MM-1 facilitates degradation of c-Myc by recruiting proteasome and a novel ubiquitin E3 ligase.

Author(s)
Kimura, Yumiko; Nagao, Arisa; Fujioka, Yuko; Satou, Akiko; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

Citation
International journal of oncology, 31(4): 829-836

Issue Date
2007-10

Doc URL
http://hdl.handle.net/2115/53727

Type
article

File Information
178_Ariga_2007_Int_J_Onc.pdf
Abstract. We have reported that a novel c-Myc-binding protein, MM-1, repressed the E-box-dependent transcription activity of c-Myc by recruiting the HDAC1 complex via TIF1ß/KAP1, a transcriptional corepressor. We have also reported that a mutation of A157R in MM-1, which is often observed in patients with leukemia or lymphoma, abrogated all of the repressive activities of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor. In this study, we found that MM-1 was bound to a component of proteasome and stimulated degradation of c-Myc in human cells. Knockdown of endogenous MM-1 in human HeLa cells by introduction of siRNA against MM-1 stabilized the endogenous c-Myc. To identify proteins that participate in c-Myc degradation by MM-1, in vivo and in vitro binding assays were carried out. The results showed that MM-1 directly bound to Rpt3, a subunit of 26S proteasome, and that c-Myc directly bound to Skp2, which recruited ElonginC, ElonginB and Cullin2, thereby forming a novel ubiquitin E3 ligase. Knockdown of endogenous Cullin2 stabilized the endogenous c-Myc. Thus, MM-1 is a factor that connects c-Myc to the ubiquitin E3 ligase and the proteasome.

Introduction

The proto-oncogene product c-Myc plays pivotal roles in cell proliferation, differentiation and apoptosis induction, and its levels are tightly regulated at several steps, including transcription, translation and protein stability (1-3). It is known that the half-life of c-Myc is approximately 30 min (4,5) and that its rapid proteolysis is catalyzed by the ubiquitin-proteasome system (6,7). It has been reported that the F-box protein Skp2 participated in c-Myc proteosomal degradation and acted as a cofactor for c-Myc-regulated transcription (8,9) and that phosphorylation-dependent degradation of c-Myc was mediated by the F-box protein Fbw7 (10). Since the expression of c-Myc is thought to be regulated by multiple pathways, it is possible that there exist other mechanisms or proteins that target c-Myc to the proteasome.

We have reported that MM-1, a novel protein binding to the myc box II located in the N-proximal region of c-Myc, suppressed transcription and transformation activities of c-Myc and that A157R mutation of c-Myc, which is observed at high frequency in patients with lymphoma or leukemia, abrogated all of the functions of MM-1 toward c-Myc, indicating that MM-1 is a novel tumor suppressor (11,12). Regarding the MM-1-dependent transrepression pathway of c-Myc, we have shown that MM-1 recruited the HDAC complex to c-Myc via TIF1ß, a co-repressor (13), and that the c-fms gene was identified as a target gene for this pathway (14). In this study, we found another role of MM-1 in connecting c-Myc to the proteasome and a novel ubiquitin ligase that stimulates c-Myc degradation.

Materials and methods

Plasmids. pcDNA3-FLAG-ElonginB, pcDNA3-FLAG-Rpt3, pcDNA3-FLAG-Cullin2, pcDNA3-T7-Rpn12 and pcDNA3-T7-Skp2, corresponding cDNAs starting from the first ATG, were inserted in-frame into the EcoRI-XhoI sites of pcDNA3-FLAG and pcDNA3-T7, respectively. Plasmids of various kinds of c-Myc and MM-1 were described previously (11-13).

Antibodies. Catalog numbers and dilutions of commercially available antibodies used in this study are shown in Table I.

