 4th and 5th tergites; hind-marginal bands hardly discernible, only narrowly visible on 2nd tergite medially; pregenital sclerite and epandrium thinly pollinose, and polished along anterior margin; 5th sternite polished.

Head (Fig. 7) about 1.2 times as high as long; frons 1.3 times as wide as distance between posterior ocelli inclusive; interfrontalia about two-thirds as wide as frons, with a pair of strong if and with some short or minute setulae around if; parafrontals with 3 strong and 1 short ori and no ors; A₁ slightly longer than twice the width; arista with pubescence shorter than basal diameter of arista; orbits at parafrontal angle about 1.5
times as wide as A_3; genae slightly higher than orbital width at parafrontal angle, with 3 genal setae in a row, 1 short seta discernible above the row on right gena; epistoma situated behind tip of parafrontal angle; occiput setulose on postocular plains.

Mesonotum with 6 irregular pairs of pre-acr in closely approximated rows, 2 or 3 setae in each row being rather strong; posterior ph not differentiated; pra longer than
Figs 18–25. *Alliopsis* sp., ♀. 18–19, head, dorsal view; 20–21, right fore tibia, distal part, posterior view; 22–25, right fore tarsus, dorsal (22–24) and ventral (25) views, cleft on 4th and 5th segments ventromedially (23), on 3rd ventrolaterally (24), or on 3rd and 4th ventrolaterally (25). Magnification same for Figs 18–19, and for Figs 20–25. Pilenga R., 70 km ENE of Smirnykh (18, 20, 22; 19, 24; 21, 25; 23).

anterior *ntpl*; mesopleuron with 2 differentiated anterior *mpl*; 1 strong *pstg*, associated with 7–8 fine setulae; *stpl* 1:2, 1 weakly differentiated setula discernible below the anterior *stpl* and also below the posteriors; prosternum bare; scutellum bare on dorsal
center.

Mid femur with complete rows of av and pv, the longest av probably shorter than height of the femur (the seta is broken in the present specimen), and the longest pv (broken) probably a little longer than the femur height; ft, with a complete row of av, the longest seta about 1.5 times as long as height of the femur, and with an almost complete row of pv (interrupted around apical fourth), the longest about as long as the femur height; t, with 2 ad, 1 pd and 1 pv, and with 3 strong apical setae (d, p and pv); t, with 1 av, 2 ad, 2 pd and 1 p/pv; t, with 1 av, 1 a, 3 ad, 3 pd and 1 pv. Wings with costal thorns small though stronger than costal spinules; costa setulose on ventral surface before subcostal break and almost bare beyond the break; dm-cu a little oblique and slightly sinuate.

Abdomen conical, about 2.3 times as long as wide; 6th tergite with no setae; 5th sternite (Figs 8–10) with processes prolonged and in profile somewhat downcurved apically, and with outer marginal setae rather strong around middle of the sternite and much weakened subapically; surstylus prominently hook-shaped apically (Figs 12–13); pregonite (Figs 15–16) with 1 apical seta and with 3 setae on dorsal corner, basalmost seta being fine and on left pregonite hardly discernible unless carefully examined; postponite (Fig. 17) with a long seta ventrally.

♀. Unknown.

Remarks. The male 5th sternite with prolonged and broadly bare processes of the present species indicates a close relationship to A. teriolensis (Pokorny, 1893) known from Europe and North America. In a redescription of the latter species based on a Nearctic male specimen Griffiths (1987) says: peristomal margin in lateral view distinctly projecting beyond level of parafrontal angle; genal setae in more or less 2 rows; dorsal surface of scutellum almost entirely setulose; 6th tergite with a few strong setae on its posterior margin. In addition, the male 5th sternite of A. teriolensis figured in the redescription has much weakened outer marginal setae (cf. Fig. 1009, Griffiths, 1987). These differences may be enough to recognize A. lobata as distinct from A. teriolensis.

Together with the holotype of A. lobata eight females and no males of Alliopsis were collected. Of the females one is referred to A. silvestris (Fig. 35) and three others to A. silvatica (Fig. 37). The remaining four females (Figs 18–25) are, however, different from the typical form of A. silvatica in having the fore tarsi with the first segment as long as or shorter than the 2nd and 3rd combined. At present I am not sure whether the four females are regarded as mere variants of A. silvatica or referred to another species, e.g. A. lobata. It will be better to leave a conclusion to future investigation.

*3. Alliopsis silvatica (Suwa, 1974)
(Figs 26–32, 34, 36–37, 39)

Material examined. Southern Sakhalin: Sokol, Field Station, 8 km south of Dolinsk, 1♀, 29.vii.2002, 1♂, 14.viii.2002; Riverside forest, Sokol River, 5 km southeast of Sokol, 1♀, 30.vii.2002; Mt. Zhanko, alt. 100–250 m, 25 km north of Vzmo’ye, 1♂, 1♀, 2.viii.2002; Ugledarsk, near seashore, 14 km north-northeast of Vostochnyy, 4♀, 3.viii.2002; East side of Lake Busse, 20 km southeast of Ozerskiy, 1♀, 8♀, 16.viii.2002. Central Sakhalin: Northwest of Mt. Champa, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 8♀, 8.viii.2002; Smirnykh,

riverside, alt. 70 m, Orlovka River, 1♂, 9.viii.2002; Tym’ River, alt. 200 m, 25 km east of Palevo, 4♂, 3♀, 9.viii.2002; Riverside, alt. 50 m, Pilen River, 70 km east-northeast of Smirnykh, 3♀, 11.vii.2002.

Distribution. Sakhalin; Kurils (Kunashiri); Japan (Hokkaido; Honshu); Korea; NE China.

Remarks. The female specimens recorded above are referred to *A. silvatica* by the fore tibiae (Fig. 34) with 3 strong apical setae and the fore tarsi (Figs 36–37) with the 1st segment longer than the 2nd and 3rd combined. The fore tarsi have the 2nd and 3rd segments less expanded than in *A. silvestris*. As the female of *A. lobata* is unknown, further investigation is needed for reliable information on differences between the females of *A. lobata* and *A. silvatica*.

140
Figs 32–38. **Alliopsis silvatica** (Suwa), ♀ (32, 34, 36–37) and *A. silvestris* (Fallén), ♀ (33, 35, 38). 32–33, head, dorsal view; 34–35, right fore tibia, distal part, posterior view; 36–38, right fore tarsus, dorsal view. Magnification same for Figs 34–38. Tym’ R., 25 km E of Palevo (32); east side of Lake Busse (34, 36); Pilenga R., 70 km ENE of Smirnykh (35; 37); lower reaches of Langeri R. (33, 38).

4. **Alliopsis silvestris** (Fallén, 1824)
 (Figs 33, 35, 38, 40)

Material examined. Sachi (the locality indicated by this name is not yet confirmed), 1♀, 17.viii.1942 (H. Takahashi). Southern Sakhalin: Mt. Zhdanko, alt. 100–250 m, 25 km north of Vzmo‘ye, 1♀, 2.viii.2002. Central Sakhalin: Lower reaches of Langeri River, alt. 100 m, 5 km west of seaside, 5♀, 11.viii.2002; Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smiryk, 1♀, 11.viii.2002.

Distribution. Sakhalin; Kurils (Paramushir); Japan (Hokkaido; Honshu); Korea; NE China; Kamchatka; Irkutsk; Europe; N America.

Remarks. The present female specimens are identified with *A. silvestris* by the following features: frons (Fig. 33) narrow, 1.2–1.5 times as wide as distance between posterior ocelli inclusive; parafrontals with no ors; fore tibia (Fig. 35) with 4 strong apical setae; fore tarsus (Fig. 38) with 1st segment as long as or shorter than the 2nd and 3rd combined and with the 2nd and 3rd segments much expanded. The 7th tergite of ovipositor seems to be represented by narrower lateral sclerites (Fig. 40) than in *A. silvatica* (Fig. 39) though it should be verified by further observations.

5. Alliopsis tibialis (Fan and Wang, 1982)
(Figs 41–45)

Figs 41–45. *Alliopsis tibialis* (Fan and Wang), ♂ (41–42, 44) and ♀ (43, 45). 41, general features; 42–43, head, dorsal view; 44–45, right hind tibia, distal part, posterior view. Sokol R., 5 km SE of Sokol (41–42, 44); NW of Mt. Chamga (43, 45).

Distribution. Sakhalin; Japan (Hokkaido; Honshu); China (Shanxi; Liaoning).

Remarks. In having a characteristic bundle of setae near the apices of hind tibiae (Fig. 44) in the male, and widely separated eyes (Fig. 43) in the female, Griffiths (1987: 905) placed the present species in the *Alliopsis sepiella* superspecies of his sense.

6. Botanophila apiciseta (Ringdahl, 1933)
(Figs 46–48)

Material examined. Central Sakhalin: Mt. Chamga, alt. 1000–1300 m, 45 km east-southeast of Tymovskoye, 1♂, 7.viii.2002.

Distribution. Sakhalin; Europe; N America (Quebec).

Remarks. Thompson and Pape (2010) recorded Quebec as a distribution area of this species in addition to some countries of Europe. According to Michelsen (2012) *B. apiciseta* is also distributed in the East Palearctic region, though no locality is given.

