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Preface

Stochastic analysis has been receiving much attention from researchers in

many different fields, such as finance and statistical physics, and remarkable

progress has been made. In particular, many mathematical tools, including

Malliavin calculus, have been developed in stochastic differential equations

and applied to these fields. Theoretical biologists formerly contributed to

the development of stochastic analysis in population genetics, population

ecology, and other fields. However, these applications of stochastic analysis

to biology seem to have been no signifficant development over the last 30

years. Although stochasticity in the life history of organisms is recognized

by empirical research, theorists still have applied deterministic models or

used only computer simulations in studies of recent years. One reason for

this is that stochastic analysis requires advanced knowledge of mathematics

and fewer mathematical tools are available as compared to the situation in

classic dynamic systems. Now, this situation is gradually changing.

In this study, we have produced innovations in several aspects of stochas-

tic analysis. In Part I, we propose an age-size path-integral model induced by

an age-size structured partial differential equation. The path-integral model
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is not only a novel formularization of structured population models; it also

provides a probability measure of stochastic size growth. This measure is

used to provide all the expectations in this analysis. Part II is devoted to an

application of a Dirichlet boundary problem (the optimal stopping problem)

to optimal life schedule problems in semelparous species and of stochastic

control theory to life history. Part III and Part IV provide analyses of specific

examples of Part II. This study should give as impetus to the systematiza-

tion of theoretical biology in which we can analyze both deterministic and

stochastic phenomena.
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Part I

Introduction

Environmental change on a global scale is one of the world’s great pending

problems. Many ecologists are concerned that these changes will affect not

only economic activity, but also the preservation of ecosystems and biodi-

versity. The effects of environmental change are considered to cause several

stochasticities in ecosystems, including those in life histories. Ecological de-

mographers have recently noted the effects of environmental stochasticity

on population dynamics, including annual fluctuations in the total amounts

of resources and climatic variations as well as demographic stochasticity [1].

Using transition matrix models (TMMs) [2, 3], ecologists have also shown an-

other effect of stochasticity, which is the shortening of individual life spans.

The most notable effect of stochasticity is considered to be the reduction

of fitness [4, 5, 6]. Fitness is defined by the maximum eigenvalue in linear

demographic models (LDMs), such as TMMs and integral projection mod-

els (IPMs), and reflects the population growth rate under a steady state of

the population. Fitness in LDMs depends on elements of life history, e.g.,

body size and growth, survival, and stage transition rates. These vital rates
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are affected by the life histories of each species. Therefore, environmental

stochasticity should be considered when examining optimal schedule prob-

lems.

Generally, LDMs include two different kinds of stochasticities, namely,

“internal stochasticity” and “external stochastisity.” For example, in TMMs

used by ecologists, internal stochasticity gives a species a set of transition

probabilities to other states, whereas external stochasticity variegates the

values of these transition probabilities annually. In other words, the former

generates the transitions from a single state to multiple states, and the lat-

ter generates annual fluctuations in each element of the transition matrices.

Then, the population vector at time t is in twofold stochasticity. Incidentally,

demographers show that external stochasticity causes reductions in fitness by

using a geometric mean of temporal fitness [7], whereby external stochasticity

represents the environmental stochasticity for demographers and ecologists.

Corroborating whether twofold stochasticity yields annual fluctuations in

finite populations is difficult because each individual does not always reflect

all events generated by both stochasticities. Therefore, one may reasonably

use an infinite dimensional population vector that can cover every event in the
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environment. If the population vector includes only internal stochasticity, it

satisfies a partial differential equation (PDE) [8], while if the population vec-

tor includes only external stochasticity, it satisfies a stochastic PDE (SPDE),

as in [9], and is numerically analyzed by [10]. Most studies have examined

the effects of external stochasticity on factors such as the population growth

rate (fitness), life history traits, and life span [4, 5, 6, 2, 3, 9, 10]. However,

few studies have noted the differences in the two stochasticities or have fo-

cused on the effects of internal stochasticity. Internal stochasticity has not

attracted attention because, to date, we have not had the proper methods

to analyze the effects of internal stochasticity. In brief, the effects of internal

stochasticity on fitness are still far from well known.

In this study, we focus on internal stochasticity, which affects the body-

size growth rate under r-selection. We construct a mathematical model of

the stochastic life history of each individual using a stochastic differential

equation (SDE) and analyze the relationship between optimal life history

and population dynamics with stochasticity. Then, we hypothesize that the

population vector is composed of continuous age and body size, and that

the dynamics satisfy a PDE. We suggest that the solution of the PDE can
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be expressed using path integrals. We will also show that the path-integral

expression provides the IPM with a projection kernel. Consequently, our

expression is consistent with other expressions of LDM. Additionally, we will

derive the Euler–Lotka equation of stochastic growth, which connects fitness

with life history. Then, we focus on an objective function generating the

Euler–Lotka equation and several statistics of stochastic growth, such as the

expectations of reproductive success and basic reproductive number, and the

cumulant generating function of breeding age, derived from the function [11].

Furthermore, we introduce the ways in which optimal life schedule prob-

lems (OLSP) should be analyzed in r-selection with stochasticity. If internal

stochasticity negatively affects fitness, the fittest individual is one possess-

ing the optimal controls to avert the effects of stochasticity in the habitat.

Accordingly, we focus on the control of internal stochasticity and use con-

cepts of “Stochastic Control Theory” to build an optimal control for internal

stochasticity. Then, we focus on applications of the objective function to

analyze optimal stochastic growth strategies. First, we show the relation-

ship between the age-size LDM and the Hamilton–Jacobi–Bellman (HJB)

equation from control theory. Second, we apply this theory to analyze two
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different breeding systems. Finally, we discuss the meaning of the maximized

objective function and the relationship between the convexity of the function

and optimal strategy.
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Part II

Population vector with
stochastic life history

In this section, we show a relationship between individual stochastic life his-

tory and population dynamics. We will construct a theory by the following

procedure. First, we provide a general stochastic life history, which is com-

posed of the stochastic growth rate of each individual, fertility rate, and

survivorship functions including semelparity, iteroparity, and more general

breeding systems. Second, we introduce the dynamics of a population vector

following the above life history as an age-size structured model.

1 Assumptions of stochastic life history

We consider the growth rate of individuals with respect to body size Xa ∈

A ⊆ R+ at age a, A being the domain of body size. The growth rate is as

follows: 
dXa = g (Xa) da+ σ (Xa) dBa

X0 = x,

(1.1)

where x represents initial body size, and g (0) = σ (0) = 0. On the right-hand

side, the first term is the drift, g (Xa), which represents deterministic rule of
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the size growth process; the second term, σ (Xa), represents fluctuation at

Xa, and Ba denotes Brownian motion. In addition, we assume Eq.(1.1) is

Ito ’s SDE [12, 13] and set fertility and mortality functions, which depend

on body size, y, as follows:

F (y) ≥ 0, (1.2)

µ (y) > 0.

To consider a general life history, it is sufficient for fertility to have only

integratablity here. Then, we define survivorship as follows:

S (a) := exp

{
−
∫ a

0

dτµ (Xτ )

}
. (1.3)

We here call Eqs.(1.1), (1.2), and (1.3) the set of life history equations.

2 Construction of the age-size structured model

and offspring dynamics

Setting Pt (a, y) as the population vector at time t and age a with growth

from x to y, the dynamics of population vectors are well known to generally

13



follow a continuous age-size structured model:

[
∂

∂t
+

∂

∂a

]
Pt (a, y) = −HyPt (a, y)

Hy :=
∂

∂y
g (y)− 1

2

∂2

∂y2
σ (y)2 + µ (y)

Pt−a (0, y) = nt−a (x) δ (x− y) ,

(2.1)

where Hy, nt−a (x), and δ (x− y) represent the Fokker–Planck Hamiltonian

with mortality, initial number of offspring at time t − a, and Dirac delta,

respectively, (see [14, 15]).

When we begin observations at time zero, the dynamics of offspring num-

ber nt (x) at time t follow the equation:

nt (x) = Gt (x) +

∫ t

0

da

∫
A

dyF (y)Pt (a, y)

Gt (x) :=

∫ ∞

t

da

∫
A

dyF (y)Pt (a, y)

G0 (x) = n0 (x) ,

(2.2)

where Gt (x) and n0 (x) respectively represent a function, which gives a con-

tribution of generations before the observation, and the initial number of

offspring.
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3 Path-integral expression of an age-size struc-

tured model

In this section, we introduce a new formalism of the population vector pro-

vided by a path-integral expression and provide a formal solution of Eq.(2.1).

The functional form of the solution calculates the connection with a solution

of classic age-structured models. Next, we show that the analysis of age-size

transition can be equivalent to statistical physics approaches and to stochas-

tic analysis in the path integral.

3.1 Introduction of a path-integral expression to the
population vector

Using a path integral, we can decompose the solution of Eq.(2.1) into the

initial population vector and projection function (Appendix A) as follows:

Pt (a, y) = nt−a (x)Ka (x→ y) . (3.1)

Note that we set K0 (x→ y) = δ (x− y). Ka (x→ y) represents the projec-

tion of growth from x to y at age a:

Ka (x→ y) := lim
ϵ→0

∫
A

· · ·
∫
A

M−1∏
j=1

dxj

M−1∏
j=0

K ′
ϵ (xj → xj+1)

∣∣∣
Mϵ=a,x0=x,xM=y

,
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whereK ′
ϵ (xj → xj+1) is projection at sufficiently short time ϵ and is expressed

by
Ka (x→ y) =

∫ Xa=y

X0=x

D (x)

∫ ∞

−∞
D (q) exp

{∫ a

0

dτ
(
−iqτẊτ −H (−iqτ , Xτ )

)}
H (−iqτ , Xτ ) := −iqτg (Xτ ) + q2τσ (Xτ )

2 + µ (Xτ ) ,

(3.2)

where qτ represents an adjoint parameter, or
Ka (x→ y) =

∫ Xa=y

X0=x

D (x) exp

{∫ a

0

dτL
(
Ẋτ , Xτ

)}

L
(
Ẋτ , Xτ

)
:= −

(
Ẋτ − g (Xτ )

)2

2σ (Xτ )
2 − µ (Xτ ) .

(3.3)

D (ξ) denotes

D (ξ) :=

∫
· · ·

∫ ∏
τ∈(0,a)

dξτ ,

(see Appendix A and E). The path integral is a summation over an infinity

of possible growth curves connecting x with y with the sieve of mortality to

compute the density in Eq.(1.3). Eqs.(3.2) and (3.3) are known in physics

as the Hamiltonian expression and Lagrangian expression, respectively (the

derivation is shown in Appendix A) [16]. The path integral is a limit of a

Markovian process with respect to a short time interval ϵ keeping Mϵ = a
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and gives a specific expression of

Pt (a, y) = nt−a (x)Ka (x→ y)

= nt−a (x) lim
ϵ→0

∫
A

· · ·
∫
A

M−1∏
j=1

dxj

M−1∏
j=0

K ′
ϵ (xj → xj+1)

∣∣∣
Mϵ=a,x0=x,xM=y

= nt−a (x) lim
ϵ→0

∫
A

· · ·
∫
A

M−1∏
j=1

dxj

M−1∏
j=0

pϵ (xj → xj+1)

× exp [−ϵµ (xj)]
∣∣∣
Mϵ=a,x0=x,xM=y

,

(3.4)

where pϵ (xj → xj+1) represents the transition probability of xj to xj+1 and

satisfies

K ′
ϵ (xj → xj+1) = pϵ (xj → xj+1) exp {−ϵµ (xj)} . (3.5)

Therefore, the population vector of Eq.(3.1) also satisfies a solution of IPM

[17, 18], such that

Pt+ϵ (a+ ϵ, y) =

∫
A

dξKϵ (ξ → y)Pt (a, ξ) . (3.6)

It means that Eq.(3.6) is equivalent to Eq.(3.1). Then, Kϵ (ξ → y) plays a

role of a projection kernel and satisfies

∫
A

dyKa (x→ y) = Ex [S (a)] . (3.7)

Ex [S (a)] represents the expectation of survivorship until age a starting from

initial body size x. In justification of Eq.(3.7), the path integral provides

17



the specific probability measure of the stochastic growth and life history

statistics, such as the basic reproductive number and mean life span, as

defined by the measure.

The constitution of the projection function is important for understanding

the population structure because all information on growth and survival is

included in the function. Therefore, the projection function provides the age-

size distribution with stochastic growth for each cohort, and its functional

form is provided by a solution of the Fokker–Planck equation as follows:
∂

∂a
Ka (x→ y) = −HyKa (x→ y)

K0 (x→ y) = δ (x− y) ,
(3.8)

by substituting Eq.(3.1) into Eq.(2.1).

3.2 Connection of stochastic life history to statistical
physics

An advantage of using a path-integral expression is that we can introduce a

method popular in statistical physics, as in the following example, whereby

a scale transformation is used in the path integral expression to obtain the

Lagrangian solution. Eq.(1.1) generally has asymmetric noise generated by

σ (Xa). To clarify the effects of stochasticity on growth dynamics, we set

18



σ (y) = κν (y) (κ > 0) in Eq.(1.1) and change the variable Xa to a new

variable, Za [15], such that

Za =

∫ Xa

dyν (y)−1 , (3.9)

and by using Ito’s formula,

dZa =
d

dζ
Jκ (ζ)

∣∣∣
ζ=Za

da+ κdBa

Z0 = z

Jκ (ζ) :=

∫ ζ

z

dy

[
ḡ (y)

ν̄ (y)
− κ2

2

d

dy
ν̄ (y)

] (3.10)

where

ḡ (ζ) := g ◦ x−1 (ζ) , ν̄ (ζ) := σ ◦ x−1 (ζ) ,

is Smoluchowski equation [12, 13]) (x−1 represents the inverse function of

Eq.(3.9) ). Then, the new Hamiltonian in Eq.(2.1) becomes

H†
ζ =

∂

∂ζ

(
d

dζ
Jκ (ζ)

)
− κ2

2

∂2

∂ζ2
+ µ̄ (ζ) , (3.11)

where µ̄ (ζ) = µ ◦ x−1 (ζ). Using the function

r (ζ) := exp

{
1

κ2
Jκ (ζ)

}

19



and the transform of H†
ζ , such that Oζ := r (ζ)−1H†

ζr (ζ), we obtain the

following operator:
Oζ = −

κ2

2

∂2

∂ζ2
+ V (ζ)

V (ζ) : = − 1

2κ2

(
d

dζ
Jκ (ζ)

)2

+
1

2

d2

dζ2
Jκ (ζ) + µ̄ (ζ) .

