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1.1   Introduction 

 

In today's world, there is increasing concern with respect to the agriculture sector and 

the estimated longevity of a sufficient food production system. Environmental issues 

can hinder food production systems (e.g. soil erosion, water quality, climatic change), 

while socioeconomic issues can be equally as damaging. Concerns from both the 

consumer and the farm community stems from issues surrounding the volatility of the 

international agricultural marketplace, and the requirement of farmers to meet the food 

demands of an increasing population while maintaining quality. These factors coupled 

with increasing production costs have resulted in a substantial decrease in the farms and 

public concern surrounds the subsequent increase in industrial and corporate farms 

(Brklacich et al., 1991). The adoption of sustainable agriculture practices by farmers 

involves daily management strategies that strive to protect the land resources required to 

grow food. A sustainable food production system has been defined as an agri-food 

sector that over the long term can simultaneously maintain environmental quality, 

provide economic and social rewards for all individuals involved in the system, and 

produce an adequate and accessible food supply (Brklacich et al., 1991). Essentially, if 

the food production system cannot meet these criteria then the system is deemed 

unsustainable. Site-specific agriculture is one approach to farm management that can 

promote sustainable agriculture. Site-specific agriculture, also known as precision 

agriculture, can be defined as the application of technologies and principles to manage 

spatial and temporal variability associated with all aspects of agricultural production to 

improve crop performance and environmental quality (Pierce and Nowak, 1999). This 

style of agriculture practice refers to a "knowledge-based system" that allows farmers to 

manage variability at scales that are within a defined farm unit (e.g. section, quarter 

section) and to specific spatial regions of the farm unit where required (Lu et al., 1997). 

Spatially variable crop yield can exist due to many factors such as soil nutrient and 

moisture content, topography, as well as insect and weed infestations that change over 

time. Site specific agriculture requires both spatial and temporal management, which in 

the case of farming can require highly time-sensitive information over large agricultural 

fields. In the past this type of real-time information has not been easily accessible and 
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farmers have treated fields as homogenous units applying average rates of crop inputs 

over the entire field. As a result of this practice, farmers tend to over or under-apply 

crop inputs (e.g. fertilizer) which can result in both economic loss and environmental 

contamination (Lu et al., 1997). More recently, the increased availability of remote 

sensing imagery accompanied by comprehensive site-specific crop management plans 

has offered farmers a more definitive means of implementing sustainable agricultural 

practices in large agricultural areas. Remote sensing can play a unique role in 

agriculture because it is a non-invasive, time-specific method of acquiring information 

about seasonally variable crop and soil conditions. Remote sensing is a geospatial tool 

often incorporated into a management strategy for the whole farm operation that 

together with the benefits of global navigation satellite system (GNSS) and Geographic 

Information Systems (GIS) can be used to develop Variable Rate Application (VRA) 

maps for crop inputs (Lu et al., 1997; Pierce and Nowak, 1999; Batte, 2000). Launched 

commercial Earth Observation (EO) satellites can provide the spatial resolution, 

timeliness, and high quality imagery that site-specific agriculture requires (Moran et al., 

1997). Remote sensing as part of a site-specific agriculture management strategy can 

provide the farm enterprise with the ability to satisfy increasing environmental, 

economic, and market demands (Stafford, 2000)  

 

1.2   Research objectives 

 

In this study, for development of a real-time optical sensor for detecting wheat 

growth status, in first step, the potential of the plant nutrition active remote sensing 

instrument was evaluated by comparison with the passive sensor for predicting spatial 

variation of the crop growth condition in winter wheat (Triticum aestivum L.). Specific 

objectives in this step were (a) to install and introduce a ground-based remote sensing 

system for monitoring winter wheat growth status and (b) to evaluate and verify the 

performance of installed system by regression models that estimate crop characteristics. 

Significant wavelengths related to the winter wheat growth characteristics as a 

preliminary step toward developing a real-time spectral-based crop sensor are necessary. 

Therefore in the second step of this research, the objectives were I) to present a        
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step-by- step multivariate analysis method to determine important wavelengths in the 

spectral reflectance data for assessing the N status, protein content and grain yield of 

winter wheat, II) to develop prediction models in terms of the N status, protein content 

and grain yield using partial least squares regression (PLSR), III) to select individual 

significant wavelengths using stepwise multiple linear regression (SMLR) analysis. 

The third step on this study was selection and evaluation of optimal vegetation 

indices for prediction of crop growth status. In this step, the performance of various 

types of hyper-spectral vegetation indices for characterizing agricultural crop 

physiological variables was evaluated with the goal of determining the optimal number 

of hyper-spectral bands, their centers and widths, in the visible and infrared portion of 

the spectrum (400~1350 nm), thus reducing redundancy in hyper-spectral data.  

 

1.3   Organization of thesis 

 

This thesis is organized into seven chapters. In the chapter 1, the thesis has been 

introduced and the research objectives have been stated.  

In Chapter 2, the literature is reviewed, starting with the broader context of this 

research in agriculture and site-specific management. The role of remote sensing in site-

specific agriculture is defined in terms of how spatial management tools contribute to 

the practice of sustainable agriculture. Environmental factors that influence leaf and 

canopy spectral reflectance are outlined, and crop biophysical parameters are described. 

Moreover, some fundamental information on crop growth prediction and vegetation 

indices is given.  

In Chapter 3, field experiments and materials including the study area, work history 

and specifications of used devices are described.  

In Chapter 4, the usefulness of a ground-based sensor embedded on tractor for 

monitoring the growth of winter wheat using a two plant nutrition active sensors and 

RTK-GPS are presented and discussed.  

In chapter 5, a step-by-step multivariate analysis to select significant wavelengths 

related to the winter wheat growth characteristics is described and results of regression 

coefficients and variable importance for projection (VIP) in partial least squares 
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regression (PLSR) and a stepwise multiple linear regression (SMLR) procedures are 

discussed.  

Chapter 6 is presenting both calculation and selection methodology to determine 

optimal vegetation indices with two-waveband and three waveband combination. 

Chapter 7 summarizes the main topic of the research and draws an abstract for whole 

thesis. 

 

 



 
 

 
 

 

 

 

 

 

CHAPTER   2 

 

RESEARCH BACKGROUND 
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2.1   Precision agriculture 

 

The use of innovative technologies collectively named “Precision Agriculture” is a 

promising approach to optimize agricultural production of crops. In field crop 

production precision agriculture methodologies are applied to site-specific application 

of fertilizer or pesticides, automatic guidance of agricultural vehicles, product 

traceability, on-farm research or management of production systems (Gebbers and 

Adamchuk, 2010). Recently precision agriculture also enhances management decisions 

in livestock production, pasture management, viticulture, and horticulture (Gebbers and 

Adamchuk, 2010; Schellberg et al., 2008). Precision crop production aims to match 

agricultural input and practices to the spatial and temporal variability within a field, 

instead of managing an entire field based on a hypothetical average. Small-scale site-

specific differences can lead to great differences in yield and quality, thus a better use of 

resources to preserve the quality and quantity of agricultural products with respect on 

environmental resources is essential (Gebbers and Adamchuk, 2010). The philosophy 

behind precision agriculture is not only including a direct economical optimization of 

agricultural production, it also stands for a reduction of harmful outputs into 

environment and non-target organisms. In particular a contamination of water, soil, and 

food resources with pesticides has to be minimized in crop production (Bongiovanni 

and Lowenberg-Deboer, 2004). With this aim, site-specific fertilizer application was the 

first successfully implementation in 1988, soil sampling, yield mapping, and site 

specific herbicide application succeeded (Adamchuk et al., 2004; Gerhards and Oebel, 

2006; Stafford, 2000). Against the background of food security and sustainable 

production, adequate technologies are fundamental for this agricultural practice (Zhang 

et al., 2002). The implementation of information-based management systems into crop 

production since the mid 1980s implies a huge potential to modernize the agricultural 

practice. Since then different techniques for the characterization of soils and crops have 

been engineered and included into decision making systems. To name the most 

important ones, precision agriculture integrates different technologies like global 

positioning systems (GPS), geographic information systems (GIS), as well as different 

kind of sensors and therefore it demands a high level of expertise (Stafford, 2000). For 

the future an information-driven crop production as a combination of geospatial and 
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agricultural data management will encourage the actual utilization of precision 

agriculture applications (Nash et al., 2009; Reichardt et al., 2009). Current research on 

precision agriculture for crop production focuses on the development of sensors for 

remote detection of crops and soil in real time. Relevant field parameters like soil 

properties, topography, water status, crop micro-climate, nutritional status, weeds, and 

pests and diseases as well as yield can be monitored and estimated. Integration of 

different remote sensing techniques and image analysis in combination with a global 

positioning system will be an essential step towards online application. Still one limiting 

factor of a successful use of precision agriculture is the interpretation of properties 

derived from sensor data, rather than the collection of relevant data (Schellberg et al., 

2008). The interpretation of information and its implementation into robust decision 

support systems will improve the acceptance and implementation of precision 

agriculture techniques. 

 

2.2   Need for an agricultural monitoring  

The economic and social importance of the agricultural sector in many regions of the 

world, together with the concern about world population increase, economic 

development and the uncertainty in the changes of production caused by climate change, 

made necessary the development of procedures and techniques to monitor the 

conditions of crops, to improve the crop field management and also to be able to make 

early prediction of crop production. This need for an efficient crop monitoring and 

management, as well as, the prediction of crop production is thus enhanced by climate 

change issues and by the changes in agriculture related to human activities.  

Regarding to human activities, the Food and Agricultural Organization of the United 

Nations (FAO) states that the world population will increase at a rate of 43 million per 

year in the period 2045-2050 (Bruinsma, 2003). This rise of human beings in the world 

will be a consequence of the population growth in developing countries (45 million), 

and prognosis is that half of this accruement will occur in the sub-Saharan Africa (23 

millions). In those developing countries, especially in Africa, the increase of population 

will aggravate even more the current world undernourished state. It is expected that 

industrial countries will have some reactions for increasing food production in 
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concordance to this population growth. Thus, there is a matter of fact that it exists a 

general concern about increasing agricultural production.  

Furthermore in the frame of what is also known as food security strategies, there is 

an interest in predicting problems like pest infections and drought periods than can 

damage the crop production. In the large arid and semiarid regions of the world 

droughts are frequent and they commonly cause a decrease or a total failure of crop 

production, important economic losses in developed countries, and famine in 

undeveloped countries. An increase of some of these problems is expected with climate 

change, mainly in the Mediterranean region, which might be one of the most vulnerable 

regions to global change in Europe. Climate change projections for the Mediterranean 

region show a reduction of agricultural areas and losses of agricultural potential during 

the twentieth century (Schröter et al., 2005) due to the pronounced decrease in 

precipitation that is predicted (Giorgi and Lionello, 2008).  

The current change of alimentary habits in some important emerging countries, like 

India and China is increasing the demand for agricultural products. In these countries, a 

growing sector of the population is becoming wealthy enough to change from a mostly 

vegetarian diet, based on rice and other cereals, to a diet that includes more meat. 

Livestock needs to be fed with cereals, which increases the demand and, therefore, 

market prices. Furthermore, some developed countries are increasing their production of 

biofuels, which diminishes the quantity of crops used for human consumption. This is 

also helping to increase the prices of cereals. Last, but not least, the upward trend of 

prices is attracting speculators to the markets. This increase of prices is causing political 

tensions, as happened during the spring of 2008 in countries like Haiti, where the prime 

minister had to resign, Cameroon, Senegal, but also Egypt or Thailand. A means for 

limiting price increases would be to increase production, which would need an increase 

of agricultural productivity. In fact, during the FAO summit of June 2008, it was stated 

that more investments should be done to increase agricultural productivity.  

The need for an increase of production has induced important changes in the 

agricultural practises during the last decades. For example the use of fertilizers has been 

extended worldwide and genetically modified crops are used as a solution for a 

“sustainable” production increase (Qaim and Zilberman, 2003). There is also a concern 

about the impacts associated with these new agricultural practises. The expansion of 
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agriculture needs to be done in a sustainable way as the generalized use of fertilizers or 

over exploitation of water resources represents environmental risks and can even have 

consequences for human health. The increase intensive processes like irrigation and/or 

the abuse of fertilizers also might produce some negative consequences on water quality 

and the degradation of irrigated lands for instance as a consequence of salinisation.  

Finally, another noticeable change in modern agriculture is that more and more 

frequently crop rotations are decided by market fluctuations and policy regulations. This 

introduces an additional dynamics in crop distribution, which make necessary to update 

crop maps with a high temporal frequency.  

The other important issue that requires a system for crop monitoring is the impacts of 

climate change in agriculture. Studies conducted over the last decades have provided 

evidence about the modifications of several climatic parameters (Solomon et al., 2007). 

For instance, noticeable trends in surface temperatures have been recorded during the 

twentieth century at the global scale (Jones and Moberg, 2003). Satellite observations 

using AVHRR and ATSR data confirmed an increase in global sea temperature 

(+0.13ºC in a decade). An increase of extreme events such as hot waves, droughts and 

extreme precipitation events has also been recorded in different regions (Karl and 

Easterling, 1999). The existing models of climate agree on the increase of global surface 

temperatures for the second half of the 21st century. For instance, after a doubling of the 

concentration of CO
2
, the increase in temperature is likely to be in a range that goes 

from 2 to 4.5°C, with a best estimate of about 3°C. Nevertheless, although this is the 

general pattern predicted at the global scale, models indicate an important spatial 

diversity in the manifestation of the effects of climate (Räisänen, 2007).  

The feedback effect of climate change on agriculture is complex. The increase in 

temperature and the increase in the concentration of atmospheric CO
2 

could affect the 

plant biological processes (photosynthesis, respiration, growth, etc) (Barnes et al., 1995; 

Booker et al., 2005). The fertilizing effect of the atmospheric carbon could produce a 

general increase of the vegetation activity and production (Long et al., 2005). 

Nevertheless, the positive response of vegetation activity and production to climate 

change is only expected in areas with an adequate availability of water, on the contrary, 

the areas affected by an increase of temperatures and evapotranspiration together with a 
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decrease of precipitation will suffer from a higher water stress in vegetation, which, in 

turn, would cause a decrease of the production (Vicente-Serrano et al., 2006). Finally, 

extreme events (hot waves, droughts, extreme rainfalls) have a negative effect in crop 

production (Vicente-Serrano, 2007). The undesirable impacts that climatic change can 

have in crop production show the strong requirement for the monitoring of crops at 

present and to be maintained in the future.  

 

2.3   Crop monitoring  

 

In the previous section it was highlighted that the relationship between agriculture 

and climate and the important changes in agriculture practises during the last part of the 

20
th 

century shows that agricultural monitoring systems are necessary. To be efficient, 

such systems should satisfy at least the three requirements listed hereafter: they should 

be able to provide a map of crops timely, to survey the growth of crops and if possible 

to predict the yields. Below, each of these requirements is discussed in more detail.  

 

2.3.1   Crop investigation  

The substantial increase of intensive agriculture together with the influence of the 

policy regulations and market demands leads to frequent changes in the surface meant 

to agriculture and in the distribution of crops within the land devoted to agriculture. 

Therefore, the timely identification, inventory and cartography of crops becomes 

necessary for estimations of crop yield. In addition to the crop production assessment, 

crop mapping is also useful for the management of water resources or the estimations of 

sequestration of carbon by the soil, among others.  

 

2.3.2   Crop growth survey  

Crop growth survey consists in the monitoring during the growth period of several 

crop and soil parameters, which are indicators of the plant condition, together with the 

actual plant phenological stage. Those parameters are for example plant height, LAI 

(Leaf Area Index), biomass or nitrogen content. Typically, the survey of crop growth is 

focused in the following issues, which are in-turn interconnected:  
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1) Phenology development: That is the succession of biological events during the 

plant life. The survey of phenology implies, for example, the observation of the 

exact moment in which certain crop organs appear (ex. wheat ears). Phenology is 

often simulated in terms of the sum of degree-days and crop specific 

characteristics, for instance vernalisation factors.  

2) Canopy development: it can be quantified by the measurement of the LAI, the 

plant biomass of the plant height. In terms of biological processes, canopy 

development is the result of photosynthesis, respiration and biomass allocation. 

The amount of energy received and the capacity of the plant to use this energy 

will determine the biomass production. The amount of intercepted radiation is a 

function of the LAI. Only a part of the intercepted radiation, denoted as fPAR, is 

efficiently used by the crop and will be used for biomass accumulation. The way 

in which biomass partitioning is performed is specific to each cultivar type. In the 

modelling of canopy development the high vegetative structural diversity is 

controlled by genetic variables that intervene in this partitioning. 

3) Roots growth and uptake ability: the function of plant roots is to uptake water and 

nutrients from the soil. This is closely related to the soil chemical and physical 

properties as well as the soil moisture conditions. Any lack of nutrients, especially 

nitrogen, or any water deficiencies would negatively impact the plant 

development. The shortages in mineral content or basic nutrients in the soil can be 

detected with periodical analysis of soil samplings and compensate with 

fertilization. The monitoring of moisture conditions is also necessary. Regarding 

biological aspects, there is a big difference between the root system of annual 

crops (ex. wheat, corn, potatoes…) and perennial crops (ex. vineyards). 

4) Water balance among the plant, the soil and the atmosphere. The water 

requirements of a crop in a particular moment depend on the environmental 

variables (ex. air temperature), the soil conditions and the crop phenology. The 

processes involved in the water balance include evaporation and transpiration, 

both in the soil and in the plant. The list of variables that take part in the water 

balance, mainly describing the soil status and soil water behaviour, can be very 

extensive (soil albedo, drainage coefficients, etc….) but the most important is soil 

moisture.  
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5) Nitrogen balance in the soil and in the plant. The content of nitrogen in the soil 

can change as a result of organic decompositions, fertilisation, etc. Crops absorb 

nitrogen through the roots system and fix it in their elements. The nitrogen content 

in the leaves is related to the chlorophyll content, which is easier to measure than 

nitrogen content.  

The information obtained from the survey of the previous points through the 

quantification of several parameters is of great valuable for the management of fields 

and are the basis of the human interventions like the use of fertilizers or a particular 

irrigation schedule. However, the monitoring of the parameters of crops along a 

growing season is expensive and time consuming, and therefore, there is a need for 

developing remote sensing techniques that will be useful in this context. 

 

2.3.3   Prediction of crop yield  

Several techniques have been used to obtain an early prediction of crop production, 

most of them based on previous climate conditions summarised by means of drought 

indices, vegetation indices obtained from remote sensing data (e.g., Mkhabela et al., 

2005; Kalularme et al., 2003; Royo et al., 2003) and both of them (Vicente-Serrano et 

al., 2006). These methods are based on regression models between the final crop yields, 

the climate data and vegetation indices. Although these methods are widely used, they 

have the problem that predictions are site specific from local measurements and 

sometimes the spatial extrapolation is difficult, as a consequence of the geographic and 

topographic diversity and the different crop types. To solve these problems, more 

complex models, based on biophysical processes, can also be used. These are likely to 

be more general than the statistical methods based on local regressions. A model of crop 

growth describes how a plant grows, that is, how the carbon is allocated in the plant. 

These models require daily meteorological data: incoming solar radiation, temperature 

and precipitation. Many models have been developed or adapted to a unique cultivar, a 

reduced number of them or to particular crop conditions like water stress, nitrogen stress, 

salinity conditions, etc. and make use of many parameters. Thus, the benefits of using a 

monitoring system that provides crop parameters describing canopy development, for 

instance LAI would be very important for model calibration, forcing, etc.  
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A huge diversity of crop growth models exists in the scientific literature. Some well-

known models and their related ‘families’ are SUCROS (Simple and Universal Crop 

Growth Simulator) (Spitters et al., 1989), CERES (Crop Environment Resource 

Synthesis) (Jones and Kiriny, 1986; Ritchie et al., 1985) that was developed for cereals, 

CROPGRO (Hoogenboom, 1992) is a family of grain legumes models and STICS 

(Simulateur mulTIdisciplinaire pour les Cultures Standard) (Brisson et al., 1998) 

developed at the INRA, France. There are also software “packages” like DDSAT 

(Decision Support System for Agrotechnology Transfer) (Jones et al., 2003) and 

APSIM (Agricultural Production Systems sIMulator) (McCown, 1986) that integrate 

several of the previously cited models.  

Nevertheless, despite the great usefulness of these models, there are noticeable 

limitations concerning its calibration. Crop parameters describing canopy development 

and dynamic are commonly needed for the calibration of the models. This involves time 

and cost consuming field samplings and very often there is a lack of spatial 

representation, mainly in areas in which spatial diversity of crops, soil characteristics 

and climates are important.  

Therefore, due to these limitations, there is a need to develop methods based on 

remote sensing data, which allow the monitoring of crop parameters over large areas, to 

improve the yield prediction.  

 

2.4.    The role of remote sensing in crop monitoring  

The monitoring of crops can be done by means of ground survey at the local scale. 

However, at a regional scale, remote sensing appears appropriate booth in terms of 

spatial and temporal coverage.  