This species is distinguishable by the polished haustellar mentum and the male 5th sternite (Fig. 48) with a strong apical seta on each process.

7. Botanophila biciliaris (Pandellé, 1900)

Material examined. Central Sakhalin: Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 2♂, 8.viii.2002.

Distribution. Sakhalin; Kurils (Kharimkotan); Japan (Hokkaido); Europe; N America.

Figs 49–55. *Botanophila cognata* Suwa, ♂. 49, general features; 50, head, lateral view; 51, 5th sternite, ventral view; 52–53, hypopygium, dorsal view; 54, ditto, dorsolateral view; 55, hypandrium and associated parts, ventral view. Magnification same for Figs 51–55. NW of Mt. Chamga (49–50, 52, 54; 51, 53, 55).
Figs 56–61. *Botanophila fugax* (Meigen). ♂. 56, general features; 57, head, lateral view; 58, 5th sternite, ventral view; 59, hypopygium, dorsal view; 60, ditto, dorsolateral view; 61, hypandrium and associated parts, posterolateral view. Magnification same for Figs 58–61. East side of Lake Busse (56–58, 61; 59–60).

8. Botanophila cognata Suwa, 2011
(Figs 49–55)

Botanophila cognata Suwa, 2011a: 77.

Material examined. Central Sakhalin: Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 2♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Honshu).
Remarks. *Botanophila cognata* was described on the basis of three male specimens from Honshu, Japan. The present specimens from Sakhalin are referred to this species by the cercal plate distinctly concave at outer bases of lateral apical projections and the surstyli with a triangular process on inner margin medially. The Sakhalin form is slightly different from the Japanese one in having comparatively short setae on the femora: f₂ with longest pv 1.4–1.5 times (1.6–1.8 times in Japanese) as long as height of the femur; f₃ with longest av about twice (2.0–2.4 times in Japanese) as long as height of the femur, and longest pv 1.3–1.5 times (about 1.8 times in Japanese) as long as the femur height. The available material is too meagle to say whether these differences are due to individual or geographical variations.

9. Botanophila fugax (Meigen, 1826)
(Figs 56–61)

Material examined. Southern Sakhalin: Sokol, Field Station, 8 km south of Dolinsk, 1♂, 4.viii.2002; East side of Lake Busse, 20 km southeast of Ozerskiy, 2♂, 16.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido); Kurils (Paramushir); Kamchatka; China; Urals; Europe; N America.

Remarks. This species is widely distributed in the Holarctic region. It is not easy to distinguish the species from the preceding *B. cognata* unless its terminalia are examined.

10. Botanophila gemmata (Zetterstedt, 1860)
(Figs 62–65)

Material examined. Central Sakhalin: Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 1♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido); Finland; Norway; Sweden.

Remarks. The present species may widely be found in high latitude areas from Fennoscandia to the Far East.

11. Botanophila isikariana (Suwa, 1974)

Pegohylemyia isikariana Suwa, 1974: 125.

Material examined. Southern Sakhalin: Mouth of Bakhura River, 20 km east of Sokol, 1♂, 31.vii.2002; Prigorodnoye, 8 km east of Korsakov, 1♂, 15.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Kurils (Onokotan).

Remarks. This species is recorded as a rolled leaf feeder on *Lathyrus maritimus* in Hokkaido, Japan (Suwa, 1999). It may widely be distributed on seashores of the Far
Figs 62–65. *Botanophila gemmata* (Zetterstedt), ♂. 62, general features; 63, 5th sternite, ventral view; 64, hypopygium, dorsal view; 65, ditto, lateral view. Magnification same for Figs 63–65. NW of Mt. Chamga.
East.

(Figs 66–68)

Botanophila shirozui: Suh et al., 1991a: 46; Wei et al., 1998: 695.

Material examined. Southern Sakhalin: Sokol, Field Station, 8 km south of Dolinsk, 1♂, 14.viii.2002.

Distribution. Sakhalin; Korea (Cheju-do, type locality; Hamgyongbukto, North Korea); NE China.

Remarks. Botanophila shirozui is now known from Korea, Northeast China and Sakhalin. In Japan (Hokkaido and Honshu) is found a very closely related species, B. nitiditheca (Suwa, 1974). This is clearly different from B. shirozui in the male 5th sternite with a prominent subapical outer-marginal seta on each process (Fig. 69). The state of the sternite in B. shirozui may be derived from loss of such setae.

13. Botanophila sonchi (Hardy, 1872)
(Fig. 70)

Distribution. Sakhalin; Japan (Hokkaido); China; Europe.

Remarks. In Europe this species is known to feed on flower-heads of Sonchus oleraceus L. and Sonchus arvensis L. in the larval stage (Hennig, 1970; Uffen and Chandler, 1978). It is not difficult to find S. oleraceus and other plants of Sonchus in eastern Asia, where B. sonchi may have a wide distribution.

*14. Botanophila spinisternata (Suwa, 1974)

Figs 66–69. *Botanophila shirozui* (Suwa), ♂ (66–68) and *B. nitiditheca* (Suwa), ♂ (69). 66, general features; 67, abdomen, dorsocaudal view; 68–69, 5th sternite, ventrolateral view. Sokol (66–68); Rebun-to, Hokkaido, Japan (69).
Fig. 70. Botanophila sonchi (Hardy), ♂. Head, lateral and a little oblique view. East side of Lake Busse.

Fig. 71. Trollius sp. Adult flies of two Chiasochoeta species were collected by net sweeping on flowers of the plant. Mt. Chamga.
Distribution. Sakhalin; Japan (Hokkaido; Honshu); Korea; NE China.

15. *Chiastocheta latispinigera* Fan, Chen and Jiang, 1982
(Figs 72–84)

Material examined. Central Sakhalin: Mt. Chamga, alt. 1000–1300 m, 45 km east-southeast of Tymovskoye, 1♂, 2♀, on flowers of *Trollius* sp. (Fig. 71), 7.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido); China; Siberia.

Remarks. The present specimens from Sakhalin agree well with a redescription of *C. latispinigera* by Suwa (1989) based on specimens from Hokkaido, Japan, and are referred to the species. According to Pellmyr (1992) who studied eggs of *Chiastocheta* species found on herbarium sheets of *Trollius* plants from various localities, *C. latispinigera* is widely distributed in Asia including Sakhalin, but the form (15) of *Chiastocheta* utilizing *Trollius riederianus* in Hokkaido is regarded as a distinct species, differing from *C. latispinigera* in oviposition biology and egg morphology. On the other hand, Després et al. (2002), based on molecular data from adult male flies, gave a note as follows: “Although Japanese haplotypes [from Hokkaido] form a monophyletic clade, they are nested within Siberian *latispinigera* haplotypes: molecular data do not differentiate two monophyletic clades, so that according a species status to Japanese populations is problematic.” More information on morphology and biology of immature stages linked with identified adult flies is needed for further discussion.

At least two species of *Chiastocheta*, the present *C. latispinigera* and the following *C. sachalinensis*, are now known to occur in Sakhalin. The cercal plate of male terminalia is usually observable even in dried specimens and useful for identification of the species without dissecting genitalia. In the females, however, I have failed to find any reliable differences between the two species except in their abdominal sternites and ovipositors (*latispinigera*: Figs 83–84; *sachalinensis*: Figs 101–102).

16. Chiastocheta sachalinensis sp. nov.
(Figs 85–102)

Type material. Central Sakhalin: Mt. Chamga, alt. 1000–1300 m, 45 km east-southeast of Tymovskoye, 4♂ (one the holotype), 5♀, on flowers of *Trollius* sp. (Fig. 71), 7.viii.2002.

Distribution. Sakhalin.

♂. Wing length 3.3–3.5 mm. Body including appendages mainly blackish in ground colour, with pollinosity pale grey or pale brownish grey and darker in part. Interfrontalia narrowly brownish near lunule (broadly brownish yellow in tenreal specimens); haustellar mentum well pollinose. Mesonotum mainly brownish grey pollinose, pale grey on humeral calli and notopleura, in caudal view with broad median black vitta and broad pre- and postsutural lateral black patches discernible. Abdomen rather thinly brownish grey pollinose, in caudal view almost wholly blackish; cercal plate brownish; 5th sternite black and polished. Wings slightly tinged with dark brown; calypteres slightly tinged with yellow; halteres yellow at knobs.
Figs 72–79. *Chiastocheta latispinigera* Fan, Chen and Jiang, ♂. 72, 5th sternite, ventrolateral view; 73, hypopygium, dorsal view; 74, ditto, lateral view; 75, ditto, dorsolateral view; 76, ditto, apical part of surstyli; 77, aedeagus; 78, hypandrium and associated parts, posteroventral view, showing pregonite setae; 79, postgonite. Magnification same for Figs 72–75, and for Figs 76–79. Mt. Chamga.

Frons gradually narrowing downward, in holotype 0.47 times as wide as head at level of anterior ocellus and 0.40 times near lunule; genae a little higher than palpus width.