(3.12)

Letting K†
a (z → ζ) be a projection function of Eq.(3.10), it can now be ex-

pressed by a new projection function Wa (z → ζ) as follows:

K†
a (z → ζ) = r (ζ)Wa (z → ζ) (3.13)

which is the solution of
∂

∂a
Wa (z → ζ) = −OζWa (z → ζ)

W0 (z → ζ) = r (ζ) δ (z − ζ) .
(3.14)

Then, the Lagrangian expression of Eq.(3.14) becomes the well-known path

integral used in physics:

Wa (z → ζ) =

∫ Za=ζ

Z0=z

D (z) exp

{∫ a

0

dτ

[
− 1

2κ2
Ż2

a − V (Za)

]}
, (3.15)

composed of infinitely many convolutions of the following Gaussian kernels

pϵ (zj → zj+1) =
1√

2πκ2ϵ
exp

{
−(zj+1 − zj)2

2κ2ϵ

}

obtained from Eq.(3.4), known as the Wiener measure [19]. Aside from the

biological point of view, the dynamics of the rescaled body size Za behave like

20



Brownian motion in the potential field V (ζ). From Eqs.(3.13) and (3.15),

we obtain

K†
a (z → ζ) =

∫ Za=ζ

Z0=z

D (z) exp

{∫ a

0

dτL†
(
Żτ , Zτ

)}
L†

(
Żτ , Zτ

)
: = − 1

2κ2

(
Żτ −

d

dζ
Jκ (ζ)

∣∣∣
ζ=Zτ

)2

− 1

2

d2

dζ2
Jκ (ζ)

∣∣∣
ζ=Zτ

− µ̄ (Zτ ) .

(3.16)

Then, it is shown that a kinetic equation,

Żτ =
d

dζ
Jκ (ζ)

∣∣∣
ζ=Zτ

, (3.17)

characterizes the size transition of the cohort. Let a body size, y1, and the

transformation, ζ1, be an observed body size. If the trajectory of Eq.(3.17)

reaches ζ1 for all z, all individuals can reach the body size y1 without acci-

dental death with probability 1 [20]. We can analyze stochastic effects on the

growth of individuals in the same way as the analysis of the deterministic

dynamic system in Eq.(3.17).

Additionally, the path-integral expression tells us that mortality has the

same meaning as potential energy in the theory of potential fields. From

the Principle of Least Action, a classic growth curve reaching ζ at age a is

expressed by inverse transformation of the solution in the Euler–Lagrange

21



equation: 
[
d

dτ

∂

∂Żτ

− ∂

∂Zτ

]
L†

(
Żτ , Zτ

)
= 0

Z0 = z, Za = ζ.

(3.18)

We can obtain the growth curve of the original variable Xa directly by using

the original Lagrangian (in Eq.(3.3)) and its Euler–Lagrange equation. Since

both of the Lagrangians depend on mortality, the body-size transition curve

is affected by mortality. In deterministic growth (κ → 0), however, the

dominant term of L̃ becomes

lim
κ→0
L†

(
Żτ , Zτ

)
= − 1

2κ2

(
Żτ −

ḡ (Zτ )

ν̄ (Zτ )

)2

and the effect of mortality on the size transition disappears, because all

individuals have the same body size in each cohort. Therefore, it is a property

of internal stochasticity that the body-size transition of cohorts does not

match with individual growth, if mortality depends on body size.

Using the Wiener measure in Eq.(3.16), Brownian motion appears in the

expectation of survivorship, Eq.(3.7), and can be rewritten as

Ex [S (a)] = Ez

[
exp

{
−
∫ a

0

dτV (Bτ )

}
exp

{
1

κ2
Jκ (Ba)−

1

κ2
Jκ (z)

}]
.

(3.19)

Eq.(3.16) shows that stochastic growth with size-dependent mortality is equiv-

alent to a generalized random walk in the potential field, as explained in
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[21, 22, 23]. The relationship between the path integral and life history of in-

terest is beyond the scope of this study. We only emphasize that the solution

of Eq.(2.1) can be decomposed into the initial population and the projec-

tion function by the path integral. Therefore, the path integral and Eq.(3.1)

provide another formulation of LDM.

4 Euler–Lotka equation in stochastic life his-

tory

In this section, we derive the most important equation of this study from

Eq.(2.2), as another powerful advantage of the path-integral formulation.

The equation corresponds with the definition of the Euler–Lotka equation,

which means a transformation from the life history to population growth

rate. The analysis of the equation provides the optimal life schedule problem

with an evolutional meaning. First, we derive a renewal equation of offspring

dynamics from Eq.(3.1) by the method used by Feller [24]. Then, we calcu-

late a new quantity, the expectation of reproductive success, in the renewal

equation. Second, we can obtain the intrinsic rate of natural increase (here

called fitness) by a well-known method. In the process of deriving fitness, we

obtain an Euler–Lotka equation. However, this equation is different from the
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classic Euler–Lotka because it is defined by the expectation of reproductive

success.

4.1 Renewal equation in the age-size structured model

Substituting Eqs.(3.1) and (3.7) into Eq.(2.2)(see Eq.(3.4)), we obtain

nt (x) =Gt (x) +

∫ t

0

da

∫
A

dyF (y)Pt (a, y)

=Gt (x) +

∫ t

0

da nt−a (x)Ex [F (Xa)S (a)] ,

Additionally, we set a new function

ua (x) := Ex [F (Xa)S (a)] (4.1)

denoting the expectation of reproductive success (ERS) at age a and obtain

a renewal equation as follows:
nt (x) = Gt (x) +

∫ t

0

da nt−a (x)ua (x)

G0 (x) = n0 (x) .

(4.2)

4.2 Euler–Lotka equation in internal stochasticity

The population growth rate is equal to the increasing rate of the number

of offspring caused by the contribution before time zero and of reproductive

success in each generation. The solution of Eq.(4.2) is derived from a well-
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known method, as in Feller’s work [24]. Setting a Laplace transformation of

Gt (x) and ua (x) in Eq.(4.2) as follows:

Ĝλ (x) :=

∫ ∞

0

dt exp {−λt}Gt (x)

ψλ (x) :=

∫ ∞

0

da exp {−λa}ua (x) , (4.3)

the number of offspring becomes

nt (x) = lim
β→∞

1

2πi

∫ α+iβ

α−iβ

dλ exp {λt} Ĝλ (x)

1− ψλ (x)
, (4.4)

by using the inverse transform. Then, we name Eq.(4.3) “objective function.”

nt (x) can be rewritten by a dominant residue of RHS in Eq.(4.4), such that

nt (x) = Qx exp {λ∗t} (1 +O (exp {−ηt})) , (4.5)

(known as the Sharp–Lotka–Feller theorem), where Qx, η > 0 [25]. Then, λ∗

is given by a dominant characteristic root of

1 = ψλ (x) =

∫ ∞

0

da exp {−λa}Ex [F (Xa)S (a)] . (4.6)

Additionally, the dominant root is always a real number because ua (x) is a

bounded and positive function, and ψλ (x) is a monotonic decreasing function

with respect to λ. The dominant root is the intrinsic rate of natural increase.
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Since Eq.(4.6) meets the definition of the Euler–Lotka equation [26], we refer

to it as a Euler–Lotka equation in stochastic life history. The main differ-

ence from the classic Euler–Lotka equation is that the objective function is

composed of ERS. Hereafter, we refer to the intrinsic rate of natural increase

as‘ fitness. ’

From Eqs.(3.1) and (4.5), we can write the general population vector with

stochastic growth as follows:

Pt (a, y) = Qx exp {λ∗ (t− a)} (1 +O (exp {−η (t− a)}))Ka (x→ y) . (4.7)

Thus, path-integral formulation provides the solution of Eq.(2.1) in an iden-

tical way to the McKendrick equation and gives a new objective function

defined by ERS. From an evolutionary point of view, the optimal life sched-

ule ought to maximize fitness in r-selection. To analyze the optimal life

schedule, we require a function relating to the magnitude of fitness. That is,

the key to analyzing the schedule problem is in λ∗, ua (x), and ψλ (x).

5 Objective function and analysis

Thus far, the effects of life history on fitness have been shown to be obtainable

by analyzing only the objective function. This section shows that ψλ (x) has
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an important role in analyzing general life history and demonstrates how we

can obtain life history statistics from this function

First, we show how to derive the objective function using a stochastic

analysis method. Second, we calculate the properties of life history, such

as ERS, basic reproductive number, mean generation time, and mature age

structure.

From the Feynman–Kac formula (Appendix B), the dynamics of ERS

ua (x) satisfies 

∂

∂a
ua (x) = −H̄xua (x)

H̄x := −g (x) ∂

∂x
− 1

2
σ (x)2

∂2

∂x2
+ µ (x)

u0 (x) = F (x) ,

(5.1)

where H̄x is the formal adjoint operator of the Fokker–Planck Hamiltonian

in Eqs.(2.1) and (3.2). Using the Laplace transform from Eq.(5.1), we obtain

that the objective function ψλ (x) satisfies the following:

−
(
H̄x + λ

)
ψλ (x) + F (x) = 0. (5.2)

Therefore, we can calculate the objective function as the solution of Eq.(5.2).

In addition, this equation shows that the objective function depends on all

the elements of life history. Accordingly, we introduce several characteristics
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of life history, written using the function. For example,

ψ0 (x) =

∫ ∞

0

daua (x) (5.3)

represents an expectation of the number of offspring over a lifetime and

corresponds with a definition of basic reproduction number (BRN), or R0 in

mathematical demography [27]. Additionally, using the inverse transform of

Eq.(4.3), we can obtain ERS without solving Eq.(5.1). Moreover, we show in

the next section that life history statistics can be derived from the objective

function and BRN.

Since internal stochasticity is generated by the dispersion of individual

growth rates, breeding age represents the age at which organisms reproduce

and becomes a useful statistic regardless of the breeding system of the or-

ganism. Letting Θλ (x) be a cumulant generating function of breeding age

a⋄, it is simply expressed by expanding the logarithm of objective function

into a Taylor series as follows:

Θλ (x) := logψλ (x)

=
∞∑
l=0

(−λ)l

l!
⟨a⋄⟩(l)x , (5.4)
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and

⟨a⋄⟩(l)x := lim
λ→0

[
(−1)l ∂

l

∂λl
Θλ, (x)

]
. (5.5)

For example, the expectation and variance of a⋄ are the cumulants of l = 1

and l = 2, respectively. Then, the density of a⋄ is given by the following

function

A (a) := lim
β→∞

1

2πi

∫ α+iβ

α−iβ

dλ exp {λa} ψλ (x)

ψ0 (x)
=
ua (x)

ψ0 (x)
. (5.6)

The density function represents a breeding age distribution. Consequently,

analyzing the objective function can provide us with useful information about

characteristics of the breeding system and the population growth in internal

stochasticity. In other words, the objective function represents the essence

of a species in the framework of the analysis of this study. The effect of life

schedule on fitness depends on how we choose the reproductive strategy in

F (y).

6 Application to semelparous species

In this section, we consider an effect of internal stochasticity on a semelparous

life history because semelparous species reproduce only once during their

lifetime. Thus, a species has to choose its reproductive timing in stochasticity.
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Applying the general theory of this section to a semelparous life history, we

show several statistics of a semelparous life schedule in this section.

6.1 Definition of a semelparous life schedule

In semelparous species, we denote mature body size x∗ > x and mature age

a∗, such that

Xa∗ = x∗ a∗ := inf
a
{a > 0|Xa ≥ x∗} , (6.1)

fertility, FS (y), is defined by

FS (y) := δy,x∗ϕ (y) , (6.2)

where δy,x∗ represents Kronecker’s delta; the fertility rate function ϕ (y) is

a monotonically increasing function and satisfies ϕ (x∗) ≥ 1 at a mature

body size x∗. Then, the mature age a∗ is defined as the age at which a

mature body size is attained. In semelparous species, mature age corresponds

with breeding age (a⋄ = a∗). Before attaining a mature age, individuals

are affected by survivorship S (a), which is identical to Eq.(1.3), and no

individuals can survive past the mature age. Then, semelparous survivorship,

SS (a), becomes

SS(a) := 1{a∈[0,a∗]}S (a) . (6.3)
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Figure 1: Life history of semelparous species with stochasticity. Each indi-
vidual has the same initial body size x at age zero and grows at the rate
of Eq.(1.1) with survivorship SS (a) in Eq.(6.3) before attaining maturity
(a∗, x∗). Then, mature individuals reproduce at the fertility rate function,
ϕ (x∗).

Growth

Reproduction

&

Death

Maturity

(0, x)

(a,Xa)

(a∗, x∗)

ϕ (x∗)

S (a)

S (a∗)

Briefly stated, semelparous species grow at the rate of Eq.(1.1) with sur-

vivorship Eq.(6.3). Subsequently, the mature body size is attained x∗, and

individuals reproduce at the rate of Eq.(6.2)(see Fig. 1). However, cohort

dynamics are a simple formalization by path integrals because it is enough to

choose the domain of body size A to (0, x∗). Therefore, semelparous species
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follow a conditional projection function, such that

Ka

(
x→ y

∣∣∣y < x∗
)
, (6.4)

with the same Hamiltonian and Lagrangian as in Eqs.(3.2) and (3.3), respec-

tively. The projection function represents a summation over every growth

curve except when never reaching mature body size at age a and represents

the solution of a boundary condition problem

Ka

(
x→ 0

∣∣∣y < x∗
)
= Ka

(
x→ x∗

∣∣∣y < x∗
)
= 0 (6.5)

in Eq.(3.8). Then, the projection function illustrates the size structure of

juveniles in the cohort.