Cell culture and transfection. Human HeLa and 293T cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% calf serum. Transfection of plasmid DNAs into cells was carried out by the calcium phosphate precipitation method. The nucleotide sequences of the upper and lower strands for siRNA targeting various genes were as follows: MM-1, 5'-UGCUCAAGAACCAGCUGGAdTdT-3' and 5'-UCCAGCUGGUUCUUGAGCAdTdT-3'; Cullin 1, 5'-GGUUUGCCUGCAAUGAGAUUU-3'; Cullin 2, 5'-GCCGUGGUCAUGUUU-3'; Skp2, 5'-CCUCCUGGAGAAUGAUUU-3'; Rpn12, 5'-UGCUAAAGUGAGUGU-3'; and Rpt3, 5'-UCAGCGGAGAGUGAAGUU-3'.
GGAAUAC-3' and 5'-AUUCCAACAUGACCACGGCUU-3'; ElonginB, 5'-GGCCCAUUUCCCCCAAUAAAA-3' and 5'-UUAUUGGGGGAAAUGGGCCUC-3'; Elongin C, 5'-CGG
GACUGACGAGAAACUACU-3' and 5'-UAGUUUCUCGU
CAGUCCCGCA-3'; Skp2, 5'-CCGCUGCCCACGAUCAUU
UAU-3' and 5'-AAAUGAUCGUGGGCAGCGGAA-3'; Skp1,
5'-CUAUAACAUGCCAGCAAAAGA-3' and 5'-UUUUGC
UGGCAUGUUAUAGGU-3'; and Luciferase, 5'-CGUACGC
GGAAUACUUCGATT-3' and 5'-UGCAAGUAUUCCGCU
ACGTT-3'. Various amounts of siRNA were transfected into
HeLa cells using Oligofectamine reagent (Invitrogen, Carlsbad,
CA) according to the supplier's manual.

In vitro binding assay. 35S-labeled ElonginB, Rpt3, Rpn12
or c-Myc was synthesized in vitro using the reticulocyte lysate
of the TnT-transcription-translation coupled system (Promega,
Madison, WI). Labeled proteins were mixed with GST or
GST-MM-1 expressed in and prepared from
E. coli
at 4˚C for
60 min in a buffer containing 150 mM NaCl, 1 mM EDTA,
20 mM Tris (pH 8.0), and 0.5% NP-40. After washing with
the same buffer, the bound proteins were separated on a 12%
polyacrylamide gel containing SDS and visualized by fluoro-
graphy.

In vivo binding assay. Two μg of pcDNA3-FLAG-Elongin B
or pcDNA3-FLAG-MM-1 together with 2 μg of pcDNA3-
HA-MM-1 or pcDNA3-T7-Rpn12 were transfected into 60%
confluent human293T cells in a 10-cm dish by the calcium
phosphate precipitation technique. Forty-eight hours after
transfection, the whole cell extract was prepared by the
procedure described previously (11). Approximately 2 mg of
the 293T cell proteins was first immunoprecipitated with a
mouse anti-Flag antibody (Sigma) or with non-specific mouse
IgG under the same conditions as those of the in vitro binding
assay as described above. After washing with the same buffer,
the precipitates were separated on a 12% polyacrylamide gel
containing SDS, blotted onto a nitrocellulose filter, and reacted
with a rabbit anti-HA antibody (MBL), with a mouse anti-T7
antibody (Novagen) or with the mouse anti-FLAG antibody.
To examine the association of endogenous DJ-1 with c-Myc,
proteins from HeLa cells were immunoprecipitated with an
anti-c-Myc polyclonal antibody (Santa Cruz Biotech.) or with
non-specific rabbit IgG, and the precipitates were subjected
To Western blot analysis with anti-prefoldin 5/MM-1 (Santa
Cruz Biotech.) antibodies. Immunoprecipitated proteins were then
reacted with an IRDye800 (Rockland, Philadelphia, PA) or
Alexa680-conjugated second antibody (Molecular Probe) and
visualized by an infrared imaging system (Odyssey, LI-
COR, Lincoln, NE).

RT-PCR analysis. Total RNAs were prepared from HeLa cells
by the acid guanidine thiocyanate-pheno1-chloroform method,
and cDNA was synthesized using the oligo dT primer and
BcaBEST polymerase (Takara, Kyoto, Japan). The first strand
of cDNA products was amplified with specific primers for
c-myc and GAPDH genes were described previously (15). The
amplified products were separated on a 2% agarose gel and
stained with ethidium bromide.

Effect of siRNA on c-Myc. HeLa cells were transfected with
10 and 20 nM siRNA by Oligofectamine reagent. Forty-eight

Table I. Details of antibodies used in this study.