Mesonotum with 4–6 pairs of *pre-acr* and 5–6 accessory setulae between the rows of *pre-acr*, distance between the setae of strongest pair being as long as or a little shorter than that to adjacent *dc-row*; posterior *ph* only a little stronger than adjacent setulae; *pra*
Figs 80–84. *Chiastocheta latispinigera* Fan, Chen and Jiang, ♂ (80–81) and ♀ (82–84). 80–81, 2nd (leftmost) to 4th sternites; 82, 3rd (leftmost) to 5th sternites; 83, 1st (leftmost) to 5th sternites; 84, ovipositor. Mt. Chamg (80; 82; 84); Mt. Daisetsu, Hokkaido, Japan (81); Mt. Shokambetsu, Hokkaido, Japan (83).

...a little shorter to slightly longer than posterior *ntpl*; mesopleuron with a distinct anterior *mpl*; 1 strong and 1 weak *pslg* no associated setulae; *stpl* 1:1, a weakly differentiated setula discernible below the anterior *stpl* and usually also below the posterior.

Mid femur (Fig. 87) with rows of *av* and *pv*, the longest *av* being slightly to distinctly shorter than height of the femur, and the longest *pv* as long as to a little longer than the femur height; *f₁* with a row of 7–8 strong *av*, some on apical half being much longer than height of the femur, and with about 5 *pv* on basal two-thirds and 1 *pv* near apex, 2 or 3 *pv* on median third being stronger and the longest one as long as or a little
Figs 85–89. *Chiastocheta sachalinensis* sp. nov., ♂. 85, general features; 86, head, lateral view; 87, right mid femur, posterior view, showing *pv* setae; 88, abdomen; 89, 5th sternite, ventrolateral view. Magnification same for Figs 86 and 88, and for Figs 87 and 89. Mt. Chamga (85, holotype; 86; 87–89).
shorter than height of the femur; \(t_1 \) with 1 \(ad \), 1 \(pd \) and 1 \(pv \), the \(pd \) sometimes hardly discernible; \(t_2 \) with 1 \(ad \), 2 \(pd \) and usually 2 \(pv \); \(t_3 \) with no or occasionally 1 \(av \), 3–4 (5 on right \(t_3 \) in holotype) \(ad \), 2–3 \(pd \) and no \(pv \) (2 fine \(pv \) discernible on left \(t_3 \) in a paratype). Wings with costal thorns shorter than \(h \) crossvein though stronger than costal spinules.

Abdomen with 1st sternite unsetulose medially (Fig. 96); 5th sternite (Fig. 89) with processes rather distinctly protruded innerapically; hypopygium (Figs 90–95) with cereral
Figs 96–102. *Chiastocheta sachalinensis* sp. nov., ♀ (96–100) and ♂ (101–102). 96, 1st (leftmost) to 4th sternites; 97, aedeagus; 98, hypandrium and associated parts, lateral view, arrow indicating pregonite setae; 99, postgonite; 100, ditto, slightly different angle of view; 101, 1st (leftmost) to 5th sternites; 102, ovipositor. Magnification same for Figs 97–100. Mt. Chamga (96; 97–100; 101–102).
Figs 103–111. *Chiastocheta dentifera* Hennig, ♂. 103, abdomen; 104, 1st (leftmost) to 4th sternites; 105, 5th sternite, ventrolateral view; 106, hypopygium, dorsal view; 107, ditto, apical part of right surstylus; 108, ditto, cercal plate; 109, hypopygium, lateral view; 110, ditto, dorsolateral view; 111, ditto, apical part of right surstylus. Magnification same for Figs 104–106 and 109–110, and for Figs 107–108 and 111. Oulanka, Finland.
Figs 112–114. *Chiastocheta dentifera* Hennig, ♂ (112–114) and ♀ (115–116). 112, aedeagus; 113, ejaculatory apodeme; 114, hypandrium and associated parts, lateral view; 115, 1st (leftmost) to 5th sternites; 116, ovipositor. Oulanka, Finland (112–114; 115–116).

plate shield-shaped, more or less expanded anterolaterally; surstylus shallowly incised apically, with 4 stout setae near apex innerventrally (2 paratypes dissected); aedeagus (Figs 97–100) with pregonite bearing 2 flattened setae; postgonite right- or acute-angled at posteroverental corner, with 2 setae discernible.

♀. Wing length 3.8–4.1 mm. Mid femur with *pv*-row interrupted around apical third to fourth; f₁ with 3–5 *pv* on basal third or two-thirds and 1 *pv* near apex; t₁ with 1 *ad*, 1 (rarely 0 or 2) *pd* and 0 or 1 *pv*; t₂ with 1 *ad*, 2 *pd* and 1 (rarely 0 or 2) *pv*; t₃ with 1–2 (rarely 3) *av*, 2–5 *ad*, 2–3 (rarely 4) *pd* and no *pv*.

Abdomen with 4th sternite (Fig. 101) much less than twice as long as wide; ovipositor (Fig. 102) with 7th sternite weakly attenuated medially and broadened posteriorly; 8th sternite indiscernible; hypoproct about twice as long as wide.

Remarks. A close relationship of the present species with *C. dentifera* Hennig, 1953 (Figs 103–116) is indicated by the male terminalia with shield-shaped cerical plate and with slender and recurved surstyli and by the female terminalia with elongated and
posteriorly broadened 7th sternite and without discernible 8th sternite. *Chiastocheta dentifera* is, however, clearly different from *C. sachalinensis*: in the male, 5th sternite (Figs 103 and 105) with processes prominently protruded innerapically, cercal plate (Figs 106 and 108) less expanded anterolaterally, surstylus (Fig. 111) with subapical setae less stout and much longer, and postgonite (Fig. 114) obtuse-angled at postcoventral corner; in the female, 7th sternite scarcely attenuated medially, and hypoproct broader, about 1.5 times as long as wide (Fig. 116).

Chiastocheta sachalinensis is likely to be found in the Littoral Siberia or further. According to Michelsen (2012) *C. dentifera* is distributed in Europe and also in the East Palaeearctic region. The two species might be vicarious or overlap with each other in distribution in eastern Eurasia.

17. *Chirosia flavipennis* (Fallén, 1823)

Material examined. Southern Sakhalin: Tonnai (= Okhotskoye), 2♀, 1.viii.1914 (Adachi and Isshiki).

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Europe; N America.

Remarks. This is a leaf miner of the bracken fern, *Pteridium aquilinum* (L.), in the larval stage (Griffiths, 2004). The plant is poisonous to cattle and is a troublesome weed in pastureland.

18. *Delia antiqua* (Meigen, 1826)

Material examined. Southern Sakhalin: Maoka-sandō (= mountain trail to Kholmsk), 2♂, 21.viii.1923 (S. Matsumura); Konuma (= Novoaleksandrovsk, 10 km north of Yuzhno-Sakhalinsk), 1♀, 31.viii.1927 (K. Tamanuki).

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Kyushu); Holarctic region; S America (introduced).

Remarks. This is a well known species injurious to onion and other crops of *Allium*. Also in Sakhalin it is probably common in arable land.

19. Delia coarctata (Fallén, 1825)

(Figs 117–121)

Distribution. Sakhalin; China; Irkutsk; Europe; N America.

Remarks. Three males were dissected. The 6th tergite is bare in two of the three, but
Figs 117–121. *Delia coarctata* (Fallén), ♂. 117, abdomen, dorsocaudal view; 118, hypopygium, dorsal view; 119, ditto, dorsolateral view; 120, right fore tibia (distal part) and tarsus, posterior view; 121, right hind femur, anterior and a little dorsal view. Sokol (117, 120–121); Prigorodnoye (118–119).

is armed with 5 setae along posterior margin in the other specimen.

This is a species known as the wheat bulb fly, causing serious damage to wheat, rye, barley, etc.

20. *Delia cuneata* Tiensuu, 1946
(Figs 122–126)

Delia cuneata: Hennig, 1974: 786; Suwa, 1981b: 6; Griffiths, 1992: 1298; Wei et al., 1998:
Figs 122–126. *Delia cuneata* Tiensuu, ♂. 122, abdomen, dorsocaudal view; 123, hypopygium, dorsal view; 124, ditto, lateral view; 125, left hind femur, anerodorsal view; 126, ditto, anteroventral view. Prigorodnoye (122); Shisuka (123–126).

714; Michelsen, 2012: http://www.faunaeur.org/.

Distribution. Sakhalin; China (Heilongjiang; Qinghai; Xinjiang); Europe
(Fennoscandia; Russia North); N America.

Remarks. The hind femora bear rows of \(av\) and \(pv\), both interrupted around apical third or fourth of the femora (Figs 125–126), and this is useful for identification of the species.

*21. *Delia curvistylata* sp. nov.
(Figs 127–136)

Type material. Central Sakhalin: Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirnykh, 1♂, 11.viii.2002; Gastello, riverside, alt. 100 m, 18 km southwest of Poronaysk, 1♂ (holotype), 13.viii.2002.