6.2 Objective function and statistics in semelparous
life history

Since Xa has a strong Markov property from a property of Ito’s SDE [12](see

Appendix B), we can show the following relationship from Eq.(4.3):

ψSλ,x∗ (x) =

∫ ∞

0

da exp {−λa}ua (x)

= Ex [exp {−λa∗}SS (a
∗)]ϕ (x∗) . (6.6)
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Additionally, we obtain a semelparous BRN written as

ψS0,x∗ (x) = Ex [SS (a
∗)]ϕ (x∗) , (6.7)

Eq.(5.4) becomes the cumulant generating function of mature age in semel-

parous species because semelparous breeding age is equivalent to mature

age, a⋄ = a∗. From Eq.(5.6), the probability density becomes the mature age

density.
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Part III

Stochastic control theory in life
history

In this part, we focus on applications of the objective function to analyze

optimal stochastic growth strategies. We show the relationship between the

age-size LDM and the HJB equation from control theory and apply this

theory to analyze two different breeding systems.

7 Configuration of life history and life sched-

ule

To consider the optimal control of life history, in this section, we define life

history with a control vector, as in section 1, and with details of semelparous

and iteroparous life histories.

7.1 Body-size growth processes

We consider the growth rate of individuals with respect to a body size Xa ∈

A ⊆ R+ at age a, A being the domain of body size. The growth rate is as

follows: 
dXa = g (Xa, v) da+ σ (Xa, v) dBa

X0 = x,

(7.1)
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where x represents initial body size, and g (0, v) = σ (0, v) = 0. On the

right-hand side, the significance of g (Xa, v), σ (Xa, v), and Ba are identical

to those of the RHS in Eq.(1.1). We set

v := (v1, v2, · · · , vd) ∈ V ⊂ Rd

to represent a control vector, with V as a compact convex set in R. In

addition, we assume that Eq.(7.1) is Ito’s SDE [12, 13].

7.2 Fertility function and breeding systems

Semelparous and iteroparous breeding systems are defined as types of fer-

tility function. In semelparous species, we use the fertility FS (y), which is

identical to Eq.(6.2), and we define an iteroparous fertility function FI (y) as

a continuous, second-order differentiable function, such that

FI (y) ≥ 0, FI (y) ∈ C2 (A) . (7.2)

Then, the species can reproduce at any time during its growth stage.

We use fertility, Eq.(1.2), as a general breeding system if the analysis is

common to semelparous and iteroparous breeding systems.
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7.3 Mortality and survivorship

Semelparous and iteroparous species have different survivorships. We set a

common mortality function depending on the body size y as follows:

µ (y, v) > 0,

for both types of species. General survivorship S (a) until age a is written as

S (a) = exp

{
−
∫ a

0

dτµ (Xτ , v)

}
. (7.3)

Since semelparous species die upon reproduction, we can set survivorship

as

SS (a) := 1{a∈[0,a∗]}S (a) , (7.4)

by using an indicator function and the general survivorship, Eq.(7.3). We

assume that iteroparous species have a limit of their life span. Letting α ≤ ∞

be the limit of the life span, iteroparous survivorship is written as

SI (a) := 1{a∈[0,α)}S (a) (7.5)

If the maximum life span follows α =∞, the species only dies by accidental

death and Eq.(7.5) corresponds to Eq.(7.3).

36



7.4 Differences in life history between semelparity and
iteroparity

In this section, we refer to Eq.(7.1), Eq.(1.2), and Eq.(7.3) as life history.

Then, we define a semelparous and an iteroparous life history following

Eqs.(6.2) and (7.4), and Eqs.(7.2) and (7.5) under the growth rate Eq.(7.1),

respectively. In other words, we identify each life history by the differences

in fertility and survivorship.

7.5 Population dynamics and objective function

This section gives a definition of the optimal schedule of reproductive timing

and control of size growth under the life history parameters defined in the

previous section. The population vector has Hamiltonian and Lagrangian

expressions in the projection function, Kv
a (x→ y), as follows:

Kv
a (x→ y) =

∫ Xa=y

X0=x

D (x)

∫ ∞

−∞
D (q) exp

{∫ a

0

dτ
(
−iqτẊτ −Hv (−iqτ , Xτ )

)}
Hv (−iqτ , Xτ ) : = −iqτg (Xτ , v) + q2τσ (Xτ , v)

2 + µ (Xτ , v) ,

(7.6)

and 
Kv

a (x→ y) =

∫ Xa=y

X0=x

D (x) exp

{∫ a

0

dτLv
(
Ẋτ , Xτ

)}

Lv
(
Ẋτ , Xτ

)
: = −

(
Ẋτ − g (Xτ , v)

)2

2σ (Xτ , v)
2 − µ (Xτ , v) ,

(7.7)
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respectively. Then, fitness is provided by the dominant characteristic root of

ψv
λ (x) = 1, (7.8)

where

ψv
λ (x) :=

∫ ∞

0

da exp {−λa}Ev
x [F (Xa)S (a)] , (7.9)

(see Eq.(4.6)). Eq.(7.8) is an Euler–Lotka equation in stochastic growth. The

integral equation in offspring dynamics is identical to Eq.(2.2)

ψv
λ (x) represents the Laplace transform of ERS and satisfies the theorem

proved by Taylor et. al (1974) and Leon (1976) because the function is mono-

tonically decreasing in λ [28, 29]. The theorem shows that a strategy max-

imizing ψv
λ (x) is equivalent to maximizing fitness. Therefore, we can adopt

ψv
λ (x) as an objective function in the optimal life schedule with stochastic

growth. Hereafter, we call ψv
λ (x) the “objective function.” Then, we extend

the theorem to analyze the optimal life history with internal stochasticity

(Appendix C).

8 Optimal life history

In 1970s, a basic optimal strategy theorem was proven by Taylor et.al and

Leon in a general deterministic environment [28, 29] and the theorem shows
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that an optimal strategy, maximizing fitness, is equivalent to maximizing the

following function, ∫ ∞

0

da exp {−λa}FaSa,

where Fa and Sa represent the fertility rate and survivorship at age a. This

function has identical significance to the objective function in this study and

generates an Euler–Lotka equation in deterministic structured models [25].

The key point of the proof is that the objective function is a monotonically

decreasing function in λ. Since this objective function clearly satisfies the

condition, we extend the theorem to this life history model as follows:

Theorem

Let x∗opt be

x∗opt ∈ A, s.t. λ∗x∗
opt,x

= sup
x∗

λ∗x∗,x,

and ψλ,x∗ (x) is given by Eq.(6.6). Define λ∗opt by

λ∗opt := λx∗
opt,x

.

Then, we have

ψλ∗
opt,x

∗ (x) ≤ ψλ∗
opt,xopt (x)⇔ λ∗x∗,x ≤ λ∗x∗

opt,x
.

This theorem can be proved identical to the proof of Appendix C. Now, we
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show that the theorem holds for stochasticity by using an example, and that

ψλ (x) corresponds with the function used in the next section.

The optimal schedule problem considers the way in which a species chooses

its reproductive timing to maximize its fitness with stochastic growth. We

can prove the optimal theorem, as in Taylor et.al and Leon’s works (see Ap-

pendix C) [28, 29]. Since the mature age (a∗) is defined by mature size (cf.

Eq.(6.1)), finding the optimal mature age is equivalent to finding the mature

size that maximizes the objective function. The approach is known as the

optimal stopping problem in probability theory [12]. Then, we introduce

three symbols: the optimal size x∗opt, age ã, and fitness λ∗opt.

9 HJB equations and analysis

From the optimal life schedule theorem, the optimal life history strategy is

equivalent to finding the function ψ̃λ (x), defined as

ψ̃λ (x) := sup
v∈V

∫ ∞

0

da exp {−λa}Ev
x [F (Xa)S (a)] , (9.1)

from Eq.(7.9). This function is known as a “value function” in control theory.

The value function is the solution of the following equation:
− inf

v∈V

{
H̄v

x + λ
}
ψ̃λ (x) + F (x) = 0

H̄v
x := −g (x, v) d

dx
− 1

2
σ (x, v)2

d2

dx2
+ µ (y, v) .

(9.2)
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Then, H̄v
x represents the formal adjoint operator of Hv

y in Eq.(7.6). Eq.(9.2)

is the HJB equation used in the analysis of optimal controls [30, 12]. Since

Eq.(9.2) is nonlinear and the solution generally does not have sufficient

smoothness, the value function is interpreted as a “viscosity solution” in

Eq.(9.2) (Appendix D). The derivation of Eq.(9.2) is shown in Appendix C.

When Eq.(9.2) has a unique solution in the viscosity sense, we can obtain an

optimal control v∗λ (x), such that

ψv∗

λ (x) = ψ̃λ (x) (9.3)

from the theorem on p.228 in [12]. Note that the optimal control v∗ is a

function of λ and has a degree of freedom. To derive the fitness of a species

having optimal control, we substitute Eq.(9.1) into Eq.(7.8) and obtain the

fitness, λ̃. Then, we have a unique optimal control:

ṽ (x) := v∗λ (x)
∣∣∣
λ=λ̃

. (9.4)

Moreover, the optimal growth process becomes
dX̃a = g

(
X̃a, ṽ

(
X̃a

))
da+ σ

(
X̃a, ṽ

(
X̃a

))
dBa

X̃0 = x,

(9.5)

from Eq.(7.1). An optimal control depending on only body size is known

as a Markovian control. In the next subsection, we discuss the differences
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in optimal growth processes between semelparous and iteroparous species.

Value functions for each type of species are characterized by different HJB

equations.

9.1 Optimal growth process and HJB equations in semel-
parous species

Due to the strong Markov property of the SDE, Eq.(7.1), the objective func-

tion of semelparous species, ψS
v
λ,x∗ (x), can be generally written as

ψS
v
λ,x∗ (x) =

∫ ∞

0

da exp {−λa}Ex [FS (Xa)SS (a)]

= Ev
x [exp {−λa∗}S (a∗)]ϕ (x∗) , (9.6)

(Appendix B). Then, semelparous species have two optimal life schedule

problems: (1) how to determine the optimal mature body size and (2) how

to control the growth rate until that size is reached. The former is known

as the “Optimal stopping problem” in probability theory, as mentioned in

the previous subsection. To simplify the latter problem, we assume in this

subsection that the mature body size exists. Setting the optimal mature

age, ã, and mature body size, xopt (:= Xã), a value function of semelparity
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becomes

ψ̃Sλ (x) := sup
v∈V

sup
x∗

ψS
v
λ,x∗ (x) = sup

v∈V
Ev
x [exp {−λã}S (ã)]ϕ (xopt) . (9.7)

This equation suggests that the optimal control optimizes the expectation

of survivorship until the mature age, ã. In other words, the evolution of a

semelparous life history implies the optimization of life span.

Substituting Eqs.(6.2) and (7.4) into Eq.(9.2), the value function satisfies

the boundary value problem of the following HJB equation:

− inf
v∈V

{
H̄v

x + λ
}
ψ̃Sλ (x) + FS (x) = 0. (9.8)

From the semelparous fertility function, Eq.(6.2), the boundary condition

becomes

ψ̃Sλ (0) = 0, ψ̃Sλ (xopt) = ϕ (xopt) .

Therefore, the optimal control of semelparous species, ṽS (x), becomes a

Markovian control, such that

ṽS (Xa) = ṽ (xopt, Xa) . (9.9)

As shown in the above equation, the optimal control does not depend on age.
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9.2 Optimal growth in iteroparous species

Since iteroparous species reproduce during their growth, the value function

becomes

ψ̃Iλ (x) : = sup
v∈V

∫ ∞

0

da exp {−λa}Ev
x [FI (Xa)SI (a)]

= sup
v∈V

∫ α

0

da exp {−λa}Ev
x [FI (Xa)S (a)] . (9.10)

Therefore, iteroparous species should optimize not only mortality but also

fertility. In other words, the evolution of iteroparous species implies the

temporary optimization of the ERS. Moreover, the maximum age, α, provides

a terminal condition to the ERS, which introduces complexity to the analysis

of iteroparous species.

To analyze the value function, Eq.(9.10), we introduce the ERS with

exp {−λa}

wλ,a (x) := exp {−λa}Ev
x [FI (Xa)S (a)] , (9.11)

and a new value function described by backward age

w̃λ,a (x) := sup
v∈V

exp {−λ (α− a)}Ev
x [FI (Xα−a)S (α− a)] , (9.12)
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to use the following relationship:

w̃λ,0 (x) = sup
v∈V
{exp {−λa}Ex [w̃λ,a (Xa)S (a)]} . (9.13)

This equation implies supv∈V wλ,a (x) corresponding with w̃λ,0 (x) by using

Eq.(9.12) (the Bellman principle). w̃λ,0 (x) is the value function at age α in

the original variable of a. Then, Eq.(9.10) is rewritten as

ψ̃Iλ (x) =

∫ α

0

da w̃λ,a (x) . (9.14)

We obtain the optimal control by using Eq.(9.12). To analyze the dynamics

of Eq.(9.12), we formally apply the Feynman–Kac formula (Appendix B) to

Eq.(9.10), and the HJB equation becomes
∂

∂a
w̃λ,a (x)− inf

v∈V

{
H̄v

x + λ
}
w̃λ,a (x) = 0

w̃λ,α (x) = FI (x) .