<table>
<thead>
<tr>
<th>Target protein</th>
<th>Company</th>
<th>Catalog number</th>
<th>Species</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag-tag</td>
<td>Sigma, St. Louis, MO</td>
<td>F3165</td>
<td>Mouse</td>
<td>5000</td>
</tr>
<tr>
<td>HA-tag</td>
<td>MBL, Ina, Japan</td>
<td>561</td>
<td>Rabbit</td>
<td>2000</td>
</tr>
<tr>
<td>T7-tag</td>
<td>Novagen, San Diego, CA</td>
<td>69522-3</td>
<td>Mouse</td>
<td>5000</td>
</tr>
<tr>
<td>HA-tag</td>
<td>Bethyl, Montgomery, TX</td>
<td>A190-108A</td>
<td>Rabbit</td>
<td>2000</td>
</tr>
<tr>
<td>T7-tag</td>
<td>Bethyl, Montgomery, TX</td>
<td>A190-116A</td>
<td>Rabbit</td>
<td>2000</td>
</tr>
<tr>
<td>c-Myc</td>
<td>Santa Cruz Biotech., Santa Cruz, CA</td>
<td>sc-764</td>
<td>Rabbit</td>
<td>1000</td>
</tr>
<tr>
<td>c-Myc</td>
<td>Santa Cruz Biotech., Santa Cruz, CA</td>
<td>sc-42</td>
<td>Mouse</td>
<td>1000</td>
</tr>
<tr>
<td>prefoldin 5/MM-1</td>
<td>Santa Cruz Biotech., Santa Cruz, CA</td>
<td>sc-19843</td>
<td>Goat</td>
<td>1000</td>
</tr>
<tr>
<td>actin</td>
<td>Chemicon, Temecula, CA</td>
<td>MAB1501R</td>
<td>Mouse</td>
<td>4000</td>
</tr>
<tr>
<td>Cullin1</td>
<td>Neomarkers, Fremont, CA</td>
<td>RB-042-P0</td>
<td>Rabbit</td>
<td>1000</td>
</tr>
<tr>
<td>Cullin2</td>
<td>Neomarkers, Fremont, CA</td>
<td>RB-14802-P0</td>
<td>Rabbit</td>
<td>1000</td>
</tr>
<tr>
<td>ElonginB</td>
<td>BioLegend, San Diego, CA</td>
<td>613001</td>
<td>Rabbit</td>
<td>500</td>
</tr>
<tr>
<td>ElonginC</td>
<td>BioLegend, San Diego, CA</td>
<td>613002</td>
<td>Rabbit</td>
<td>500</td>
</tr>
<tr>
<td>Skp1</td>
<td>Zymed, Carlsbad, CA</td>
<td>32-3800</td>
<td>Mouse</td>
<td>500</td>
</tr>
<tr>
<td>Skp2</td>
<td>Zymed, Carlsbad, CA</td>
<td>32-3400</td>
<td>Mouse</td>
<td>500</td>
</tr>
<tr>
<td>IRDye800-mouse IgG</td>
<td>Rockland, Philadelphia, PA</td>
<td>610-732-124</td>
<td>Donkey</td>
<td>5000</td>
</tr>
<tr>
<td>Alexa680-rabbit IgG</td>
<td>Molecular Probe, Temecula, CA</td>
<td>A-21076</td>
<td>Goat</td>
<td>500</td>
</tr>
</tbody>
</table>
Degradation of c-Myc by MM-1. In order to determine the functions of MM-1, a two-hybrid screening of MM-1-binding proteins was carried out using a library of human K562 cell cDNA and MM-1 as a bait as described previously (13). In addition to TIF1ß, three proteins related to protein degradation systems, Rpt3, Rpn12 and ElonginB, were obtained in this screening, suggesting that MM-1 participates in c-Myc degradation. To examine this possibility, Flag-tagged c-Myc was cotransfected with various amounts of Flag-tagged wild-type or A157R mutant of MM-1 into human HeLa cells, and the levels of Flag-c-Myc and Flag-MM-1s were measured by Western blotting with an anti-Flag antibody (Fig. 1A). While the level of the endogenous actin was hardly changed, the levels of Flag-c-Myc were found to be decreased by the introduction of Flag-MM-1 and Flag-MM-1(A157R) in a dose-dependent manner (Fig. 1A, lanes 1-4). To further confirm this effect of MM-1 on c-Myc, the half-life of c-Myc was determined by transfection of Flag-c-Myc with or without HA-tagged MM-1 in the presence of cycloheximide (CHX), an inhibitor of protein synthesis, and the amounts of c-Myc were calculated after normalization to that of actin (Fig. 1B and C, respectively). The results clearly showed that while the half-life of Flag-c-Myc without introduced MM-1 was approximately 30 min as reported previously (4,5), MM-1 reduced the half-life of c-Myc to 15 min. Under these experimental conditions, it was found that Flag-MM-1 did not affect the mRNA levels of c-Myc (Fig. 1D). These results indicate that MM-1 stimulates c-Myc degradation.