♂. Wing length 5.0–5.2 mm. Body including appendages blackish in ground colour, and densely whitish grey pollinose in main part. Head in pollinosity with a very faint brownish tinge in part on orbits, face and postocular plains; haustellar mentum pollinose. Mesonotum with pollinosity well discernible both in frontal and caudal angles of view and rather distinctly tinged with brown. Abdomen (Fig. 129) on each tergite with median vitta sharp, more or less wedge-shaped, wider than tibial diameter anteriorly and as wide as or narrower than the diameter posteriorly; fore-marginal bands well discernible on 2nd tergite, very narrowly on 3rd, and indiscernible on the succeeding segments; these markings and caudal segments tinged with brown in pollinosity. Wings tinged with brown; calypteres pale brown, with yellowish margins; halteres yellow at knobs.

Head 1.32–1.35 times as high as long (Fig. 128); frons about 1.5 times as wide as anterior ocellus; interfrontalia about as wide as anterior ocellus, in holotype with a pair of \(if\) (right one strong) and an additional short setula above the pair, and in paratype with a single short \(if\); parafrontals with 5–6 \(ori\) and no \(ors\); \(A_3\) about 1.7 times as long as wide; arista distinctly pubescent, with longest hairs longer than basal diameter of arista; orbits at parafrontal angle 1.3–1.4 times as wide as \(A_3\); genae about 1.3 times as high as \(A_3\)-width, with 3–4 genal setae in a row; epistoma situated behind tip of parafrontal angle; occiput setulose on postocular plains.

Mesonotum with 3 (in paratype) or 4 (in holotype) pairs of \(pre-acr\) in close rows, and 0 (paratype) or 2 (holotype) accessory setulae discernible between the rows; posterior \(ph\) much weaker than the anterior though distinguishable from adjacent setulae; \(pra\) distinct though much shorter than posterior \(ntpl\); notopleuron with no accessory setulae; mesopleuron with no distinct anterior \(mpl\), only 1–2 ones barely distinguishable from adjacent setulae; 1 strong and 1 weaker \(psti\), associated with 2–4 setulae; \(stpl\) 1:3, the lowest posterior much weaker than the uppers; scutellum broadly bare on dorsal surface medially.

Mid femur with no \(av\) longer than height of the femur, with some \(av\) on basal half and a few \(av\) near apex more or less developed, of them one near base being the strongest (snapped in the present specimens and probably shorter than the femur height), and with 5–6 strong \(pv\) on basal half and a few distinct or rather strong \(pv\) near apex, the longest being at least a little longer than the femur height (most \(pv\) snapped in the present specimens); \(t_1\) with a row of 8–10 \(av\), the longest about 1.4 times as long as height of the femur, and with 0–1 weak \(pv\) near base, 3–5 \(pv\) on median third and 2–3 \(pv\) near apex, preapical one being the longest and as long as or a little shorter than the femur height; \(t_2\) with no \(ad\) and 1 \(pv\), and with apical \(pv\) (missing in holotype) strong and blunt on tip; \(t_2\) with 1 \(ad\), 1 (0 on left tibia in paratype) \(pd\) and 2 (in addition 1 short seta discernible on
right tibia in paratype) pv; t₁ with 3–4 av, 4 strong and 2–3 weaker ad, 3 strong (distalmost the longest) and 1 weaker pd (in addition a few setulae near apex more or less developed and distinguishable from adjacent setulae), and 4–8 pv, and with apical pd weakly developed and about as long as tibial diameter; mid metatarsus with dorsal setulae not especially lengthened, and as long as or a little longer than diameter of the metatarsus. Wings with costal thorns shorter than h crossvein; dm-cu slightly oblique and only a little sinuate.

Abdomen depressed on basal half and half-depressed caudally, slightly more than twice as long as wide; 6th tergite bare. Terminalia (Figs 130–136): 5th sternite with outer marginal setae well developed and becoming longer distally, the longest distinctly longer
Figs 130–136. Delia curvistylata sp. nov., ♂. 130, 5th sternite, ventral view; 131, ditto, a little oblique view; 132, hypopygium, dorsal view; 133, ditto; 134, ditto, dorsolateral view; 135, ditto, lateral view; 136, aedeagus. Magnification same for Figs 130–132 and 134–135. Gastello (holotype, 130–135); Pilenga R., 70 km ENE of Smirnykh (136).
than the sternite, and with 3–4 blunt setae on inner apical corner of each process; cercal plate shield-shaped, about twice as long as wide, widest near middle, and narrowing apically, with 2–3 pairs of long lateral setae and with 4–5 long apical setae; surstylius in dorsal view with a weakly undulated inner margin and in lateral view gradually tapering apicad and gradually curved downward, armed with minute setulae on apical half dorsally and on apical two-thirds laterally, those on apical third being shorter and stiffened; distiphallus with paraphallic processes slightly longer than median sclerite; pregonite with 2 fine setae; postgonite only with a minute setula discernible on ventral corner.

♀. Unknown.

Distribution. Sakhalin.

Remarks. This species is referred to the Delia albula section in the sense of Griffiths (1993) by the following aspects in the male: distiphallus not denticulate, with paraphalli well retained and acrophanillus absent; 5th sternite with blunt setae on inner apical corners of processes. In having a long shield-shaped cercal plate with angulate apex and with some pairs of long lateral and apical setae and having gradually tapering surstyli with scattered minute setulae, D. curvistylata has a strong resemblance to the western Palaeartic D. hirticura (Rondani, 1870) and also to the Holarctic D. piliferum (Ringdahl, 1933). It is, however, easily distinguished from them by the following features: t1 with blunt-tipped apical pv, t1 with less numerous pv, 5th sternite with different pattern of setae, and surstyli more distinctly downcurved.

22. Delia echinata (Séguy, 1923)

Material examined. Southern Sakhalin: Ìtani (= Sokol), 1♀, 22.viii.1914 (Adachi and Isshiki); Mouth of Bakhura River, 20 km east of Sokol, 1♂, 31.vii.2002; Tonmai (= Okhotskoye), 1♂, 1.viii.1914 (Adachi and Isshiki). Central Sakhalin: Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 1♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Shikoku; Kyushu); Kuriles (Etorofu); Holarctic region; India.

Remarks. The larvae of this species are injurious to spinach of Chenopodiaceae and to carnations and other plants of Caryophyllaceae as a leaf miner, stem borer, or shoot borer.

*23. Delia fabricii (Holmgren, 1872)

Material examined. Central Sakhalin: Mouth of Chamgu River, 70 km east of Tymovskoye, 1♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Honshu); Kurils (Shumshu; Kharimkotan); Kamechatka; Novaya Zemlya; Europe; N America; Greenland.

Remarks. Larvae of this species are known to infest Smooth Meadow-grass
(Kentucky Bluegrass), *Poa pratensis* L., in Europe (Griffiths, 1992).

24. *Delia floralis* (Fallén, 1824)

Material examined. Southern Sakhalin: Ótomari (= Korsakov), 2♂, 1♀, 28.viii.1914 (Adachi and Isshiki); Maoka-sandô (= mountain trail to Kholmsk), 1♀, 21.viii.1923 (S. Matsumura). Central Sakhalin: Chirie (= Kotikovo, 160 km east of Poronaysk), 1♂, 16.viii.1942 (H. Takahashi); Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 1♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Kurils (Kunashiri; Etorofu); Kamchatka; Holarctic region.

Remarks. This is known as the turnip root fly, infesting various cruciferous crops.

25. Delia florilega (Zetterstedt, 1845)

(Figs 137–145)

Material examined. Southern Sakhalin: Sokol, Field Station, 8 km south of Dolinsk, 16♂, 29.vii.2002, 1♂, 30.vii.2002; Ugledarsk, quarry, alt. 400 m, 14 km north-northeast of Vostochnyy, 1♂, 3.viii.2002; Zaozernaya, grassland, mouth of Lazovaya River, 1♂, 3.viii.2002. Central Sakhalin: Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 1♂, 8.viii.2002; Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirykh, 1♂, 11.viii.2002.

Distribution. Sakhalin; China; Kamchatka; Europe; N America.

Remarks. Larvae of this species frequently occur together with those of *Delia platura* as “seed maggots” on cultivated land, and many published studies include composite data referring to a mixture of both species (Griffiths, 1993: 1572). In the male adults it is easy to distinguish the two species by the chaetotaxy on the 5th sternite and legs without dissection of their terminalia.

Delia florilega is widely distributed in northern areas of Holarctic region, but has not been recorded from Japan or Korea.

(Figs 146–149)

Material examined. Central Sakhalin: Gastello, riverside, alt. 100 m, 18 km southwest of Poronaysk, 2♂, 13.viii.2002.

Distribution. Sakhalin; China; Europe; N America.

Remarks. The male of *D. hirtitibia* is readily distinguished from those of other members of the genus by the pale grey and dense pollinosity on the body, absence of *pra* on the mesonotum, and numerous avia in 3–4 irregular rows on hind tibia.