(9.15)

Then, the above equation suggests that an optimal control for iteroparous

species ṽI (a, x) depends not only on size, x, but also on age, a. Therefore,

an iteroparous species with the optimal growth rate using original age (age

forward), a, becomes
dX̃a = g

(
X̃a, ṽI

(
α− a, X̃a

))
da+ σ

(
X̃a, ṽI

(
α− a, X̃a

))
dBa

X̃0 = x,

(9.16)
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from Eq.(7.1). Since Eq.(9.16) is not an autonomous system, a projection

function of the optimal growth in the population vector should be extended

to

P̃t (a, y) =

{
nt−a (x) K̃a∈(0,α) (x→ y) a < α

0 a ≥ α
(9.17)

from Eq.(7.5) and

K̃a∈(0,α) (x→ y) =∫ X̃a=y

X̃0=x

D (x)

∫ ∞

−∞
D (q) exp

{∫ a

0

dτ
(
−iqτ ˙̃Xτ − H̃

(
τ,−iqτ , X̃τ

))}
H̃

(
τ,−iqτ , X̃τ

)
: = −iqτ g̃

(
τX̃τ

)
+ q2τ σ̃

(
τ, X̃τ

)2

+ µ̃
(
τ, X̃τ

)
,

(9.18)

or 
K̃a∈(0,α) (x→ y) =

∫ X̃a=y

X̃0=x

D (x) exp

{∫ a

0

dτ L̃
(
τ, ˙̃Xτ , X̃τ

)}

L̃
(
τ, ˙̃Xτ , X̃τ

)
: = −

(
˙̃Xτ − g̃

(
τ, X̃τ

))2

2σ̃
(
τ, X̃τ

)2 − µ̃
(
τ, X̃τ

)
,

(9.19)

where

g̃
(
a, X̃a

)
: = g

(
X̃a, ṽI

(
α− a, X̃a

))
σ̃
(
a, X̃a

)
: = σ

(
X̃a, ṽI

(
α− a, X̃a

))
µ̃
(
a, X̃a

)
: = µ

(
X̃a, ṽI

(
α− a, X̃a

))
.

(9.20)

Then, the derivation of the extended path-integral is shown in Appendix E.

Consequently, an Euler–Lotka equation composed of Eq.(9.10) provides the

fitness of the population vector, Eq.(9.17).
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9.3 Density of breeding age structure in fittest popu-
lation structures

If we can obtain the fittest BRN, ERS, and cumulant generating function of

breeding age directly from the value function, as for an objective function, an-

alyzing the fittest population structure is useful. When one applies Eq.(9.10)

to Eq.(5.4) as an objective function in the optimal control, Eq.(9.10) should

be a Laplace transform of the ERS. This means that the optimal control

should not be a function of λ because expanding the logarithm of Eq.(9.10)

into a Taylor series with respect to −λ causes a loss of the meaning of the ob-

jective function in the optimal control. This holds true as long as maximizing

the ERS is equivalent to maximizing fitness. The key point to calculate in

the case is the second term of the RHS of another expression of the value

function, Eq.(9.12):

w̃λ,a (x) = FI (x)− inf
v∈V

Ex

[∫ α−a

0

dτ
{
H̄v

x + λ
}
exp {−λτ}FI (Xτ )S (τ)

]
,

(9.21)

obtained by integrating both sides of Eq.(9.15) for age a (Dynkin’s formula

[12]). Differentiating the integrant of the second term in Eq.(9.21) with
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respect to v, we obtain the condition that v∗ satisfies:

∇v

{
H̄v

x + λ
}
exp {−λτ}FI (Xτ )S (τ)

∣∣∣
v=v∗

= ∇v

(
H̄v∗

x FI (Xτ )
)
−
{
H̄v∗

x + λ
}
FI (Xτ )

∫ τ

0

ds∇vµ (Xs, v
∗) = 0,

(9.22)

where ∇v :=
∑d

j=1 ∂/∂vj. This equation shows that the optimal control does

not depend on λ if and only if the mortality does not include the control

vector. In other words, deriving the optimal control maximizing the ERS

from Eq.(9.21) without calculating the Euler–Lotka equation directly is suf-

ficient in this case. From a biological point of view, individuals of the species

do not control their life spans in this case. In general, an optimal control

optimizes the ERS and life span because prolificacy and precocity increase

the fitness in r-selection [31, 32]. In other words, v∗ being unconnected to

λ means excluding the control of precocity. Then, the value functions can

directly compose the cumulant generating function of breeding age a⋄ in the

fittest population structure such that

Θ̃λ (x) := log ψ̃Iλ (x)

=
∞∑
l=0

(−λ)l

l!
˜⟨a⋄⟩

(l)

x , (9.23)
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and

˜⟨a⋄⟩
(l)

x := lim
λ→0

[
(−1)l ∂

l

∂λl
Θ̃λ (x)

]
. (9.24)

By using the original age, the density of a⋄ in the fittest population structure

is given by the following function:

AI (a) := lim
λ→0

w̃λ,α−a (x)

ψ̃Iλ (x)
, (9.25)

where ψ̃I0 (x) means BRN.

In the next section, we examine several specific models in semelparous

and iteroparous breeding systems and discuss their differences.
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Part IV

Application of OLSP to
semelparous species

In this section, we give applications of the theory of this study for semelparous

and iteroparous species using simple specific models. We show that the

convexity of the objective function provides a measure of the susceptibility of

a species to internal stochasticity, while the diversity of resources is important

for species with low convexity of the objective function.

10 A simple stochastic model of a semelparous

species

In this section, we examine a simple and specific stochastic model of a semel-

parous species. We apply the method used in previous sections to the model

and examine how stochasticity affects life history and population growth.

First, we define specific functions in the life history as in section 1 and show

the characteristics of stochastic growth by using the Lagrangian in Eq.(3.16).

Second, we derive the objective function, the fitness, and the optimal sched-

ule from the life history. Then, we estimate a threshold of persistence for
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a species with optimal schedule and examine the effects of stochasticity on

fitness. Third, we analyze the effects of stochasticity on reproduction by

deriving the BRN and statistics of mature age obtained from the cumulant

generating function. Finally, we derive the mature age density and estimate

the effects of stochasticity on life history by comparison with the density and

BRN.

10.1 Assumption of the model

We consider an application of the optimal schedule problem by using a simple

assumption of the size growth process:

g (y) = γy

σ (y) = σ0y,

(10.1)

where γ and σ0 are nonnegative constants in Eq.(1.1). Eq.(10.1) describes an

exponential size growth with fluctuation, which is like simple cell division,

until the mature age, a∗. Eq.(10.1) is called geometric Brownian motion,

and is well known as a stock price fluctuation model in mathematical finance

[33]. The Black–Scholes model is especially renowned as the pricing model

of options [34], which uses that SDE. Furthermore, we assume mortality in

Eq.(6.2), such that

µ (y) = const.,
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where we set

µ (y) = µ0. (10.2)

10.2 Analysis of the growth curve using the Lagrangian

Applying the transformation of Eq.(3.10) to Eq.(10.1) (κ = σ0 and ν (y) = y),

the Langragian of the model becomes

L̃
(
Żτ , Zτ

)
= − 1

2σ02

[
Żτ −

(
γ − σ0

2

2

)]2
− µ0, (10.3)

from Eq.(3.16). Since mortality is constant, the mass of body size can be

assumed to be concentrated around the dynamic system Żτ = (γ − σ02/2).

Therefore, the median of the size transition dynamics in a cohort, X̄a, is

proportional to

X̄a ∝ exp

{(
γ − σ0

2

2

)
a

}
. (10.4)

This means that a characteristic of geometric Brownian motion is that the

Xa almost certainly converges to zero if γ < σ0
2

2
and diverges if γ > σ0

2

2
for

each sample path in the limit, a → ∞. Under the former condition, it is

possible for individuals never to reach the mature age, even if mortality (µ0)

is equal to zero [12]. This property is inherent in the diffusion process.
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10.3 Optimal strategy and the persistence of species

The steady state of the population vector in juveniles P †
t (a, y) is given by

P †
t (a, y) = Qx exp

{
λ∗x∗,x (t− a)

}
Ka

(
x→ y

∣∣∣y < x∗
)
.

Qx and Ka

(
x→ y

∣∣∣y < x∗
)
are analytically solvable (Appendix F).

Using the adjoint Hamiltonian of the differential form

H̄x = −γx d
dx
− 1

2
σ2
0x

2 d
2

dx2
+ µ0, (10.5)

we can obtain ψλ,x∗ (x) by solving Eq.(5.2) at x < x∗ (Appendix.E) as follows:

ψSλ,x∗ (x) =
( x
x∗

)ρλ
ϕ (x∗)

ρλ : =
1

2

(
1− 2γ

σ02

)
+

1

2

√(
1− 2γ

σ02

)2

+
8µ0

σ02
+

8λ

σ02
.

(10.6)

ρλ shows that the domain of λ is

−µ0 −
σ0

2

8

(
1− 2γ

σ02

)2

< λ <∞. (10.7)

The domain provides the lower limit of population growth. Using Eq.(10.6),

we can solve Eq.(4.6) and obtain the fitness λ∗x∗ , which is a dominant char-

acteristic root of Eq.(4.6) as follows:

λ∗x∗ =

[
σ0

2

2

log ϕ (x∗)

log x∗

x

+

(
γ − σ0

2

2

)]
log ϕ (x∗)

log x∗

x

− µ0. (10.8)
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Since log ϕ (x∗) / log [x∗/x] is always positive due to ϕ (x∗) > 1 and x∗ > x,

λ∗x∗ is at its maximum when log ϕ (x∗) / log [x∗/x] is at its maximum. There-

fore,

λ∗opt =

[
σ0

2

2
m+

(
γ − σ0

2

2

)]
m− µ0, (10.9)

where

m =
log ϕ

(
x∗opt

)
log

x∗
opt

x

. (10.10)

For the persistence of the species (λ∗opt ≥ 0), m should be larger than ρ0. For

example,

ϕ (y) =
Ryl

xcl + yl
(10.11)

(R > 1, xc > 0 and l ≥ 1) has an optimal schedule (see Fig. 2). Analyzing

the sensitivity of λ∗opt with respect to the magnitude of stochasticity (σ2
0),

since m is always positive at any x∗opt, we have

∂

∂σ02
λ∗opt =

1

2
(m− 1)m, (10.12)

and obtain
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Figure 2: An example of an optimal schedule. This figure shows that each
individual initial body size has its own optimal mature body size and this
determines whether the species is persistent. We use ϕ (y) in Eq.(10.11) as an
example. The species never survives when the initial body size is below the
dashed line in the figure. The intersection between the dashed line and the
curve of optimal mature body size is equal to x∗opt = xc (l/ρ0 − 1)1/l, which
maximizes ψS0,x∗ (x) with respect to x∗. The parameters used are γ = 0.1,
σ0 = 0.5, µ0 = 0.04, R = 10.0, xc = 1.0, and l=2.0.
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∂

∂σ02
λ∗opt < 0, (m < 1) (10.13a)

∂

∂σ02
λ∗opt = 0, (m = 1) (10.13b)

∂

∂σ02
λ∗opt > 0, (m > 1) . (10.13c)

The internal stochasticity negatively affects fitness in the case of Eq.(10.13a),

but positively affects fitness in the case of Eq.(10.13c). Therein lies the main

difference between internal and external stochasticity, as the latter always

exhibits negative effects.

To consider why different values of m generate the contrasting effects, we

must reveal the relationship between the BRN, ψS0,x∗ (x), and the mature

age, a∗.

10.4 Basic reproductive number and mature age

Since fertility and maturity are important factors in population growth, we

examine how these two factors affect fitness in the optimal life schedule. As

mentioned previously, we focus on the effects of internal stochasticity on the

BRN as the following:

ψS0,x∗ (x) =
( x
x∗

)ρ0
ϕ (x∗) , (10.14)
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from Eq.(10.6). Using Eq.(10.10) and substituting x∗opt into x
∗, Eq.(10.14)

becomes the BRN in the optimal body size as follows:

ψ∗
S0 := ϕ

(
x∗opt

)1− ρ0
m . (10.15)

Then, the effects of stochasticity on the BRN depend on whetherm is greater

or less than 1 (see Fig. 3). To understand the behavior of the BRN with

internal stochasticity, the key point is the value of ρ0. ρ0 with deterministic

growth and high stochasticity are

lim
σ0→0

ρ0 =
µ0

γ
,

and

lim
σ0→∞

ρ0 = 1,

respectively. Therefore, ifm is greater than 1, a sufficiently large stochasticity

can conserve “1 − ρ0/m” as positive, and hence make the species persist

because of ϕ (x∗) > 1 and the BRN¿1. If m is less than 1, the species could

go extinct with increased stochasticity. Note that ρ0 is a monotonic function

with respect to σ0.

Increased stochasticity could save a species from extinction in m > 1

even if µ0/γ is larger than m, i.e., the BRN at σ0 = 0 is less than 1 (see Fig.
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Figure 3: Behavior of the BRN with different magnitudes of stochasticity.
This figure illustrates different behaviors of the BRN with respect to σ0 in
response to the condition of ϕ

(
x∗opt

)
in inequality Eq.(10.13). Fig. A shows

that that increases in σ0 never cause extinction because the BRN exceeds 1
in m > 1. Fig. B shows that increases in σ0 cause extinction or cause the
population to be already in the process of becoming extinct at m < 1.
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3A). Moreover, in comparison with the effect of mortality on ψ∗
0, the BRN

decreases more rapidly with mortality in the deterministic case than in the

stochastic case because the deterministic and stochastic environments have

ρ0 = µ0/γ and ρ0 ≈ µ
1/2
0 (see Eq.(10.6)), respectively. Stochasticity causes

the species to persist with high mortality because it yields individuals that

mature faster than they do under deterministic growth. Therefore, the ratio

of µ0/γ is an important factor determining whether offspring survivorship

increases with internal stochasticity.