To exert the effect of MM-1 on c-Myc degradation under physiological conditions in cells, siRNA targeting MM-1 was applied to HeLa cells. Since the MM-1 gene is located on human chromosome 12q12-12q13 and produces fusion-type MM-1 and four splicing variants, MM-1o, δ18, 1γ, and -1δ1 (12,16), the nucleotide sequence of siRNA corresponding to that in exon 1 was chosen to knock down all of the MM-1s (Fig. 2A). Forty-eight hours after transfection of the siRNA to HeLa cells, expression levels of mRNAs of MM-1, c-Myc and GAPDH were measured by RT-PCR using specific primers (Fig. 2B). The results clearly showed that while the levels of mRNAs of c-Myc and GAPDH were not changed, that of MM-1 was decreased by the siRNA against MM-1 in a dose-dependent manner, indicating that this siRNA knocks down endogenous MM-1. The endogenous levels of c-Myc, MM-1 and actin in HeLa cells transfected with siRNA against MM-1 were then measured by Western blotting with anti-c-Myc, anti-MM-1 and anti-actin antibodies, and the levels of c-Myc and MM-1 were normalized to that of actin (Figs. 2C, right and left panels, respectively). The results showed that a reverse

Statistical analyses. Data are expressed as means ± S.D. Statistical analyses were performed using analysis of variance (one-way ANOVA) followed by unpaired Student’s t-test.

Results and discussion

Figure 1. Stimulation of c-Myc degradation by MM-1. (A) HeLa cells were cotransfected with 1 μg of pcDNA3-Flag-c-Myc and various amounts of pcDNA3-Flag-MM-1 or pcDNA3-Flag-MM-1(A157R) by the calcium phosphate precipitation method. Forty-eight hours after transfection, cell extracts were prepared, and the proteins in the extracts were separated in a 10% or 15% polyacrylamide gel and blotted with an anti-Flag antibody (Sigma) or an anti-actin-antibody (Chemicon). The amounts of pcDNA3-Flag-MM-1 and pcDNA3-Flag-MM-1(A157R) used for transfection were 0, 0.5, 1, and 2 μg in lanes 1-4 and lanes 5-8, respectively. (B) HeLa cells were transfected with 1 μg of pcDNA3-Flag-c-Myc without (lanes 2-6) or with 2 μg of pcDNA3-Flag-MM-1 by the calcium phosphate precipitation method. Forty-eight hours after transfection, 25 μg/ml of cycloheximide (CHX) was added to the cells (lanes 7-11). At various times after addition of CHX, cell extracts were prepared and the proteins in the extracts were analyzed as described in A. (C) Intensities of the bands in Western blotting in B were measured by a densitometer, and intensities of Flag-c-Myc were normalized to those of actin. The results showed that a reverse

Antibodies used were anti-c-Myc rabbit polyclonal antibody (Santa Cruz Biotech.), anti-Cullin1 rabbit polyclonal antibody (Neomarkers), anti-Cullin2 rabbit polyclonal antibody (Neomarkers), anti-ElonginB rabbit polyclonal antibody (BioLegend), anti-ElonginC rabbit polyclonal antibody (Bio-Legend), anti-Skp1 mouse monoclonal antibody (Zymed), and anti-Skp2 mouse monoclonal antibody (Zymed, Carlsbad).

Statistical analyses. Data are expressed as means ± S.D. Statistical analyses were performed using analysis of variance (one-way ANOVA) followed by unpaired Student’s t-test.

Results and discussion

Degradation of c-Myc by MM-1. In order to determine the functions of MM-1, a two-hybrid screening of MM-1-binding proteins was carried out using a library of human K562 cell cDNA and MM-1 as a bait as described previously (13). In addition to TIF1ß, three proteins related to protein degradation systems, Rpt3, Rpn12 and ElonginB, were obtained in this screening, suggesting that MM-1 participates in c-Myc degradation. To examine this possibility, Flag-tagged c-Myc was cotransfected with various amounts of Flag-tagged wild-type or A157R mutant of MM-1 into human HeLa cells, and the levels of Flag-c-Myc and Flag-MM-1s were measured by Western blotting with an anti-Flag antibody (Fig. 1A). While the level of the endogenous actin was hardly changed, the levels of Flag-c-Myc were found to be decreased by the introduction of Flag-MM-1 and Flag-MM-1(A157R) in a dose-dependent manner (Fig. 1A, lanes 1-4). To further confirm this effect of MM-1 on c-Myc, the half-life of c-Myc was determined by transfection of Flag-c-Myc with or without HA-tagged MM-1 in the presence of cycloheximide (CHX), an inhibitor of protein synthesis, and the amounts of c-Myc were calculated after normalization to that of actin (Fig. 1B and C, respectively). The results clearly showed that while the half-life of Flag-c-Myc without introduced MM-1 was approximately 30 min as reported previously (4,5), MM-1 reduced the half-life of c-Myc to 15 min. Under these experimental conditions, it was found that Flag-MM-1 did not affect the mRNA levels of c-Myc (Fig. 1D). These results indicate that MM-1 stimulates c-Myc degradation.