 

2.4.1   Crop mapping  

As it was said before, crop mapping is necessary in land change studies, climate 

change, hydrological studies and other applications like yield prediction and the 

efficient management of water resources, the later usually based in the estimates of 

evapotranspiration (Simonneaux et al., 2008). Crop maps are usually used in 

combination with crop growth models for yield prediction or to model for example soil 

carbon sequestration (Doraiswamy et al., 2007).  
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Because of the amount of applications, the classification of crops using remote 

sensing images is an important topic in remote sensing research. The advantages of 

using remote sensing techniques, instead of field survey, are the lower cost and the 

possibility of covering large areas. Another important reason is that it is easier to update 

the classifications, due to the possibility of repeated time frequency of the data. The use 

of optical remote sensing data is well established for crop mapping and the 

methodologies have been proved to be quasi operational. Crop classification using 

optical data is often performed with data with a spatial resolution compatible with the 

field size: in general Landsat-TM or SPOT-HRV data at regional scale are used. 

Medium-resolution data (200 Km – 1 Km) and coarse resolution data (> 1 Km) are 

often considered as insufficient with regard to the size of the fields. Those data 

(AVHRR, MODIS, MERIS, SPOT-VGT) are mostly used for multi-year temporal 

surveys, and to obtain land use/land cover maps at continental or global scales 

(Loveland et al., 2000; Strahler et al., 1999; Bartholomé and Belward, 2005). A well-

known limitation of optical data is the presence of the cloud cover that prevents the 

acquisition of images at the desiderate time. Radar data, in contrast, has the advantage 

of being independent from cloud cover and thus show a high potential for crop 

classification. It may also happen that vegetation needs to be monitored at a specific 

phenology stage. This is the case, for example, when two crops have similar behaviour 

during the growing season except for a specific development stage. However, satellite 

radar data have not often been used for this purpose, (Saich and Borgeaud, 2000; 

Schotten et al., 1995; Tso and Mather, 1999) mainly because, until very recently, 

satellites were only able to measure single linear polarisations at a single frequency: 

ERS-1 and ERS-2 operate at C Band at VV polarisation, RADARSAT operated at C 

band and HH polarisation, JERS operated at L Band, HH polarisation. Future missions 

will measure the complete scattering matrix at a single frequency and there is a need for 

developing adequate classification methods.  

Several algorithms use radar data for the classification of crops. In a general way, 

they can be classified into knowledge-based approaches, classification by scattering 

mechanism and statistical data-driven methods (Oliver and Quegan, 1998). Knowledge-

based approaches are based on the analysis of the physics that determines the measured 
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backscattering for each crop type. Those classifiers have the advantage of being more 

robust and easier to adapt to the specific conditions of the area to classify.  

 

2.4.2   Crop condition and growth monitoring using remote sensing data  

Remote sensing data can be used to estimate biophysical parameters, which are 

indicators of the crop condition along the growing season. Multi-temporal estimations 

of these parameters contribute to the growth survey. Biophysical variables like LAI, 

fraction of photosynthetically active radiation (fPAR), biomass or nitrogen content are 

important because they contribute to the understanding of the crops dynamics and 

environmental dynamic at any spatial scale. In spite of the availability of radar data 

under any weather conditions, the retrieval of biophysical parameters is more frequently 

done using optical data, mainly because the interaction between the radar signal and the 

vegetation is more complex than with the optical signal and it is more difficult to 

establish the biophysical relationships. Generally they can only be established for one 

type of crop, because it has a particular structure. In addition it is complex to handle 

radar data compared with optical data. A large amount of papers were published on the 

derivation of biophysical parameters at leaf and canopy level from optical data. Many 

examples can also be found for LAI (Turner et al., 1999; Weiss et al., 2000; Combal et 

al., 2002a), Duchemin et al., 2006), fPAR, canopy water content and leaf chlorophyll 

content. For agricultural crops, for which temporal changes are more rapid than for 

instance forest surfaces, multi-temporal observations are very important. Few papers 

have addressed the effective inversion of multi-temporal and high-resolution satellite 

images for various crop types. Thus, more work needs to be done on the retrieval of 

biophysical parameters using multi-temporal data. In the radar domain, multi-angular, 

polarimetric and interferometric data have been shown to be of interest for the retrieval 

of biogeophysical parameters like crop height, plant water content, LAI and biomass 

(Le Toan et al., 1984). Those studies were mainly conducted with the X and C Bands. It 

has been demonstrated that if the vegetation cover has components with specific 

orientations, the penetration depth, the volume scattering, and the attenuation may be 

different at different polarisation states (Ferrazzoli et al., 1999; Picard et al., 2003, and 

Mattia et al., 2003). This phenomenon was the base used to develop an algorithm to 

map rice fields (Le Toan et al., 1989).  
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As with crop mapping the retrieval of biophysical parameters using radar satellite 

data have been limited by type of data. The ASAR sensor onboard ENVISAT allowed, 

for the first time, to measure two simultaneous polarisations HH/VV, HH/HV and 

VV/HV at different non-simultaneous incidence angles in Band-C. This motivated 

studies on the use of polarimetry for biomass retrieval of wheat (Mattia et al., 2003). 

This work studies the potential of polarized radar data in the derivation of biomass for 

small grain cereals using ENVISAT-ASAR data.  

 

2.4.3   The role of remote sensing in combination with crop growth models for crop 

yield prediction  

It is difficult for the models to account for the spatial heterogeneity in vegetation and 

soil conditions as well as the inherent difficulties of phenology modelling. Crop growth 

depends on many factors (weather, species, soil status, soil characteristics and 

management strategies) and, as a result, models need many parameters. For instance 

STICS v3.0 depends on 132 parameters (Ruget et al., 2002). It is frequent that some of 

these parameters, like the sowing date, are unknown, or need to be adjusted for each 

crop type or geographical location. One solution consists in calibrating the models using 

measurements of biophysical parameters (e.g. Brisson et al., 1998; Spitters et al., 1989; 

Bondeau et al., 1999; Launay and Guerif; 2005). LAI, which accounts for the leaf 

surface intercepting in-coming radiation, and biomass are key variables to calibrate crop 

growth models.  

The calibration can be done with in-situ measurement of biophysical parameters. 

However, in-situ measurements are expensive and time consuming and generally can 

only be done at a limited number of fields. Thus, calibration has the risk of becoming 

site and cultivar-specific. In this context satellite remote sensing is useful when 

integrated in the models of crop growth as it provides spatial information on actual 

vegetation status. Remote sensing can be used to estimate key variables in the models: 

LAI, aboveground biomass and other crop characteristics like chlorophyll or nitrogen 

content. This information can be integrated in the calibration process using for example 

forcing methodologies (Clevers and van Leeuwen, 1996; Moulin et al., 1998). 
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2.5   Sustainability and site-specific agriculture 

 

2.5.1   Sustainable agriculture 

The implementation of sustainable farm practices is closely related to the way the 

agricultural sector has historically evolved. In the 1950s through to the 1980s, the 

emphasis in farming was placed on the modernization and industrialization of 

agriculture to increase farm output (Ilbery and Bowler, 1998). This time period is also 

referred to as the "green revolution" that was conceptually adopted on the farm due to 

the introduction of higher yielding grain varieties, an increased number of irrigation 

facilities, and increased access to inorganic fertilizers, and changes to redundant 

government policies (Khush, 1999). A key factor in this era of agricultural 

intensification was global consideration for the food-balance equation that focused on 

meeting higher demands for food due to population growth in underdeveloped countries 

(Khush, 2001). Higher demand for production led to intensified agricultural land use 

which resulted in environmental degradation (e.g. over use of chemicals, soil erosion). 

These environmental consequences were realized through an international movement 

that focused on sustainable development and conscious use of the world's limited 

natural resources. It was through this paradigm shift that both the public and the farm 

community became aware of the environmental damage which occurred due to 

intensive agriculture practices. By the 1990's, the focus changed from increasing food 

output to concern over food quality and sustainable food production (Ilbery and Bowler, 

1998). The 1990's were not only characterized by reduced output of food, but also 

progressive withdrawal of subsidies, resulting in an increasingly competitive market, 

and growing environmental regulation of agriculture (Ilbery and Bowler, 1998). During 

this time period there were vast advances in biotechnology which also affected how 

farmers implemented sustainable agriculture practices (Mannion, 1998). Overall, 

farmers became more aware of alternative sustainable practices (e.g. organic farming, 

improved crop rotation, no-till practices, site-specific agriculture) and the 

implementation of these practices became more common (Sivakumar et al., 2000; 

Rigby et al., 2001). As farmers began to recognize the importance of sustainable 

agriculture, the adoption of alternative practices on the farm involved a transition from 

substituting capital for labor, to substituting management for capital (Petrzelka et al., 
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1997). Measuring management as capital can be quite difficult to quantify, and the 

literature describes the issues surrounding the development of an adequate definition for 

sustainable agriculture (Brklacich et al., 1991). Ilbery and Bowler (1998) summarized 

the work of Brklacich et al., (1991) by defining a sustainable agriculture system in 

terms of simultaneously satisfying three types of sustainability: 

• Environmental sustainability - the capacity of an agricultural system to be projected 

into the future without unacceptable pollution, depletion or physical destruction of its 

natural resources such as soil, water, air, and natural or semi natural habitats. 

• Socio-economic sustainability - the capacity of an agricultural system to provide an 

acceptable economic return to those employed in the productive system. 

• Productive sustainability - the capacity of an agricultural system to supply 

sufficient food and support the non-farm population. 

 

2.5.2    Site-specific agriculture 

Site-specific agriculture is a knowledge-based system that enables farmers to apply 

precise amounts of fertilizers, pesticides, water, seeds or other inputs to specific areas 

where and when they are needed for optimal crop growth (Lu et al., 1997). Successful 

site-specific agricultural management systems are well documented in the literature 

(Stafford, 2000; Macy et al., 1994; Mulla, 1991, Stafford et al., 1991; Wollenhaupt and 

Buchholz, 1992). Schilfgaarde (1999) emphasized that this type of management is very 

information intensive, and is not based solely on spatial technology but also on rapidly 

evolving information technologies that contribute to the site-specific modification of 

land management as conditions change spatially and temporally. One of the most 

important factors in farm practices is managing more static natural field variability (i.e. 

soil type, topography) and variability that is in flux due to environmental stressors (i.e. 

weather induced, pests). Managing crop variability successfully considers two domains: 

(1) the spatial variability of the land under production (e.g. soil sampling to establish the 

amount of phosphorus in the soil), and (2) how that variability changes over time with 

improved management practices (e.g. applying more phosphorus to those regions of the 

field that require more for optimal crop production). Successful sitespecific farming is 

dependent on how well practices can be used to assess, manage, and evaluate the 'space-

time continuum' in crop production (Pierce and Nowak, 1999). A quality food 
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production system requires optimal yield performance from the land, and farmers 

employ site-specific management practices to reduce production costs and increase crop 

yields (Mulla, 1991). Other reasons for employing site-specific farming practices are 

not just economic in nature, but include environmental benefits (Hammond, 1992). 

However, the environmental benefits are not widely documented in the literature (Pierce 

and Nowak, 1999) and are not easily quantified (Perez-Munoz and Colvin, 1996). Site-

specific farming has been primarily 'technology-driven' (Stafford, 2000) and involves 

the use of four primary enabling technologies: (a) Geographic Information Systems 

(GIS), (b) Global Positioning Systems (GPS), (c) Sensors and (d) Variable Rate 

Technology (VRT). A GIS is an organized collection of computer hardware, software, 

geographic data, and personnel designed to efficiently capture, store, update, manipulate, 

analyze, and display all forms of geographically referenced information (ESRI, 1995). 

A GIS is a key tool in extracting and quantifying crop variability within agricultural 

fields (Pierce and Nowak, 1999). A GIS not only establishes where the variability is, but 

can address the variability through the application of crop inputs using maps (e.g. 

variable rate fertilizer maps). Over time, the GIS is a record keeping tool that can 

provide a costbenefit analysis for the farmer (e.g. assess if adding more fertilizer to a 

specific region of the field resulted in more crop yield and more economic return). The 

second enabling technology, GPS, became widely accessible in the early 1990s and was 

originally a constellation of military satellites known as the NAVSTAR (NAVigation 

System with Time and Ranging) system. In 1994, NAVSTAR became available for 

general civilian use, including agriculture (Pierce and Nowak, 1999). In 1995, a Russian 

constellation of satellites was also launched for civilian use and is known as the GLObal 

Navigation Satellite System or GLONASS (Stafford, 2000). GPS provides location 

control in site—specific agriculture and is essential to delineate within field spatial 

variability and to deliver site-specific applications using variable rate technology (VRT) 

(Tyler et al., 1997). The third enabling technology involves the use of sensors that can 

be defined as devices that transmit or receive an impulse in response to physical 

stimulus such as heat, light, magnetism, motion, pressure and sound (Pierce and Nowak, 

1999). The sensors include yield monitors, remote sensing, and soil sensors that 

measure surface and subsurface features. Remote sensing and visual image 

interpretation of individual fields has been used in agricultural research and 
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development for the last 25 years (Bullock et al., 2000). Remote sensing has been used 

in agriculture in the laboratory, in the field, and from the sky. The advantages of remote 

sensing in agriculture are its nondestructive, non-intrusive measurement capabilities and 

its flexibility of scale. The fourth enabling technology, VRT, involves the controlled 

application of crop inputs. Variable Rate Technology (VRT) is a remediation tool that 

ingests the 'map' results derived from the GIS, remote sensing and GPS technologies 

and is available with farm equipment. Examples of a VRT tool are fertilizer or pesticide 

applicators, and yield monitors, both of which have evolved rapidly and have resulted in 

the growth of site-specific agriculture significantly (Brisco et al., 1998). The degree to 

which a farmer will invest in "high technology" or expensive VRT equipment is not 

only dependent on the size of operation but also on the type of crop and the current 

market value of that crop (Batte, 2000). It is important to recognize that all of the 

technology components listed above work together to form a viable site-specific farm 

management system. GPS is used to spatially record the location of field activities, 

sensors are used to spatially characterize the physiological properties of the crop, a GIS 

ingests the GPS and sensor derived information to create management maps, and VRT 

is used to implement the management strategies back in the field. As described next, 

remote sensing in agriculture is an important component of this comprehensive 

approach to site-specific management.  

 

2.6   Remote sensing of crop information 

 

Remote sensing is the practice of deriving information about the earth's land and 

water surfaces using images acquired from an overhead perspective, using 

electromagnetic radiation in one or more regions of the electromagnetic spectrum, 

reflected or emitted from the earth's surface (Campbell, 1996). Optical remote sensing 

provides an indirect method of observing the physical processes in plant canopies. 

Radar and other remote sensing methods can provide structural information about the 

crop but are not as successful in identifying the physiological processes of the crop 

canopy. Recognition of the value of remote sensing by the agriculture community 

provides additional motivation for further research within the context of site-specific 

agriculture (Moran et al., 1997; Brisco et al., 1998; McNairn and Brown, 1999; 
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McNairn et al., 2001a). It wasn't until the mid 1970's to early 1980's when the first 

Earth Observing (EO) satellites were launched that a significant research effort was 

initiated to investigate the use of multispectral images for crop inventory and crop 

production (Moran et al., 1997). In site-specific agriculture, three types of information 

can be obtained: (1) information on seasonally stable conditions, (2) information on 

seasonally variable conditions, and (3) information required to diagnose the cause of the 

crop yield variability and develop a management strategy (Moran et al., 1997). This 

research primarily focuses on the use of remote sensing to derive the third type of 

information. Remote sensing can be used as a diagnostic management strategy to 

estimate crop yield variability, aid in the creation of field management zones based on 

crop vigour and soil variability, and in turn guide in-field soil sampling to derive zone-

based variable application maps (Bullock et al., 2000). Remote sensing is also an 

efficient method of spatially characterizing both site-specific crop biophysical 

parameters as well as broader ecological information and for modelling (Wiegand and 

Richardson, 1990; Mack et al., 1990; Wiegand et al., 1991; Thenkabail et al., 1994; 

Cihlar et al., 1991). The advantage of remote sensing is that it allows the farmer access 

to information about the health of the crop at more mature growth stages and much later 

in the growing season. Other ground-based technologies (e.g. plant tissue sampling) 

may be too impractical and labor intensive in mature crop stages. Using remote sensing 

throughout the growing season to define crop variability potentially provides farmers 

with a pro-active method of remedying crop stress prior to actual yield loss.  

 

2.6.1   Factors affecting the spectral properties of crops 

The focus of this research is to better analyse crop conditions that are important in 

farm management, such as biophysical parameters (e.g. LAI) that can aid in the 

identification of poorer yielding regions of the farm. All plants, both native and 

cultivated, respond to environmental stresses in the same way: through a decline in 

growth rate and in the rate of acquisition of all resources (Chapin, 1991). Many studies 

have been conducted on the ability of remote sensing to detect stresses in crops such as 

nutrient deficiencies (Milton et al., 1991; Yoder and Pettigrew-Crosby, 1995; Masoni et 

al., 1996; Marrioti et al., 1996). To fully understand canopy level reflectance in airborne 

agricultural applications of remote sensing, one must first understand leaf spectral 
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properties and how the leaf is linked to morphological and physiological conditions 

(Mariotti et al., 1996). 

 

1)    Leaf spectral properties 

The leaf of a plant is the primary photosynthesizing organ. Photosynthesis occurs in 

the chloroplasts where the chlorophyll pigment is located. When examining the spectral 

properties of a single leaf, only part of the incident energy is reflected with the balance 

either absorbed or transmitted. Figure 2.1 demonstrates how these components are 

closely related and it is necessary to consider the interplay among all three to evaluate 

the physical and physiological basis for leaf reflectance (Knipling, 1970). A plant leaf 

typically has low reflectance in the visible (except in the green region) because of strong 

chlorophyll absorption, relatively high reflectance in the near infrared because of 

internal leaf scattering and no absorption, and relatively low reflectance in the infrared 

beyond 1.3 um because of strong absorption by water (Knipling, 1970). This strong 

absorption beyond 1.3 um due to water as a function of dehydration of a bean leaf. 

Water content in the leaf is a dynamic feature because cell structure scatters light as it 

passes through air and water interfaces of the leaf (Yoder and Pettigrew-Crosby, 1995). 

Leaf photosynthetic rate is linked to the amount of absorbed radiation, which depends 

on incident radiation and leaf absorptance.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1 Reflectance, absorptance, and transmittance spectra of plant leaf (Knipling, 1970) 
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Leaf absorptance is affected by external and internal reflectance and by leaf pigment 

content that is essentially represented by chlorophyll content (Masoni et al., 1996). The 

distribution of chemical constituents within the leaf is not uniform because proteins and 

chlorophylls are packed into chloroplasts that migrate and clump as the light 

environment changes, and due to the distribution of lignin in the cell walls (Yoder and 

Pettigrew-Crosby, 1995). There have been many studies that have examined the 

relationship between regions of the electromagnetic spectrum, crop leaf structure, and 

chemical constituents (Wolley, 1971; Thomas and Gausman, 1977; Wiegand and 

Richardson, 1984; Maas and Dunlap, 1989; Walter-Shea et al., 1991; Horler et al., 

1983; Buschmann and Nagel, 1993). Leaf reflectance responses to environmental 

conditions that inhibit growth (i.e. plant stress) usually involve increased reflectance in 

the visible region of the electromagnetic spectrum and in the infrared regions if the 

stress is severe enough to cause dehydration (Carter, 1992). Remote sensing, and the 

ability to analyze specific regions of the electromagnetic spectrum, provides a method 

to examine crop stress at the leaf level, and at the canopy level as described next. 

 

2)    Canopy spectral properties 

The dynamic spectral nature of individual crop leaves contributes to the 

nonuniformity of the canopy, and furthermore the spectral characteristics of a crop 

canopy change due to variation in landscape (e.g. topography, soil fertility and texture). 

Under varying conditions, the reflectance of a plant canopy is modified by the non-

uniformity of incident solar radiation, plant structure, leaf area, shadow, and 

background reflectivities (Knipling, 1970). One significant difference between the 

amounts of infrared energy reflected from a leaf versus a canopy is that a portion of the 

incident infrared energy is transmitted through the uppermost leaves, reflected from 

lower leaves, and retransmitted up through the upper leaves to enhance their reflectance 

(Knipling, 1970). In agricultural applications of remote sensing, it is important to 

understand how the canopy structure and crop geometry (i.e. size, shape and orientation 

of the plants and their leaves) plays a role in what is being sensed from the target. The 

size, shape and orientation of plants are also heavily influenced by human management 

practices and seasonal growing conditions. All of these factors contribute to the optical 
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properties of crop leaves, and in turn the canopy with respect to the remotely sensed 

reflection patterns (Knipling, 1970).  

 

2.7   Biophysical parameters  

In the case of agricultural remote sensing applications, biophysical parameters are 

measured either directly or indirectly from the field of interest during the growing 

season to evaluate how the crop is performing. The information collected by an optical 

sensor (e.g. reflected and transmitted solar energy) must be related to the ground based 

biophysical parameters of the crop. If biophysical parameters are strongly correlated 

with remote sensed data, then these data can be used to predict those biophysical 

characteristics for variable scene and sensor characteristics over large areas (Treitz and 

Howarth, 1999). Empirical relationships established in the literature has led to the 

development of indirect methods for quantifying crop biophysical parameters using 

remote sensing imagery. 