To explain the biological meaning of the result, one must analyze the

effects of stochasticity on the mature age. When stochasticity affects the size

growth process of each individual, the mature age has a variance and becomes

statistics. We derive the cumulant generating function from Eq.(5.4), such

that

ΘSλ (x) = logψSλ,x∗ (x)

= log ϕ (x∗)− ρλ log
x∗

x
. (10.16)

From Eqs.(10.16) and (9.24), the expectation of mature age in deterministic

growth is
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⟨a∗⟩(1)0 : = ⟨a∗⟩(1)
∣∣∣
σ0=0

=
1

γ
log

x∗

x
,

(
∵ ρ0|σ0=0 =

µ0

γ

)
(10.17)

while that in stochastic growth is

⟨a∗⟩(1) =
log x∗

x[(
γ − σ0

2

2

)2
+ 2µ0σ02

] 1
2

. (10.18)

The expectation of mature age depends on stochasticity and mortality. Since

a semelparous life span is identical to mature age, the effect of stochasticity

on the life span depends on the following conditions:

∂

∂σ02
⟨a∗⟩(1) ≤ 0,

(
σ0

2

4
+ 2µ0 ≥ γ

)
(10.19a)

∂

∂σ02
⟨a∗⟩(1) > 0,

(
σ0

2

4
+ 2µ0 < γ

)
, (10.19b)

from the derivative of Eq.(10.18) with respect to σ0
2. If σ2

0 or µ0 is sufficiently

large compared to γ, individuals with slower maturation contribute little to

the expectation of mature age. Furthermore, the species as a whole has a

short life span, as shown in [2, 35]. As a result, the expectation of mature age

decreases compared to that under deterministic growth from the inequality
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(10.19a). Conversely, when the parameters hold the inequality (10.19b), the

expectation of mature age increases compared to that under deterministic

growth. In other words, the expectation is affected by individuals with slower

maturity.

From Eqs.(10.13c) and (10.19b) and Fig. 3A, we can consider a strange

case, whereby stochasticity decreases the BRN and delays the expectation

of mature age, while nevertheless increasing fitness. This occurs when the

mortality is less than the growth rate constant µ0/γ < 1 and all parameters

satisfy Eqs.(10.13c) and (10.19b). Then, the increased fitness appears to be

a contradiction. A key to solving this contradiction lies in the characteristics

of the mature age distribution. Therefore, we focus on the higher-order

cumulant function to understand the shape of distribution.

Accordingly, the skewness should be evaluated as follows:

⟨a∗⟩(3) = lim
λ→0

[
(−1)3 ∂3

∂λ3
ΘSλ (x)

]
=

3σ0
4 log x∗

x[(
γ − σ0

2

2

)2
+ 2µ0σ02

] 5
2

> 0. (10.20)

This is definitely positive and shows that the distribution is biased toward a

younger than expected age, suggesting that many individuals should attain
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mature age faster than under deterministic growth. However, a small number

of individuals with much slower maturity might affect this expectation. Due

to the positive skewness, we must answer the important question of how far

the mature ages are distributed from the deterministic ages. We derive and

analyze the mature age structure of this model in the next section.

10.5 Mature age structure and maturity

To clarify the aforementioned issue, we analyze the mature age density in

this section. From Eq.(5.1) and Eq.(6.2), we obtain the semelparous ERS,

uSa (x), as follows:

uSa (x) = ϕ (x∗)
log x∗

x√
2πσ02a3

exp

−
[
log x∗

x
−

(
γ − σ0

2

2

)
a
]2

2σ02a
− µ0a

 , ,

(10.21)

which is a kind of inverse Gaussian distribution (Appendix H). We have the

semelparous mature age density AS (a) as follows:

AS (a) =
uSa (x)

ψS0,x∗ (x)

=
log x∗

x√
2πσ2

0a
3
exp

−
[
log x∗

x
−

(
γ − σ2

0

2

)
a
]2

2σ02a
+ ρ0 log

x∗

x
− µ0a

 .

(10.22)
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Figure 4: Transition of mature age density. From Eq.(10.22), the figure shows
a transition of mature age density AS (a) with respect to σ0 in a double
logarithmic plot. Increases in σ0 yield many individuals whose maturities
are fast and a few individuals with slow maturity. In other words, higher
stochasticity leads to many individuals with short life spans. Parameters are
γ = 0.1, µ0 = 0.04, x = 0.43, x∗ = 0.9 and σ0 = {0.01, 0.1, 0.2, 0.3}.
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To calculate the ratio of individuals whose maturity is faster than that un-

der the deterministic model (Eq.(10.17)) numerically, we use the cumulative

distribution function (CDF) as follows:

PS [a
∗ ∈ (0, ⟨a∗⟩0)] =

∫ ⟨a∗⟩0

0

daAS (a) . (10.23)

When σ0 tends to zero, the inverse Gaussian distribution tends to the nor-

mal (Gaussian) distribution [36]. From these numerical calculations, we can

see that the more stochasticity increases, the more individuals with faster

maturity survive (see Figs. 4 and 5), while the right tail of the distribu-
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0.5

1.

Figure 5: Proportion of mature individuals until age ⟨a∗⟩0. The horizon-
tal axis represents the magnitude of stochasticity, σ0, and the vertical axis
represents the proportion of already mature individuals before the determin-
istic mature age, which is given by CDF (10.23). It shows that in stochastic
growth, high stochasticity increases the proportion of precocious individuals
than under deterministic growth. The CDF always tends to exceed 50% at
any parameter as a property of inverse Gaussian distribution. Therefore,
environmental stochasticity necessarily causes short life spans. Parameters
are the same as in Fig. 4.
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tion increases (see Fig. 4) and yields the contribution of a few individuals

with slower maturity to the expectation, as in Eq.(10.19b). However, the

proportion of individuals maturing faster than under deterministic growth

monotonically increases in Fig. 5.
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Part V

Application to optimal risk
aversion in the habitat

In the previous section, we showed that internal stochasticity could cause

both increases and decreases in fitness. Focusing on the latter case, stochas-

ticity represents a kind of risk for a species. Accordingly, in this section we

show by the analysis of specific models that species which suitably avert the

risk maximize their fitness in their habitat.

11 Two-resource utilization model

11.1 Assumptions of the model

Considering an extension of the simple model Eq.(10.1), we assume that the

species can choose two kinds of resources (R1 and R2): a species using R1

has the growth rate 
dXa,1 = γ1Xa,1da+ σ1Xa,1dBa,1

X0,1 = x,

(11.1)

and a species using R2 has the growth rate
dXa,2 = γ2Xa,2da+ σ2Xa,2dBa,2

X0,2 = x

(11.2)
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where the parameters satisfy γ1 ∈ R+ > γ2 ∈ R (γ2 could be negative),

σ1 > σ2 ≥ 0 i.e. choosing R1 means a higher risk and higher expected

growth rate than does choosing R2. Conversely, choosing R2 has another risk

of individuals having lower survivorship until mature age than if they used

R1 because of their slower growth rate on average. Therefore, individuals

should find an optimal “risk aversion” ṽ ∈ [0, 1] in the following growth rate:
dXa = [γ1 (1− v) + γ2v]Xada+ [σ1 (1− v) dBa,1 + σ2vdBa,2]Xa

X0 = x,

(11.3)

to minimize the Hamiltonian with λ under the environment (see Fig. 6).

Eq.(11.3) is well known as a typical “optimal portfolio selection problem” in

mathematical finance and economics. Economists apply the problem to find

an optimal investment of their wealth [37]. We assume mortality in Eq.(7.3),

such that

µ (y, v) = const.,

where we use the identical constant to that in Eq.(10.2) as follows:

µ (y, v) = µ0 (11.4)

independent of the control vector, v. We are interested in differences in the

optimal utilization ṽ of Eq.(11.3) under different breeding systems. As a
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Figure 6: A resource utilization problem. This figure illustrates how a fish
wavers in its choice. R1 represents high risk but high expected growth rate,
while both quantities are low in R2. These resources fluctuate independently
of each other. In other words, the two resources provide individuals with
different internal stochasticities. The fish should optimally choose the best
utilization of both resources.
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preparation for analyzing the optimal utilization, the adjoint Hamiltonian of

Eq.(11.3) becomes

H̄v
x = − [γ1 (1− v) + γ2v]x

d

dx
− 1

2

[
(σ1 (1− v))2 + (σ2v)

2]x2 d2
dx2

+ µ0.

(11.5)

Let φ (x) ∈ C2 (R+) provide an extreme value of
{
H̄v

x + λ
}
φ (x) with respect

to v, such that

∂

∂v

{
H̄v

x + λ
}
φ (x)

∣∣∣
v=v†

= 0. (11.6)

Then, the value satisfies

v† (φ (x)) =
σ2
1

σ2
1 + σ2

2

+
(γ1 − γ2) d

dx
φ (x)

(σ2
1 + σ2

2) x
d2

dx2φ (x)
, (11.7)

and we obtain a nonlinear operator by substituting Eq.(11.7) into (11.5) as

follows:

Hλ (φ (x)) :=
{
H̄v

x + λ
}
φ (x)

∣∣∣
v=v†

= −
[
γ1σ

2
2 + γ2σ

2
1

σ2
1 + σ2

2

]
x
∂

∂x
φ (x)− 1

2

σ2
1σ

2
2

σ2
1 + σ2

2

x2
∂2

∂x2
φ (x)

+
1

2

(γ1 − γ2)2
(

∂
∂x
φ (x)

)2
(σ2

1 + σ2
2)

∂2

∂x2φ (x)
+ (µ0 + λ)φ (x) .

(11.8)

Hereafter, we frequently use these equations, Eqs.(11.7) and (11.8), in anal-

yses in this study.
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11.2 Semelparous reproductive timing and optimal re-
source utilization

From the analysis of semelparous OLSP using Eqs.(10.1), (6.2), and (10.2),

we use the optimal mature body size x∗opt and m of Eq.(10.10) from part I

V. Stochasticity was shown to decrease the fitness if, and only if, m is less

than 1. In other words, the positive optimal utilization possibly exists at

m < 1. If m is greater than 1, ṽ of Eq.(11.3) is obviously equal to zero

because stochasticity positively affects fitness. In persistent species, large m

is advantageous to species for any parameters.

From Eq.(9.8), the value function satisfying Eqs.(11.3), (6.2), and (10.2),

ψ̃Sλ (x), is generated by the following HJB equation:

− inf
v∈V

{
H̄v

x + λ
}
ψ̃Sλ (x) + FS (x) = 0. (11.9)

Since Eq.(11.9) is a quadratic function of v (see Eq.(11.5)), the extreme

value is uniquely determined by v†
(
ψ̃Sλ (x)

)
from Eq.(11.7). Substituting

the value into Eq.(11.9), we obtain a nonlinear ODE as follows:

Hλ

(
ψ̃Sλ (x)

)
+ FS (x) = 0, (11.10)

from Eq.(11.8). To find the solution of Eq.(11.10) in the viscosity sense, we

assume a solution ψ̃Sλ (x) = Cxρ (C ̸= 0), and substitute it into Eq.(11.10)
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as follows:[[
γ1σ

2
2 + γ2σ

2
1

(σ2
1 + σ2

2)

]
ρ+

1

2

σ2
1σ

2
2ρ (ρ− 1)

σ2
1 + σ2

2

− 1

2

(γ1 − γ2)2 ρ
(σ2

1 + σ2
2) (ρ− 1)

− (µ0 + λ)

]
Cxρ

= 0.

(11.11)

Setting ρλ to satisfy Eq.(11.11), we obtain

ψ̃Sλ (x) =

(
x

x∗opt

)ρλ

ϕ
(
x∗opt

)
(11.12)

and the constant, C, is given by

ϕ
(
x∗opt

)
x∗opt

−ρλ

satisfying the boundary condition in Eq.(9.8). From the Euler-Lotka equation

Eq.(7.8): (
x

x∗opt

)ρλ

ϕ
(
x∗opt

)
= exp

{
log ϕ

(
x∗opt

)
− ρλ̃ log

x∗opt
x

}
= 1,

λ̃ should hold the following relationship

ρλ̃ = m, (11.13)

from Eq.(10.10). Considering m < 1, we can find the optimal control from

Eq.(11.7), because the value function, ψ̃Sλ (x), becomes a concave function.

Substituting Eqs.(11.12) and (11.13) into Eq.(11.7), the optimal utiliza-

tion, ṽS, becomes

ṽS (x) = max

{
σ2
1

σ2
1 + σ2

2

− γ1 − γ2
(σ2

1 + σ2
2) (1−m)

, 0

}
. (11.14)
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The optimal utilization provided by the ṽS is a constant, and it means that

the species should conserve a proportion of resources during its lifetime.

Regarding ṽS as a function of m, m is an important index to determine uti-

lization. If the index is large, it shows that the semelparous species has a

tendency toward risk appetite (see Fig. 7) because ṽS is small. Then, the

optimal resource utilization continuously changes with respect to m. Since

the continuity of optimal control with respect tom is provided by the second-

order term of v in the diffusion term of the Hamiltonian, Eq.(11.5), it is differ-

ent from the bang–bang controls appearing in deterministic models, which do

not have second-order terms of control parameters. From Eqs.(10.9), (11.11),

and (11.13), we obtain the fitness of the fittest as follows:

λ̃S (m) =
m

[
σ1

2

2
m+

(
γ1 − σ1

2

2

)]
− µ0 if ṽS (m) = 0

m

[
γ1σ2

2+γ2σ2
1

σ2
1+σ2

2
− 1

2

σ2
1σ

2
2(1−m)

σ2
1+σ2

2
+ 1

2
(γ1−γ2)

2

(σ2
1+σ2

2)(1−m)

]
− µ0 if 0 < ṽS (m) < 1

,

(11.15)

from the LHS of Eq.(11.11) (see Fig. 8). If λ̃S (m) is nonnegative, the species

is persistent. In that case, the fittest option is to be an R1-specialist or

generalist, and an R2-specialist is never selected for because of the magnitude

correlation of each parameter in the definition of this study. Nature selects

72



Figure 7: Semelparous optimal utilization for each m. This figure shows
the semelparous optimal resource utilization, Eq.(11.15), depending on m.
Two different types of feeding habitat exist. A small or intermediate value of

m ∈
(
0, 1− 1

σ2
1
(γ1 − γ2)

)
makes the species a generalist: the larger the value

of m, the more the species favors risk and becomes specialist. Parameters
are γ1 = 0.16, γ2 = 0.1, σ1 = 1.0, σ2 = 0.12, and µ0 = 0.01.
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v=1

v=0

v=v
�

Figure 8: Fitness of optimal utilization in semelparous species: We calculate
the value of the fitness of semelparous species with respect to m between zero
and 1. The vertical dashed line represents the boundary between specialists
and generalists as given by Eq.(11.16). The fitness is always a monotonically
increasing function of m in the persistent region of the species (λ̃S (m) ≥ 0).
It is remarkable that a large m causes individuals to favor risk and increase
their fitness. This figure shows the optimal resource utilization actually hav-
ing advantages over specialists of each of the resources. Parameters are the
same as in Fig. 7.
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a generalist when m is within

0 < m < 1− 1

σ2
1

(γ1 − γ2) , (11.16)

otherwise an R1-specialist is selected. The dependence of utilization on m

can be explained by a trade-off between the generation cycle and the BRN.