In the Palaearctic region this species has been known from northern Europe and
Figs 137–145. Delia florilega (Zetterstedt), ♂. 137, 5th sternite, ventral view; 138, hypopygium, dorsal view; 139, ditto, lateral view; 140, ditto, lateral and a little dorsal view; 141, aedeagus; 142, pregonite and postgonite; 143, metatarsus of left mid tarsus, anterior view; 144, left hind femur, posterior and a little dorsal view; 145, left hind tibia, posterior and a little dorsal view. Scale 0.5 mm for Figs 137–140 and 143, 0.35 mm for Figs 141–142, and 1 mm for Figs 144–145. Sokol.
Figs 146–149. *Delia hirritibia* (Stein), ♂ 146, 5th sternite, ventral view; 147, hypopygium, dorsal view; 148, ditto, lateral view; 149, aedeagus. Gastello (146; 147–149).

northwestern China. It may widely be distributed in areas with cool climate in the region.

*27. *Delia linearis* (Stein, 1898)

Material examined. Southern Sakhalin: Mt. Zhdanko, alt. 100–250 m, 25 km north of Vzmor’ye, 1♀, 2.viii.2002. Central Sakhalin: Mt. Chamga, alt. 600–700 m, 45 km east-southeast of Tymovskoye, 1♂, 7.viii.2002; Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 5♂, 2♀, 8.viii.2002; Mouth of Chamgu River, 70 km east of Tymovskoye, 1♂, 8.viii.2002; Tym’ River, alt. 200 m, 25 km east of Palevo, 2♂, 9.viii.2002; Mirnyy, riverside, alt. 50 m, Poronai River, 20 km north-northeast of Smirnykh, 3♂, 10.viii.2002; Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirnykh, 3♂, 1♀, 11.viii.2002; Lower reaches of Langeri River, alt. 100 m, 5 km west of seaside, 1♂, 11.viii.2002; Gastello, riverside, alt. 100 m, 18 km

Distribution. Sakhalin; Japan (Hokkaido); Kurils (Shumshu; Paramushir; Kunashiri); Kamchatka; China; Europe; N America.

Remarks. This is the first record of *D. linearis* from Sakhalin. Suwa (1999) erroneously listed Sakhalin as a distribution area of the species. And the record “Etorofu” (South Kurils) in Suwa (1999) should be corrected to “Kunashiri”. This species is also recorded from Shumshu and Paramushir Islands, North Kurils (Suwa et al., 2000).

28. Delia lineariventris (Zetterstedt, 1845)

Material examined. Central Sakhalin: Mt. Chamga, alt. 600–700 m, 45 km east-southeast of Tymovskoye, 1♂, 7.vii.2002; Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 1♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Honshu); Kurils (Shumshu; Paramushir); Kamchatka; NE China; Europe; N America.

29. Delia planipalpis (Stein, 1898)

Distribution. Sakhalin; Japan (Hokkaido); Kurils (Shikotan; Kunashiri; Etorofu); NE China; Europe; N America.

Remarks. This species is known as the radish root maggot and injurious to radish, turnip, and other cruciferous crops as in the case of *D. floralis*, from which it is distinguishable in the male adult by the hind femur without *av* on basal third and hind tibia with less than 10 *pv*.

30. *Delia platura* (Meigen, 1826)

Distribution. Almost cosmopolitan.
Remarks. The larvae are almost omnivorous, feeding on organisms originated from plants and also from animals, and are injurious to various crops as “seed maggots”. The worldwide distribution of this species may be fostered by human activities in agriculture.

*31. *Delia radicum* (Linnaeus, 1758)

Delia brassicae: Hennig, 1974: 751.
Delia radicum: Griffiths, 1991: 969; Wei et al., 1998: 723.

Distribution. Sakhalin; Kamchatka; China; Europe; N America (introduced).

Remarks. This species is a notorious agricultural pest known as the cabbage maggot or cabbage root fly. It is assumed to have been introduced into North America from Europe during the 19th century (Griffiths, 1991; Biron et al., 2000).

32. *Delia tenuiformis* Suwa, 1977
(Figs 150–151, 153–154)

Delia tenuis Suwa, 1974: 163, preoccupied.

Delia tenuiformis Suwa, 1977: 10, new name for *tenuis* Suwa, 1974; Suwa, 1981b: 10; Suwa, 1999: 220.

Material examined. Southern Sakhalin: Toyohara (= Yuzhno-Sakhalinsk), 3♂, 29.vii.1914 (Adachi and Isshiki), 3♂, 24.viii.1914 (Adachi and Isshiki); Ōtani (= Sokol), 1♂, 22.viii.1914 (Adachi and Isshiki); Ōtomari (= Korsakov), 1♂, 28.vii.1914 (Adachi and Isshiki); East side of Lake Busse, 20 km southeast of Ozerskii, 3♂, 16.viii.2002; Ugledarsk, near seashore, 14 km north-northeast of Vostochnyy, 1♂, 3.viii.2002. Central Sakhalin: Shisuka (= Poronaysk), 1♂, 20.vii.1938 (H. Hasegawa); Nakashisuka, 1♂, 21.vii.1938 (H. Hasegawa); Smirykh, riverside, alt. 70 m, Orllovka River, 1♂, 9.viii.2002; Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirykh, 1♂, 11.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido).

Remarks. In the male, the following characters are useful for identification of this species: t1, with apical pv usually small (Fig. 150), rarely developed (Fig. 151); f1, with row of av complete (Fig. 153), and with row of pv interrupted around apical third (Fig. 154).

33. *Delia tenuiventris* (Zetterstedt, 1860)
(Figs 152, 155)

Material examined. Southern Sakhalin: Riverside forest, near seashore, Bakhura River, 20 km east of Sokol, 10♂, 31.vii.2002; Tonnai (= Okhotskoye), 1♂, 1.viii.1914 (Adachi and Isshiki); Mt. Zhdanko, 25 km north of Vzmor’ye, alt. 100–250 m, 2♂, alt. 450–600 m, 2♂, 2.viii.2002;
Figs 150–155. *Delia tenuiformis* Suwa, ♂ (150–151, 153–154) and *D. tenuiventris* (Zetterstedt), ♂ (152, 155). 150–152, left fore tibia (distal part) and fore tarsus (basal part), posterior view; 153, left hind femur, anterodorsal view, showing continuous row of *av*; 154, ditto, anteroventral view, showing interrupted row of *pv*; 155, left hind femur, anterior view, showing interrupted row of *av*. Scale 0.5 mm for Figs 150–152 and 1 mm for Figs 153–155. Smirnykh (150, 153–154); Ugledarsk (151); Pilenga R., 70 km ENE of Smirnykh (152, 155).

Motodomari (= Vostochnyy), 1♂, 13.viii.1914 (Adachi and Isshiki); Ugledarsk, near seashore, 14 km north-northeast of Vostochnyy, 7♂, 3.viii.2002. Central Sakhalin: Shisuka (= Poronaysk), 1♂, 8.vii.1914 (Adachi and Isshiki); Chirie (= Kotikovo, 160 km east of Poronaysk), 1♂, 6.viii.1914 (Adachi and Isshiki); Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 3♂, 8.vii.2002; Tym’ River, alt. 200 m, 25 km east of Paleo, 4♂, 9.viii.2002; Smirnykh, riverside, alt. 70 m, Orlovka River, 1♂, 9.viii.2002; Riverside, alt. 50 m, Pilenga River,
70 km east-northeast of Smirnykh, 4°, 11.vii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Kurils (Shumshu; Rasshua; Paramushir; Onekotan; Matua; Urup); Kamchatka; Holarctic region.

Remarks. In the male, this species may be distinguished from allied species without dissecting terminalia by the following characters: t, with apical pv well developed and blunt apically (Fig. 152); f, with av often indiscernible near base and usually weakened around apical third (Fig. 155), and with no pv except for a few preapical ones.

*34. Eutrichota longimana (Pokorny, 1887)

Material examined. Southern Sakhalin: Sokol, Field Station, 8 km south of Dolinsk, 1♂, 14.vii.2002.

Distribution. Sakhalin; Japan (Hokkaido); Europe; N America.

Remarks. The male 6th tergite has a few setulae along its posterior margin in most specimens (but bare in an Oregon specimen) in the North American form (Griffiths, 1984) and some to about 10 (rarely 1 or a few) setulae in the Japanese (Suwa, 1974). The present male specimen has a row of 8 setulae on the tergite.

*35. Eutrichota socculata (Zetterstedt, 1845)
(Figs 156–157)

Parapegomya socculata socculata: Griffiths, 1984: 397.

Material examined. Central Sakhalin: Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 1♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Kyushu); Korea; NE China; Urals; Europe; N America.

Remarks. The female of E. socculata is distinguished from that of the closely related E. schineri (Schnabl, 1911) distributed in the Palaearctic region by the following aspects: mesonotum with rows of pre-acr separated from each other by a distance nearly equal to that to adjacent dc-row (more widely separated in schineri); f, with 1 or sometimes 2 distinct av near base and usually also with 1 or a few distinct av near apical third (no distinct av in schineri); ovipositor with well developed spine-like setae on 7th segment posteriorly as in Figs 156–157 (weakly developed spine-like setae in schineri as in Figs 158–161).

Eutrichota schineri is widely distributed in Europe and is known from Korea and Japan (Hokkaido). It is likely to be found also in Sakhalin.