 

2.7.1    Ground based biophysical parameters 

In remote sensing studies, ground based biophysical sample site locations are 

typically mapped using GPS to enable a direct comparison of the biophysical parameter 

with the imagery. Sampling methods may be designed based on the size of the study 

area, and more importantly the spatial resolution of the imagery or pixel size. Ground 

based biophysical parameters commonly reviewed in the literature for agricultural 

studies are; percent crop cover, leaf area index (LAI), biomass, and yield (post-harvest). 

 

1)    Percent crop cover 

Vegetation cover can be defined as the vertical projection of the shoot area of 

vegetation to the ground surface and is expressed as fraction or percent of the reference 

area (Purevdorj et al., 1998). In remote sensing applications, this definition can be 

elaborated to include all "green vegetated areas that are directly detected by the sensor 

from any view direction" (Purevdorj et al., 1998). Percent crop cover during the 

growing season can be measured using in-field photographs taken directly above the 

crop. The photographs are imported into an image analysis software and classified to 

obtain the percent ground cover for each cover type (McNairn et al., 2001b). Percent 
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crop cover is measured to deduce the percentage of each ground cover component in the 

image (i.e. percent crop, percent shadow, percent crop residue or dead matter, percent 

bare soil). This tool is a method of spatial validation for both traditional and new remote 

sensing image processing methods. 

 

2)    Leaf area index (LAI) 

In assessing the health of the crop, it is very important to understand not only health 

but also how much plant is present. LAI is defined as the leaf area per unit area of soil 

surface (Daughtry, 1990). Norman and Campbell (1989) defined both direct and indirect 

methods of collecting LAI of a vegetation canopy. Compared to direct methods, the 

indirect methods are less labour intensive. Predicting LAI from remotely sensed 

imagery or physically measuring LAI is important in characterizing how the field is 

producing site-specifically. LAI prediction can aid in defining within field variability 

and if done early enough in the growing season could allow the farmer to remedy 

problems before actual yield loss results. In remote sensing studies, LAI field 

measurements are typically acquired at a limited number of representative sites and used 

for remote sensing input and/or validation over large areas. 

 

(1)    Direct measurements of LAI 

One of the earliest direct methods of collecting LAI was leaf tracing. A sample of  

leaves would be harvested and their contours traced onto graph paper and the area 

measured by counting the squares within the leaf outline (Daughtry, 1990). The leaf 

tracing may be weighed and area calculated based on the area to weight ratio for the 

paper tracing. This method was very accurate, but not time efficient. Other similar 

methods involved matching leaf shapes and sizes to standard sets of leaves by species, 

and calculations were based on linear measurements (Daughtry, 1990). In the interest of 

time efficiency, direct LAI measurements have been developed in recent years to 

include the use of laboratory instruments that measure leaf area such as the LAI-3100. 

With the LAI-3100, a sub-sample of the crop is harvested and the leaves are placed 

through the optical planimetric instrument. This instrument measures the leaf area of the 

sub-sample in cm
2
. This direct method requires additional calculations to determine the 

leaf area index of the entire canopy from the sub-sample measurements. Daughtry 
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(1990) defines LAI as a function of the leaf area to leaf mass relationship, according to 

the following equation:  

Eq. 2.1 Leaf Area to Leaf Mass Relationship for deriving LAI: 

 

                                                  AL = (As / MS) ML                                                  (2.1) 

Where: 

AL = Leaf Area Index 

As = Leaf Area of sub-sample of leaves 

Ms = Leaf Mass of sub-sample of leaves 

ML = Total leaf mass for a larger sample of leaves 

 

(2)    Indirect measurements of LAI 

There are many methods and instruments used in measuring LAI indirectly such as 

hemispherical photography, crown meters, and line quantum sensors all of which are 

described in Welles (1990). In this review only the indirect methods that are pertinent to 

agricultural studies will be discussed. A common indirect field instrument used in 

agricultural applications is the LAI-2000. The LAI-2000 measures the gap fraction in 

foliage and is an optical instrument that does not involve destructive sampling. The 

LAI-2000 instrument measures all light blocking objects simultaneously in five equal 

zenith angles from 0 to 75 degrees and therefore is considered to provide a "foliage area 

index". The units of this instrument are dimensionless, but can in theory be thought of 

as (m
2
 foliage area/m

2
 ground area). This instrument makes the assumption that the 

canopy has random foliage distribution, and the clumping properties of the canopy are 

not considered (Leblanc and Chen, 1998). Not accommodating for a clumping index 

results in a measure of effective LAI (eLAl) and not absolute LAI. In the field, the LAI-

2000 measurements are generally collected in overcast conditions to minimize the effect 

of scattering within the canopy. Other factors to consider in the measurement of LAI in 

an agricultural setting is the orientation of the foliage, foliage size, and gaps in the 

foliage (Welles and Norman, 1991). The Tracing Radiation and Architecture of 

Canopies (TRAC) instrument (Chen and Chilar, 1995) is an optical instrument that 

measures the gap fraction, however it considers clumping properties (e.g. boreal forests 

have a non-random and 'clumped' leaf architecture). Unlike the LAI-2000, the TRAC 
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foliage clumping index allows for the calculation of absolute LAI values. Pacheco et al., 

(2001) compared the LAI-2000 and TRAC iastruments for three crop types in southern 

Ontario and found that the LAI-2000 and eLAI values correlated more strongly with the 

percent crop cover derived from photographs than the TRAC instrument. 

 

3)    Biomass 

Biomass is the total dry-matter production of a crop, the net result from 

photosynthesis, respiration, and mineral uptake (Stoskopf, 1981). Quantifying crop 

biomass can help a farmer to locate inadequately producing regions, and aid in 

developing crop input management strategies (e.g. fertilizer and pesticide application). 

In remote sensing agricultural applications above ground biomass measurements should 

be taken within a day of acquiring the remote sensing image to ensure that the derived 

empirical relationships are valid. The collection of biomass data involves harvesting 

plants from the field within a specified sampling area that adequately represents the 

corresponding pixel size in the imagery. Plants are weighed wet (fresh weight), dried 

and then reweighed (dry weight). The plant water content is calculated from the wet 

minus the dry weight (Staenz et al., 1999; Deguise et al., 1999). Timely pre-harvest 

biomass prediction from remote sensing imagery could help to quantify marketable 

yield and give the farmer an international competitive advantage that could lead to 

economic benefits for the farm operation. 

 

4)    Yield 

In remote sensing agricultural applications, the most spatially accurate yield data 

available today is obtained using a yield monitor coupled with a Differential Global 

Positioning System (DGPS). A DGPS yield monitor is placed on the combine at the 

time of harvest and captures position as well as crop volume and moisture readings on a 

per second basis. The DGPS receiver allows the yield data to be "stamped" with a 

geographic coordinate and enables the yield across the field to be mapped. Most DGPS 

receivers used in agriculture today are 12 channel and use phase smoothed pseudo-range 

positioning to permit sub-metre accuracy (Stafford, 2000). A typical example is the 

Trimble AgGPS 106 differential GPS antenna and receiver (Linco Equipment Inc., 

2003). The yield monitor units used to represent yield data can vary by both the yield 
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monitor and the manufacturers software used for data post-processing. In the North 

Amercian marketplace yield is represented as bushels per acre (bu/ac), kilograms per 

hectare (kg/ha), or tonnes per hectare (t/ha). Generally, yield monitors provide an 

accurate and reliable source of information for farmers over time (Perez-Munoz and 

Colvin, 1996; DeHaan et al., 1999). Yield maps can be visualized in a raw format 

represented by a set of yield points, or points can be interpolated into a continuous map 

surface. The goal of yield map interpretation is enhanced profitability through better 

control of natural and management induced sources of yield variation (Doerge, 1999). 

Successful yield mapping is heavily dependent on the auxiliary information from the 

farmer such as field history (e.g. soil type, perennial weed regions, and crop rotation), 

the analysts' geostatistical knowledge (e.g. appropriate data interpolation methods) and 

the available GIS tools (Doerge, 1999). Sources of yield variation are not always easily 

identifiable and can be a result of weather, soil-water relationships, soil physical and 

chemical properties, slope and aspect of a region, pest infestation, crop inputs, field 

history, and cultural practices and errors (Doerge, 1999). The yield map can be used as a 

seasonal "report card" whereby farmers can evaluate how well the crop performed due 

to the implementation of new site-specific management strategies. 

 

2.7.2   Conventional remote sensing methods for biophysical information extraction 

 

1)   Band ratios and vegetation indices 

Remote sensing has extended the usefulness of the Geographic Information System 

(GIS) in site-specific agriculture by incorporating non-intrusive image analysis tools for 

assessing crop health during the growing season. Vegetation indices, based on the 

differential reflectance in the red and near-infrared wavelengths, are widely used to 

assess vegetation amount and/or health. Compared to non-vegetated surfaces, vegetated 

surfaces show a sharp contrast in the red and near infrared wavelengths (Bannari et al., 

1995; Chen, 1996). Chen (1996) described the earliest form of the vegetation index 

which was the Simple Ratio (SR) (Eq. 2.2).  

 

                                                    SR = (λNIR)/ (λRed)                                                (2.2) 
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An issue with the SR occurs when λRed values are close to zero the index values 

increase with no bounds (Chen, 1996). Recognizing this led to the development of the 

Normalized Difference Vegetation Index (NDVI). The NDVI (Eq. 2.3) resolves the 

issue by normalizing the difference between λNIR and λRed using the sum and the 

difference of both values.  

 

                                          NDVI = (λNIR - λRed)/ (λNIR + λRed)                                  (2.3) 

 

The NDVI is not an inherent physical quantity of vegetation but is correlated to the 

physical properties of the vegetation canopy, the LAI, percent crop cover, vegetation 

condition, and biomass. However, the sensitivity of the NDVI to crop biophysical 

parameters such as LAI becomes weak in conditions beyond a threshold value of LAI, 

typically 2 or 3 (Carlson and Ripley, 1997). A common variation of the NDVI used in 

agricultural studies is the Green Normalized Difference Vegetation Index (GNDVI) in 

which reflectance in the green band is substituted for reflectance in the red band (Smith 

et al., 1999; Peddle et al., 2001; Bannari et al., 1995) (Eq. 2.4).  

 

                                             GNDVI = (λg - λRed)/ (λg + λRed)                                  (2.4) 

 

where λg is green reflectance. 

A common disadvantage of the SR, NDVI and GDVI is the influence of soil 

background. Huete (1988) reported that for a given amount of vegetation, darker soil 

substrates resulted in higher vegetation index values for the SR and the NDVI. To 

accommodate for soil background influences in incomplete vegetation land cover 

Richardson and Wiegand (1977) created the Perpendicular Vegetation Index (PVI) (Eq. 

2.5).  

 

                                       PVI = (λsoil – λveg)
2

Red/(λsoil – λveg)
2

NIR                                    (2.5) 

 

where (λsoil – λveg) is the difference between the “bare soil-vegetation” reflectance in 

the corresponding spectral band (NIR = near infrared). 
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Similar to darker soil substrates, Huete (1988) found that brighter drier soils with 

sparser vegetation also resulted in higher PVI values. Several improvements have been 

made to the PVI, and better methods of accommodating for background soil have been 

implemented (Eq. 2.6) in the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988).  

 

                               SAVI = (λNIR - λRed)(1+L)/ (λNIR + λRed +L)                              (2.6) 

 

where L is a soil adjustment factor. 

Based on a simplified radiative transfer model, Huete (1988) showed that a value   

L= 0.16~0.5 permits the best adjustment to minimize the secondary backscattering 

effect of canopy transmitted soil background reflected radiation (Bannari et al., 1995). 

Three versions of the SAVI were developed by Major et al., (1990) to accommodate for 

wet and dry soils, and varying solar inclination angles. As a result of these 

improvements, and other modifications by Baret and Guyot (1991), the Transformed 

Soil Adjusted Vegetation Index (TSAVI) (Eq. 2.7) is now believed to be a better 

indicator than the NDVI for low vegetative covers, and is more sensitive to senescent 

vegetation than the NDVI (Bannari et al., 1995).  

 

                    TSAVI = [a(λNIR -a λRed – b)]/[(a λNIR + λRed –ab+X(1+a
2
)]               (2.7) 

 

where a and b are calculated by the "soil line" or "soil brightness vector" which is 

λNIR = a λRed +b, where a is the slope of the bare soil line, b is the ordinate at the origin 

of the bare soil line, and X=0.08 a soil effect minimization constant. 

The equation of the soil line can be determined from a remote sensing image if there 

are enough bare soil pixels with sufficient dynamic range. If the current image being 

used cannot adequately provide a distinct soil line then it can be determined from a 

previous image of the same region with sufficient dynamic range (Bannari et al., 1995). 

One of the main drawbacks in the "SAVI family" of indices is that a soil line must be 

established for each remote sensing acquisition (Rondeaux et al., 1996). In an effort to 

create an index that was more universal, Rondeaux (1995) created the Optimized Soil 

Adjusted Vegetation Index (OSAVI) (Eq. 2.8). In the SAVI indices, minimization of 

soil background noise is done by the adjustment of parameters X, whereas with OSAVI, 
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X has been re-examined to optimize the index over a variety of soils, and for high and 

low vegetation cover. OSAVI also incorporates bi-directional reflectance in the NIR and 

red bands.  

 

                                  OSAVI = (λNIR - λRed) / (λNIR + λRed +0.16)                            (2.8) 

 

In equation 2.8, 0.16 is a static soil adjustment coefficient that is used to minimize 

background noise due to soil type variation. It is quite similar with respect to 

performance as the TSAVI and other indices of the SAVI class. The advantage to this 

index is that it is a simplified formula that does not require a priori knowledge of the 

soil type. The residual variation in OSAVI due to soil is evenly spread across the range 

(0-1) of crop ground cover, and is therefore promoted as being an optimal vegetation 

index for agricultural applications (Steven, 1998). They evaluated both traditional and 

soil-adjusted vegetation indices using hyper-spectral remote sensing imagery. 

Vegetation indices have been related to several biophysical parameters such as LAI 

(Turner et al., 1999; Wiegand and Richardson, 1990); photosynthetic activity (Mack et 

al., 1990; Wiegand et al., 1991); canopy chlorophyll content (Broge and Leblanc, 2000), 

biomass and yield (Thenkabail et al., 1994). However, in most vegetation studies there 

are limitations surrounding the relationship between vegetation indices, LAI, 

photosynthetic activity, and yield in high LAI conditions (Wiegand and Richardson, 

1990). The ratio of red to NIR approaches limiting values asymptotically as LAI 

increases (Wiegand and Richardson, 1984). The relationship between Vis and LAI can 

vary with crop stage and leaf water content (Carlson and Ripley, 1997). Hatfield et al., 

(1985) performed a ground based remote sensing experiment on different planting dates 

of wheat and found that Vis saturated at a LAI above 4.0 and did not return to the pre-

emergence bare soil value at senescense. Therefore, the VI to LAI relationship is not 

absolutely reliable later in the growing season in mature crop stages. In remote sensing 

agricultural applications, Vis calculated too early in the growing season do not relate 

well to actual crop yield because measurements do not represent the canopies' 

photosynthetic capacity (Wiegand and Richardson, 1990). There are also issues with 

Vis because the algorithms are performed on the entire pixel and do not discriminate for 

mixtures at sub-pixel scales (e.g. volunteer crops, weeds). Components of a pixel in 
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agricultural remote sensing scene may include the crop vegetation, but also shadow, 

background soil and residue, and other types of vegetation (e.g. weeds), all of which 

contribute to the overall remote sensing signal (Peddle et al., 2001).  

 

2.8   Remote sensing platforms for agricultural investigations 

 

Remote sensing has been identified as a cost-effective technology for site specific 

management. This technology offers geographically extensive and continuous 

assessment of plants, soil and water resources, and other land surface phenomena. 

Selection of the best available remote sensing technology is determined in most cases 

by platform and sensor attributes.  

Moran et al., (1997) reported limitations of satellite data include restricted spectral 

range, coarse spatial resolution, slow turn-around time, and the inadequate repeat 

coverage. Satellite-based sensors have fixed spectral bands that are not applicable to 

project objectives and the spatial resolution too coarse to detect in-field variability. 

Satellite imagery varies in spectral, spatial, and temporal resolutions and is available 

from numerous providers. Regardless of the satellite platform/model, the spectral and 

spatial resolutions are set (i.e., no modifications can be made with respect to changing 

band or band widths). In comparison to other available satellites, AVHRR and MODIS 

are available at no cost, pass every 1-2 days, and have set spectral bands with coarse 

spatial resolutions ranging from 0.25 km to 1 km. These datasets are useful for 

monitoring at global, continental, and biome scales as they generate continuous seasonal 

and year-to-year data. In contrast, high resolution imagery from the Quickbird satellite 

developed and operated by Digital-Globe provides 61-cm panchromatic and 2.44-m 

multi-spectral images at nadir. Finally, satellite imagery requires extensive training in 

image acquisition, analysis, and interpretation.  

 Moran (1994) reported numerous disadvantages associated with SPOT, HRV, and 

Landsat TM satellite data for day-to-day irrigation management decisions. The study 

made an effort to acquire every possible SPOT and Landsat image for an entire growing 

season. Only 31% of the forecasted satellite data acquisition opportunities were realized. 

A majority of failures were due to weather conditions (i.e., cloud, cirrus, cumulus, and 

haze) or technical difficulties (i.e., conflicts at the receiving station, the sensor view 
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angle was of opposite sign with a view angle of +12º, programming errors, failure to 

order satellite data, sensor calibration, and atmospheric interference). Advantages of 

satellite imagery are repeat coverage over the same location at the same altitude, time, 

and orbital inclination. Another advantage is the availability of highly processed images 

that have been orthorectified to correct distortions resulting from the earth’s curvature 

and rotation, satellite motion, viewing perspective, and relief displacement.  

Airplanes and helicopters have the ability to collect data more frequently, which is 

particularly important during periods when close monitoring of pending stress (i.e., 

infestations and drought) is critical (Thomson et al., 2005) or when disaster strikes (i.e., 

fires and floods). Although the type of aircraft used depends on the requirement of the 

data collected, fixed winged aircraft is the usual platform of choice. Many projects that 

require large-scale imagery over relatively small areas can be accomplished in a day 

with a single-engine aircraft (Falkner and Morgan 2002). Historically, the expense of 

data collection from manned aircraft and/or satellites has led to limited implementation, 

especially for real time management in natural resources and agriculture. Although the 

cost of satellite imagery is declining, the cost of aircraft is still prohibitive for many 

research projects, particularly those requiring repetitive monitoring.  

A disadvantage of using airplanes is the instability of the platform that affects the 

exterior orientation (i.e., position and angular orientation) of the image (Xo, Yo, and Zo), 

making image rectification difficult (Laliberte et al., 2008). The camera’s angular 

rotation is expressed as omega (ω), phi (φ), and kappa (κ). This describes the 

relationship between the ground space coordinate system (X, Y, and Z) and the image 

space coordinate system (x, y, and z) (Leica Geosystems 2005). Rotation about the 

camera axis results in distortions in the image  

and image coordinates (Laliberte et al., 2008). These distortions increase from the 

center and out towards the image perimeter (Laliberte et al., 2008). In addition, the 

orthorectification and mosaicing of multiple aircraft images requires an overlap of 60% 

along the flight line and a 20%-30% sidelap along parallel strips or flight lines 

(Laliberte et al., 2008). The required distance between flight lines is dependent on the 

camera view angle and the altitude above ground level (Jensen 1996). Flying at lower 

altitudes produces higher resolution images but this requires more flight lines and 
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processing in comparison to operations flown at higher altitudes and this can be a 

disadvantage (Jensen 1996).  

RPVs and UAVs are increasing popular alternatives to satellite and manned aircraft. 

Other terms that have been used to describe remotely controlled platforms include, 

Unmanned Vehicle Systems (UVS), Automatically Piloted Vehicles (APV), Remotely 

Operated Aircrafts (ROA), pilotless airplanes, Remote Controlled airplanes (RC-

airplanes), model airplanes, and drones (Eisenbeiss 2004). The name UAV covers all 

vehicles capable of programmable flight patterns and operated without human 

intervention (Eisenbeiss 2004).  

RPVs and UAVs provide an effective, low cost alternative to traditional platforms 

for acquiring high-resolution images (5 cm – 30 cm pixel size) at relatively low costs 

(Laliberte et al., 2008). Unlike satellite and high altitude photography (4,000 m – 6,000 

m above ground level), high spatial resolution imagery from RPVs and UAVs provide 

differentiation of vegetation and landscape features necessary to classify, map, and 

monitor ecosystem changes at the local and regional levels. These systems share the 

same orientation challenge as airplanes, to a greater extent, because they are 

considerably smaller in size and are more susceptible to wind effects (Laliberte et al., 

2008).  

Low-cost, high-resolution digital photography from RPVs and UAVs have been used 

in identifying root-rot fungus infection in Douglas fir (Pseduotsuga menziessi) to 

evaluate vineyard health (Johnson et al., 2002), coffee bean ripeness (Johnson et al., 

2002), nutrient status of corn and crop biomass of corn, alfalfa, and soybeans, yield 

estimation in citrus (MacArthur et al., 2005), and for weed mapping.  

Hand-held sensors are the easiest type of sensor to deploy. These sensors can be held 

with the hand (Roanhorse et al., 2009) or fixed to a handheld mast. Disadvantages of 

hand-held sensors include time consuming data collection; site accessibility limitations 

(i.e., dense vegetation, lack of roads, and flooded areas) (Rango et al., 2006); and 

disturbances to the study area.  