To exert the effect of MM-1 on c-Myc degradation under physiological conditions in cells, siRNA targeting MM-1 was applied to HeLa cells. Since the MM-1 gene is located on human chromosome 12q12-12q13 and produces fusion-type MM-1 and four splicing variants, MM-1o, δ18, 1γ, and -1δ1 (12,16), the nucleotide sequence of siRNA corresponding to that in exon 1 was chosen to knock down all of the MM-1s (Fig. 2A). Forty-eight hours after transfection of the siRNA to HeLa cells, expression levels of mRNAs of MM-1, c-Myc and GAPDH were measured by RT-PCR using specific primers (Fig. 2B). The results clearly showed that while the levels of mRNAs of c-Myc and GAPDH were not changed, that of MM-1 was decreased by the siRNA against MM-1 in a dose-dependent manner, indicating that this siRNA knocks down endogenous MM-1. The endogenous levels of c-Myc, MM-1 and actin in HeLa cells transfected with siRNA against MM-1 were then measured by Western blotting with anti-c-Myc, anti-MM-1 and anti-actin antibodies, and the levels of c-Myc and MM-1 were normalized to that of actin (Figs. 2C, right and left panels, respectively). The results showed that a reverse
Association of MM-1 with ElonginB, Rpt3 and Rpn12. To stabilize c-Myc at the protein level, the amount of c-Myc was observed, suggesting that MM-1-knockdown cells transfected with siRNA reduced c-Myc expression to 1/3 of that without siRNA, more than a two-fold amount in a dose-dependent manner. When the amount of MM-1 was reduced in cells transfected with siRNA, the correlation of the amounts of endogenous c-Myc and MM-1 was observed in cells transfected with siRNA in a dose-dependent manner. The amount of MM-1 was reduced to 1/3 of that without siRNA, more than a two-fold amount of c-Myc was observed, suggesting that MM-1-knockdown stabilizes c-Myc at the protein level.

Association of MM-1 with ElonginB, Rpt3 and Rpn12. To identify the proteins that participate in the degradation reaction of c-Myc, associations of MM-1 with various proteins were investigated. Complex formation of endogenously expressed MM-1 with c-Myc was first examined. Proteins extracted from HeLa cells were immunoprecipitated with an anti-c-Myc antibody and the precipitates were analyzed by Western blotting with anti-MM-1 and c-Myc antibodies (Fig. 3A). The results showed association of endogenous MM-1 with c-Myc in cells. Since ElonginB, Rpt3 and Rpn12 were obtained as MM-1-binding proteins in yeast, associations of MM-1 with these proteins in cells were then examined. To do this, Flag-ElonginB, Flag-Rpt3 or Flag-MM-1 was cotransfected with HA-MM-1, HA-MM-1 or T7-Rpn12, respectively, into human 293T cells. Forty-eight hours after transfection, cell extracts were prepared from transfected cells, proteins in the extracts were immunoprecipitated with an anti-Flag antibody, and the precipitates were subjected to Western blotting with an anti-HA, anti-T7, or anti-Flag antibody (Fig. 3B). It was confirmed that the Flag antibodies precipitate Flag-tagged proteins (Fig. 3B, lower panels). The results also showed that HA-MM-1 or Flag-MM-1 was co-immunoprecipitated with Flag-ElonginB, Flag-Rpt3 and T7-Rpn12 (Fig. 3B, lanes 3, 6 and 9, respectively), indicating that MM-1 is associated with these proteins in 293T cells. To examine direct binding of MM-1 with these proteins, in vitro pull-down assays were then carried out. GST or GST-MM-1 expressed in and prepared from E. coli was mixed with 35S-labeled c-Myc, ElonginB, Rpt3 and Rpn12, all of which were synthesized in vitro in a reticulocyte lysate, and bound proteins were separated in a gel and visualized by fluorography (Fig. 3C). It was confirmed that GST-MM-1, but not GST alone, bound to c-Myc as described previously (11) (Fig. 3C, lanes 1-3). The results showed that GST-MM-1 directly bound to Rpt3 but not to ElonginB and Rpn12 (Fig. 3C, lanes 9, 6 and 12, respectively). These results from in vivo and in vitro binding assays suggest that MM-1 forms complexes with a proteasome containing Rpt3, Rpn12 or a ubiquitin ligase containing Elongin B.
Figure 3. Associations of MM-1 with Elongin B, Rpt3 and Rpn12. (A) Proteins extracted from HeLa cells were immunoprecipitated with an anti-c-Myc antibody and the immunoprecipitates were then analyzed by Western blotting with anti-MM-1 and anti-c-Myc antibodies. (B) Expression vectors for Flag-Elongin B, Flag-Rpt3, Flag-MM-1, HA-MM-1 and T7-Rpn12 were transfected in various combinations into 293T cells. Forty-eight hours after transfection, cell extracts were prepared, proteins were immunoprecipitated (IP) with an anti-FLAG monoclonal antibody (Sigma), and precipitates were blotted with an anti-HA polyclonal antibody (MBL), anti-T7 monoclonal antibody (Novagen) or anti-FLAG antibody. (C) GST-MM-1 or GST was expressed in E. coli BL21(DE3) and applied to glutathione-Sepharose 4B. 35S-c-Myc, -Elongin C, or -Elongin B synthesized in vitro in a coupled transcription/translation system was then applied to the column. The proteins that had bound to the column were separated in a gel and visualized by fluorography.