In part IV, we showed that internal stochasticity increases the number of pre-

cocious individuals and decreases the number of mature individuals. A large
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value of m expresses a small difference between the mature body size and

initial body size and/or high fertility ϕ
(
x∗opt

)
and causes the reproduction

number of precocious individuals to compensate for the decrease in the num-

ber of mature individuals. Small values of m cause the opposite, whereby

the reduction in the number of mature individuals exceeds the reproductive

output of precocious individuals (see Figs. 9 and 10).
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Figure 9: Transition of the mature age distribution. Whenever m becomes
large (m1 < m2 < m3), the mature age distributions of every utilization
behavior are shifted to younger ages than those under smaller m as in [11]. If
the fittest species is a generalist, the change in distribution becomes extreme.
Then, the age distribution is provided by Appendix I. We chose ϕ (y) =
Ryl/

(
xlc + yl

)
as the fertility rate function. This function has a unique m

with respect to x, and the optimal body size, x∗opt, is obtained by calculating

the derivative of (log
[
ϕ
(
x∗opt

)]
/ log

[
x∗opt/x

]
)′ = 0 with respect to x∗opt. We

substitute the RHS of that equality into x of the distribution. Then, we
obtain this figure by changing x∗opt. Then, m becomes inversely proportional
to x∗opt in this fertility function. Parameters are R = 10, xc = 1.0, l = 2,
x∗opt = 1.1, 1.3, 1.5, with the others being the same as in Fig. 8.
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BRN=1

v=1
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Figure 10: Transition of the BRN. This figure shows changes in the BRN
with respect to m. The BRN of the fittest species increases as m increases;
however, it decreases when m reaches the RHS of Eq.(11.16), which means
that the growth strategy changes from the conservation of the BRN to a
hasty alternation of generation time. Utilizing R1 usually, the BRN of the
fittest is higher than that of v = 0. We simulate the BRN under the same
parameters as in Fig. 9. To show the proportional connection between m
and the BRN, we change the variable (x∗opt → 3.5− y) and simulate it within
(0, 3.5) because m is in inverse proportion to x∗opt. Parameters are the same
as in Fig. 9.
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11.3 Iteroparous optimal utilization

In this subsection, changing from the breeding system of Eq.(6.2) to Eq.(7.2),

we compare the optimal strategy of semelparity with that of iteroparity. We

use the value function from Eqs.(9.10) and (9.12), and the same Hamiltonian

as in Eq.(11.5).

We assume the fertility function to scale with body-size allometric law,

such as for the biomass of shoots and body size in trees [38], as follows:

FIβ (y) := byβ (0 < β < 1) , (11.17)

where b and β represent the fertility rate and an allometric exponent within

the domain (0, 1), respectively. Using the Hamiltonian, Eq.(11.5), we can

obtain an optimal utilization of the iteroparous species identical to the one

of the semelparous species. From Eqs.(9.15) and (11.7), the value function

in Eq.(9.12), becomes a solution of the nonlinear PDE
∂

∂a
w̃λ,a (x)−Hλ (w̃λ,a (x)) = 0

w̃λ,α (x) = bxβ,

(11.18)

because

Hλ (w̃λ,a (x)) = inf
v∈V

{
H̄v

x + λ
}
w̃λ,a (x) ,
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and the optimal utilization satisfies

ṽI (x) = max
{
min

{
v† (w̃λ,a (x)) , 1

}
, 0
}
, (11.19)

from Eq.(11.7). To derive the solution of Eq.(11.18), we assume

w̃λ,a (x) = exp {ηλ (α− a)} bxβ, (11.20)

and substitute it into Eq.(11.18). Then, ηλ becomes

ηλ =
β
[
σ1

2

2
β +

(
γ1 − σ1

2

2

)]
− µ0 − λ if ṽI (β) = 0

β

[
γ1σ2

2+γ2σ2
1

σ2
1+σ2

2
− 1

2

σ2
1σ

2
2(1−β)

σ2
1+σ2

2
+ 1

2
(γ1−γ2)

2

(σ2
1+σ2

2)(1−β)

]
− µ0 − λ if 0 < ṽI (β) < 1

.

(11.21)

Eq.(11.20) is guaranteed as a unique solution of Eq.(11.18) from the unique-

ness of the viscosity solution [39]. Namely, ηλ can be expressed by using the

function of semelparous fitness, Eq.(11.15), such that

ηλ = λ̃S (β)− λ. (11.22)

This suggests that the iteroparous optimal utilization has common and dif-

ferent characteristics compared to the semelparous one. We here use the

expression, Eq.(11.22), to emphasize the common characteristics between

semelparous and iteroparous optimal life histories. Substituting Eqs.(11.18)
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and (11.21) into Eq.(11.19), we obtain the optimal utilization as follows:

ṽI (x) = max

{
σ2
1

σ2
1 + σ2

2

− γ1 − γ2
(σ2

1 + σ2
2) (1− β)

, 0

}
, (11.23)

without having to solve the Euler–Lotka equation, as the mortality does

not include control parameters. When we regard the utilization, Eq.(11.23),

as a function of β, the functional form resembles the optimal utilization of

semelparous species, (Eq.(11.15)). Then, the exponent, β, plays the role of

m in semelparous species.

Using Eqs.(9.10), (11.20), and (11.22), the iteroparous value function in

Eq.(9.10) becomes

ψ̃Iλ (x) =

∫ α

0

da exp {ηλ (α− a)} bxβ =
bxβ

ηλ
(exp {ηλα} − 1) . (11.24)

Since the Euler–Lotka equation, Eq.(7.8), generated by Eq.(11.24) becomes

transcendental, we cannot find the fitness of the iteroparous species explicitly.

Then, we use the following inequality:

λ̃I (α, β) ≤ λ̃S (β) + bxβ, (11.25)

where the RHS of Eq.(11.25) is the dominant characteristic root of

lim
α↑∞

ψ̃Iλ∗ (x) = −
bxβ

ηλ∗
= 1
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from the Euler–Lotka equation, Eq.(7.8), applying the “Basic optimal life

schedule theorem” (Appendix C) to α. Since individuals in initial states

normally contribute little to reproduction in nature, we roughly assume that

bxβ is sufficiently small.

Considering the persistence of the species ( λ̃I (α, β) ≥ 0), λ̃S (β) should

be nonnegative. In this model, the optimal utilization is supposed to maxi-

mize not only the fitness but also the ERS of the original age:

w̃0,a (x) = exp
{
λ̃S (β) a

}
bxβ a ∈ (0, α) (11.26)

Additionally, if the fitness, λ̃I (α, β), is a monotonically increasing function

in β, β has an identical meaning to that of m in semelparous species. To

prove this, we show that the ERS increases monotonically in β. Since λ̃S

satisfies

∂

∂β
λ̃S > 0 ∀β ∈ {ϱ|0 < ṽI (ϱ) < 1} ,

and Eq.(10.9) is a monotonically increasing function of m in λ∗xopt
≥ 0, we

conclude the proof.

From Eqs.(9.25) and (11.26) and the BRN:

ψ̃I0 (x) =
bxβ

λ̃S (β)

(
exp

{
λ̃S (β)α

}
− 1

)
, (11.27)
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the breeding age density becomes

AI (a) =


λ̃S(β) exp{λ̃S(β)a}
(exp{λ̃S(β)α}−1)

λ̃S (β) > 0

1
α

λ̃S (β) = 0.
(11.28)

The age density shows that if λ̃S (β) is positive, the density skews toward

older ages. In this case, the contribution of older individuals to reproduction

is important for the persistence of the species. Even if λ̃S (β) is equal to

zero, the contribution is not negligible because the density has a uniform

distribution. Since Eq.(11.15) maximizes the fitness of semelparous species,

λ̃S (m), the optimal utilization of iteroparous species also maximizes λ̃S (β).

Although for large values of m and β, species in both breeding types favor

more risky behavior, their breeding age structures are different, such that

the semelparous mature age density is L-shaped, while the iteroparous ma-

ture age density is J-shaped (see Fig. 9 and Eq.(11.28)). Consequently, the

optimal utilization of iteroparous species enhances the contribution of older

individuals to reproduction and differs from that of semelparous species be-

cause their longevity provides them with many opportunities for reproduction

and with sufficient time to reach a large size.

Considering the persistence of the species (ψ̃I0 (x) ≥ 1) with respect to
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the maximum age, α, the following relation should be satisfied:

α ≥ 1

λ̃S (β)
log

[
1 +

λ̃S (β)

bxβ

]
, (11.29)

from Eq.(11.27). Since Eq.(11.24) increases monotonically in α and Eq.(11.25)

is proved by using the basic optimal life schedule theorem, iteroparous fitness

is a monotonically increasing function in α. Therefore, iteroparous species

evolve to have optimal utilization and to survive as long as possible, as found

for trees.
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Part VI

Discussion

12 Relationship with other LDMs (from part

II)

The age-size structured model has three kinds of expression, TMM, PDE,

and IPM. Takada and Hara (1994) showed a mathematical relationship be-

tween the expression of PDE and a TMM in a continuous limit by deriving

Kramers–Moyal coefficients (see [15]) from the TMM [8]. Ellner introduced

the IPM and Zuidema used it in his own analysis as the limit of the TMM

[17, 18, 40]. Additionally, we show a relationship between PDE and IPM

via path-integral expression. Therefore, these three expressions of the LDM

have duality with each other and can be considered to draw the same picture

in a biological context. Consequently, the analysis of internal stochasticity

effects in this study might be applicable to other expressions of an age-size

structured LDM.

If individuals are affected by internal stochasticity, we show that the fit-

ness derived from the solution of a new Euler–Lotka equation (Eq.(4.6)) is

identical to that of classic LDMs [25, 26]. Therefore, when we consider the op-
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timal schedule in a life history, analyzing the objective function in stochastic

growth is sufficient. This function gives us important quantities that charac-

terize species, such as the BRN, ERS, and the cumulant generating function.

In semelparous species, we can analyze from the objective function further

details of several quantities, such as the BRN and statistics of mature ages.

The BRN is the product of the expectation of survivorship until a mature age

and the reproductive number at mature body size (see Eq.(9.6)). Statistics

on the mature age structure are provided by a cumulant generating function

(see Eq.(5.4)), and the probability density is expressed by the ERS/BRN in

stochastic growth. Using the generating function, we can analyze a char-

acteristic of the life span. Thus, analysis of ψλ (x) is a basic approach in

age-size structured models with internal stochasticity.

We show that the optimal life schedule problem can be connected to pop-

ulation dynamics in stochastic growth. The connection is calculated by an

age-size structured model with internal stochasticity. Then, the structure

of the population vector is the product of the initial population (Eq.(4.5))

and the projection function (Eq.(3.2) or Eq.(3.3)), which is generated by

life history and can be generally written as a path-integral expression. Al-
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though we did not go into the details of the analysis of the path integral,

the method connects the body-size transition in the population vector with

a diffusion process of particles in physics, which allows us to use various

analytical methods from physics and mathematics in stochastic growth.

13 OLSP and optimal growth process (from

partIII)

Usually, OLSP in deterministic growth is an analysis of an optimal ratio of

growing period to breeding period for a given life span [41, 42]. Then, a

framework of Pontryagin’s maximum principle is reasonable to analyze the

OLSP. Although the framework is the necessary condition that the opti-

mal schedule should satisfy, it has successfully and uniquely determined the

optimal ratio in many species. The framework, however, is inadequate for

species having variations in individual growth. Pontryagin’s maximum prin-

ciple should be extended to the stochastic Pontryagin’s maximum principle

for application to these kinds of species. Our approach is more reasonable

than the framework in OLSP with internal stochasticity because the new

framework includes variation in individual life spans and it can be simply

rewritten as an application of the boundary value problem in a PDE (see
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Eq.(5.1)), i.e., the optimal stopping problem. We then consider only the end

of the growth period because we take into account variation in individual life

spans. This framework gives us a way to analyze the evolution of the length

of life spans, which cannot be analyzed in the framework of Pontryagin’s

maximum principle because one has to give a fixed life span according to the

assumptions.

The analysis of optimal stochastic control using the HJB equation has

been developed in various academic fields, including engineering and finance.

However, many theoretical biologists have commonly used the “Maximum

Principle” approach in the analysis of life schedules. The stochastic Maxi-

mum Principle is proved by Peng (1990) [43], but it is not overwhelmingly

popular in theoretical biology. According to Yong and Zhou (1999) [44], both

methods are formalized by the common Hamiltonian. Additionally, the cor-

respondence of the HJB equation to the stochastic Maximum Principle was

shown via the idea of a viscosity solution by mathematicians [39, 45, 46, 47].

They showed that the value function and its derivatives in the HJB equation

corresponded to the costate variables in the stochastic Maximum Princi-

ple. The Hamiltonian, which mathematical biologists use in the Maximum
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Principle approach, was merely one of the mathematical preparations for

OLSP. The Hamiltonian now forms an important element of the demographic

model. The path-integral formulation unifies stochastic control theory and

LDMs via the Hamiltonian, and we showed that optimal strategies usually

minimize H̄v
x+λ. This Hamiltonian, H̄v

x, forms a counterpart of the Fokker–

Planck Hamiltonian, referred to as the “adjoint Hamiltonian” in Eq.(7.6).