Over the past four decades, scientists have developed various motorized ground-

based sensor systems and booms (Rundquist et al., 2004). These technologies provide 

very high spatial and taxonomic resolutions on small spatial scales and are commonly 

used to ground truth aerial data (Rango et al., 2006). Booms were developed and 
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utilized in several recent studies (El-Shikha et al., 2007) that measured reflectance at 

specific bands with the sensors carried through the field by tractors and center pivot or 

linear move irrigation systems. Spectral data collection with motorized booms is more 

systematic than hand-held sensors because they maintain constant elevation and sensor 

orientation (Rundquist et al., 2004).  

Selection of the remote sensing technologies is determined, in most cases, by 

platform and sensor attributes (i.e., cost, efficiency, flexibility, payload capacity, spatial 

coverage, and spatial, spectral, and temporal resolutions). If these attributes can be 

quantified, then a multi-objective analysis may be performed to assess quantitatively the 

tradeoffs between different sensor and platform attributes, identifying the best overall 

technology. We present pioneering work by applying multi-objective analyses to remote 

sensing technology selection. Experts were surveyed to identify the best overall 

technology at three different pixel sizes: very fine (<5 cm), fine to moderate (0.5 m – 

1.0 m), and moderate to coarse resolutions (0.1 km – 1.0 km). Platform/sensor 

technologies (Table 2.1) included hand held sensors and booms in Group 1; RPVs, 

UAVs, and manned aircraft in Group 2; and Quickbird, Landsat, AVHRR, MODIS, 

ASTER, and SPOT in Group 3. The platform attributes considered in identifying the 

best overall technology were system and data costs, efficiency, flexibility, payload 

capacity, spatial coverage, and spatial, spectral, and temporal resolutions (Roanhorse et 

al., 2009). Fig 2.2 shows several types of remote sensing platforms in agriculture. 

 

 

Group 1 Group 2 Group 3 

A1 = automated booms A4 = RPVs A7 = Quickbird 

A2 = hand held sensors A5 = UAVs A8 = Landsat 

A3 = embedded on vehicles  

(Tractors, Combines and Implements ) 

A6 = manned aircraft A9 = AVHRR 

 A10 = MODIS 

 A11 = ASTER 

 A12 = SPOT 

 

Table 2.1 List of remote sensing technologies 
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2.9   N-sensors 

There are many commercial types of N-sensor in the market. These N-sensors can be 

classified in two groups; Contact-type such as SPAD meter and Remote-type such as 

passive N-sensor. On the other hand the Remote-types included passive and active 

sensor, which passive type works based on natural light reflectance while the active-

type uses Laser diodes light source, which can be available even in the night with very 

little effect by sunlight intensity and direction. 

 

Fig. 2.3 N-sensors for crop monitoring 

Fig. 2.2 Remote sensing platforms in agriculture 
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3.1   Experimental field 

 

An experimental winter wheat field (Fig. 3.1) was conducted in the farming area of 

Hokkaido University (43° 4' N 141° 20' E). A conventional variety “Kitahonami” of 

winter wheat in Hokkaido was cultivated in three consecutive years. According to the 

map (Fig 3.1) in 2010 and 2012 the field was in south side but in 2011 it shifted to the 

north part as a rotation. Dimensions of this field were 40 m x 120 m. The field was 

divided into 8 areas (blocks) and 0, 30, 60, and 90 kg ha¹־ fertilizer (ammonium nitrate) 

was applied with two repetitions at the regrowing stage, so that the difference of the 

growth condition can be appeared (Fig. 3.2). After the bloom stage, growth 

investigation was done. Reflectance data by using a Spectroradiometer (Field Spec 3), 

SPAD value, and height of crop, number of stem, nitrogen content and protein content 

of wheat ear was taken from target points as reference area which was randomly set in 

the field. 
 

 

Fig. 3.1 Map of experimental field including blocks (different fertilizer), tractor paths 

for using remote sensing and two different places in three years 
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Fig. 3.2 A photo of experimental field on 2011 that difference of growth condition after 

additional fertilizer can be recognized 

 

3.2   SPAD value measurments 

 

Chlorophyll content of the leaf is an important parameter for plant physiologists and 

agriculturists; it is used as an indicator of leaf senescence and nitrogen status of plants 

and can be altered in response to environmental stresses. There are methods now that 

are able to determine approximate chlorophyll content in the leaf non-destructively, 

using a measurement of the leaf transmittance (T) at certain suitable wavelength(s). 

Several instruments based on this principle are now available including a SPAD-502 

chlorophyll meter (Konica Minolta Sensing, Japan). This chlorophyll meter measures 

intensity of light transmitted through the leaf sample at two wavelengths (650 and 940 

nm) using light emitting diodes with approximate halfwidth of the emission spectrum of 
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15 and 50 nm, respectively. The display shows a value M in relative SPAD units (Jan 

Naus 2010). 

The quantity M is defined as (Eq. 3.1): 

 

M=k.[log(I
’
(949)/I(940))-log(I

’
(650)/I(650))]+C= k.[log T(940)-log T(650)]+C     (3.1) 

 

where I(650) and I(940) are signals without the sample and I
’
(650) and I

’
(940) 

signals with the sample and log is a common logarithm. The quantity k (a confidential 

proportionality coefficient) defines the relative SPAD units, and C is the compensation 

value adjustable in the instrument software. For practical usage it is supposed that the 

negative common logarithm of the transmittance T at 650 nm related to that at 940 nm is 

proportional to the chlorophyll content. In each individual experiment, the reading of 

the SPAD- 502 chlorophyll meter should be calibrated for the real chlorophyll content 

in the leaf as their relationship can differ among species or cultivars as well as among 

plants grown under different conditions. Also the producer declares that SPAD reading 

can vary in dependence on the leaf type.  

 

 

Fig. 3.3 SPAD merer that measures SPAD value 
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3.3   Plant nutrition sensor 

 

CropSpec (commercialized by TopCon) is a real-time integrated plant nutrient 

monitoring and application system for agricultural equipment. CropSpec is a powerful 

crop canopy sensor system utilizing two sensors that allow an operator to monitor plant 

conditions and apply fertilizer and other inputs only as needed. This system will help 

revolutionize and simplify variable rate applications. CropSpec sensors measure spectral 

reflectance using light from pulsing laser diodes (PLD) focused on the plants. The 

reading can be correlated to measure chlorophyll content, which is closely linked to 

nitrogen in the plants. Scanning the crop creates a map to indicate relative canopy vigor. 

The information can then be analyzed to determine crop areas that need treatment, 

construct prescription maps for later application, or immediately provide variable rate 

applications in real-time. CropSpec allows farmers to perform real-time analysis of crop 

needs and meet those deficiencies immediately as they are traveling through the field. 

The sensors measure nitrogen levels and controller executes that prescription immediate 

controlling the output of fertilizer in one pass. This provides the benefits of a variable-

rate application in a simple one-step process, reducing the complications. And can 

reduce both cost and waste associated with blanket fertilizer applications. The compact 

system mounts on the tractor roof out of harm's way, eliminating the need for a boom 

mounted sensor, reducing the potential for sensor damage as the machine is operating 

within the field. 

 

Fig. 3.4 CropSpec as a N-sensor can measure nitrogen content using PLD 
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3.4   Spectroradiometer 

 

In this study a high-resolution spectroradiometer, FieldSpec3 (FS3) was used to take 

the spectral data. FS3 is a hyper spectral sensor designed to collect data on solar 

radiance, irradiance, and reflectance. It can measure the spectral reflectivity within the 

range of 350 nm to 2500 nm with sampling intervals of 1.4 nm and 2 nm in the ranges 

of 350-1050 nm and 1000-2500 nm, respectively (2150 wavelengths in total). The 

wireless connection allows for remote control of data collection up to 50m away. It is 

designed for field environment remote sensing to collect solar reflectance, radiance and 

irradiance measurements. A notebook computer was used to acquire data for the control 

of FS3 in which special software was installed. In addition, the fiber cable 1.5m 

measurements from various angles are possible. Viewing angle is a 25° standard, by 

mounting the lens can be adjusted 1°, 3°, 8°, to 10°. In this study, the viewing angle was 

set to 25 degrees. When the height of sensor was 150 cm above from the ground, the 

detection area is about 0.4 m
2
. In addition, for providing the reference data of the 

background light data a solar sensor were used. The calibration was done using a 

standard white board immediately before measuring reflectance value. Figure 3.5 shows 

the appearance of the FieldSpec3 (Su, 2013). 

 

 

Fig. 3.5 Spectroradiometer 3 (field spec 3) (Analytical Spectral Devices, Inc., USA) 
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3.5   Solar sensor 

 

Due to high spectral resolution of the spectraradiometer is sensitive to the light 

changes, even the slight changes of the background light would result in great change of 

the measured result. Therefore, it is necessary to know the amount of ambient light at 

the time of getting radiation data for correcting the radiation data. PCM-01, a sensor for 

measuring the total amount of solar radiation with high accuracy, reliability, sensitivity, 

was used in this study. Solar radiation sensor was used to detect solar radiation data 

corresponding with FS3. It has a high sensitivity to the wave length range of 305 nm to 

2800 nm. Light intensity was output using analog signal. In this study, it was connected 

to the computer using an analog-to-digital converter and RS232/USB converter (Fig 

3.6) (Su, 2013).  

 

 

Fig. 3.6 solar sensor 

 

3.5   Positioning data 

 

Position information of the sampling data is significant for the spatial change 

analysis. In this study, a dual-frequency RTK-GPS receiver system, Trimble's MS750™ 

was equipped in the sensor system to provide the location information for the 

corresponding radiation data. The MS750 sets a new standard for dynamic positioning 

by providing 20 mm (1") accuracies, 20 times per second with a latency of less than 20 
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milliseconds. At higher latencies, the MS750 provides positions of 10 mm (0.5") 5 

times per second (Fig. 3.7). To provide the reference signal to the MS750TM, a PDA 

using DOCOMO net was used in this study. The longitude and latitude data is converted 

to the UTM (Universal Transverse Mercator) coordinate system and then assigned to the 

spectral data; finally, the spatial data was processed through ArcGIS (Su, 2013). 

 

 

Fig. 3.7 GPS Receiver (MS750 Trimble) and Antenna 
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4.1   Introduction 

 

Remote sensing, using passive sensor systems (imagery or spectral radiometers), has 

long been advocated as a way to characterize spatial variability in fields. Passive sensors 

detect irradiance (incoming radiation) and canopy radiance (reflected radiation) through 

self-calibration using sensors facing upwards and downwards (Stamatiadis et al., 2010-

a). Recent advances in precision agriculture technology have led to the development of 

ground-based active remote sensors (or crop canopy sensors) that calculate normalized 

difference vegetation index (NDVI) readings. Previously, this index was determined 

using passive sensors via airborne or satellite imagery, which had several limitations, 

including expense and weather-related issues such as cloud cover, narrow time window 

for operation (around solar noon), and bidirectional reflection issues associated with 

solar angle, that could greatly limit the effectiveness of these sensing techniques, while 

active sensors have their own source of light energy and allow for the determination of 

NDVI at specific times and locations throughout the growing season without the need 

for ambient illumination or flight concerns (Shaver et al., 2011). Plant reflectance is 

affected by leaf surface properties, internal structure, plant stress, and the concentration 

and distribution of biochemical components; therefore, analysis of reflected light may 

be used to assess plant biomass and the physiological status of a plant (Penuelas and 

Filella 1998). Wavelengths in the red (R) and near-infrared (NIR) wavebands are 

frequently used for indirect measurements of plant characteristics (Wood et al., 2003). 

In a study by Raun et al., (2001), a vegetation index ratio (NIR/R) was most sensitive to 

high crop biomass production in corn (Zea Mays L.) and soybean (Glycine max L.), but 

during early vegetative growth (e.g., Zadoks scale in winter wheat growth stages 

(Zadoks et al., 1974): growth stage (GS) 25 in winter wheat), an NDVI, Eq. 4.1, has 

been shown to provide more accurate estimates of biomass.  

 

                                      NDVI = (NIR – Red) / (NIR + Red)                           (4.1) 

 

Research has shown that expected yield determined from NDVI had a strong relation 

with actual grain yield in winter wheat (R² = 0.83) and that NDVI is useful for 

estimating grain yield in certain crops (Inman et al., 2008). The sensor-determined 
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green-NDVI [= (NIR – Green)/ (NIR + Green)] could potentially be used to direct in-

season N applications. However, because passive sensor systems rely on natural 

sunlight, their effectiveness for assessing canopy N status is limited by numerous 

factors mentioned previously (Solari et al., 2008). 

Recently, commercialized active ground-based sensors have eliminated the need for 

frequent calibration and have overcome the problems of cloud cover and limitations of 

the time of day when measurements can be made (i.e., natural illumination and 

shadows). This is achieved by generating modulated (pulsed) light from an auxiliary 

light source so that the active sensors can operate equally well under all lighting 

conditions (Stamatiadis et al., 2010-a; 2010-b). Active remote sensing has shown some 

potential for improving nitrogen-use efficiency (NUE) in winter wheat. The grain yield 

potential could be estimated using an active remote sensor by calculation of NDVI from 

mid-season (Feekes growth stages 4-6 in winter wheat). Use of the number of growing-

degree days (GDD) from the day of planting to the day of sensing as a standardizing 

factor for NDVI resulted in regression models that could be applied for crop 

measurements across the growth season. However, these models could not account for 

conditions arising after sensing because the reflectance was measured in the middle of 

the growth season (Inman et al., 2007). On the other hand, Solari et al., (2008) reported 

that canopy assessments using the GreenSeeker (NTech Industries, Ukiah, CA) active 

sensor, which generates its own source of modulated light in the red (~650 nm) and NIR 

(~770 nm) bands to calculate NDVI, could be used to direct variable rate N applications 

to wheat and improve fertilizer NUE. Despite the positive results obtained using the 

GreenSeeker for wheat, little work has been conducted to date using active sensors to 

assess corn N requirement during the in-season application window, beginning at early 

vegetative growth (V8) and proceeding through silking (R1). Shanahan et al., (2008) 

used GreenSeeker to assess canopy N status during this window is problematic because 

of the high vegetation fraction (i. e., area ratio of vegetation and the defined area, such 

as a pixel) normally present during this time and the associated problems of using red 

light to assess canopy N status. For this reason, Solari et al., (2008) chose to work with 

the Crop Circle ACS-210 active sensor manufactured by Holland Scientific (Lincoln, 

NE) as a tool for assessing corn N status. The Crop Circle sensor measures canopy 

reflectance in the NIR band (centered at 880 nm) and the VIS band (centered at 590 nm, 
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near the green reflectance peak). In this study, the potential of the plant nutrition active 

remote sensing instrument was evaluated by comparison with the passive sensor for 

predicting spatial variation of the crop growth condition in winter wheat (Triticum 

aestivum L.). Specific objectives of this study were (a) to install and introduce a ground-

based remote sensing system for monitoring winter wheat growth status and (b) to 

evaluate and verify the performance of installed system by regression models that 

estimate crop characteristics. 

 

4.2   Material and Methods 

 

4.2.1   Field Experiments 

Field experiments were conducted in June-July 2010 in the farmland of Hokkaido 

University (43° 4' N 141° 20' E), Sapporo, Japan with annual average precipitation of 

1106.5 mm and with minimum temperature (-7 ºC) in January and maximum 

temperature (26.4 ºC) in August. The field dimension was 40 m × 120 m and the field 

was divided into eight areas as blocks. Four levels of fertilizer (N as ammonium nitrate) 

0, 30, 60 and 90 kg ha
-1

 with two repetitions, were applied at the reviving growth stage 

(GS 30) (Zadoks et al., 1974) to create a range of crop growth conditions. Twenty 

random target points in the field with at least two target points in each block were set as 

ground reference areas with three lines for tractor travel. A map of the field including 

the eight blocks and different amounts of fertilizer is shown in Fig. 4.3-a. 

 

4.2.2   System Platform 

A tractor was used as a platform for the sensors (Fig. 4.1). This system included an 

RTK-GPS, a solar sensor, two plant nutrition sensors (CropSpec
TM

) and a laptop PC. 

The RTK-GPS consists of a GPS device and a cellular phone to compensate the GPS 

signal. The RTK-GPS acquired Universal Transverse Mercator (UTM) coordinates with 

an error of +/-2 cm. As shown in the schematic diagram of the system in Fig. 4.1, the 

positioning data from the GPS device and the cellular phone via a GPS convertor as 

well as the reflectance data from the CropSpec sensors in both sides of the cabin are 

transmitted to the PC via a CAN BUS communication. An algorithm was programmed 
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to receive and save both GPS data and reflectance data of the CropSpec. Data from the 

solar sensor were used to correct reflectance data from the passive sensor. 

 

 

 

 

 

4.2.3   Data Collection and devices 

CropSpec as explained in section 3.3 is an active sensor monitoring and application 

system for agricultural equipment that was developed in cooperation with Yara 

International. The sensors were mounted on the cabin roof (Fig. 4.1) at a height of 230 

cm from the ground and with a 1 m × 3 m footprint for crop scanning. The 

specifications of CropSpec are shown in Table 4.1. CropSpec uses pulsing laser diodes 

(PLD) for sensing by using two different wavelengths on red edge (735 nm) and 

Fig. 4.1 Photograph showing the tractor in the field which two CropSpec, solar sensor, 

and GPS antenna were mounted top of cabin. PC, CAN BUS and cellular phone were put 

in inside of cabin. The schematic diagram shows the communication in developed system. 
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infrared (808 nm) bands. The sensor measures plant reflectance to determine the 

chlorophyll content based on reflectance, which is closely related to the nitrogen  

  

 

 

 

 

 

 

 

concentration in leaves. It measures the nitrogen levels and, through a variable rate 

control (VRC) program, controls the output of fertilizer in one pass over the crop. 

Canopy spectral reflectance was measured using a portable spectroradiometer, 

FieldSpec®3 (FS3) (Analytical Spectral Devices, Inc., USA), from 10 am to 2 pm under 

cloudless conditions (as described in 3.4). A PC was used to acquire data for the control 

of FS3 in which special software was installed. The viewing angle of FS3 was set at 25 

degrees and the height was 150 cm from the ground. In each target point, an area of       

1 m × 3 m in size was covered with five repetitions. Calibration was done using a 

standard white board immediately before measuring the reflectance value.  

A soil plant analysis development (SPAD) meter (MINOLTA Co. LTD.) determines 

the relative amount of chlorophyll present in plant leaves by measuring the absorbance 

of the leaf in two wavelength regions of red and near-infrared. According to the 

catalogue of the SPAD-502 meter (www.konicaminolta.eu 2011), there is a close 

relationship (R² > 0.9) between SPAD value and leaf nitrogen concentration, and it has 

therefore been widely used for detecting crop chlorophyll and nitrogen content and for 

the guidance of plant health and use of additional fertilizer (Zhang et al., 2003).  

After the flag leaf stage (GS 37), growth investigations including measurements of 

SPAD values and heights of crops at four growth stages (GS 37, GS 39, GS 45, and GS 

60) across the growth season were performed, and values were averaged in the same 

target points (1 m × 3 m area) from leaves of ten different plants. Reflectance data 

obtained both from CropSpec and the spectroradiometer (FS3) were collected from the 

same target points. Crop samples from the target points were taken and dried in an oven 

Environment IP 67 compliant 

Laser safety Class 1 or Class 1M 

Physical Dimensions 200 mm x 80 mm x 80 mm 

Viewing angle 45°~ 55° 

Operating Temperature 0 ~ 60 °C 

Operational wavelength Red (730 ~740 nm) and NIR (800 ~ 810) nm 

Supply voltage 10 - 32 VDC 

Supply current 5A 

Table 4.1 Specification of CropSpec 

 

http://www.konicaminolta.eu/
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at 75 ºC for 48 h, and the nitrogen content of wheat was measured using 50 g of 

powdered samples including leaves and stems. Protein content and yield of grain were 

also measured after harvesting and threshing a 1 m × 3 m area in each reference point. 

 

4.2.4   Data Analysis 

Reflectance data from CropSpec were used to calculate the Nitrogen Sufficiency 

Index (S1 value, Eq. 4.2). The average of S1 values obtained from both the right side 

sensor (Cr) and the left side sensor (Cl) in the round passing was used. 

 

                                             S1 value = (NIR/ Red -1) × 100                            (4.2) 

 

In order to compute green-NDVI (GNDVI), amber-NDVI and red-NDVI, four wave 

bands, 550 nm, 590 nm, 660 nm and 800 nm (Solar et al., 2008; Li et al., 2010; 

Thomason et al., 2010; Shaver et al., 2011), were used for green, amber, red and NIR, 

respectively. Fig. 4.2 shows averaged spectral measurements at four different times 

during the growth season. As shown in the Fig. 4.2, the trends of variations in spectral 

data in the four measurements were similar, though the amount of reflectance in two last 

stages (GS 45 and GS 60) was generally higher than the first two measurements. In the 

visible wavelengths, reflectance was less than 20%, but it increased dramatically in the 

NIR region until about 70%. This means that the absorbance of spectra in the visible 

region was higher than that in the NIR region. In other words, the crop has reflected 

most parts of NIR wavelengths and it can be a criterion for investigation of crop 

conditions. In the calculation, those reflectance data acquired by FS3 that were more 

than 100 percentage of reflection, because of noises or absorption by the atmosphere, 

were removed (Fig. 4.2).  