Figure 4. Association of MM-1 or c-Myc with Skp2. (A) Expression vectors for Flag-MM-1, Flag-MM-1(A157R), Flag-c-Myc and T7-Skp2 were transfected in various combinations into 293T cells. Forty-eight hours after transfection, cell extracts were prepared, proteins were immunoprecipitated (IP) with an anti-FLAG monoclonal antibody (Sigma), and precipitates were blotted with an anti-T7 monoclonal antibody (Novagen) or anti-FLAG antibody. (B) GST-Skp2 or GST was expressed in E. coli BL21(DE3) and applied to glutathione-Sepharose 4B. 35S-MM-1, -MM-1(A157R), -c-Myc, -Elongin C, or -Elongin B synthesized in vitro in a coupled transcription/translation system was then applied to the column. The proteins that had bound to the column were separated in a gel and visualized by fluorography.
MM-1, -MM-1(A157R) and -c-Myc (Fig. 4A, lanes 3, 6 and 9, respectively), indicating that Skp2 is associated with MM-1 and c-Myc in 293T cells. To examine the binding activity of Skp2 to ElonginC and the direct binding partner of Skp2 to MM-1 or c-Myc,

\textit{in vitro} pull-down assays were then carried out. GST or GST-Skp2 was mixed with 35S-labeled wild-type MM-1, -MM-1(A157R), -c-Myc, -ElonginC and -ElonginB, all of which were synthesized \textit{in vitro} in a reticulocyte lysate, and bound proteins were separated in a gel and visualized by fluorography (Fig. 4B). The results showed that GST-Skp2, but not GST, directly bound to c-Myc and ElonginC but not to MM-1s or ElonginB (Fig. 4B, lanes 9, 12, 3, 6 and 15, respectively). These results from \textit{in vivo} and \textit{in vitro} binding assays suggest that MM-1 binds to a proteasome complex via Rpt3 and to an ElonginB-ElonginC-Skp2 complex via c-Myc. Thus, the presence of a novel combination of a complex containing ElonginB, ElonginC and Skp2 was shown.

