<table>
<thead>
<tr>
<th>Title</th>
<th>A New Class of Endoplasmic Reticulum Export Signal ΦXΦXΦ for Transmembrane Proteins and its Selective Interaction with Sec24C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>大津 航</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-09-25</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/53801</td>
</tr>
<tr>
<td>Rights(URL)</td>
<td>http://creativecommons.org/licenses/by-nc-sa/2.1/jp/</td>
</tr>
<tr>
<td>Type</td>
<td>theses (doctoral - abstract and summary of review)</td>
</tr>
<tr>
<td>Additional Information</td>
<td>There are other files related to this item in HUSCAP. Check the above URL.</td>
</tr>
</tbody>
</table>

| File Information | Wataru_Otsu_abstract.pdf (「論文内容の要旨」) |

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
様式4

学位論文内容の要旨

博士の専攻分野の名称：博士（薬学）

氏名：大津 航

学位論文題名
A New Class of Endoplasmic Reticulum Export Signal \(\Phi \Phi \Phi \Phi \) for Transmembrane Proteins and its Selective Interaction with Sec24C

（膜蛋白質小胞輸出の分子機構：新規シグナル配列 \(\Phi \Phi \Phi \Phi \) と Sec24C の選択的相互作用）

小胞体（ER）で合成された膜内在性蛋白質は、Sar1-GTP と Sec23/Sec24、Sec13/Sec31 各複合体から構成される coatmer protein complex II （COP II）小胞に組み込まれてゴルジ装置へ運ばれる。この小胞輸出には、積荷蛋白質の特定アミノ酸配列モチーフ（ER 輸出シグナル）が Sec24 と選択的に結合することが必要である。Di-acidic 配列、di-hydrophobic 配列をはじめとする多様な ER 輸出シグナルと Sec24 分子の多様性が、多くの蛋白質の COP II 小胞への組み込みを可能としているとされるが、具体的な相互作用が明らかにされている例は少ない。

AE1 (anion exchanger 1、バンド3) は、赤血球と腎臓集合管上皮細胞に分布する膜内在性蛋白質である。AE1 遺伝子の異常で起因する遺伝性球状赤血球症や遠位尿細管アシドーシスの分子病態解析から、ヒト AE1 の極性分布や非極性細胞における細胞膜への輸送には C 末端 11 アミノ酸残基が必須であることが明らかにされている。例えば、HEK293 細胞に発現させた C 末端 11 アミノ酸を欠く変異体 (AE1 Δ11) は、細胞膜に輸送されず ER に滞留する。ところが、牛の AE1 を HEK293 細胞に導入すると、AE1 Δ11 は野生型と同様の効率で細胞膜に運ばれ、ER への滞留はみられない。したがって、その ER からの輸出は、ヒトとは異なる未知のシグナルで規定されることが示唆される。本研究の目的は、AE1 の ER 輸出に関わる新たなシグナルを同定し、そのメカニズムを解明することにある。

まず、AE1 と AE1 Δ11 の N 末端細胞質ドメインに焦点をあて、一連の牛–ヒトキメラ蛋白質を作製し HEK293 細胞に発現させてそれらの細胞内局在を比較した。AE1 蛋白質は N 末端に enhanced green fluorescent protein (EGFP) を付加して細胞内分布を観察し、また細胞表面ビオチン化法で細胞膜における発現を解析した。その結果、N 末端領域の 25 SVI PM 配列が牛 AE1 の細胞膜における発現を規定することが判明した。この配列のアミノ酸置換変異体について同様の解析を行った結果、25 SVI PM 部分が (V/L/F) X (I/L) X (M/L) である場合に EGFP–AE1、EGFP–AE1 Δ11 はいずれも細胞表面に効率よく輸送される一方、いずれかの疎水性アミノ酸のアラニン置換体は全て ER への滞留を示した。したがって、この \(\Phi \Phi \Phi \Phi \) 配
列（Φ は硫黄水性、X は任意のアミノ酸残基）が、ER からの小胞輸出を規定するシグナルとなる可能性が示された。

最後に、この ΦXΦX配列の COPII 小胞側の受け手となる分子の検討を行った。牛 AE1 の N 末端領域に Halo tag を付加したリコンビナントペプチド bN[1-37]-Halo を作製し、同じくヒト配列由来の hN[1-39]-Halo を対照として、HEK293 細胞の可溶化抽出蛋白質と孵孵し、特異的に結合する蛋白質を得た。これらの蛋白質をトリプシン消化のうえ質量分析装置で解析したところ、Sec24C と Sec23A であることが示唆された。そこで、Sec24A～Sec24D を発現させた HEK293 細胞抽出液と上記のリコンビナントペプチドを孵孵したところ、Sec24C が bN[1-37]-Halo と特異的に結合することが判明した。さらに、Sec24C/Sec24D 上の IXM モチーフ結合部位として知られる LIL のアラニンに置換した Sec24C-AAA 変異体では、リコンビナントペプチドとの結合が失われ、またこれを同時に細胞に導入すると、bN[1-37]Ly と hN[P27V/S291]Ly の糖鎖成熟が阻害された。これらの結果は、Sec24C が ΦXΦX 配列を特異的に認識・結合する COPII 小胞側の受け手として機能し、その結合が LIL を含む領域で生じることを示唆している。

以上の知見から、新たなモチーフ配列 ΦXΦXΦが膜内在性蛋白質の ER 輸出シグナルとして働くこと、この ΦXΦXシグナルは Sec24C との特異的結合を介して糖鎖蛋白質の COPII 小胞への組み込みと ER-ゴルジ間小胞輸送を効率化することが解明された。