From a physical point of view, the Hamiltonian refers to the total energy

of the system. Using this analogy, we can provide a biological meaning of

the Hamiltonian, whereby individuals consume energy throughout their life-

time. Then, the value function derived from the HJB equation represents the

lowest energy consumption over the lifetime, and the Euler–Lotka equation

converts the life history into population dynamics. Therefore, we can omit

the analysis of population dynamics in the LDM because the theory in this

study showed that the following equations provide the unification of OLSP

and LDM: 

− inf
v∈V

{
H̄v

x + λ
}
ψ̃λ (x) + F (x) = 0

H̄v
x := −g (x, v) d

dx
− 1

2
σ (x, v)2

d2

dx2
+ µ (y, v)

ψ̃λ (x) = 1,
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or another HJB equation:
∂

∂a
w̃λ,a (x)− inf

v∈V

{
H̄v

x + λ
}
w̃λ,a (x) = 0

w̃λ,α (x) = FI (x) ,

if, and only if, the species has a terminal condition, such as maximum age,

from (9.15).

14 Semelparous OLSP in a specific model (from

partIV )

In our simple model in OLSP, the mature body size and the fertility rate

function, ϕ (y), should have a unique m for the existence of an optimal life

schedule in r-selection. Furthermore, the optimal strategy is favored when

mature body size and fertility have the relationship m ≥ ρ0 among the life

history parameters. Namely, the prosperity of a species requires not only

an optimal schedule but also the persistence of the species. The relation of

m ≥ ρ0 becomes an evaluation criterion of whether the species is persistent.

Life span is an important element of evolution in r-selection. Our simple

model shows that the effect of internal stochasticity on fitness and life span is

not always negative and increases the number of individuals whose life spans

are relatively short. It is the fertility rate function, ϕ (y), that determines
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whether stochasticity has positive or negative effects on fitness. As a property

of the BRN, the more that large stochasticities affect individuals, the more

closely the BRN approximates a convergence value (see Fig. 3). Then, the

property of ϕ (y) gives the BRN its value. In other words, the property of

ϕ (y) determines whether the reduction of the BRN by stochasticity reaches

below 1, as in inequalities (10.13). We show that stochasticity always reduces

the age at maturity of individuals because individuals whose maturity is slow

are killed by a constant mortality. Since faster maturity is equivalent to a

faster alternation of generations, individuals can escape from high mortality

(µ0/γ > 1) and save the population from extinction when ϕ (y) satisfies the

inequality (10.13c), as in Fig. 2. Eventually, once a ϕ (y) is given, the optimal

body size and the sensitivity of fitness to internal stochasticity are determined

because the parameters (γ, σ2
0, and µ0) operate fitness monotonically.

From the analysis of this study, internal stochasticity has not only neg-

ative but also positive effects on population dynamics. It is therefore not

always nonadaptive for a semelparous species to tend to have a short life

span in a stochastic environment. This does not contradict empirical results

such as those of [2, 3, ?]. When a species lives in an environment in which
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stochasticity has negative effects, individuals may oppose stochasticity, as

asserted by Pfister [48]. Note that generally, twofold randomness (internal

and external stochasticity) exists in the background of this consideration.

Such randomness always affects the fitness λ∗ of a TMM as follows:

λ∗ = λ̄− σ̃2/2,

where λ̄ and σ̃ represent a maximum eigenvalue of the TMM with no en-

vironmental stochasticity and a magnitude of the stochasticity, respectively

[4, 5, 6]. However, when a species lives where only internal stochasticity

affects its life history, it avails the internal stochasticity to optimize its own

life history because it can increase its fitness.

15 Analysis of optimal stochastic growth in a

two-resource utilization model (from part

V)

The two-resource utilization model shows that optimal strategies behave dif-

ferently depending on breeding systems and fertility functions, even if a

species occurs in the same habitat. Then, the convexity of the objective

function is the keyword of all of the optimal strategies analyses in this study.

To explain the importance of the convexity, we introduce Jensen’s inequality.
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Let f (y) be a concave function, such as f ′ (y) > 0 and f ′′ (y) < 0. Then, the

function satisfies the following inequality for an arbitrary random variable,

Xa,

Ex [f (Xa)] ≤ f (Ex [Xa]) .

Incidentally, as for the convex function, the inequality becomes an oppo-

site magnitude correlation. As Jensen’s inequality suggests, the exposure

of a species to risk becomes advantageous when the objective function has

high convexity. Since the convexity depends on life history, semelparous

and iteroparous species possibly have different growth strategies even if they

share several elements of life history, such as Eq.(7.1), and µ (x, v) in the

habitat. In this case, the difference in fertility yields different convexities of

the objective function and strategies. In other words, the breeding system

determines what the species will optimize.

In semelparous species, the parameter m represents an index of the con-

vexity degree in the value function. A positive effect of internal stochasticity

is caused by the strength of the index. A trade-off between precocity and

prolificacy occurred in the OLSP. Stochasticity yields both precocious and

slow-growing individuals. The former cause faster alternations of genera-

92



tions, while the latter decrease the BRN by increasing the risk of death. The

present analysis showed that the index, m, determines the sensitivity of the

BRN to stochasticity; especially, a small m decreases the BRN in the domain

m ∈ (0, 1). Consequently, species with small m utilize smaller risk, such as

R2 more than R1 in the present paper. The optimal utilization, ṽS, continu-

ously decreases with m. Then, nature selects whether a species is a resource

specialist or generalist depending on the index m.

The risk appetite of semelparous species depends on m, composed of

the mature body size and ϕ
(
x∗opt

)
in the optimal utilization, while that of

iteroparous species depends on the allometric exponent β. This has the same

characteristic as the indexm in the optimal utilization of semelparous species.

If a species has a large value of β, the fitness is also high. Those parameters

characterize the convexity of the objective function. As Jensen’s inequality

shows, the convexity determines the effect of internal stochasticity on fitness.

A large value of m or β makes the objective function close to a convex

function. When they have the same convexity, m = β, semelparous and

iteroparous species have the same risk appetite and the optimal utilization.

In contrast, the breeding age distribution of iteroparous species is different
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from that of semelparous species. The trend in age distribution depends on

λ̃S (β). If λ̃S (β) is positive, the breeding age distribution skews toward older

ages (see Eq.(11.28)). Then, the persistence of the species is determined

by the maximum age α. Therefore, long-lived individuals are important for

population growth in this case.

Another meaning of m and β from a biological point of view is their

representation of the conversion efficiency from adult body size to number

of offspring. For example, a large value of m means a mature individual

producing many offspring and/or having a low ratio of mature body size to

initial body size. Therefore, the risk appetite is determined by the conversion

efficiency. The evolution of generalists is considered to be related to a port-

folio effect in our resource utilization model. The portfolio effect is a species

diversifying its resource utilization and diet to reduce risk [49]. This effect

has been reported in various cases, such as in salmon [50]. This study shows

that the diversification of resource use is important for species susceptible to

internal stochasticity (i.e., when m and β are small), which may provide an

explanation for the evolution of the portfolio effect.
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16 Future work

This study demonstrates that several kinds of optimal growth strategies may

exist depending on breeding systems in a simple stochastic growth process.

However, the theories presented this study (Eqs.(7.8), (7.9), (9.2), and (9.15))

are also applicable to other events and trade-offs in the life histories of or-

ganisms. Moreover, we can extend the one-dimensional theories from this

study to an arbitrary dimensional size because the path integral and HJB

equations hold an arbitrary dimension.

The controls maximizing the objective function and BRN have basically

different meanings. The former simultaneously optimizes the ERS and gen-

eration time. In contrast, the latter maximizes only the BRN. Therefore, the

optimal control that maximizes the objective function is more complicated a

control than the latter. Conversely, Eq.(9.22) shows that both types of con-

trols accord when the mortality does not depend on the control parameter.

The analysis of iteroparous species does not need to consider the effects of

control on generation time because the model satisfies the condition men-

tioned above. Considering the mortality controlled, another trade-off occurs

between the risk of stochasticity and survivorship. The methods presented
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in this study are suitable for use in addressing such subjects and provide a

basis for such future research.
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Appendix

Appendix A

Derivation of path integral expression

Let (t, a) be fixed and h be a new variable. The LHS of Eq.(2.1) becomes

∂

∂h
P̄h (y) =

∂

∂t
Pt+h (a+ h, y) +

∂

∂a
Pt+h (a+ h, y) ,

and we define

P̄h (y) := Pt+h (a+ h, y) . (A.1)

We can then obtain the Fokker–Planck equation with respect to a new pop-

ulation density P̄h (y) as follows:
∂

∂h
P̄h (y) = −HyP̄h (y)

P̄0 (y) = n̄0 (x) δ (x− y) ,
(A.2)

where n̄0 (x) := nt−a (x). To derive the path integral from Eq.(A.2), we use

the Fourier transform of the function P̄h (y) with respect to y, such that
P̂h (q) :=

∫ ∞

−∞
dy exp {iqy} P̄h (y)

P̂0 (q) = n̄0 (x) exp [iqx] ,

(A.3)

and substitute it into Eq.(A.2) as follows:

∂

∂h
P̂h (q) = −

∫ ∞

−∞
dy exp {iqy}HyP̄h (y) . (A.4)
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On the right side of the equation, we use integration by parts to obtain
−
∫ ∞

−∞
dy exp {iqy}HyP̄h (y) = −

∫ ∞

−∞
dy exp {iqy}H−iq,yP̄h (y)

H−iq,y = −iqg (y) +
1

2
q2σ (y)2 + µ (y) ,

(A.5)

and expand g (y), σ (y)2 and µ (y) into a series, with respect to h as follows:

g (y) = g (x) +
dg (y)

dy

dy

dh

∣∣∣
h=0

h+O
(
h2
)

σ (y)2 = σ (x)2 +
dσ (y)2

dy

dy

dh

∣∣∣
h=0

h+O
(
h2
)

µ (y) = µ (x) +
dµ (y)

dy

dy

dh

∣∣∣
h=0

h+O
(
h2
)
.

(A.6)

Substituting (A.6) into (A.5), we obtain a transition rate for a sufficiently

short time, h, which is given by

∫ ∞

−∞
dy exp {iqy}HyP̄h (y) = (−H (−iq, x) +O (h)) P̂h (q)

≈ −H (−iq, x) P̂h (q) , (A.7)

where

H (−iq, x) = −iqg (x) + 1

2
q2σ (x)2 + µ (x) .

Substituting (A.7) into (A.4) and solving the ODE, we obtain the solution

P̂h (q) = n0 (x) exp {iqx−H (−iq, x)h} .
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Using the inverse transform of the equation above, P̄h (y) for a short h be-

comes

P̄h (y) =
n̄0 (x)

2π

∫ ∞

−∞
dq exp {−iq (y − x)−H (−iq, x)h} . (A.8)

Setting

K∆h (x→ y) :=
1

2π

∫ ∞

−∞
dq exp {−iq (y − x)−H (−iq, x)∆h} ,

the dynamics of the Markovian process for the discretized time is expressed

by

Kh (x→ y) =

∫
· · ·

∫
A

M−1∏
j=1

dxjK∆h (xj → xj+1)

=
1

(2π)M

∫
· · ·

∫
A

M−1∏
j=1

dxj

∫
· · ·

∫ ∞

−∞

M−1∏
j=0

dqj

× exp {−iqj (xj+1 − xj)−H (−iqj, xj)∆h} . (A.9)

Taking the limit of ∆h to zero, and keeping M∆h = h (a constant),

lim
∆h→0

1

(2π)M

∫
· · ·

∫
A

M−1∏
j=1

dxj

∫
· · ·

∫ ∞

−∞

M−1∏
j=0

dqj

× exp {−iqj (xj+1 − xj)−H (−iqj, xj)∆h}
∣∣∣
M∆h=h

. (A.10)
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Accordingly, the limiting function expresses the summation over every pro-

jection function of the sample path that connects x with y at time h and is

called the path integral. We rewrite (A.10) as

Kh (x→ y) =

∫ Xh=y

X0=x

D (x)

∫ ∞

−∞
D (q) exp

{∫ h

0

dτ
(
−iqτẊτ −H (−iqτ , Xτ )

)}
H (−iqτ , Xτ ) := −iqτg (Xτ ) + q2τσ (Xτ )

2 + µ (Xτ ) ,

(A.11)

where Ẋτ represents the differential of Xτ with respect to τ , and where

∫ Xh=y

X0=x

D (x)

∫ ∞

−∞
D (q) := lim

∆h→0

1

(2π)M

∫
· · ·

∫
A

M−1∏
j=1

dxj

∫
· · ·

∫ ∞

−∞

M−1∏
j=0

dqj.

This is the Hamiltonian expression in the path integral. Moreover, calculat-

ing the Gauss integral in (A.10) with respect to every qj, such that

K∆h (xj → xj+1) =
1

2π

∫ ∞

−∞
dqj exp {−iqj (xj+1 − xj)−H (−iqj, xj)∆h}

=
1√

2πσ (xj)
2 ∆h

exp

{
−
(xj+1−xj

∆h
− g (xj)

)2
2σ (xj)

2 ∆h− µ (xj)∆h

}
,

(A.12)

then (A.10) is given by
lim

∆h→0

∫
· · ·

∫
A

M−1∏
j=1

dxj√
2πσ (xj)

2 ∆h

M−1∏
j=0

exp {∆hLj}
∣∣∣
M∆h=h

Lj := −
(xj+1−xj

∆h
− g (xj)

)2
2σ (xj)

2 − µ (xj) ,

(A.13)
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When we set

∫ Xh=y

X0=x

D (x) := lim
∆h→0

∫
· · ·

∫
A

M−1∏
j=1

dxj√
2πσ (xj)

2 ∆h
,

then, we obtain another expression for the path integral, as follows:

Kh (x→ y) =

∫ Xh=y

X0=x

D (x) exp

{∫ h

0

dτL
(
Ẋτ , Xτ

)}

L
(
Ẋτ , Xτ

)
:= −

(
Ẋτ − g (Xτ )

)2

2σ (Xτ )
2 − µ (Xτ ) ,

(A.14)

i.e., the Lagrangian expression. For all of these cases, we set K0 (x→ y) =

δ (x− y) Each expression can be derived from the others using the Legendre

transform. Considering t > a and reusing the original coordinate, (t, a), in

Eqs.(A.11) and (A.14), we obtain

Pt+h (a+ h, y) = nt−a (x)Ka+h (x→ y) .