The in-season estimation (INSE) for reflectance measurements, height of crop, and 

SPAD value were calculated by dividing each measured parameter by the number of 

days from early April to the sensing date, when the growing degree days (GDD) were 

greater than zero (Stone et al., 1996). GDD were calculated by the method described by 

Dwyer et al., (1999). According to weather and climate information obtained from the 

Japan Meteorological Agency (www.jma.go.jp 2011), average daily temperature in 

http://www.jma.go.jp/
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early April in Sapporo was around 4-6 ºC, and GDD were therefore calculated from the 

first day of April to the sensing day. They were 72, 83, 91 and 106 days for GS 37,  

 

 

 

 

 

 

GS 39, GS 45 and GS 60, respectively. The in-season estimated yield (INSEY) is an 

estimation of the rate of accumulated biomass from the day of crop planting to the day 

of active remote sensing (Stone et al., 1996), and limiting the denominator to days on 

which GDD were greater than zero (GDD>0) ensures that only days in which plant 

growth was possible are used.  

Using the mean reflectance of a well-fertilized area with a higher level of nitrogen, 

the NDVI ratio (Inman et al., 2007; Thomason et al., 2010) was calculated by Eq. 4.3. 

This ratio is similar in concept to the nitrogen reflectance index (NRI) proposed by 

Bausch and Diker (2001).  

 

                                                                             (4.3) 

 

S1 values of the nitrogen-rich strip were 64.3, 58.7, 47 and 11.8 for GS 37, GS 39, GS 

45 and GS 60, respectively.  
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Fig. 4.2  Reflectance measurments in four different growth stages use of 

spectroradiometer (FS3). 

 

S1 value ratio =
S1 value of an interest area 

S1 value of the rich nitrogen strip
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The performance of the model was evaluated by comparing the differences in the 

coefficient of determination (R²) and root mean squared error (RMSE) of prediction. 

Larger R² and smaller RMSE indicate greater precision and accuracy of the model for 

predicting plant nitrogen concentration (PNC) (Li et al., 2010). RMSE was calculated 

using Eq. 4.4:  

                                                      
2

1

1
ˆ( )

n

i

i

RMSE y y
n

 


                                       (4.4) 

 

where iy , ŷ and n are the measured values, predicted values and number of samples, 

respectively. For investigation of variations in the field, Arc Map 9.3 (ESRI, CA, USA. 

2008) was used to make a map for several measured parameters. 

 

4.3   Results and Discussion  

 

An overview of the measured crop biophysical parameters in the twenty points of the 

field is shown in maps that were interpolated using kriging by ArcMap9.3 software (Fig. 

4.3). Kriging is an advanced geostatistical procedure that generates an estimated surface 

from a scattered set of points with z-values. Unlike other interpolation methods 

supported by ArcGIS Spatial Analyst, kriging involves an interactive investigation of 

the spatial behavior of the phenomenon represented by the z-values before selecting the 

best estimation method for generating the output surface (Oliver 1990). In this study, 

the ordinary method of kriging with several models was examined during the processing, 

and an exponential model was finally fitted for all of measured crop biophysical 

parameters with 95% of probability and 0.5 of lag size. The maps clearly show that the 

aggregation of each factor was almost in the middle of the field. Indeed, this area was 

subjected to application of the largest amount of fertilizer (Fig. 4.3-a). Fig. 4.3-a and Fig. 

4.3-d indicate that the S1 value and nitrogen content varied similarly across the field, 

and there was a high correlation (R
2
>0.77) between these factors that also presented in 

Table 1. Also, a comparison shows a high level of similarity in Figs. 4.3-b, 3-c and 3-e, 

and there was a close relationship between SPAD value and height of the crop  
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(R
2
=0.82) in the second stage of measurement. Moreover, SPAD values at the four 

measurement times (GS 37, GS 39, GS 45 and GS 60) and nitrogen content measured at 

the first time (GS 37) indicated correlation of 0.76, 0.91, 0.68 and 0.63, respectively. 

Hence, because of a) these high relationships, b) lack of other measurements of nitrogen 

content and also c) close relationship (R² > 0.9) between SPAD value and leaf nitrogen 

concentration (according to the SPAD meter technical catalogue mentioned above), the 

SPAD value was used for comparison with the S1 value instead of nitrogen content in 

four different measurement period of crop growth. Fig. 4.3-c shows that green-NDVI 

use of passive sensor (spectroradiometer in this study) has the potential to predict 

nitrogen content, though a comparison with Fig. 4.3-d shows that it is not as good as S1 

value (Fig. 3-a) prediction. Fig. 4.3-f shows that the quality of grain yield was directly 

related to distribution of N fertilizer and areas rich in N fertilizer, therefore had higher 

Fig. 4.3 The maps of crop growth monitoring include a) S1 value, b) SPAD value,         

c) green NDVI, d) Nitrogen content e) Height of crop, and f) Protein content which 

maps of S1 value, height of crop, and SPAD value were made according to data of 

second measuring stage (GS 39). 

 



Chapter 4 Performance Evaluation of Plant Nutrition Sensor                                                                 56 
 

 
 

quality than that of areas with little N fertilizer. However, a large area in the southern 

side of the field and some parts in the northern side had low values of nitrogen content 

and other parameters. According to the amount of additional fertilizer, it is 

understandable that there was a strong relationship with amount of fertilizer in each 

block (Fig. 4.3-a), although the maps pointed out that there was some impact of other 

f a c t o r s  t h a t  m o d i f i e d  t h e  p a t t e r n s  d u e  t o  a p p l i c a t i o n  N  r a t e s . 

The means and standard deviations of the investigated crop variables including       

S1 value, SPAD value, height of the crop (H), nitrogen content (N), protein content (P), 

and grain yield are shown in Table 4.2. A linear regression model [Y= β0 + β1 (S1 

value)] was used to investigate and estimate the relationship between field 

measurements (ground truth data) and crop scanning with CropSpec (S1 value). The 

results indicated that the coefficients of the linear regression model to estimate crop 

variables by the S1 value were mostly significant at the 0.01 probability level (Table 

4.2). This included the SPAD value and height of the crop, which were measured four 

times during the growth stages, and the nitrogen content of wheat measured in the first 

stage (GS 37) of data collection, as well as protein content and yield of grain measured 

after harvesting. Higher correlations (R
2
>0.70) were generally observed in the second 

stage (GS 39), although yield had a stronger relationship at GS 45 (Table 4.2). The 

generally high R² and low RMSE for predicted values such as SPAD value (0.74 and 

1.81, respectively), height of the crop (0.75 and 2.3), and especially nitrogen content 

(0.77 and 0.2) revealed that spectral measurements by CropSpec can be used to monitor 

crop status. Accordingly, information on the crop condition is necessary to make a 

decision about additional fertilizer. Because, SPAD value is a strong detection of 

chlorophyll content and nitrogen concentration present in leaves. It also is a primary 

indication for plant health and decision about the use of additional fertilizer (Zhang et 

al., 2003).  

Therefore, the existence of a strong correlation (R
2
=0.74) between S1 value and 

SPAD value, which verifies the goodness of the nitrogen content and crop health 

situation, will be a guideline for use of appropriate plant nutrition and protection. Weak 

relationships were observed at GS 60, possibly because, the developing grain obscured 

the leaves and some of the leaf N content moved to the grain.  
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With the development of precision farming and use of remote sensing systems in the 

field, the quality of production has been considered in the most studies simultaneously.  

One of the main parameters for evaluating the quality of wheat is amount of protein in 

the grain after harvesting, which can be increased by additional N applied during the 

growth season. Consequently, a strong relationship between S1 value and grain protein 

will help us to make a decision for improving crop quality during the growth season.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean Std. 

Deviation 

Linear Model R² RMSE Sig. 

β 0 β 1    

S1-GS 37 55.15 7.89 - - - - - 

 SPAD-GS 37 41.89 3.24 25.77 0.29 0.51 2.33 ** 

 H-GS 37 83.68 4.13 61.07 0.41 0.61 2.65 ** 

 N-GS 37 1.37 0.41 -1.04 0.04 0.70 0.23 ** 

 Protein 9.99 1.16 3.33 0.12 0.68 0.68 ** 

 Yield 7510 837 4862 48 0.21 767 * 

S1-GS 39 50.18 6.37 - - - - - 

 SPAD-GS 39 40.97 3.46 17.48 0.47 0.74 1.81 ** 

 H-GS 39 100.3 4.48 70.98 0.61 0.75 2.30 ** 

 N-GS 37 1.37 0.41 -1.47 0.06 0.77 0.20 ** 

 Protein 9.99 1.16 2.31 0.15 0.71 0.64 ** 

 Yield 7510 837 4792 54.2 0.17 783 ns 

S1-GS 45 14.85 1.96 - - - - - 

 SPAD-GS 45 36.94 3.70 41.58 0.11 0.69 6.36 ** 

 H-GS 45 102.6 4.39 75.51 0.64 0.72 2.38 ** 

 N-GS 37 1.37 0.41 -4.45 0.06 0.17 0.63 ** 

 Protein 9.99 1.16 5.61 0.11 0.11 0.51 ** 

 Yield 7510 837 2791 113.5 0.14 663 ** 

S1-GS 60 11.54 1.35 - - - - - 

 SPAD-GS 60 11.37 1.59 13.33 -0.17 0.02 1.62 ns 

 H-GS 60 102.8 4.33 7.44 0.64 0.28 3.77 * 

 N-GS 37 1.37 0.41 2.17 -0.07 0.05 0.41 ns 

 Protein 9.99 1.16 14.17 -0.36 0.18 1.08 ns 

 Yield 7510 837 8530 -88.8 0.02 851 ns 

Table 4.2 Mean and standard deviation of S1 value , SPAD value, height of crop (H), 

nitrogen content (N), protein content, and yield with coefficients of linear regression 

model, coefficient of determination (R²), root mean squared error (RMSE) for 

predicted values and significant situation in linear regression  

 

ns. Not significantly different at the 0.05 probability level for coefficients of linear regression model 

* Significantly different at the 0.05 probability level for coefficients of linear regression model 

** Significantly different at the 0.01 probability level for coefficients of linear regression model 
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S1 value rate is another parameter to describe relationship between ground truth data 

(crop variables) and CropSpec measurements (Eq. 4.3). By fitting linear functions 

(Table 4.3), the S1 value ratio explained 66% and 53% of the variation in nitrogen 

content and grain protein, respectively. The exponential fitting had the greatest (R² =0.7, 

Table 4.3) explanation for variation in nitrogen content. In general, nitrogen content and 

protein content increased steadily with increase in the S1 value ratio up to 1. Similarly, 

Bausch and Diker (2001) found that the nitrogen ratio index (NRI) was an excellent 

predictor of nitrogen sufficiency in irrigated maize. According to Table 4.3 non-linear 

regression work well to predict crop variables compare than linear regression. However, 

because of interference from soil background (i.e., NIR scattering by the soil surface), 

the ability to use NRI to estimate N sufficiency was restricted to growth stages later 

than the GS 37 crop growth stage. Therefore, our aim was to acquire canopy reflectance 

measurements in this study between crop growth stages (GS 37 to GS 60) in winter 

 

 

 

 

 

 

 

wheat. However, according to the results, the best stage was GS 39 because the effect of 

crop leaves covering the soil background becomes less in this stage. There is also a need 

for a better understanding of the S1 value ratio used in this study and for establishing a 

threshold of critical level for N responsiveness. Although not conclusive, the results 

suggest that the S1 value ratio has the potential to infer grain yield responsiveness to N 

Model Regression function R² RMSE Sig. 

Linear N̂ (%) = -1.05 + 2.82 x* 

P̂ (%) = 4.14 + 6.83 x 

Ŷ (Mg ha
-1

) = 4139.65 + 3887.01 x 

0.66 

0.53 

0.27 

0.23 

0.71 

665.3 

** 

** 

** 

Quadratic N̂ (%) = -0.11 + 0.53 x + 1.37 x² 

P̂ (%) = -10.08 + 41.58 x – 20.78 x² 

Ŷ (Mg ha
-1

) = -14102.57 + 47087.07 x – 25159.36 x² 

0.66 

0.61 

0.43 

0.23 

0.68 

607 

** 

** 

** 

Exponential N̂ (%) =  0.197 e
2.2x 

P̂ (%) = 5.4 e
2.04x 

Ŷ (Mg ha
-1

) = 4552.4 e
0.57x 

0.70 

0.55 

0.30 

0.17 

0.69 

651 

** 

** 

** 

* x: S1 value Ratio = S1 value of an area of interest / S1 value of the nitrogen-rich strip    

 ** Significantly different at the 0.01 probability level 

 

Table 4.3 Regression model, regression function, coefficient of determination (R²), 

root mean squared error (RMSE) for predicted values (nitrogen content ( N̂ ) protein 

content ( P̂ ) grain yield ( Ŷ )) and significant situation of model coefficients  
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fertilizer applications across the fields. However, in case of grain yield in both 

regression analyses and using ArcMap (not shown), the relationships of S1 value and S1 

value ratio with yield were not strong. The highest relations (i.e., R²=0.41 with 

RMSE=663 (Mg ha
-1

) and R²=0.43 with RMSE=607 (Mg ha
-1

)) were obtained in a 

linear model (Table 4.2) and quadratic model (Table 4.3), respectively. This was 

probably because of the existence of crop lodging areas in some of the target points at 

end of the growth season that affected grain yield or because the wavelengths used in 

CropSpec were not appropriate for early estimation of grain yield. There have been 

many studies on the use of multi spectral characteristics to monitor and measure crop 

conditions in the field. In all cases, one or more kinds of vegetation index were used. 

The normalized difference vegetation index (NDVI) has been mostly applied to estimate 

crop growth status by using two different wavelengths in NIR and VIS bands, which 

would increase with increasing green cover; however, this only holds true until canopy  

 

 

 

 

 

 

 

Fig. 4.4 In-season estimation (INSE) of a) green NDVI (GNDVI), b) amberNDVI, and 

c) redNDVI versus INSE S1 value for all four growth stages combined. Linear equation 

and coefficient determination (R²) are presented. 

a) 

b) c) 
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closure when the crop has a leaf area index (LAI) of up to three (Dampney et al., 1998), 

where LAI is defined as the ratio between total leaf area, on one side only, per unit area  

 of ground. In this study, in order to evaluate the performance of CropSpec, a 

comparison was made between S1 value (acquired by CropSpec as an active sensor) and 

NDVIs (acquired from FS3 as a passive sensor). Therefore, green-NDVI (GNDVI), 

amber-NDVI, and red- NDVI were calculated across four growth stages.  

In order to incorporate the age of the crop at the time of sensing, S1 value, NDVIs, 

SPAD value, and height of the crop, which were measured in four growth stages, were 

divided by the number of calendar days from the first of April and were called the  in-

season estimation (INSE). This is similar to the calculation used by Lukina et al., (2001) 

and Inman et al., (2007) to determine the in-season estimated yield (INSEY) as well as 

that used by Thomason et al., (2010) to determine the yield prediction index (YPI). The 

relationships (R
2
) between S1 value and three NDVIs (GNDVI, amber- NDVI and red-

NDVI) were 0.93, 0.92 and 0.90, respectively (Fig. 4.4).  

 

 

 

 

 

Fig. 4.5 Scatter plots of calculated: a) INSE GNDVI (-/day) and INSE SPAD (-/day),   

b) INSE GNDVI (-/day) and INSE Height (cm/day), c) INSE S1 value (-/day) and 

INSE SPAD (-/day), and d) INSE S1 value (-/day) and INSE Height (cm/day) 

 

b) 

a) c) 

d) 
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On the other hand, scatter plots of INSE-S1 value and INSE-GNDVI versus INSE-

SPAD and INSE-Height with linear regression results (R² and RMSE) are shown in Fig. 

4.5. In all cases, INSE-S1 and INSE-GNDVI increased with increase in crop height and 

SPAD. Thenkabail et al., (2000) reported that non-linear exponential models were better 

in most cases for explaining variability between spectral vegetation indices and crop 

biophysical parameters across several agricultural crops. However, based on the data 

obtained in this study, the relationship appears to be linear.  

The coefficients of determination of the linear regression models for INSE-S1 and 

INSE-SPAD, INSE-S1 and INSE-GNDVI and INSE-SPAD, and INSE-GNDVI and 

INSE-Height were 0.95, 0.73, 0.96, and 0.65, respectively. Consequently, according to 

the results, the performance of CropSpec was verified to be an appropriate ground- 

based active remote sensing system for winter wheat during the growth season by 

comparison; (a) the strong relationship (R
2
>0.90) between NDVIs calculated by FS3 as 

a passive sensor and S1 value obtained by CropSpec (Fig. 4.4) and (b) similar trends for 

S1 value and GNDVI in cases of SPAD and height of the crop (Fig. 4.5).  

Both Fig. 4.5-a and Fig. 4.5-c show that FS3 and CropSpec can be used to estimate 

the SPAD value with a high level of prediction (R
2
>0.95), which is closely related to 

nitrogen concentration in the leaf as well as crop greenness and health (Bullock and 

Anderson, 1998).  

However, use of the INSE S1 value was an appropriate method to eliminate the 

effect of different measurement times, but it just can distinguish the difference of the 

growth stage. In the other words, the difference in crop health status cannot be 

distinguished in the same growth stage consequently for the diagnostics for variable rate 

application measured S1 value in each growth stage should be used. Although this high 

coefficient of correlation is not equivalent to a high level of accuracy of CropSpec, the 

results show that use of this sensor can give us an opportunity for prediction and 

assessment of parameters for growth status in the field. Therefore, CropSpec can be 

used as an on-the-go, easy and fast crop sensor instead of the SPAD meter for diagnosis 

of N deficiency and color changes in leaves that can be caused by nutrition shortage in 

crops. In general, the use of CropSpec as a non-destructive and non-contact method 

provides accurate, stable readings and repeatable values. The output of CropSpec is 

used directly in a PC program to control fertilizer as a variable rate application (VRA). 
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However, the results cannot completely confirm the optical performance and accuracy 

of the new active sensor (CropSpec) because further standard optical experiments are 

needed to calibrate the instrument, because CropSpec integrated from many optical 

parts and performance of each part should be considered. On the other hand, it should 

be noted that N application is sometimes not the main factor that affects yield or other 

field characteristics, and farmers should be aware of this fact and carefully make a 

decision regarding the use of these technologies in fields with spatially and temporally 

stable yield-limiting factors. Causes for spectral variability within the field must be 

adequately understood before sensor-based variable rate fertilization can be safely used 

to reduce or optimize N side-dressings in winter wheat (Zillmann et al., 2006). A 

superior strategy for variable-rate N application would be consideration of the history of 

production of the field, yield maps, and precipitation during the growth season and by 

the farmer’s experience regarding yield-limiting attributes when implementing any N 

management scheme and then combining this information with sensor measurements.  

 

4.4   Conclusion  

 

A ground-based remote sensing system to measure wheat growth parameters was 

evaluated. According to the results, CropSpec has the potential to estimate growth status 

in winter wheat. We observed high linear relationships between CropSpec and SPAD 

value, height of the crop, nitrogen content, and protein content of grain. The results 

indicated that CropSpec can be used to determine crop health status and make an 

appropriate topdressing decision. CropSpec allowed better relationships for SPAD, 

nitrogen, and protein at the GS 39 growth stage. This suggests that the optimum time to 

take S1 value readings in Sapporo may be the GS 39 to GS 45 growth stages. Green 

NDVI had the best correlations with INSE S1 value and other measured parameters, 

indicating that use of other optimal wavelengths may improve the capability of 

CropSpec for prediction of crop conditions rather than the present wavelengths. 

However, for diagnosis of crop condition in each growth stage for variable rate 

application, it is better to use S1 value without elimination of different measurement 

times. The advantage of the on-the-go, fast, easy and non-destructive sensor for a 

variable rate application system is that no crop sampling or laboratory tissue analysis is 
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required. This time and labor saving should result in more accurate and appropriate rates 

of top-dress N being applied and application to a greater proportion of the crop.  
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5.1   Introduction 

 

Remote sensing has great potential for several applications because it enables wide-

area, non-destructive, and real-time acquisition of information on ecophysiological plant 

conditions (Inoue, 2003). Remotely sensed data, obtained either by satellite or aircraft, 

can provide a set of detailed and spatially distributed data on plant growth and 

development (Plant et al., 2000).  

Measurement of various crop canopy variables during the growing season provides an 

opportunity for improving grain yields and quality by site-specific application of 

fertilizers (Hansen et al., 2003). Plant reflectance is affected by leaf surface properties, 

internal structure, plant stress, and the concentration and distribution of biochemical 

components; therefore, analysis of remote reflected light may be used to assess plant 

biomass and the physiological status of a plant (Penuelas and Filella, 1998). 