The VBC complex of E3 ligase is composed of Cullin2, ElonginB, ElonginC and VHL (20,21). In the present study, Skp2 was found to be a substitute for VHL in order to recognize a substrate, c-Myc. To examine the possibility that Cullin2 forms a complex with c-Myc and MM-1, Flag-Cullin2 and HA-MM-1 into 293T cells in the presence or absence of MG132, a proteasome inhibitor. Forty-eight hours after transfection, cell extracts were prepared from transfected cells, proteins in the extracts were immunoprecipitated with an anti-FLAG antibody, and the precipitates were analyzed by Western blotting with an anti-HA antibody, anti-Flag antibody, or anti-c-Myc antibody (Fig. 5A). It was confirmed that the Flag antibody, but not non-specific IgG, precipitated Flag-Cullin2 (Fig. 5A, lower panels). The results also showed that Flag-Skp2 was co-immunoprecipitated with HA-MM-1 and a small amount of endogenous c-Myc in the absence of MG132 (Fig. 5A, lane 3 in the upper and middle panels, respectively) and that the amounts of co-immunoprecipitated HA-MM-1 and endogenous c-Myc increased in the presence of MG132, suggesting that abrogation of degradation of c-Myc or MM-1 by the proteasome system stabilizes the complex formation among Cullin2, MM-1 and c-Myc. Involvement of Skp2 in this complex was confirmed by the same experiment as that described above, in which T7-Skp2 was cotransfected (Fig. 5B). It was found that Flag-Cullin2 was co-immunoprecipitated with T7-Skp2 along with HA-MM-1 and endogenous c-Myc and that
The association of these proteins was enhanced by the presence of MG132 (Fig. 5B, lanes 3 and 6). These results suggest that MM-1 plays a role as a factor that connects c-Myc to the ubiquitin E3 ligase and the proteasome.

Stabilization of c-Myc by knockdown of cullin2 and Skp2. To investigate roles of a ubiquitin E3 ligase in c-Myc degradation under a physiological condition, siRNAs targeting genes encoding proteins described above were transfected into HeLa cells. Forty-eight hours after transfection, the endogenous expression levels of proteins extracted from transfected cells were analyzed by Western blotting, and the levels of c-Myc and various proteins were normalized to that of actin (Fig. 6). The siRNA against luciferase was also transfected into cells as a negative control. When siRNA against Cullin2 was transfected, a reverse correlation of the amounts of endogenous c-Myc and Cullin2 was observed in cells transfected with siRNA in a dose-dependent manner (Fig. 6A). Although siRNA against Skp2 also stabilized the level of c-Myc as described previously (18,19), its effect on stabilization of c-Myc was weak (Fig. 6B). The siRNAs against ElonginB and ElonginC, on the other hand, did not show stabilization of c-Myc, and only the results of transfection of siRNA against ElonginB are shown (Fig. 6C). The siRNAs against Cullin1 and Skp1 did not affect stabilization of c-Myc (data not shown). These results suggest that at least Cullin2 and Skp2 participate in a c-Myc-degradation reaction as components of the ubiquitin-proteasome system.

Regarding the ubiquitin-proteasome system that degrades c-Myc, two FCS complexes containing either Skp2 or Fbw7 have been reported. SCF^{Skp2} and SCF^{Fbw7} degrade c-Myc in c-Myc phosphorylation-independent and -dependent manners, respectively (8-10). In this study, we found that knockdown of MM-1 expression stabilized c-Myc. Furthermore, we found that a novel combination of protein complex, arising from SCF^{Skp2} and VBC complexes, would work as the ubiquitin E3 ligase for c-Myc. A hypothetical model of these interactions of proteins is shown in Fig. 6C; MM-1 binds to the proteasome and c-Myc, then recruits Skp2-containing Cullin2-ElonginB-ElonginC complex to facilitate or modulate ubiquitination of c-Myc, and modulated c-Myc is degraded by the proteasome. The validity of this hypothetical model was proved by results.
showing that knockdown of Cullin2 and Skp2 by siRNAs stabilized endogenous c-Myc under physiological conditions. The siRNAs targeting Cullin1, Skp1, ElonginB and ElonginC were, on the other hand, found not to affect the stability of c-Myc. These findings suggest that expression levels of these proteins are high, thereby being sufficient for proteins to degrade c-Myc after knockdown by siRNAs. Since c-Myc is a key factor that regulates growth, differentiation and apoptosis of cells, stability and/or degradation of c-Myc may be regulated by several pathways that would be determined by cell conditions, including the cell cycle, growth and death signals.

In addition to the transcriptional repression function toward c-Myc, it has been shown that MM-1 is a subunit of prefoldin (PFD)/Gim complex, PFD5/Gim5 (22,23). PFD has been reported to play a role in delivering the newly synthesized unfolded proteins to TRC/CCCT, a chaperone that folds newly synthesized proteins (24). It has also been reported that TRC/CCCT, in cooperation with HSP70 or HSC70, mediates a complex formation of ElonginC, ElonginB and VHL of the VBC complex (24) and that HSC70 in this complex then facilitates the unfolding of its ubiquitin substrates, resulting in placement of the E3 ligase-binding region of ubiquitin substrates at the protein surface (25). Since MM-1 is the subunit of PFD, it is possible that MM-1 both recruits the protein-degradation machinery to c-Myc and mediates the unfolding of c-Myc. Collectively, the results suggest that MM-1 is an important player in the regulation of c-Myc both in transcription and degradation steps.