173
Figs 156–161. *Eutrichota socculata* (Zetterstedt), ♀ (156–157) and *E. schineri* (Schnabl), ♀ (158–161). 156, 158, ovipositor; 157, 7th segment, posterior part; 159, 6th and 7th segments; 160, 7th tergite, posterior part; 161, 7th sternite. Magnification same for Figs 156 and 158–159, and for 157 and 160–161. NW of Mt. Chamga (156–157); Hokkaido, Japan (158; 159–161).
36. *Fucellia fucorum* (Fallén, 1819)

Distribution. Sakhalin; Japan (Hokkaido); Kurils (Shumshu; Paramushir; Onekotan; Kharimkotan; Rasshua; Ushishir; Simushir; Chirpoi; Urup; Etorofu); Kamchatka; Commander Islands; Europe; Icealand; Spitsbergen; N America; Greenland.

Remarks. This species is widely distributed from eastern Asia to Europe through North America.

37. *Fucellia hypopygialis* Ringdahl, 1930

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Kurils (Shumshu; Paramushir; Urup); Kamchatka; Commander Islands; N America; Greenland.

38. *Fucellia kamchatica* Ringdahl, 1930

Material examined. Southern Sakhalin: Prigorodnoye, 8km east of Korsakov, mouth of Mereya River, 2°, 15.viii.2002, 43°, 25°, 16.viii.2002; Kaitsuka (= Solov’evka, 20 km north of Korsakov), 1°, 10.vii.1909 (Oguma); Tonnai (= Okhotskoye), 1°, 1.ivi.1914 (Adachi and Isshiki); Maoka (= Kholmsk), 1°, 24.vii.1934 (C. Watanabe and T. Inoue); Kushunnai (= Il’inskiy), 1°, 6.vii.1909 (Oguma); Mouth of Bakhura River, 20 km east of Sokol, 26°, 7°, 31.vii.2002; Sakaehama (= Starodubskoye), 1°, 1°, 19.viii.1914 (Adachi and Isshiki); Motodomari (= Vostochny), 4°, 3°, 16–17.viii.1914 (Adachi and Isshiki); Kashiho (= Zaozernaya), 1°, 10.vii.1933 (Uchida, Okamoto and Sawamoto); Zaozernaya, grassland, mouth of Lazovaya River, 4°, 2°, 3.viii.2002; Niitoi (= Novoye), 2°, 1°, 11.viii.1914 (Adachi and Isshiki). Central Sakhalin: Chirie (= Kotikovo, 160 km east of Poronaysk), 2°, 6.viii.1914 (Adachi and Isshiki); Mouth of Chamgu River, 70 km east of Tymovskoye, 15°, 18°, 8.vii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Kurils (Paramushir; Onekotan; Kunashiri; Shikotan); Korea; NE China; Kamchatka; Commander Islands; Aleutian Islands; Alaska.
*39. *Heterostyloides pilifera* (Zetterstedt, 1845)

Material examined. Central Sakhalin: Mt. Chamga, 45 km east-southeast of Tymovskoye, alt. 700–1000 m, 1♀, alt. 1000–1300 m, 1♂, 7.viii.2002.

Distribution. Sakhalin; Japan (Honshu); NE China; Europe; N America.

Remarks. Griffiths (1996: 1787) gives a note “Niblett (1955) has reported that the larvae of “pratensis” feed in England in flowerheads of *Hypochoeris radicata* L. and *Leontodon hispidus* L. (both Compositae Cichorieae). … Due to past confusion over the application of the name “pratensis”, it is not clear whether these records refer to *pilifera* or *obscura*. However, these species are very close and doubtless have a similar life-history.”

*40. *Hydrophoria montana* Suwa, 1970

(Figs 162–163, 166–167, 170)

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Shikoku); Korea; China; Taiwan.

Remarks. In the males it is easy to distinguish *H. montana* from *H. ruralis* by the 5th sternite with processes constricted mediately and bearing a row of inner short setae mainly on distal half. It is, however, not easy in the females unless their ovipositors are examined.

*41. *Hydrophoria ruralis* (Meigen, 1826)

(Figs 164–165, 168–169, 171)

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Shikoku; Kyushu); China; Korea; Ussuri; Europe.

*42. *Hylemya urbica* Van der Wulp, 1896

Material examined. Southern Sakhalin: Riverside forest, near seashore, Bakhura River, 20

km east of Sokol, 5♂, 31.vii.2002; Ugledarsk, near seashore, 14 km north-northeast of Vostochnyy, 1♂, 3.viii.2002. Central Sakhalin: Smirnykh, riverside, alt. 70 m, Orlovka River, 1♂, 9.viii.2002; Mt. Chamga, alt. 600–700 m, 45 km east-southeast of Tymovskoye, 1♂, 7.viii.2002; Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 24♀, 1♀, 8.viii.2002; Mouth of Chamgu River, 70 km east of Tymovskoye, 5♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Kyushu); Kurils (Shumshu; Onekotan; Kharimkotan); Kamchatka; Korea; China; Europe; Taiwan; N America.

43. Lasiomma morionellum (Zetterstedt, 1845)

Material examined. Central Sakhalin: Mt. Chamga, alt. 1000–1300 m, 45 km east-southeast of Tymovskoye, 1♀, 7.viii.2002.
Distribution. Sakhalin; Japan (Hokkaido; Honshu); Siberia (Tobolsk); Fennoscandia; N America.

*44. Lasiooma replicatum (Huckett, 1929)
(Figs 172–176)

Acrostilpna montana Ma in Fan et al., 1988: 84; Wei et al., 1998: 653.

Material examined. Central Sakhalin: Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirnykh, 1♂, 11.viii.2002.
Distribution. Sakhalin; Kamchatka; NE China; Urals; Fennoscandia; N America.
Remarks. The present male specimen does not agree with the redescription of L. replicatum given by Griffiths (2003) in some aspects: t₁, with apical pv weak, about half as long as apical pd; 5th sternite with sparser band of inner setae. As no significant difference is found in other features the specimen is here identified with the species.

*45. Myopina myopina (Fallén, 1824)
(Figs 177–179)

Material examined. Central Sakhalin: Smirnykh, riverside, alt. 70 m, Orlovka River, 1♂, 9.viii.2002.
Distribution. Sakhalin; Kamchatka; Urals; Europe; N America.
Remarks. The flattened and anterobasally expanded hind metatarsi (Fig. 179) are characteristic to the male of M. myopina.

*46. Paradelia bruneonigra (Schmabl, 1911)

Material examined. Central Sakhalin: Mt. Chamga, alt. 600–700 m, 45 km east-southeast of Tymovskoye, 1♂, 7.viii.2002.
Distribution. Sakhalin; Japan (Hokkaido; Honshu); Europe; N America.
Remarks. Michelsen (2007) tentatively identified some female specimens from Kashmir (2600–3000 m), India, with P. bruneonigra.
Figs 172–176. *Lasionoma replicatum* (Huckett), ♀. 172, general features; 173, 5th sternite, ventral view; 174, hypopygium, dorsal view; 175, ditto, lateral view; 176, aedeagus and adjacent structures, left lateral view. Magnification same for Figs 173–176. Pilenga R., 70 km ENE of Smirnykh.

47. Paregle audacula (Harris, 1780)

Figs 177–179. *Myopina myopina* (Fallén), ♂ 177, general features; 178, head, lateral view; 179, right hind leg, anterior view. Smirnykh.

Material examined. Southern Sakhalin: Prigorodnoye, 8 km east of Korsakov, mouth of Mereya River, 5♂, 3♀, 15.viii.2002. Central Sakhalin: Pervomayskoye, alt. 150 m, 40 km northeast of Smirnykh, 6♂, 3♀, 10.viii.2002; Smirnykh, riverside, alt. 70 m, Orlovka River, 2♂, 9.viii.2002; Tym’ River, alt. 200 m, 25 km east of Palevo, 1♀, 9.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido); Kurils (Paramushir; Kharimkotan); Kamchatka; Korea; China; Holarctic region; Australia and Tasmania (introduced).

*48. *Pegomya bicolor* (Wiedemann, 1817)
(Fig. 180)

Fig. 180. *Pegomya bicolor* (Wiedemann), ♂. General features. Mt. Chamga.

Material examined. Central Sakhalin: Mt. Chamga, alt. 700–1000 m, 45 km east-southeast of Tymovskoye, 7♂, 5♀, reared from larvae, 7.viii.2002, emerged from late August to early September, 2002, as a leaf miner on *Oxyria digyna* (Linnaeus).

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Shikoku; Kyushu); Kurils (Paramushir; Matua; Urup); Kamchatka; Korea; China; Holarctic region.

Remarks. This is widespread in the Holarctic region. Hennig (1973) recognized three subspecies mainly on the basis of the colouration, *P. b. bicolor* from main part of the region, *P. b. cinereorufa* Ringdahl, 1930, from Iceland, and *P. b. jynx* (Séguy, 1926) from China and Japan. The present Sakhalin form is referred to the nominotypical subspecies in having the abdomen almost wholly yellow in ground colour.

*49. *Pegomya cunicularia* (Rondani, 1866)

Pegomya mixta: Suwa, 1974: 192.

Material examined. Southern Sakhalin: Seashore, south of Sovetskoye, 2♂, 2♀, reared from larvae, 1.viii.2002, emerged from late August to early September, 2002, as a leaf miner on *Chenopodium album* Linnaeus.