Wavelengths in the red and near infrared (NIR) wavebands are frequently used for 

indirect measurements of plant characteristics (Wood et al., 2003). The majority of 

agricultural studies use measurements in the visible (400–700nm wavelength) and near 

infra red (700–2500nm wavelength) region of the electromagnetic spectrum. The 

principle is that the majority of the red light is absorbed by the chlorophyll in the 

canopy and therefore little is reflected, in contrast a high proportion of the near infra red 

light is reflected. As canopy green area increases, either due to increasing crop density 

or chlorophyll content, the percentage of red reflectance decreases whilst the near infra 

red reflectance increases. Depending on the canopy and soil type the position of the red 

edge can also change, this spectral shift is exploited in some research (Boochs et al., 

1990).  

Various mathematical and statistical analysis methods have been used in setting up 

linear and non-linear models. Hansen et al. (2002), applied a Multi-way partial least 

squares regression (N-PLS) to predict grain yield and protein content, and they showed 

that the relation between reflectance measurements and protein content was slightly 

better in wheat, where especially N-PLS improved the prediction of grain protein 

content. Also they fund that data from repeated measurements of reflectance used in 

multi-way partial least squares regression before heading improved the prediction of 

grain yield and protein content in wheat and barley. Card et al. (1988) found that N in 
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dried and ground tree leaves could be determined accurately from reflectance with a 

laboratory spectrometer. Stepwise multiple linear regressions (SMLR) were used to 

select 580 nm and 480 nm for total nitrogen prediction, and R
2
 was 0.90. Lee et al. 

(1999) found that SPAD (Soil and Plant Analyzer Development, Minolta, Inc.) readings, 

based on transmittance at 659 and 940 nm, were well correlated with N content in corn 

ear leaves (R
2
 = 0.962). They developed prediction models by partial least squares 

(PLS) regression, principal component regression (PCR), and multiple linear regression 

(MLR). The results showed that models built by PLS and PCR were better than models 

from MLR, and that the standard errors of prediction (SEP) for ear leaf N were 0.16%, 

0.15%, and 0.20% for PLS, PCR, and MLR, respectively. Tumbo et al. (2002) used a 

back-propagation neural network model for corn nitrogen prediction in field conditions. 

The model used 201 spectral bands as input, covering the range from 407 to 940 nm, 

and results proved that the neural network model could considerably reduce interfering 

effects of cloud cover and solar angle. The model showed good correlation between 

predicted and actual chlorophyll meter readings of the training set (R
2
 = 0.91). A good 

relationship was also found in the validation dataset (R
2
 = 0.74). There has been little 

research reported regarding spectral characteristics and nutrient assessment in citrus.  

Yield and protein content are two important key factors for bread wheat production 

and marketing (Jenner et al., 1991). Protein concentration is known to influence the 

bread-making quality of wheat (Johansson et al., 2001). The protein concentration is 

determined in wheat by the genetic background, but also, to a large extent, by 

environmental factors such as nitrogen, water access and temperature conditions 

(Johansson et al., 2001). In barley used for malt, the grain protein content should be 

lower than 11.5% (Bertholdsson, 1999). This may be difficult as the protein content is 

influenced by cultivation practices and by environmental factors such as availability of 

nitrogen and stress situations caused by drought (Birch et al., 1997). Prediction of grain 

protein for the prospective wheat and barley harvest would, therefore, be of value to 

farmers when deciding if the field should be divided into different management zones in 

order to harvest and deliver the targeted qualities. Grain yield and quality can however 

be influenced by late season fertilizer and fungicide application (Bertholdsson, 1999), 

but the net profit for the farmer depends on application costs, yield response and crop 

value. There is therefore a need to predict grain quality during the growing season to 
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improve decision-making concerning management practice. The objectives of this 

research were I) to present a step by step multivariate analysis method to determine 

important wavelengths in the spectral reflectance data for assessing the N status, protein 

content and grain yield of winter wheat, II) to develop prediction models in terms of the 

N status, protein content and grain yield using partial least squares regression (PLSR), 

III) to select individual significant wavelengths using stepwise multiple linear 

regression (SMLR) analysis. 

 

5.2   Materials and Methods 

 

5.2.1    Field experiments 

The test winter wheat fields were conducted for three years in the farming area of 

Hokkaido University (43° 4’ N 141° 20’ E), Japan, with annual average precipitation of 

1106.5 mm and minimum temperature (-7 cº) in January and maximum temperature 

(26.4 cº) in August. The fields dimension was 40m × 120m divided into 8 areas and four 

levels of fertilizer (ammonium nitrate) 0, 30, 60, and 90 kg ha¹־ with two repetitions, 

were applied at the reviving stage (growth stage GS 26), (Zadoks et al., 1974), to create 

a range of crop growth variations. Field in-season measurements included SPAD value 

(soil plant analysis development) and canopy reflectance data in the 2010 at the flag leaf 

stage (GS 37) and anthesis stage (GS 60) were done in 20 target points as well as in the 

2011 (56 target points) and in the 2012 (40 target points) after the stem elongation (GS 

36) and anthesis stage (GS 60) growth investigations were performed. The protein 

content and grain yield were measured after harvesting and threshing 1 m × 3 m area in 

each target point in three years. 

The SPAD value use of a SPAD meter (MINOLTA Co. LTD.) was determined the 

relative amount of chlorophyll presence by measuring the absorbance of the leaf in two 

wavelength regions of red and near-infrared. It can provide an indication of chlorophyll 

content present in plant leaves. According to the catalogue of SPAD 502 

(www.konicaminolta.eu, 2011) there is high relationship (R² > 0.9) between SPAD 

value and leaf nitrogen concentration, therefore it has been widely used in detecting 

crop chlorophyll and nitrogen content and the guidance of plant healthy and topdressing 

http://www.konicaminolta.eu/
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(Zhang et al., 2003). In this study data of SPAD value was dealt as an index of actual 

nitrogen content in crop leaves.  

 

5.2.2    Reflectance measurement 

Wheat canopy reflectance measurements in the 350 to 2500 nm wavebands (1 nm in 

width) were made using a portable spectroradiometer Field Spec FR (350~2500 nm) 

held above the wheat canopy at a distance of 150 cm from the ground, under cloudless 

conditions, and as close to solar noon as possible (Rasooli et al., 2013a). The calibration 

was done using a standard white board immediately before measuring reflectance value. 

Five canopy spectral reflectance measurements were obtained from a 2 m radius 

centered on the geo-referenced point. These measurements were then averaged for the 

particular location. Reflectance data were preprocessed to remove erroneous 

measurements and improve stability of the regression. Owing to observed noise 

problems because of absorption by the atmosphere, the first 50 readings (from 350 nm 

to 400nm) at the lower visible wavelengths and last 1150 readings (from 1350nm to 

2500nm) at the shortwave infrared (SWIR) were deleted due to their low signal-to-noise 

ratio; thus, the revised spectra began at 400 nm (Fig. 5.1).  

 

5.2.3    Dataset arrangement 

The three years datasets were separated into modelling and validation datasets. The 

modelling dataset included a combination of 2010 and 2011 samples (20 samples from 

each year) to make a calibration model. The 2012 samples (40 samples) were used as 

the validation dataset. Three methods; correlation coefficient spectrum, Partial least 

squares regression (PLSR) and step-wise multiple linear regressions (SMLR) were used 

for wavelength selection.  

 

5.2.4   Statistical analysis 

 

1)   Correlation coefficient spectrum  

The simplest method was to compute correlation coefficients between reflectance at 

each wavelength and the actual crop variables. The correlation coefficient spectrum 

provided a picture of the relationship between reflectance and crop variables. 



Chapter 5 Wavelengths Selection by Multivariate Analysis                                                                 69 

 

 
 

Wavelength regions showing high correlation are regions that should be selected, and 

regions showing low or no correlation should be ignored. The SPSS version 18 (SPSS 

Inc., Chicago, USA) was used to calculate correlation coefficients (r).  

 

2)    Pre-processing for reflectance data 

A large amount of spectral data is usually obtained from spectral instruments and 

yields useful analytical information (Blanco and Villarroya, 2002). However, the data 

acquired from spectrometer contains back- ground information and noise besides sample 

information. In order to obtain reliable, accurate and stable calibration models, it is very 

necessary to pre-process spectral data before modelling with Partial Least Square (PLS) 

(Cen and He,  2007). Spectral pre-processing techniques are required to remove any 

irrelevant information including noise, uncertainties, variability, interactions and 

unrecognized features. A lot of pre-processing techniques for spectral data have been 

developed recently (Moghimi et al., 2010). In this study, original spectral dataset with 

four types of pre-processing methods were used such as Gaussian filter, Savitzky-Golay 

smoothing, differentiation (first derivative) and Maximum normalization.  

 

3)    Regression analysis 

Partial least squares regression (PLSR) implemented in Unscrambler version 10.2 

(CAMO, Inc., Oslo, Norway) and step-wise multiple linear regression (SMLR) in SPSS 

version 18 were used to develop calibrations between crop variables and reflectance 

spectra. Both PLSR and SMLR have been widely used in chemometrics, remote sensing, 

and spectral data processing to deal with large datasets containing highly correlated 

variables. Although PLS has been more widely used in recent years, successful SMLR 

applications to soil spectral analysis have also been reported (e.g., Nanni and Dematte, 

2006; Vasques et al., 2009).  

 

 (1)   Partial least squares regression 

PLS is a full-spectrum method, in that it uses information from all wavelengths in the 

original spectrum to develop a calibration algorithm. The PLS calibration creates a new 

set of variables, called factors, that are uncorrelated and that explain variation in both 

response and predictor variables (Beebe and Kowalski, 1987). A key step in PLS 
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regression is selecting the optimal number of factors to best represent the calibration 

data without overfitting. This requires a validation step that is generally done either by 

through a leave out one (LOO) cross-validation procedure or splitting the dataset into 

independent calibration and validation sets. Therefore we applied several combination 

of independent and validation dataset, then we selected the best combination model 

regarding to the coefficient of determination (R
2
), and root mean square error (RMSE, 

eq. 1). Based on these statistics, the Unscrambler software determined a recommended 

number of factors to minimize estimation error. The final calibration model was then 

obtained from the full dataset using this number of factors. The basic PLS algorithm 

was described in Ehsani et al. (1999). 

In the PLS, the wavelengths strongly contributing to the model were identified using 

the B-matrix computed by the Unscrambler PLS software. The B-matrix contains 

coefficients relating the original independent variables (reflectance values) to the 

dependent variable (crop variables), and independent variables with larger B-

coefficients can be viewed as contributing more to the overall regression model, but 

should not be used alone for wavelength selection (Brenchley et al., 1997). However, 

since the regression coefficients represent the importance, each predictor has in the 

prediction of just the response. The variable importance for projection (VIP) represents 

the contribution of each predictor in fitting the PLS model for both predictors and 

response. It summarizes the contribution a variable makes to the model. If a predictor 

has a relatively small coefficient (in absolute value) and a small value of VIP (VIP< 

0.8), then it is a prime candidate for deletion (Wold, 1994).  

 

 (2)    Stepwise multiple linear regression (SMLR)  

Stepwise multiple linear regressions (SMLR) are an improved version of forward 

regression that permits re-examination at every step of the variables incorporated in the 

model in previous steps. Each forward selection step, with a significance level (α) of 0.5, 

can be followed by one or more backward elimination steps with a significance level (α) 

of 0.1. The stepwise selection process terminates if no further variable can be added to 

the model or if the variable just entered into the model is the only variable removed in 

the subsequent backward elimination. SMLR was reported to have a good ability for 

wavelength selection by Card et al. (1988).  
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5.2.5    Significant wavelengths selection 

The following six wavelength selection steps were proposed to develop calibration 

models and were tested for their prediction performance;  

1) Considering that wavelengths having high correlation coefficients (| r | > 0.6) 

with crop variables may contribute more to calibration models.  

2) The PLSR procedure with each type of mentioned pre-processing methods was 

applied to the entire spectral reflectance (400 to 1350 nm) of modeling dataset (samples 

of 2010 and 2011), with the maximum number of PLS factors up to 15 and two cross 

validation (leave one out and 8 points validation set) were set, and the optimum number 

of factors was defined based on CVTEST in PLS.  

3) According to the results of step 2, the best PLS model (whit higher R
2
 and lower 

RMSE) was determined.  

4) The determined PLS model was validated use of validation dataset (samples of 

2012) and also plots of B-coefficients and VIPs were drawn.   

5) To avoid from high collinearity because of existence large number of spectral 

data could make the stepwise procedure unstable, the new dataset was generated using 

validated wave ranges of 2012 data regarding to plots of B-coefficients and VIP. In an 

approach similar to that used by Thomasson et al. (2001) to reduce collinearity, 

reflectance values of every 5 wavelengths were averaged into one variable. 

6) SMLR was applied to new reflectance dataset of 2012 samples and among of 

results, the best wavelengths to predict SPAD value, protein content and grain yield 

were selected.  

The precision of the models were quantified with the coefficient of  determination 

(R
2
) and the root mean squared error (RMSE) and the relative error (RE), as shown in 

Eq. (5.1) and (5.2) (Yi et al., 2007). 
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where ˆ
iy and 

iy  are the estimated and measured value of the i
th

 sample; n  is the number 

of samples; y  is the average of  measured value. 

 

5.3    Results and Discussion 

 

The experimental treatments, including different years, nitrogen application, and 

strategies together with the temporal timing of plant sampling, caused a wide range of 

variation within the investigated crop variables (Table 5.1). This wide range of variation 

in the investigated crop variables was planned in order to make the relationship between 

plant performance and reflectance measurements (Fig. 5.1) as realistic and universal as 

possible.   

 

 

 

 

 

 

 

 

 

 

The reflectance was at all wavelengths on average higher in 2010 in green and red 

visible (VIS) and middle infrared wavebands (MIR) regions compared to 2011 and 

2012 (Fig. 1-a), but lower than 2011 in near infrared (NIR) regions. One of the reasons 

that the reflectance in visible region in 2010 increased comparing with the other years 

might be influenced by the difference in the soil background (Kimura et al., 2004). The 

other reason might be due to the higher SPAD value (hence, nitrogen concentration of 

leaves and stems) in 2010, as shown in Table 1, as the increase of chlorophyll 

concentration causes increased reflectance in the visible regions and the movement of 

the red edge to longer wavelengths (Demetriades-shah et al., 1990), the position of the  

 

Crop Variables Year Mean S.D. Min Max Range 

SPAD (-) 

2010 43.4 1.29 41 45.8 4.8 

2011 43.1 1.38 39.4 45.3 5.9 

2012 42.6 1.62 38.2 46 7.8 

Yield (Kg/ha) 

2010 7490 819 5669 8533 2864 

2011 6864 966 5516 8549 3033 

2012 6708 615 5450 8154 2704 

Protein (%) 

2010 9.88 0.75 8.59 10.9 2.35 

2011 11.4 0.99 8.86 12.1 3.24 

2012 11.6 1.55 9.62 14.0 4.39 

Table 5.1 Selected properties of the investigated crop 

variables 
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red edge in 2010 (around 720) was different from that in others (around 700 nm). 

Increasing nitrogen supply caused on average lower reflectance in the VIS spectral 

range (400 ~700 nm), while the reflectance was higher in the NIR and SW spectral 

range (700 ~ 900 nm and 900 ~1350 nm, Fig.  5.1-b ). The canopy reflection in the near 

infrared spectral range increased with growth stage from the stem elongation (GS 36) to  

Fig. 5.1 Average of reflectance spectrum of the different experimental treatments; 

years (n = 20+56+40), nitrogen application (n = 20+56+40), and date of measurement         

(n = 20 +56+40). 
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heading stage (anthesis stage (GS 60)) (Fig. 5.1-c) and the increased pattern of 

reflectance in theheading stage was similar to that in the stem elongation (GS 36) (Ryu 

et al., 2009).  

Fig. 5.2 shows the correlation coefficient spectrum between reflectance and actual 

crop variables (SPAD, grain yield and protein content) of the modelling samples. 

Reflectance in some regions was highly correlated with the crop variables.  

Wavelengths 440, 690, 720 and 1330 nm for SPAD, 420, 440, 550, 730, 1030, 1110 

and 1260 nm for yield and 490, 530, 650, 730 and 860 nm showed a peak correlation 

coefficient of | r |>0.6. The highest correlation coefficients were seen at 720nm             

(r = -0.74), 550nm (r = -0.77) and 730nm (r = +0.76) for SPAD, grain yield and protein 

content, respectively. The “hot spot” wavelength in case of SPAD was similar to results 

by Carter and Knapp (2001). They reported that wavelengths near 700 nm were 

significant for detecting chlorophyll, which is also closely correlated with N 

concentration in green leaves.  

Various calibration models were developed by using different  pre-processing 

techniques on the spectral data (Table 5.2). Each calibration model was used to predict 

SPAD value, grain yield and protein content of modelling dataset in order to verify the 

improved ability of models based on different pre-processing techniques. A proper 

model should have a low root mean squares error (RMSE) and relative error (RE) with a 

high coefficient of determination (R
2
) between the predicted and actual value of each  
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Fig. 5.2 Correlation coefficients between reflectance at each wavelength and three 

crop variables (SPAD, yield and protein) of the modelling dataset  
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property. Moreover, a low number of PLS factors are desirable. Models have been 

developed using different appropriate number of PLS factors and different                  

pre-processing techniques. However, only the most accurate models were presented in 

Table 5.2 with their R
2
, RMSE and RE. If no pre-processing was applied, a minimum R

2
 

was observed in the 7, 6 and 7 factors of PLS model for prediction of SPAD, grain yield 

and protein content respectively in both LOO and 8 points in validation set cross 

validation methods. However, if pre-processing was applied, R
2
 increases and the RMSE 

were reduced. In the meantime it was found that the number of PLS factors could be 

reduced by the use of data pre-processing. Maximum normalization reduced the number 

of PLS factors with increasing in R
2
 and decreasing RMSE more than other methods 

(Table 5.2). 

Crop 

variables  

Pre-processing  Calibration Method 

Cross Validation (LOO) 

 

Cross Validation (20% of samples) 

Factor  R2  RMSE  RE (%) 
 

Factor  R2  RMSE  RE (%) 

SPAD  Original Data  7 0.665  1.98  4.65  7 0.727  1.61  3.78 

Smoothing (Savitzky-Golay)  6  0.675  1.91  4.49  6  0.738  1.53  3.59 

Smoothing (Gaussian Filter) 6 0.701  1.71 4.02  6  0.771  1.30  3.05 

First Derivative  6  0. 690  1.73  4.06  5  0.754 1.42  3.34 

Maximum normalization  5 0.714 1.68  3.95  5 0.774  1.28  3.01 

Yield  Original Data  6  0.664  789  10.9  6  0.737  719  9.89 

Smoothing (Savitzky-Golay)  6  0.668 782  10.8  6  0.741  713  9.80 

Smoothing (Gaussian Filter) 6  0.717  739  10.2  5  0.759  682  9.38 

First Derivative  6  0.687  758  10.4  6  0.748 704  9.68 

Maximum normalization  5  0.725  732  10.1  5  0.763  677  9.31 

Protein  Original Data  7  0.658  0.747  7.02  7 0.729  0.671  6.30 

Smoothing (Savitzky-Golay)  7  0.661  0.745  7.00  6 0.731 0.666 6.26 

Smoothing (Gaussian Filter) 6  0.703  0.798 7.50  5  0.762  0.623  5.85 

First Derivative  6 0.682  0.723  6.79  6  0.755 0.639  6.00 

Maximum normalization  5  0.709  0.691  6.49  5  0.767  0.620 5.82 

Table 5.2 the prediction results of SPAD, grain yield and protein content with different 

pre-processing techniques and appropriate number of PLS factors based on CVTEST in 

two calibration methods   
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Wavelengths 440, 690, 720 and 1330 nm for SPAD, 420, 440, 550, 730, 1030, 1110 

and 1260 nm for yield and 490, 530, 650, 730 and 860 nm showed a peak correlation 

coefficient of | r |>0.6. The highest correlation coefficients were seen at 720nm             

(r = -0.74), 550nm (r = -0.77) and 730 nm (r = +0.76) for SPAD, grain yield and protein 

content respectively. The “hot spot” wavelength in case of SPAD was similar to results 

by Carter and Knapp (2001). They reported that wavelengths near 700 nm were 

significant for detecting chlorophyll, which is also closely correlated with N 

concentration in green leaves.  

Various calibration models were developed by using different  pre-processing 

techniques on the spectral data (Table 5.2). Each calibration model was used to predict 

SPAD value, grain yield and protein content of modelling dataset in order to verify the 

improved ability of models based on different pre-processing techniques. A proper 

model should have a low root mean squares error (RMSE) and relative error (RE) with a 

high coefficient of determination (R
2
) between the predicted and actual value of each 

property. Moreover, a low number of PLS factors are desirable. Models have been 

developed using different appropriate number of PLS factors and different pre-

processing techniques. However, only the most accurate models were presented in Table 

5.2 with their R
2
, RMSE and RE. If no pre-processing was applied, a minimum R

2
 was 

observed in the 7, 6 and 7 factors of PLS model for prediction of SPAD, grain yield and 

protein content respectively in both LOO and 8 points in validation set cross validation 

methods. However, if pre-processing was applied, R
2
 increases and the RMSE were 

reduced. In the meantime it was found that the number of PLS factors could be reduced 

by the use of data pre-processing. Maximum normalization reduced the number of PLS 

factors with increasing in R
2
 and decreasing RMSE more than other methods (Table 5.2).  