Acknowledgments

We thank Yoko Misawa and Kiyomi Takaya for their technical assistance. We also thank Akira Nakagawara for an anti-MM-1 antibody. This study was supported by grants-in-aid from the Ministry of Education, Science, Culture, Sport and Technology of Japan.

References

1. Adhikary S and Eilers M: Transcriptional regulation and trans-
formation by Myc proteins. Nat Rev Mol Cell Biol 6: 635-645,
2005.

2. Gallant P: Myc, cell competition, and compensatory proliferation.

3. Amati B: Myc degradation: dancing with ubiquitin ligases. Proc

4. Hann SR and Eisenman RN: Proteins encoded by the human
c-myc oncogene: differential expression in neoplastic cells. Mol

5. Salgheetti SE, Kim SY and Tansey WP: Destruction of Myc by
ubiquitin-mediated proteolysis: cancer-associated and transforming

6. Cicchonover A, DiGiuseppe JA, Bercohe B, Orian A,
Richter JD, Schwartz AL and Brodeur GM: Degradation of
nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl

7. Flinn EM, Busch CM and Wright AP: myc boxes, which are
conserved in myc family proteins, are signals for protein
degradation via the proteasome. Mol Cell Biol 18: 5961-5969,
1998.

8. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A,
Cetinkaya C, Hydbring P, Weidung I, Nakayama K,
Nakayama KJ, Soderberg O, Kerppola TK and Larsson LG:
The F-box protein Skp2 participates in c-Myc proteasomal
degradation and acts as a cofactor for c-Myc-regulated tran-

Skp2 regulates Myc protein stability and activity. Mol Cell 11:

10. Yada M, Hatakeyama S, Kamura T, Nishiihara M, Tsunematzu R,
Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KJ:
Phosphorylation-dependent degradation of c-Myc is mediated

11. Mori K, Maeda Y, Kitaura H, Taira T, Iuchi-Ariga SMM and
Ariga H: MM-1, a novel c-MYC associating protein which represses
transcriptional activity of c-MYC. J Biol Chem 273:

12. Fujio E, Taira T, Maeda Y, Tanaka S, Nishihara H,
Iuchi-Ariga SMM, Nagashima K and Ariga H: MM-1, a c-
Myc-binding protein, is a candidate for a tumor suppressor
in leukemia/lymphoma and tongue cancer. J Biol Chem 276:

transpression pathway of c-Myc - Recruitment of a tran-
scriptional corepressor complex to c-Myc by MM-1, a c-Myc-

14. Aso T, Haga D, Barstead RJ, Conaway RC and Conaway JW:
The inducible elongin A elongation activation domain: structure,
function and interaction with the elongin BC complex. EMBO J

15. Carrano Ac, Eytan E, Hershko A and Pagano M: SKP2 is
required for ubiquitin-mediated degradation of the CDK inhibitor

Elledge S: SKP1 connects cell cycle regulators to the ubiquitin
proteolysis machinery through a novel motif, the F-box. Cell 86:
263-274, 1996.

17. Ulrich HD: Natural substrates of the proteasome and their
recognition by the ubiquitin system. Curr Top Microbiol Immunol

18. Jackson PK and Eldridge AG: The SCF ubiquitin ligase: an

19. Vainberg IE, Lewis SA, Rommelaere H, Ampe C,
Vandekerckhove J, Klein HL and Cowan NJ: Prefoldin,
a chaperone that delivers unfolded proteins to cytosolic chaperonin.

mediating formation of the VHL-elongin BC tumor suppressor complex is
required for ubiquitin-dependent proteolysis of functional alpha- and

21. Feldman DE, Thulasiram V, Ferreyra RG and Frydman J:
Formation of the VHL-elongin BC tumor suppressor complex is

22. Bercohe B, Stancovski I, Mayer A, Blumenfeld N, Laslo A
and Schwartz AL: A. Ciechanover, Ubiquitin-dependent
degradation of certain protein substrates in vitro requires the
molecular chaperone Hsc70. J Biol Chem 272: 9002-9010,
1997.

23. Watanabe K, Ozaki T, Nakagawa T, Miyazaki K, Takahashi M,
Hosoda M, Hayashi S, Todo S and Nakagawara A: Physical
interaction of p73 with c-Myc and MM1, a c-Myc-binding protein,
and modulation of the p73 function. J Biol Chem 277:
15113-15123, 2002.