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Kyushu); Korea; China; Europe; N Africa.

Remarks. This is known as a leaf miner of chenopodiaceous plants belonging to
Chenopodium, Atriplex, Beta and Spinacia.

*50. Pegomya geniculata (Bouché, 1834)

Material examined. Southern Sakhalin: Riverside forest, near seashore, Bakhura River, 20 km east of Sokol, 15♂, 31.vii.2002. Central Sakhalin: Smirnykh, riverside, alt. 70 m, Orlovka River, 4♂, 9.viii.2002; Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirnykh, 1♂, 11.viii.2002; Northwest of Mt. Chamga, alt. 450–500 m, 42 km east-southeast of Tymovskoye, 9♂, 8.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Kurils (Kunashiri); China; Europe; N America.

*51. Pegomya incisiva Stein, 1906
(Figs 181–185)

Material examined. Central Sakhalin: Smirnykh, riverside, alt. 70 m, Orlovka River, 2♂, 9.viii.2002.

Distribution. Sakhalin; Europe; N America.

Remarks. This species is here recorded from the Far East for the first time. It may widely be distributed in boreal and alpine areas of the Holarctic region.

*52. Pegomya pulchripes (Loew, 1857)

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Kurils (Kunashiri); Korea; Europe.

*53. Pegomya transgressa (Zetterstedt, 1846)

Material examined. Southern Sakhalin: Mt. Zhdanko, alt. 450–600 m, 25 km north of Vzmor’ye, 1♂, 2.viii.2002; Ugledarsk, quarry, alt. 400 m, 14 km north-northeast of Vostochnyy, 1♂, 3.viii.2002.

Distribution. Sakhalin; Europe; N America.

Remarks. Pegomya transgressa has been known from northern ranges of Europe and North America. It may be widespread in boreal areas of the Holarctic region.

184
*54. Pegomya winthemi (Meigen, 1826)

Figs 181–185. _Pegomya incisiva_ Stein, ♂. 181, 5th sternite, ventrolateral view; 182, hypopygium, dorsal view; 183, ditto, dorsolateral view; 184, ditto, lateral view; 185, aedeagus, left lateral view. Magnification same for Figs 182–185. Smirnykh.

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Kyushu); NE China; Europe; N America.

*55. Pegoplata annulata (Pandellé, 1899)

“Pegoplata juvenilis (Stein, 1898)”: Wei et al., 1998: 768; Suwa, 1999: 238.

Material examined. Central Sakhalin: Smirnykh, riverside, alt. 70 m, Orlovka River, 1♂, 9.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu; Shikoku; Kyushu); Korea; China; Europe.

Remarks. The present species had been called “Pegoplata virginea (Meigen, 1826)”. This name is, however, now recognized as a synonym of Hydrophoria lancifer (Harris, 1780) (Griffiths, 1986).

Griffiths (1986) regarded the species “virginea Meigen” auctt. as conspecific with the North American Pegoplata juvenilis (Stein, 1898), and recognized two subspecies, P. j. juvenilis (the North American form) and P. j. nitidicauda (the Palearctic form). The name nitidicauda was given by Schnabl in Schnabl and Dziedziki (1911) for a “variety” of “Pegomyia (Pegoplata) virginea (Meigen)”.

Anthomyia (Hylemyia) annulata Pandellé, 1899, had been regarded as a species of Hydrophoria now recognized as Hydrophoria silvicola (Robineau-Desvoidy, 1830). It has, however, recently been accepted as a species of Pegoplata conspecific with “virginea Meigen” auctt. and distinct from P. juvenilis.

*56. Pegoplata infirma (Meigen, 1826)

Distribution. Sakhalin; Japan (Hokkaido); Kamchatka; China; Europe; N America.

*57. Zaphne ambiguа (Fallén, 1823)

Material examined. Southern Sakhalin: Sokol, Field Station, 8 km south of Dolinsk, 2♂.
Figs 186–191. *Zaphne frontata* (Zetterstedt), ♂ (186), *Z. ignobilis* (Zetterstedt), ♂ (187–189), and *Z. nuda* (Schnabl), ♂ (190–191). 186, 189, 191, hypopygium, dorsal view; 187, general features; 188, abdomen, caudal segments, left lateral view; 190, 4th (posterior half) and 5th sternites, ventral view. Mt. Chamga (186); Pilenga R., 70 km ENE of Smirnykh (187–189); Bakhura R., 20 km E of Sokol (190–191).
4.viii.2002, 1♂, 5.viii.2002; Riverside forest, near seashore, Bakhura River, 20 km east of Sokol, 4♂, 31.vii.2002. Central Sakhalin: Gastello, riverside, alt. 100 m, 18 km southwest of Poronaysk, 11♂, 13.viii.2002; Smirnykh, riverside, alt. 70 m, Orlovka River, 18♂, 9.vii.2002; Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirnykh, 1♂, 11.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido); Kurils (Shumshu); Kamchatka; NE China; Europe; N America.

*58. Zaphne frontata (Zetterstedt, 1838)
(Fig. 186)

Material examined. Central Sakhalin: Mt. Chamga, 45 km east-southeast of Tymovskoye, alt. 700–1000 m, 1♂, alt. 1000–1300 m, 2♂, 7.viii.2002.

Distribution. Sakhalin; Japan (Hokkaido; Honshu); Siberia; Europe; N America; Greenland.

*59. Zaphne ignobilis (Zetterstedt, 1845)
(Figs 187–189)

Hydrophoria ignobilis: Hennig, 1969: 280; Wei et al., 1998: 672.

Material examined. Central Sakhalin: Riverside, alt. 50 m, Pilenga River, 70 km east-northeast of Smirnykh, 1♂, 11.viii.2002.

Distribution. Sakhalin; Kamchatka; NE China; Europe; N America.

*60. Zaphne muda (Schnabl, 1911)
(Figs 190–191)

Hydrophoria muda: Hennig, 1969: 284; Wei et al., 1998: 673.

Distribution. Sakhalin; Kurils (Shumshu); NE China; Europe; N America.

NOTES ON THE ANTHOMYIID FAUNAS OF SAKHALIN AND ADJACENT TERRITORIES

The anthomyiid fauna of Sakhalin is now represented by 60 species (Table 1), though much more species are expected to be found there. In adjacent territories, so far as I am aware, 54 species are known from Kamchatka (Suwa et al., 2000), 169 species from Hokkaido, 228 species** from the whole of Japan (Suwa, 1999, 2011a, 2011b,

Table 1. Check list of Anthomyiidae of Sakhalin and their distribution in other ranges.

<table>
<thead>
<tr>
<th>Species</th>
<th>Hok</th>
<th>Hon</th>
<th>EP</th>
<th>EU</th>
<th>NA</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Adia cinerella (Fallén, 1825)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>2. Alliopsis lobata sp. nov.</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3. Alliopsis silvatica (Suwa, 1974)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>4. Alliopsis silvestris (Fallén, 1824)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5. Alliopsis thibialis (Fan and Wang, 1982)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>6. Botanophila apiciseta (Rindgehl, 1933)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>7. Botanophila bicornicis (Pandelli, 1900)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>8. Botanophila coknata Suwa, 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>9. Botanophila fagaz (Meigen, 1826)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10. Botanophila gemmata (Zetterstedt, 1860)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11. Botanophila isikiriana (Suwa, 1974)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12. Botanophila shirozui (Suwa, 1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>13. Botanophila sonchi (Hardy, 1872)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>14. Botanophila spinisternata (Suwa, 1974)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15. Chiochchema latispinigera Fan et al., 1982</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16. Chiochchema sachalinensis sp. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>17. Chiroia flavipennis (Fallén, 1823)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>18. Delia antiqua (Meigen, 1826)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>19. Delia coerulescens (Meigen, 1826)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>20. Delia cineata Tiensau, 1946</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>21. Delia curvista sp. nov.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>22. Delia echinata (Séguy, 1923)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>23. Delia fabricii (Holmgren, 1872)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>24. Delia floralis (Fallén, 1824)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>25. Delia florilegus (Zetterstedt, 1845)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>26. Delia hirtithis (Stein, 1916)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>27. Delia linearis (Stein, 1898)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>28. Delia lineiventris (Zetterstedt, 1845)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>29. Delia planipalpis (Stein, 1898)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>30. Delia platura (Meigen, 1826)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>31. Delia radica (Linnaeus, 1758)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>(+)</td>
<td>2</td>
</tr>
<tr>
<td>32. Delia tensiformis Suwa, 1977</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>33. Delia tensiventris (Zetterstedt, 1860)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>34. Eustrichota longinana (Pokorny, 1887)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>35. Eustrichota socculata (Zetterstedt, 1845)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>36. Fucella fucorum (Fallén, 1819)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>37. Fucella hypogyalis Ringdahl, 1930</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>38. Fucella kameritschiana Ringdahl, 1930</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>39. Heterostylis pilfera (Zetterstedt, 1845)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>40. Hydrophoria montana Suwa, 1970</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>41. Hydrophoria ruralis (Meigen, 1826)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>42. Hylemya urtica Van der Wulp, 1896</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>43. Lasiomma morionellum (Zetterstedt, 1845)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>44. Lasiomma replicatum (Huckett, 1929)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>45. Myopina myopina (Fallén, 1824)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>46. Paradela brunneoneigra (Schnabl, 1911)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>47. Perigala audacula (Harris, 1780)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>48. Pegomya bicolor (Wiedemann, 1817)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>49. Pegomya cunicularia (Rondani, 1866)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>50. Pegomya geniculata (Bouché, 1834)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>51. Pegomya incisiva Stein, 1906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>52. Pegomya pulchripes (Loew, 1857)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>53. Pegomya transgressa (Zetterstedt, 1846)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>54. Pegomya winthemi (Meigen, 1826)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>55. Pegopoda annulata (Pandelli, 1899)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>56. Pegopoda infirma (Meigen, 1826)</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>57. Zaphne ambigu (Fallén, 1823)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>58. Zaphne frontata (Zetterstedt, 1838)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>59. Zaphne ignobilis (Zetterstedt, 1845)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>60. Zaphne nuda (Schnabl, 1911)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>3</td>
</tr>
</tbody>
</table>

*: occurring; (+): introduced; —: no record.