This pre-processing method with using 8 selected samples of 40 samples as a cross 

validation set and 32 selected samples of 40 samples as a calibration set among of 

modelling dataset (2010 and 2011) increased R
2
 from 0.665 to 0.774, from 0.664 to 

0.763 and from 0.658 to 0.767 for prediction of SPAD, grain yield and protein content, 

respectively whilst the RMSE decreased from 1.98 to 1.28 for SPAD, from 789 to 677 

for yield and from 0.798 to 0.62 for protein in the 5 number of PLS factors. 
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Crop 

variables 
Per-processing 

Prediction with 5 Factors The most 

important 

Factors 

Efficacy of 

important 

factor % R
2
 RMSE RE (%) 

SPAD Maximum normalization 0.774  1.28  3.01 2 45.6 

Yield Maximum normalization 0.763  677  9.31 3 39.9 

Protein Maximum normalization 0.767  0.620 5.82 1 41.5 

Table 5.3 the best PLS regression model fitted to the modelling dataset including 

coefficient of determination (R
2
), root mean squares error (RMSE) and relative error (RE) 

with the 5 number of factors and 20% selected samples in cross validation 

 

Fig. 5.3 PLS B-coefficients (a, c and e) and VIP (b, d and f) determined from validation 

dataset using maximum normalization pre-processing with 5 number of factors and 20% 

selected samples in cross validation for SPAD, grain yield and protein content. 
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The results of the best PLS model in modelling dataset have been shown in Table 5.3. 

On the other hand the most important PLS factors among of the 5 factors have been 

given in Table 5.3. The second factor with 45.6 %, the third factor with 39.9 % and the 

first factor with 41.5 % of selected model had highest efficacy in the PLS for SPAD, 

grain yield and protein content, respectively.  

 

 

 

 

 

 

 

 

These results were improved in validation year (2012) so that R
2
 was increased up to 

0.84 for SPAD, 0.87 for yield and 0.8 for protein (Table 5.4). While RMSE for yield 

was decreased from 667 to 301 (RE was decreased up to 4.78 %), but in case of SPAD 

and protein were increased from 1.28 to 1.94 and 0.62 to 0.786 respectively. Maybe it 

was because of according to the Table 5.1 standard deviation (S. D.) of SPAD value 

(1.62) and protein content (1.55) in 2012 (validation dataset) was higher than these crop 

variables in 2010 and 2011 (modelling dataset). The different components can be 

defined by their respective PLS B-coefficients and VIP. The coefficients quantify the 

contribution of different wavelengths to the model. The coefficients allow the optimal 

fit to be achieved for the specific crop variable of interest. The B-coefficients and VIP  

Crop 

variables 
Per-processing 

Prediction with 5 Factors The most 

important 

Factors 

Efficacy of 

important 

factor % 

Ranges of important 

wavelengths 

R2 RMSE RE (%) 

SPAD 
Maximum 

normalization 
0.841 1.94 4.50 2 51.7 

Range 1 400~500 

Range 2 520~750 

Range 3 1300~1350 

Yield 
Maximum 

normalization 
0.872 301 4.53 3 47.2 

Range 1 405~480 

Range 2 520~750 

Range 3 1010~1350 

Protein 
Maximum 

normalization 
0.803 0.786 6.77 1 43.8 

Range 1 470~530 

Range 2 650~770 

Range 3 840~900 

Table 5.4 The result of PLS regression with validation dataset (of 2012) using the best PLS 

model in modeling dataset, including coefficient of determination (R
2
), root mean squares 

error (RMSE) and relative error (RE) and the ranges of important wavelengths according to 

the B-coefficient and VIP in Fig. 5.3 

 

Crop 

variable

s 

Per-

processing 

Prediction with 5 

Factors 

The 

most 

importa

nt 

Factors 

Efficacy of 

important 

factor % 

Ranges of important 

wavelengths 

R2 
RMS

E 
RE (%) 

SPAD 

Maximum 

normalizatio

n 

0.84

1 
1.94 4.50 2 51.7 

Range 1 400~500 

Range 2 520~750 

Range 3 1300~1350 

Yield 

Maximum 

normalizatio

n 

0.87

2 
301 4.53 3 47.2 

Range 1 405~480 

Range 2 520~750 

Range 3 1010~1350 

Protein 

Maximum 

normalizatio

n 

0.80

3 

0.78

6 
6.77 1 43.8 

Range 1 470~530 

Range 2 650~770 

Range 3 840~900 

 Table 4 The result of PLS regression with validation dataset (of 2012) using the best PLS model in 

modeling dataset, including coefficient of determination (R2), root mean squares error (RMSE) and 

relative error (RE) and the ranges of important wavelengths according to the B-coefficient and VIP 

in Fig. 3 
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related to the three investigated crop variables are shown in Fig. 5.3. According to the 

figures there are some ranges of important reflecting (Table 5.4), with high relationship 

between the spectral data and the canopy. Three zones at approximately 400~500, 

520~750 and 1300~1350 nm for SPAD, 405~480, 405~480, 520~750 and 1010~ 1350 

nm for grain yield and 470~530, 650~770 and 840~900 nm for protein content of major 

importance for the PLS models could be identified. 

 

 

Fig. 5.4 Predicted crop variables (SPAD, grain yield and protein content) using PLS 

models, plots in left side are related to the PLS prediction result in modeling dataset 

and plots in right side are for predicted values in validation dataset, including R
2 

, 

RMSE and RE.  

 

 

Fig.4 Predicted crop variables (SPAD, grain yield and protein content) using PLS models, plots 

in left side are related to the PLS prediction result in modeling dataset and plots in right side 

are for predicted values in validation dataset, including R2 , RMSE and RE.  
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These zones showed either a shift or significant peaks. The VIP>0.8 was considered 

as an independent variable importance in projection, which was almost consistent of B-

coefficients variation in each dependent variables. Based on PLS result of modelling 

dataset and validation dataset, the prediction of crop variables was plotted against the 

actual data in Fig. 5.4. After verification the selected PLS model using the validation 

dataset (Table 5.3 and 5.4), we applied SMLR for new spectral dataset generated by 

validation dataset use of specified wave ranges in Table 5.4 with actual crop variable in 

2012. Table 5.5 lists the analysis results based on the SMLR procedures. The results 

show a good relationship between the actual crop variables and the predicted values for 

validation datasets. SMLR selected 7 wavelengths for SPAD, 10 wavelengths for yield 

and 9 wavelengths for protein. The R
2
, RMSE and RE of SMLR results for the 

validation dataset, respectively was 0.85, 1.56 and 3.66 % for SPAD, 0.89, 287 and 

4.28 % for yield and 0.84, 0.68 and 5.86 % for protein. SMLR showed the best R
2
 

because reflectance data were screened and reduced to the most effective dataset during 

of using previous three steps (correlation coefficients, PLSR with modelling dataset and 

PLSR with validation dataset) therefore the collinearity was reduced and made SMLR 

analysis more reliable. Comparing the SMLR and PLS procedures, both worked very 

well in this study. SMLR Models developed by using fewer (7 to 10) wavelengths than 

those developed by PLS. The most accurate prediction results, which were generated by 

SMLR, are shown in Table 5.5. The PLS procedure for full-spectrum analysis due to its 

ability to compress data appears superior to the SMLR. However, difficulties with the 

Crop 

variables 

Selected Wavelengths (nm) 

in Stepwise MLR 

R
2
 RMSE RE (%) 

SPAD 435, 550, 665, 705, 730, 1315, 1325 0.85 1.56 3.66 

Yield 
410, 520, 535, 1025,  1080, 1125, 1130, 

1235, 1265, 1305 
0.89 287 4.28 

Protein 
445, 505, 640, 665, 670, 700, 760, 890, 

930 
0.84 0.68 5.86 

Table 5.5 Results of stepwise multiple linear regression (SMLR) analysis using the 

verified wave ranges after application PLS for validation dataset. 

 

 

 

Table 5 Results of stepwise multiple linear regression (SMLR) analysis using the verified 

wave ranges after application PLS for validation dataset. 
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PLS method include a complex algorithm, which could be difficult to understand, and 

the large number of wavelengths that were used for the calibration model. The results 

from this research could be used to help develop an in-field growth condition 

monitoring system such as N sensor and yield estimation sensor in the winter wheat. A 

possible sensing system consisting of a linear variable filter and a detector array could 

produce full-spectrum sensing in real time. The data collected could be combined with 

an SMLR or PLS algorithm to predict N concentration for fertilizer application, protein 

content and grain yield for crop quality and field performance as an on-the-go 

monitoring system.  

 

5.4    Conclusion 

 

Three years field measurements were conducted to select significant wavelengths 

related to the winter wheat growth characteristics as a preliminary step toward 

developing a real-time spectral-based crop sensor, for prediction of N status, grain yield 

and protein content. A correlation coefficient spectrum, PLSR, and SMLR procedures 

were used to determine important wavelengths. Both SMLR and PLS regression 

procedures yielded good results. The second dataset (validation dataset) was generated 

from 2012 spectral measurements using entire wavelengths. Three ranges of 

wavelengths selected by considering PLS B-coefficient and VIP plotted with validation 

dataset from 2012 spectral measurements in each crop variables (SPAD, grain yield and 

protein content). The accuracy of PLSR performance (R
2
) was improved from 0.77 to 

0.84, 0.76 to 0.87 and 0.76 to 0.8 in SPAD, grain yield and protein content respectively 

in validation results. The third dataset was made from 2012 spectral data use of selected 

wave ranges from validation PLS results and SMLR was applied to new dataset. Some 

wavelengths [(435, 550, 665, 705, 730, 1315 and 1325 nm), (410, 520, 535, 1025, 1080, 

1125, 1130, 1235, 1265 and 1305nm) and (445, 505, 640, 665, 670, 700, 760, 890 and 

930nm)] were identified by both PLSR and SMLR as significant wavelengths for SPAD, 

grain yield and protein content respectively which already have been recognized in two 

steps of modelling and validation PLSR. Due to the ability of PLS to reduce collinearity 

in datasets, models using PLS produced good wave ranges that used in SMLR 

procedure This result showed that SMLR was more suitable for datasets with lower 
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collinearity. Indeed these step by step methods worked such as data-screening procedure 

to discriminate the most effective wavelengths for prediction crop variables. The results 

from this research could be used to help develop an in-field growth condition 

monitoring system such as N sensor and yield estimation sensor in the winter wheat. 

However it is necessary to combine these individual wavelengths in appropriate 

vegetation indices related to crop growth properties. 
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6.1    Introduction 

 

In winter wheat production, the farmer tries to optimize yield and protein quality 

with minimum usage of mineral fertilizer. For this purpose, it is necessary to know what 

amount of mineral-N should be given. The challenge for the farmer is determination of 

optimal N supply for the plants. Plant N concentration (PNC) has been commonly used 

as an effective indicator of N status, and different threshold values have been 

established for different crops (Fageria, 2009). A major advance was made with the 

observation that PNC declines with increase in biomass because of plant aging, 

phenology and dilution effect (Lemaire et al., 2008).  

Remote sensing technology has recently been used to estimate crop N status. Since 

leaf N concentration is linked to the amount of chlorophyll, many studies have focused 

on estimation of crop leaf chlorophyll concentration, which is easier to estimate, for an 

indirect assessment of crop N status (Haboudane et al.,, 2008). However, spectral 

absorption by chlorophyll is possibly confounded by other plant pigments (Hatfield et 

al., 2008) that might affect the accuracy of crop N status estimation by remote sensing. 

Plant chlorophyll content is also affected by other stress factors such as water, light, 

disease and other nutrient deficiencies or toxification (Chaerle and Straeten, 2000). 

Therefore, it is more desirable to use remote sensing technologies to estimate crop N 

concentration directly for decision support in precision N management. Stroppiana et al., 

(2009) reported that an optimal normalized difference index (NDIopt) using reflectance 

at 503 (R503) and 483 nm (R483) was strongly correlated with PNC in rice (Oryza sativa) 

(R
2
 = 0.65) but least correlated with leaf area index (LAI) (R

2
 = 0.31) or above ground 

biomass (R
2
 = 0.27). Fava et al., (2009) found that pasture N concentration could be 

most accurately estimated by using simple ratio indices involving near infrared (NIR) 

(775~820 nm) and longer wavelengths of the red edge bands (740~770 nm). For winter 

wheat (Triticum aestivum L.), Li et al., (2008) used a handheld spectrometer to simulate 

bands of the QuickBird satellite sensor, and they showed that none of the six broad band 

vegetation indices performed well for estimating PNC at Feekes (Feeks scale for 

measuring crop growth stages) growth stages 4–5 or 6–7 (Large, 1954), whereas all of 

the indices performed well at Feekes growth stages 9–10, with correlation coefficients 

(r) ranging from -0.48 to 0.57. Across years and growth stages, the red/green vegetation 
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index (RGVI) showed the highest correlation coefficient of 0.43. Hansen and 

Schjoerring (2003) achieved better results with hyper-spectral vegetation indices (VIs). 

They calculated all two-band combinations for the normalized difference vegetation 

index (NDVI) and found that the best indices for estimating leaf N concentration from 

early stem elongation to heading (Feekes growth stages 30–51) mainly used a blue band 

(440, 447 or 459 nm) paired with a green (573 or 509 nm) or red (692 nm) band (R
2
 = 

0.54~0.55). Most studies that have used remote sensing technology to estimate plant N 

status focused on leaf N concentration or accumulation (Oppelt and Mauser, 2004) and 

were conducted in a heated glasshouse (Yoder et al., 1995), under controlled 

experimental conditions (Feng et al., 2008), or used only broad band vegetation indices 

(Li et al., 2008). In this chapter, the performance of various types of hyper-spectral 

vegetation indices for characterizing agricultural crop physiological variables was 

evaluated with the goal of determining the optimal number of hyper-spectral bands, 

their centers and widths, in the visible and infrared portion of the spectrum (400~1350 

nm), thus reducing redundancy in hyper-spectral data.  

 

6.2    Materials and Methods 

 

6.2.1    Study site and data collection 

A conventional variety “Kitahonami” of winter wheat in Hokkaido, Japan was 

cultivated in three consecutive years in the experimental field of Hokkaido University 

(40 m × 120 m in size). The field was divided into 8 areas, and four levels of fertilizer 

(ammonium nitrate), 0, 30, 60 and 90 kg ha¹־ with two repetitions, were applied at the 

reviving stage (growth stage GS 26 (Zadoks scale for measuring crop growth stages 

such as Feeks scale)) (Zadoks et al., 1974) to create a range of crop growth variations. 

Field in-season measurements including SPAD (Soil Plant Analysis Development) 

value and canopy reflectance data in 2010 at the flag leaf stage (GS 37) and anthesis 

stage (GS 60) were carried out at 20 target points, and growth was investigated in 2011 

(56 target points) and 2012 (40 target points) after the stem elongation stage (GS 36) 

and anthesis stage (GS 60). The protein content and grain yield were measured after 

harvesting and threshing in a 1 m × 3 m area at each target point in the three-year period. 
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Methods of measuring SPAD value and spectral reflectance were described in 5.2.1 

and 5.2.2 respectively. 

 

6.2.2    Used vegetation indices  

Among the various types of hyper-spectral vegetation indices (VIs) used in previous 

studies, seven VIs related to plant nitrogen content (N) and grain yield estimation were 

selected without their specific wavebands and only as equations to calculate all possible 

combinations of spectral datasets to find the most accurate combinations (Table 6.1). 

Two classes of indices were calculated with all possible two and three band 

combinations from 400 to 1350 nm with 5 nm intervals: simple ratio index (SR) and 

normalized difference index (NDI). To determine the effects of growth stages on the 

relationships and performance of different indices, we separated the growth stages into 

Zadoks scale 36–37 (when the canopy was not closed) and Zadoks scale 60 (when the  

  

 

canopy was fully closed), in addition to combined analyses across all of these growth 

stages. 

 

6.2.3    Calculation of vegetation indices  

An algorithm was developed with MATLAB 7.1 software (The MathWorks, Inc., 

Natick, MA) to calculate all possible two or three wavelengths combinations of 190 

wavelengths in seven equations (Table 6.1). Linear regression was performed in order to 

Index Equation Original Vegetation Index Reference 

1 (λ2/ λ1) -1  Difference Vegetation Index (DVI) Gitelson et al. (2005) 

2 (λ2- λ1)/ (λ2+ λ1) Normalized Difference Vegetation Index 

(NDVI) 

Rouse et al. (1974) 

3 *NDVI DVI  Root Difference Vegetation Index (RDVI) Roujean & Breon 

(1995) 

4 (1+0.16) (λ2- λ1)/ (λ2+ λ1+ 0.16) Optimal Soil Adjusted Vegetation Index 

(OSAVI) 

Rondeax et al. (1996) 

5 (λ2- λ1)/ λ3 Plant Senescence Reflectance Index (PSRI) Sime & Gamon (2002) 

6 (λ2- λ1)/ (λ2- λ3) Modified Simple Rate Index (MSRI) Dash and Curan (2004) 

7 λ2/ (λ1* λ3) Simple Rate (SR) Datt (1998) 

Table 6.1 Seven different equations that mentioned in prior literatures were used as 

vegetation indices to calculate all combination of two and three bands of reflectance data  
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determine each of the correlation coefficient (R
2
) between generated indices and crop 

physiological variables (SPAD value, protein content and grain yield). Linear regression 

was preferred in the initial analysis in order to operate with linear relationships. 

 

6.2.4    Selection of vegetation indices 

In order to determine optimal vegetation indices with two-pair wavelengths, all R
2
 

values were plotted in a contour plot for each year dataset (2010 and 2011) separately in 

the ArcMap environment (ArcGIS 9, ESRI Inc, USA).  To make a contour plot, we 

assumed λ1 and λ2 as coordinates (X and Y) and R
2
 as a Z value for elevation, and then 

we interpolated (λ1, λ2 and R
2
) using kriging. The contour plot was made use of 

appropriate contour interval regarding to Z value (R
2 

in this case).To determine common 

areas (Z values) in two years, the contours from each year (2010 and 2011) were 

overlaid on each other as two layers and using intersect overlaying in the analysis tools 

could define the highest common R
2
 (hot spots) in the two years. Hence, the best two-

pair wavelengths were revealed. 

On the other hand, for vegetation indices with three wavelengths (equations 5, 6 and 

7 in Table 6.1), the use of intersect overlaying method in ArcMap environment because 

of three-dimensional coordinate was not possible, therefore we used a combination of 

dataset from 2010 and 2011 data and then we feed this dataset to the developed 

vegetation index calculation algorithm in MATLAB. All R
2
 values resulted from 

calculation process were organized in a three-dimensional matrix including λ1, λ2, λ3 and 

R
2
 as X, Y, Z and elevation, respectively. Then a 3-D scatter plot was created by use of 

“scatter3” command in MATLAB. The plot revealed a characteristic pattern with a 

number of ‘‘hot spots’’ with relatively high correlation coefficients. These spots were 

selected by choosing the wavelength combinations that showed the highest R
2
 between 

crop variables and indices in two-year’s combined dataset. The center wavelength and 

bandwidth for each of the selected spots were determined by fitting a rectangle that 

could hold the spot of interest inside its limits.  

 

6.2.5    Evaluation of the selected indices 

To evaluate the performance of selected vegetation indices, two independent dataset 

were created as calibration dataset (a combination dataset from data for 2010 and 2011) 
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and validation dataset (data for 2012). Both linear (y = ax+b) and exponential (y = ae
bx

) 

fitting procedures were applied using these new indices (generated by mentioned 

datasets) and crop physiological variables. 

 

6.3    Results and Discussion 

 

Fig. 1 shows an overview of reflectance data in the three years (2010, 2011 and 

2012). The experimental treatments, including different years, nitrogen application, and 

strategies together with the temporal timing of plant sampling, caused a wide range of 

variation within the investigated crop variables (Table 6.2). This wide range of variation 

in the investigated crop variables was planned in order to make the relationship between 

plant performance and reflectance measurements as realistic and universal as possible. 

The reflectance at all wavelengths was on average higher in 2010 in visible (VIS) and 

moisture-sensitive near infrared (MS-NIR) regions than in 2011 and 2012 (Fig. 6. 1-a) 

but was lower in 2010 than in 2011 in the near infrared (NIR) region. One of the reasons 

for the increase in reflectance in the visible region in 2010 compared with that in the 

other years might be the difference in the soil background (Kimura et al., 2004). 

Another possible reason is the higher SPAD value (hence, nitrogen concentrations of 

leaves and stems) in 2010 (Table 6.2). An increase in chlorophyll concentration causes 

increased reflectance in the visible region and movement of the red edge to longer 

wavelengths, and the position of the red edge in 2010 (720 nm) was different from that 

in the other years (700 nm). Canopy reflection in the near infrared spectral range 

increased with growth stage from the stem elongation stage (GS 36) to the heading 

stage (anthesis stage (GS 60)) (Fig. 6. 1-b), and the increased pattern of reflectance in 

the heading stage was similar to that in the stem elongation stage (GS 36) (Rasooli et al., 

2013).  

The availability of hyper-spectral data in n=190 discrete narrow bands (from 400 nm 

to 1350 nm with 5 nm intervals) allowed computation of n × n=36,100 narrow band 

vegetation indices (VIs) (Table 6.1). Regression coefficients (R
2
)  between all possible 

two-band vegetation indices and crop physiological variables were determined. 
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The most effective results of this comprehensive analysis are illustrated in contour 

plots of the R
2 

values, for each λ1 and λ2 pair, in Fig. 6.2 (a, b and c). For clarity, the 

higher R
2 

values are shown by red contour lines for the 2010 dataset and by green 

contour lines for the 2011 dataset. Similar contour plots (too numerous to be presented 

here) were created for all of the other physiological crop variables. Based on the above 

results, band centers (λ1 and λ2) and bandwidths (Δλ1 and Δλ2) that combine to form the 

best seven indices (ranked on the basis of R
2
 values) were determined for SPAD value, 

grain yield and protein content. The band centers and their widths are identified for the 

crop variables. This can be determined through λ1 and λ2 contour plots of R
2
 values (Fig. 

6.2). 

We determined that a contour interval of 0.15 ~ 0.165 for R
2
 values provided a 

reasonable and statistically sound approach for arriving at band centers and 

bandwidths. Smaller contour intervals result in several more gradients of R
2
 values, 

providing other band centers and bandwidths. 

 

Fig. 6.1 Average of reflectance spectrum of the different years and measurement stages 
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These can be too numerous and often provide no significant statistical difference 

between two discrete contour intervals. For example, the index 1 that has the  

strongest correlation for SPAD value has band centers (λ1 and λ2) and bandwidths (Δλ1 

and Δλ2) extracted from the contour plot range of 0.66 to 0.825 (highest R
2
 value 

range) in the 2011 dataset in Fig. 6.1-a. The band centers and widths are tabulated in 

Table 6.3. The same range (0.66 to 0.825) of contour intervals can be split into 

distinctive groups of smaller intervals such as 0.66 to 0.72, 0.73 to 0.79, and >0.80. 

Then it is possible to derive band centers (λ1 and λ2) and bandwidths (Δλ1 and Δλ2) 

for each of these smaller intervals. However, the significance of the band centers and 

bandwidths from the small intervals of R
2 

values, such as between 0.66 to 0.72 and 

0.73 to 0.79, is limited since these R
2 

values did not have significant statistical 

difference or were statistically different only at the 0.10 level or higher. Therefore, the 

λ1 and λ2 spectral band combinations obtained from the distinctive contour intervals of 

0.15 ~ 0.165 were considered a reasonable and statistically sound approach.  

 

Crop Variables Year n
* 

Mean S.D. Min Max 

SPAD (-) 

2010 20 43.4 1.29 41 45.8 

2011 56 43.1 1.38 39.4 45.3 

2012 40 42.6 1.62 38.2 46 

       

Yield (Kg/ha) 

2010 20 7490 819 5669 8533 

2011 56 6864 966 5516 8549 

2012 40 6708 615 5450 8154 

       

Protein (%) 

2010 20 9.88 0.75 8.59 10.9 

2011 56 11.4 0.99 8.86 12.1 

2012 40 11.6 1.55 9.62 14.0 

Table 6.2 Selected properties of the investigated crop variables 

 

* n is the number of samples 
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Fig. 6.2 (a, b and c) as contour plots show the correlation (R
2
) between crop variables and 

two-band spectral vegetation indices by using overlaying method in ArcMap 9.3; (d, e and 

f) three dimensions scatter plot shows “hot spots” as highest relationship (R
2
) between crop 

variables and three-band vegetation indices.  
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Fig. 6.2 continued 
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Fig. 6.2 continued 
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Fig. 6.2 continued 
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After plotting contours for each year dataset, the next step was determination of 

common wavebands in datasets for two years (2010 and 2011). Therefore, both the 

contour plot of 2010 and contour plot of 2011 were used as discrete layers in the 

ArcMap environment for overlaying. As shown in Fig. 6.2 (a, b and c), the area with a 

dark black color is a result of intersects overlaying which remarkably shows highest 

common R
2 

value in two years. By the use of coordinates X and Y as λ1 and λ2, the band 

centers and bandwidths visually were measured (Table 6.3). A similar procedure was 

adopted for determining λ1, λ2, Δλ1 and Δλ2 for other indices and for the pooled data of 

all crop variables (not shown). When visually inspecting the contour plots of R
2 
values, 

it must be noted that more precise bandwidths are possible with a smaller range of 

contour interval plots of R
2 

values than shown in  Fig. 6 .2 (which has a >0.15 R
2 

value contour interval). 

 

 

 

Crop 

Variables 

Band center 

and width 

(nm) 

Band centers (λ1, λ2 and λ3 ) and bandwidths (Δλ1, Δλ2 and Δλ3 ) for two and 

three vegetation indices 

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 

SPAD λ1 735 730 730 730 660 405 705 

Δ λ1 8 6 7 5 15 15 15 

λ2 1325 1330 1315 1330 720 550 425 

Δ λ2 10 5 9 5 15 15 15 

λ3 - - - - 1325 425 1325 

Δ λ3 - - - - 15 15 15 

         

Yield λ1 530 525 1030 530 1245 405 1125 

Δ λ1 5 7 5 5 15 15 15 

λ2 1125 1125 1120 1125 1125 1265 405 

Δ λ2 14 12 10 9 15 15 15 

λ3 - - - - 405 1245 1080 

Δ λ3 - - - - 15 15 15 

         

Protein λ1 635 935 510 635 745 505 665 

Δ λ1 7 7 5 5 15 15 15 

λ2 700 700 665 700 665 665 885 

Δ λ2 12 10 8 8 15 15 15 

λ3 - - - - 765 705 765 

Δ λ3 - - - - 15 15 15 

Table 6.3 Band centers derivative from wavelengths combination in the two and 

three bands different vegetation indices according to highest R
2
 (‘‘hot spots’’) 
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Using the same methods for three-band vegetation indices because of 3-D matrix 

were not possible. Therefore, we applied scatter3 command in MATLAB to generate   

3-D scatter plots. Fig. 6.2 (d, e, and f) shows the most effective three-band vegetation 

indices that have stronger correlations with crop variables.  

A number of ‘‘hot spots’’ with high R
2
 values were revealed by linear regression 

analysis of the individual crop variables against different vegetation indices that were 

calculated according to equations shown in Table 6.1 for all possible two and three 

combinations of reflectance measured at 400 to 1350 nm wavelengths, which centered 

with 5 nm (Fig. 6.2). Analysis of the center wavelength and bandwidth in both 

directions revealed from one to seven indices depending on crop variables (Table 6.3). 

Bands with center wavelengths in the red and NIR spectral regions from 600 to 750 nm 

were represented in almost 50% of all selected bands for all crop variables in total. The 

bands (λ1, λ2 and λ3) were often paired so that these bands were closely spaced in the 

steep linear shift between green, red, NIR, MS-NIR and shortwave infrared (SWIR) 

reflection (Table 6.3). The most effective two-band combination (index 1) to estimate 

the SPAD value was provided by λ1 at 735±8 nm combined with λ2 at 1325±10 nm (R
2
 

=0.764, Table 6.4). However, the other two-band indices were in almost the same 

wavebands as index 1, but prediction power (R
2
) was lower than index 1. Although 

previous studies showed a stronger relationship between SPAD value and NDVI, 

however, may be in case of the wavebands used in the NDVI are usually in red and NIR 

regions, whereas in our study, one of the two wavebands was in the red-edge region and 

the other was in the SWIR region (Table 6.3), thus causing a weaker relationship 

(R
2
=0.654, Table 6.4) between SPAD value and NDVI. Moreover other factors such as 

environmental conditions, soil background, type of crops and sunlight can affect  

spectral reflectance. For indices with three-band combination,  index 5 by 600±15 nm in 

the red region, 720±15 nm in the red edge area and 1325±15 nm at SWIR region (Table 

6.3), the SPAD value could be estimated with  R
2
 =0.832 and R

2
 = 0.838 in the 

calibration and validation datasets, respectively. Two of the three wavelengths of index 

5 were similar to index 1. This means that adding another wavelength in the red band in 

equation 5 could improve the SPAD value estimation by 8% (Table 6.4). A relatively 

broad band (λ1) in the green region at 525~530 nm with a narrow band (λ2) at the  
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MS-NIR shift (1125 nm) was different (indices 1, 2 and 4 in Table 6.3) for grain yield 

estimation compared to index 3 (R
2
 =0.717) with λ1=1030±5 nm and λ2=1120±10 nm. 

Furthermore the blue region with λ2=405±15 nm and the MS-NIR region with 

λ1=1125±15 nm and λ3=1080±15 nm appeared in index 7 to estimate grain yield by 

three-band combination as a strong relation (R
2
=0.725). The red (665 nm) and red edge 

(745~765 nm) regions were the most effective bands in the indices for protein 

prediction, but there were other bands such as the green region at 510 nm in index 3 and 

the NIR (885 nm) region in index 7 for estimation of protein content.  

To avoid models being over-fit hence the relationships need to be validated using 

independent datasets (2012 dataset). On the other hand, most relationships between crop  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crop 

variables  
Indices  

Calibration dataset  Validation dataset  

R
2
  R

2
  

Linear  Exponential Linear Exponential 

SPAD  

Index 1  0.764 0.773 0.761 0.776 

Index 2  0.654 0.698 0.642 0.724 

Index 3  0.706 0.747 0.726 0.753 

Index 4  0.701 0.726 0.675 0.677 

Index 5  0.832 0.841 0.838 0.841 

Index 6  0.801 0.807 0.812 0.819 

Index 7  0.612 0.613 0.64 0.658 

Yield  

Index 1  0.609 0.613 0.624 0.654 

Index 2  0.559 0.603 0.558 0.528 

Index 3  0.717 0.744 0.722 0.782 

Index 4  0.622 0.631 0.631 0.611 

Index 5  0.617 0.618 0.582 0.612 

Index 6  0.606 0.607 0.733 0.713 

Index 7  0.725 0.748 0.719 0.739 

Protein  

Index 1  0.652 0.693 0.652 0.676 

Index 2  0.631 0.677 0.662 0.683 

Index 3  0.792 0.801 0.788 0.798 

Index 4  0.673 0.703 0.696 0.676 

Index 5  0.739 0.748 0.751 0.771 

Index 6  0.786 0.799 0.807 0.812 

Index 7  0.682 0.736 0.688 0.648 

Table 6.4 Coefficients of determination (R
2
) between various vegetation indices 

(VIs) and specific crop variables in both calibration and validation datasets 
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physiological variables and spectral indices are nonlinear. It was noticed in this study 

that overwhelming proportions of the best nonlinear models between three different 

applied regression models (logarithmic, exponential and polynomial) were exponential 

models (Table 6.4). The relationship between broad band and short-band vegetation 

indices for the crop physiological variables was investigated and the performance was 

compared to the selected wavelengths. The best coefficients of determination (R
2
) using 

linear and exponential regression were obtained for estimates of SPAD value, grain 

yield and protein content. There was a high degree of coincidence between the selected 

broad and narrow bands for the best vegetation index and the size of the partial least 

squares (PLS) regression coefficients reported by Rasooli et al., (2013b). According to 

Table 6.5, the PLS procedure for full-spectrum analysis due to its ability to compress 

data has high potential to predict crop growth conditions; however, difficulties with the 

PLS method include a complex algorithm, which could be difficult to understand, and a 

large number of wavelengths that were used for the calibration model. While it is 

necessary to combine this large number of wavelengths in appropriate vegetation 

indices related to crop growth properties. Table 6.5 shows a comparison between the 

results of PLS models and the best two-band and three-band vegetation indices. 

Regarding to Table 6.5, between 7 vegetation indices in Table 6.1, index 1 for SPAD 

value and index 3 for both grain yield  

and protein content with a two-band wavelength were fitted in the same ranges of 

spectral wavebands that had already been determined with PLS models. Indices 5, 7 and 

6 as three-band indices were placed in the same ranges with PLS model could estimate 

accurately SPAD value, grain yield and protein content respectively. This means that 

the same wavelengths were important in both methods. 

 

 

 

Crop Variables PLS  The best two-band Indices   The best three-band Indices   

 

factors R2 RMSE Index R2 RMSE Index R2 RMSE 

SPAD (-) 5 0.774 1.28  1 0.764 1.35  5 0.832 1.08 

Yield (kg-1Ha) 5 0.763 677 3 0.717 732 7 0.725 709 

Protein (%) 5 0.767 0.62 3 0.792 0.58 6 0.786 0.59 

Table 6.5 The results of R
2
 and RMSE were compared to PLS modelling and the best 

broad and narrow-bands vegetation indices with linear and exponential fit, respectively 

for investigated crop biophysical variables; SPAD value, grain yield and protein 

content 
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These results suggest that the optimal information on crops is not necessarily 

concentrated in the red and NIR wavelengths. The waveband combinations providing 

optimal information are dependent on a host of variables, such as crop growth stage, 

crop condition, and cultural practices. An interesting result in Table 6.3 is the frequent 

appearance of narrow bands from the visible portion (400 nm to 700 nm) apart from the 

longer wavelength portion of NIR, MS-NIR and SWIR. The visible spectrum is very 

sensitive to loss of chlorophyll, browning, ripening, and senescing variations in 

carotenoid (Blackburn, 1998) and soil background effects. The visible spectrum is 

highly sensitive to crop senescence rates and is generally an excellent predictor of 

protein content and grain yield (Idso et al., 1980). This study showed that the most 

sensitive portions of bands to predict senescing grain yield were predominantly in the 

MS-NIR broad band (centered at 1030 nm to 1130 nm) and visible green narrow bands 

(520 nm to 530 nm). 

 

6.4   Conclusions  

 

Vegetation indices are potentially useful for early estimation of crop physiological 

variables. However, selection of the correct wavelengths and bandwidths are important. 

In this study, the optimum number of hyper-spectral bands, centers, and widths in the 

visible (VIS), near infrared (NIR), moisture-sensitive near infrared (MS-NIR) and 

shortwave infrared (SWIR) spectra were investigated for establishing relationships with 

agricultural crop physiological characteristics (winter wheat). This recommendation is 

based on the study of field experiments for three years, two growth stages, and wide 

ranging crop growth conditions. A remarkably strong relationship with crop variables is 

located in specific narrow bands in the shorter wavelength portion of the red and red 

edge, 650 nm to 750 nm, with secondary concentrations in the longer wavelength 

portion of MS-NIR, 1030 nm to 1130 nm, in one particular section of SWIR, 1315 nm 

to 1330nm, and in the blue and green ranges at 405 nm to 530 nm. An overwhelming 

proportion of these channels had bandwidths that were classified as (1) very narrow (5 

nm to 9 nm wide) or (2) narrow (10 nm to 15 nm wide). Index 1 with two wavelengths 

and index 5 with three wavelengths were appropriate for estimating the SPAD value up 

to R
2
 =0.764 and R

2
 =0.832, respectively. Index as a two-band vegetation index had a 
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high linear fit for early prediction of both grain yield (R
2
 =0.717) and protein content 

(R
2
 =0.792). Index 7 as a three-wavelength combination had a strong relationship (R

2
 

=0.725) with grain yield, while index 6 worked well to estimate protein content (R
2
 

=0.786) with three wavelengths. Selection of the optimal waveband combination in 

several kinds of vegetation indices improves the relation to the investigated crop using a 

linear regression method. On the other hand, due to the ability of PLS regression to 

reduce collinearity in spectral datasets, models using PLS can produce appropriate wave 

ranges to choose individual wavelengths by a strong relationship with crop variables. In 

other words, PLS models can further improve this relation to specify important wave 

bands that are related to crop variables. The results of this study could be used to help 

develop an in-field growth condition monitoring system such as an N sensor and yield 

estimation sensor for winter wheat. 
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7.1   Introduction 

 

Precision farming (site-specific management, prescription farming, and variable rate 

application technology) is an information and technology-based agricultural 

management system to identify, analyze, and manage site-soil spatial and temporal 

variability within fields for optimum profitability, sustainability, and protection of the 

environment. This implies the concept of using information about variability in site and 

climatic characteristics to manage specific sites in a field by using management 

practices. The main components of precision farming are global navigation satellite 

system (GNSS), geographic information systems (GIS), remote sensing (RS), and 

variable rate application (VRA). Precision agriculture requires reliable technology to 

acquire accurate information on crop conditions. Based on this information, the amount 

of fertilizers and pesticides for the site-specific crop management can be optimized. A 

ground-based optical sensor and instrumentation system was developed to measure real-

time crop conditions.  

 

7.2   Research background 

 

Remote sensing has great potential for several applications because it enables wide-

area, non-destructive, and real-time acquisition of information on ecophysiological plant 

conditions. Remotely sensed data, obtained either by satellite, aircraft or grand-based 

platforms, can provide a set of detailed and spatially distributed data on plant growth 

and development. Remote sensing can be used to delineate crop biophysical parameters, 

and several ground-based biophysical parameters, that can be related to the remotely 

sensed canopy using empirical methods. On the other hand, the growth response of 

vegetation in relation to measured or predicted climatic variables can be monitored by 

multispectral vegetation indices resulting from canopy reflectance in a relatively wide 

waveband. Vegetation indices such as the perpendicular vegetation index and the 

normalized difference have been developed to monitor vegetative growth at all stages. 

Vegetation indices are mostly ratios or linear combinations of signals from radiometer 

bands. These indices provide more highly correlated relationships than individual bands 

with vegetation parameters including green leaf area index, wet and dry biomass, 
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percent cover by vegetation, plant height, fraction of leaf chlorosis, and leaf water 

content. 

 

7.3   Materials and methods 

 

A winter wheat field of 40 m × 120 m in size was cultivated in three consecutive 

years in the experimental field of Hokkaido University, Japan. The field was divided 

into 8 areas, and four levels of fertilizer (ammonium nitrate), 0, 30, 60 and 90 kg ha¹־ 

with two repetitions were applied to create a range of crop growth variations. Field in-

season measurements including SPAD value, canopy reflectance using an active         

N-sensor embedded on the tractor as a ground-based platform with an RTK-GPS and 

solar sensor, spectral reflectance data using a portable spectroradiometer, height of the 

crop, nitrogen content of leaves, protein content of grain and grain yield were done after 

the stem elongation and anthesis stages.  

 

7.4   Evaluation of plant nutrition sensor  

 

The performance of a ground-based remote sensing system, CropSpec, for measuring 

wheat growth parameters was evaluated. The results showed that CropSpec has the 

potential to estimate growth status in winter wheat. We observed linear relationships of 

CropSpec values with SPAD value, height of the crop, nitrogen content, and protein 

content of grain. The results indicated that CropSpec can be used to determine crop 

health status and make an appropriate topdressing decision. CropSpec allowed better 

relationships for SPAD, nitrogen, and protein at the GS 39 growth stage. This suggests 

that the optimum time to take S1 value readings in Sapporo may be the GS 39 to GS 45 

growth stages. Green NDVI had the best correlations with INSE S1 value and other 

measured parameters, indicating that use of other optimal wavelengths may improve the 

capability of CropSpec for prediction of crop conditions rather than the present 

wavelengths.  
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7.5   Individual wavelength selection by multivariate analysis  

 

A correlation coefficient spectrum, partial least squares regression (PLSR), and 

stepwise multi-linear regression (SMLR) procedures were used to determine important 

wavelengths. Both SMLR and PLS regression procedures yielded good results. Three 

ranges of wavelengths were selected by considering the PLS B-coefficient and VIP 

plotted with spectral measurements in each crop variable (SPAD value, grain yield and 

protein content). The accuracy of PLSR performance (R
2
) was improved from 0.77 to 

0.84, 0.76 to 0.87 and 0.76 to 0.8 in SPAD, grain yield and protein content, respectively, 

in the validation results. Some wavelengths [(435, 550, 665, 705, 730, 1315 and 1325 

nm), (410, 520, 535, 1025, 1080, 1125, 1130, 1235, 1265 and 1305 nm) and (445, 505, 

640, 665, 670, 700, 760, 890 and 930 nm)] were identified by both PLSR and SMLR as 

significant individual wavelengths for SPAD value, grain yield and protein content, 

respectively, which have already been recognized in two steps of modelling and 

validation PLSR.  

 

7.6   Optimal vegetation indices for monitoring winter wheat growth status 

 

The optimum number of hyper-spectral bands, centers, and widths in the visible 

(VIS), near infrared (NIR), moisture-sensitive near infrared (MS-NIR) and shortwave 

infrared (SWIR) spectra for establishing relationships with agricultural crop 

physiological characteristics (winter wheat) were determined. A remarkably strong 

relationship with crop variables is located in specific narrow bands in the shorter 

wavelength portion of the red and red edge, 650 nm to 750 nm, with secondary 

concentrations in the longer wavelength portion of the MS-NIR, 1030 nm to 1130 nm, 

in one particular section of the SWIR, 1315 nm to 1330nm, and in the blue and green 

ranges at 405 nm to 530 nm. The difference vegetation index 1 (VDI) with two 

wavelengths and plant senescence reflectance index 5 (PSRI) with three wavelengths 

were appropriate for estimating SPAD value up to R
2
 =0.764 and R

2
 =0.832, 

respectively. The root difference vegetation index (RDVI) as a two-band vegetation 

index showed a high linear fit for early prediction of both grain yield (R
2
 =0.717) and 

protein content (R
2
 =0.792). Index 7 (SR) as a three-wavelength combination had a 
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strong relationship (R
2
 =0.725) with grain yield, while index 6 (MSRI) worked very 

well to estimate protein content (R
2
 =0.786) with three wavelengths.  
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