Hok, Hokkaido; Hon, Honshu; EP, East Palaeartic excluding Sakhalin; EU, Europe; NA, North America; DC, Distributional Category (see text).
Table 2. Distributional patterns of the anthomyiid species of Sakhalin and adjacent territories.

<table>
<thead>
<tr>
<th>Distributional category</th>
<th>Kamchatka</th>
<th>Sakhalin</th>
<th>Hokkaido</th>
<th>Honshu</th>
<th>Japan whole</th>
<th>Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. East Palaearctic</td>
<td>5 (9.3%)</td>
<td>12 (20.0%)</td>
<td>61 (36.1%)</td>
<td>72 (40.9%)</td>
<td>91 (39.9%)</td>
<td>44 (39.6%)</td>
</tr>
<tr>
<td>2. Transpalaearctic</td>
<td>7 (13.0%)</td>
<td>7 (11.7%)</td>
<td>45 (26.6%)</td>
<td>43 (24.4%)</td>
<td>59 (25.9%)</td>
<td>30 (27.0%)</td>
</tr>
<tr>
<td>3. Holarctic</td>
<td>36 (66.7%)</td>
<td>39 (65.0%)</td>
<td>58 (34.3%)</td>
<td>54 (30.7%)</td>
<td>70 (30.7%)</td>
<td>33 (29.7%)</td>
</tr>
<tr>
<td>4. East Palaearctic to Nearctic</td>
<td>6 (11.1%)</td>
<td>2 (3.3%)</td>
<td>5 (3.0%)</td>
<td>7 (4.0%)</td>
<td>8 (3.5%)</td>
<td>4 (3.6%)</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>60</td>
<td>169</td>
<td>176</td>
<td>228</td>
<td>111</td>
</tr>
</tbody>
</table>

Table 3. Number of anthomyiid species of Sakhalin and adjacent territories common to other ranges.

<table>
<thead>
<tr>
<th>Common to</th>
<th>Kamchatka</th>
<th>Sakhalin</th>
<th>Hokkaido</th>
<th>Honshu</th>
<th>Japan whole</th>
<th>Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe (Categ. 2-3)</td>
<td>43 (79.6 %)</td>
<td>46 (76.7%)</td>
<td>103 (60.6%)</td>
<td>97 (55.1%)</td>
<td>129 (56.6%)</td>
<td>63 (56.8%)</td>
</tr>
<tr>
<td>N Amer. (Categ. 3+4)</td>
<td>42 (77.8 %)</td>
<td>41 (68.3%)</td>
<td>63 (37.3%)</td>
<td>61 (34.7%)</td>
<td>78 (34.2%)</td>
<td>37 (33.3%)</td>
</tr>
<tr>
<td>Japan</td>
<td>34 (63.0%)</td>
<td>44 (73.3%)</td>
<td>86 (77.5%)</td>
<td>75 (67.6%)</td>
<td>77 (69.4%)</td>
<td></td>
</tr>
<tr>
<td>Hokkaido</td>
<td>29 (53.7%)</td>
<td>40 (66.7%)</td>
<td>120 (68.2%)</td>
<td>75 (67.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honshu</td>
<td>22 (40.7%)</td>
<td>31 (52.7%)</td>
<td>120 (71.0%)</td>
<td>77 (69.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>60</td>
<td>169</td>
<td>176</td>
<td>228</td>
<td>111</td>
</tr>
</tbody>
</table>

2013a, 2013b, and others), and 111 species** from Korea (Suh and Kwon, 1985, 1986, 2001, 2008; Suh et al., 1991a, 1991b). These species are grouped into the following four categories based on their distribution (Table 2).

1. East Palaearctic. They are found in eastern Asia, but not known from Europe or North America.

2. Transpalaearctic. They are found in Europe, but not in North America. *Delia radicum* is assumed to have been introduced into North America from Europe, and is therefore referred to the present category.

3. Holarctic. These are found in Europe and North America. Most of them have no records in the vast area between Europe and the Far East. With the progress of investigation in future they will be found there. Some species, e.g. *Adia cinerella*, *Delia platatura* and *Hylemya urbica*, are more widely distributed.

4. East Palaearctic to Nearctic. These are found in North America, but not in Europe.

The Tatar Strait between Sakhalin and the continent is narrow and shallow (4–20 m deep, and 7.3 km wide at the narrowest point, after Wikipedia, 2013: http://en.wikipedia.org/wiki/Strait_of_Tartary), and was established as a recent event in the geological time scale (less than ten thousand years ago, according to the figure 10-2 in Ono and Igarashi, 1995). It may be said that the Strait has achieved few results as a barrier, and that the anthomyiid fauna of Sakhalin is not much different from the Littoral Siberian fauna, though little information is available on the latter. The three species described as new to science in this paper are unlikely to be endemic to Sakhalin.

Table 2 clearly shows that the distributional pattern of species of Sakhalin is similar to that of Kamchatka in having a high percentage of Holarctic species (Category 3; 65.0 % in Sakhalin, 66.7 % in Kamchatka). For species distributed in high latitude ranges there may have been few serious barriers to obstruct their east-west dispersal and the
presence of Beringia was probably effective to expand their distribution into Holarctic. This may be a reason for the high percentage of Holarctic species in high latitude ranges.

On the other hand, the distributional pattern of the species of Hokkaido is very different from that of Sakhalin (Table 2). The percentage of the Category 3 in Hokkaido (34.3%) is much lower than that in Sakhalin, and is similar to that in Honshu (30.7%), and moreover to that in Korea (29.7%). It may be said that the present anthomyiid fauna of Hokkaido has been established after the latest (namely the Würm) glacial age by adding a lot of southern elements to the former fauna mainly derived from Sakhalin during that glacial age. Meteorological influence, e.g. typhoon or barometric depression, might have been effective to bring southern elements to Hokkaido in addition to the ordinary northward dispersal of flies conforming the postglacial climate getting warmer.

Table 3 shows that many species (40 spp.) of Sakhalin are common to Hokkaido, reaching 66.7%. This may be a reflection of the history of land connection of Sakhalin with Hokkaido during most of the latest glacial age. However, more numerous species are common to Europe (Categ. 2+3, 46 spp., 76.7%) than to Hokkaido. This may be explained by a supposition that east-west dispersal is expected during any period, but north to south dispersal is not easy during periods with the climate getting warmer, as in postglacial ages. It should be here pointed out that the present faunal data of Sakhalin is based on information from the southern half of Sakhalin. The statistic on the fauna will be more similar to that of Kamchatka when information from the northern ranges is available.

Some of the species known from Sakhalin and not from Hokkaido, e.g. Delia hirtitibia and Myopiina myopina, might have come from the continent after the latest glacial age, and might have been given no chance to extend their distribution southward to Hokkaido.

Faunal information of anthomyiid flies is still insufficient in Japan, and much more so in Sakhalin. Further investigations are needed for a better understanding of the anthomiid dispersal in the Far East.

ACKNOWLEDGEMENTS

The present work was supported in part by the Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (Research Project No. 13575008, Hideki Takahashi, principal investigator, Hokkaido University Museum). H. Takahashi, the principal investigator of the Project, invited me to the Research Trip in Sakhalin, 2002. M. Ōhara (Hokkaido University Museum, a member of the Research Trip) much helped me in various ways during the trip. H. Yamamoto (Hokkaido University Museum) assisted with the arrangement of specimens for examination.

REFERENCES

Suh, S.J. and Kwon, Y.J., 1985. Taxonomic revision of the family Anthomyiidae from
Korea. Insecta Koreana 5: 143–221.
Suwa, M., 1986. Supplementary notes on the family Anthomyiidae of Japan (Diptera), IV. Insecta matsumurana new series 34: 35–52.
Suwa, M., 2011b. Supplementary notes on the family Anthomyiidae of Japan (Diptera), VII. Insecta matsumurana new series 67: 75–98.
Suwa, M., 2013b. Two species of Chirosisia reared from the Ostrich fern, Matteuccia.

194