From this, we have Eq.(3.1) as follows:

Pt (a, y) = nt−a (x)Ka (x→ y) ,

where we assume

lim
a↓0

Ka (x→ y) := δ (x− y) .
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Appendix B

Feynman–Kac formula

The Feynman–Kac formula is the most important equation for analyzing the

diffusion process in a potential medium. In a sense, the formula represents

a differentiation formula, which is extended to a stochastic differential such

that

d (F (Xa)S (a)) = dF (Xa)S (a) + F (Xa) dS (a) . (B.1)

Then, it becomes

d (F (Xa)S (a)) =

[
g (Xa)F

′ (Xa) +
σ (Xa)

2

2
F ′′ (Xa)− µ (Xa)F (Xa)

]
S (a) da

+ g (Xa)F
′ (Xa)S (a) dBa

(B.2)

from a property of the stochastic differential. The Feynman–Kac formula

asserts that the expectation of Eq.(B.2) holds if

dEx [F (Xa)S (a)] = −H̄xEx [F (Xa)S (a)] da.

Therefore, we have 
∂

∂a
ua (x) = −H̄xua (x)

u0 (x) = F (x) .

The proof of the formula is in [12, 13].
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Derivation of a general ψλ (x) in a semelparous species

Because Xa has a strong Markov property, that is, is a property of Ito’s SDE

[12], we can show that

ψSλ,x∗ (x) =

∫ ∞

0

da exp {−λa}ua (x)

= Ex

[∫ ∞

0

da exp {−λa}FS (Xa)SS (a)

]
= Ex

[∫ ∞

a∗
da exp {−λa}FS (Xa)SS (a)

]
← because of Eq.(6.3)

= Ex

[
exp {−λa∗}

∫ ∞

0

dτ exp {−λτ}FS (Xτ+a∗)SS (τ + a∗)

]
= Ex

[
exp {−λa∗}SS (a

∗)

∫ ∞

0

dτ exp {−λτ}FS (Xτ )SS (τ)

]
= Ex [exp {−λa∗}SS (a

∗)]Ex∗

[∫ ∞

0

dτ exp {−λτ}FS (Xτ )SS (τ)

]
= Ex [exp {−λa∗}SS (a

∗)]ϕ (x∗) . ↑ using the strong Markov property.

Appendix C

Basic optimal strategy theorem

Theorem

Let ṽ be

ṽ ∈ V , s.t. λ∗,ṽ = sup
v
λ∗,v,
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and ψv
λ (x) is given by Eq.(7.9). Define λ̃ by

λ̃ := λ∗,ṽ.

Then, we have

ψv
λ̃
(x) ≤ ψṽ

λ̃
(x)⇔ λ∗,v ≤ λ∗,ṽ.

Proof. The key point is that ψv
λ (x) monotonically decreases in λ and

ψλ∗,v (x) = 1.

Therefore,

ψv
λ̃
(x) ≤ ψv

λ∗,v (x) = 1 = ψṽ
λ̃
(x) ,

and the result follows trivially.

Appendix D

The viscosity solution, introduced in the 1980s, is an important concept

with regard to Hamiltonian systems [51], and unifies the population vector

Hamiltonian and that in control theory.

Definition of viscosity solutions

We set the function

H : [0, α)× A× R× R× R+ 7→ R.
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When H is degenerate elliptic in E, it satisfies

E1 ≤ E2 → H (a, x, p, E1, w) ≥ H (a, x, p, E2, w) ,

where a ∈ [0, α), x ∈ A, p ∈ R, E ∈ R, and w ∈ R+. If the function is a

monotonic function in w, it satisfies

w1 ≤ w2 → H (a, x, p, E, w1) ≤ H (a, x, p, E, w2) .

For example, Hamiltonian

H0 (x, p, E,w) = inf
v

{
−g (x, v) p− 1

2
σ (x, v)2E + [µ (y, v) + λ]w

}
− F (x) ,

(D.1)

is a degenerate elliptic, monotonically increasing function. This function is

the same Hamiltonian used in the stochastic maximum principle [44]. Then,

p, E, and w represent costate variables in the principle. Let H be a degen-

erate elliptic and monotonic function. A sub-solution in the viscosity sense,

ψ ∈ C (A), of

H

(
x,

∂

∂x
ψ,

∂2

∂x2
ψ, ψ

)
= 0 (D.2)

is defined by ψ − ψ̂ (ψ̂ ∈ C2 (A)) having a maximum value of zero at x̄ and

ψ̂ satisfying

H

(
x,

∂

∂x
ψ̂,

∂2

∂x2
ψ̂, ψ̂

)∣∣∣
x=x̄
≤ 0. (D.3)
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A super-solution of Eq.(D.2) in the viscosity sense, ψ ∈ C (A), is defined by

ψ − ψ̂ (ψ̂ ∈ C2 (A)). It has a minimal value of zero at x̄ and ψ̂ satisfying

H

(
x,

∂

∂x
ψ̂,

∂2

∂x2
ψ̂, ψ̂

)∣∣∣
x=x̄
≥ 0. (D.4)

When ψ satisfies the sub- and super-solution in the viscosity sense, it is

referred to as a “viscosity solution” [47]. Additionally, the viscosity solution

of the nonlinear evolutional PDE can be defined as the sub-solution of

− ∂

∂a
w +H

(
a, x,

∂

∂x
w,

∂2

∂x2
w,w

)
= 0 (D.5)

in the viscosity sense. w ∈ C ([0, α)× A) is defined by w−ŵ (ŵ ∈ C1,2 ([0, α)× A)),

having a maximum value of zero at (ā, x̄) and ŵ satisfying

− ∂

∂a
ŵ
∣∣∣
a=ā,x=x̄

+H

(
a, x,

∂

∂x
ŵ,

∂2

∂x2
ŵ, ŵ

)∣∣∣
a=ā,x=x̄

≤ 0. (D.6)

A super-solution of Eq.(D.5) in the viscosity sense, w ∈ C ([0, α)× A), is

defined by w − ŵ (ŵ ∈ C1,2 ([0, α)× A)) having a minimum value of zero at

(ā, x̄) and ŵ, satisfying

− ∂

∂a
ŵ
∣∣∣
a=ā,x=x̄

+H

(
a, x,

∂

∂x
ŵ,

∂2

∂x2
ŵ, ŵ

)∣∣∣
a=ā,x=x̄

≥ 0. (D.7)

When w satisfies the sub-solution and the super-solution of the above PDE

in the viscosity sense, it is called a“viscosity solution” of the PDE.
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The idea of viscosity solutions unifies two analysis techniques: the HJB

equation and the maximum principle in control theory [45]. One can then

find the correspondence of (p, E, w) to
(

∂
∂x
ψ̂, ∂2

∂x2 ψ̂, ψ̂
)
in Eq.(D.1). The ex-

istence of costate variables and the value function are important for optimal

control over both the maximum principle and HJB equations. Focusing on

the first, second, and third terms of the Hamiltonians in Eqs.(D.1), (7.6),

(9.2), and (9.15), they all have a common functional form: H (x, p, E, w),

H
(
x, iqτ , (iqτ )

2 , (iqτ )
0), H (

x, ∂
∂x
ψ̃, ∂2

∂x2 ψ̃, ψ̃
)

and H
(
x, ∂

∂x
w̃, ∂2

∂x2 w̃, w̃
)

with

respect to each costate variable, respectively. H
(
x, iqτ , (iqτ )

2 , (iqτ )
0) shows

that this Hamiltonian is the conjugate of the Hamiltonian in the path inte-

gral, Eq.(7.6), with respect to −iqτ . Consequently, the fittest has a minimum

Hamiltonian in its habitat, and the Hamiltonian naturally appears in our for-

mulation.
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Appendix E

Derivation of the nonautonomous path integral expres-
sion

Assuming g̃, σ̃, and µ̃ ∈ C∞,∞, we consider a nonautonomous age/size-

structured PDE

[
∂

∂t
+

∂

∂a

]
Pt (a, y) = −Ha,yPt (a, y)

Ha,y :=
∂

∂y
g̃ (a, y)− 1

2

∂2

∂y2
σ̃ (a, y)2 + µ̃ (a, y)

Pt−a (0, y) = nt−a (x) δ (x− y) .

(E.1)

Let (t, a) be fixed, and h be a new variable. The LHS of Eq.(E.1) becomes

∂

∂h
P̄h (y) =

∂

∂t
Pt+h (a+ h, y) +

∂

∂a
Pt+h (a+ h, y) ,

and we define

P̄h (y) : = Pt+h (a+ h, y)

ḡ (h, y) : = g̃ (a+ h, y)

σ̄ (h, y) : = σ̃ (a+ h, y)

µ̄ (h, y) : = µ̃ (a+ h, y) .

(E.2)

The Fokker–Planck equation with respect to the new population density,
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P̄h (y), is given as follows:

∂

∂h
P̄h (y) = −H′

h,yP̄h (y)

H′
h,y :=

∂

∂y
ḡ (h, y)− 1

2

∂2

∂y2
σ̄ (h, y)2 + µ̄ (h, y)

P̄0 (y) = n̄0 (x) δ (x− y) ,

(E.3)

where n̄0 (x) := nt−a (x). To derive the path integral from Eq.(E.3), one uses

the Fourier transform of the function P̄h (y) with respect to y, such that
P̂h (q) : =

∫ ∞

−∞
dy exp {iqy} P̄h (y)

P̂0 (q) = n̄0 (x) exp [iqx] ,

(E.4)

When substituted into Eq.(E.3), we have

∂

∂h
P̂h (q) = −

∫ ∞

−∞
dy exp {iqy}H′

h,yP̄h (y) . (E.5)

On the RHS, integration by parts is applied, such that
−
∫ ∞

−∞
dy exp {iqy}H′

h,yP̃h (y) = −
∫ ∞

−∞
dy exp {iqy}H′ (h,−iq, y) P̃h (y)

H′ (h,−iq, y) = −iqḡ (h, y) + 1

2
q2σ̄ (h, y)2 + µ̄ (h, y) ,

(E.6)

and expand ḡ (h, y), σ̄ (h, y)2, and µ̄ (h, y) into a power series with respect to

h as follows:

ḡ (h, y) = ḡ (0, x) +
∂

∂h
ḡ (h, y)

∣∣∣
h=0

h+
∂

∂y
ḡ (h, y)

dy

dh

∣∣∣
h=0

h+O
(
h2
)

σ̄ (h, y)2 = σ̄ (0, x)2 +
∂

∂h
σ̄ (h, y)

∣∣∣
h=0

h+
∂

∂y
σ̄ (h, y)

dy

dh

∣∣∣
h=0

h+O
(
h2
)

µ̄ (h, y) = µ̄ (0, x) +
∂

∂h
µ̄ (h, y)

∣∣∣
h=0

h+
∂

∂y
µ̄ (h, y)

dy

dh

∣∣∣
h=0

h+O
(
h2
)
.

(E.7)
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Substituting (E.7) into (E.6), we obtain a transition rate for the sufficiently

short time, h, given by

∫ ∞

−∞
dy exp {iqy}H′

h,yP̄h (y) = (−H′ (0,−iq, y) +O (h)) P̂h (q)

≈ −H′ (0,−iq, y) P̂h (q) , (E.8)

where

H′ (0,−iq, y) = −iqḡ (0, x) + 1

2
q2σ̄ (0, x)2 + µ̄ (x) .

Substituting (E.8) into (E.5) and solving the ODE, we obtain the following

solution:

P̂h (q) = n̄0 (x) exp {iqx−H′ (0,−iq, y)∆h} .

Using the inverse transform of the above equation, P̄h (y) becomes

P̄h (y) =
n̄0 (x)

2π

∫ ∞

−∞
dq exp {−iq (y − x)−H′ (0,−iq, x)h} . (E.9)

Setting

K̄h (x→ y) :=
1

2π

∫ ∞

−∞
dq exp {−iq (y − x)−H′ (0,−iq, x)h} ,

, the dynamics of the Markovian process at discretized time is expressed by
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K̄h (x→ y) =

∫
· · ·

∫
A

M−1∏
j=1

dxjK̄∆h (xj → xj+1)

=
1

(2π)M

∫
· · ·

∫
A

M−1∏
j=1

dxj

∫
· · ·

∫ ∞

−∞

M−1∏
j=0

dqj

× exp {−iqj (xj+1 − xj)−H′ (hj,−iqj, xj)∆h} , (E.10)

where ∆h := hj+1 − hj (hj+1 > hj > 0) and h0 = 0. Taking the limit of

∆h to zero and keeping M∆h = h (a constant),

lim
∆h→0

1

(2π)M

∫
· · ·

∫
A

M−1∏
j=1

dxj

∫
· · ·

∫ ∞

−∞

M−1∏
j=0

dqj

× exp {−iqj (xj+1 − xj)−H′ (hj,−iqj, xj)∆h}
∣∣∣
M∆h=h

. (E.11)

Accordingly, the limiting function expresses the summation over every pro-

jection function of the sample path, which connects x with y at time h; this

is the extended path integral. We rewrite (E.11) as

K̄h (x→ y) =

∫ X̃h=y

X̃0=x

D (x)

∫ ∞

−∞
D (q) exp

{∫ h

0

dτ
(
−iqτ ˙̃Xτ −H′ (τ,−iqτ , Xτ )

)}
H′

τ,−iqτ ,X̃τ
:= −iqτ ḡ

(
τ, X̃τ

)
+ q2τ σ̄

(
τ, X̃τ

)2

+ µ̄
(
τ, X̃τ

)
,

(E.12)

where ˙̃Xτ represents the differential of X̃τ with respect to τ , and where∫ X̃h=y

X̃0=x

D (x)

∫ ∞

−∞
D (q) := lim

∆h→0

1

(2π)M

∫
· · ·

∫
A

M−1∏
j=1

dxj

∫
· · ·

∫ ∞

−∞

M−1∏
j=0

dqj.
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Additionally, calculating the Gauss integral in (E.11) with respect to every

qj, where

K∆h (xj → xj+1) =
1

2π

∫ ∞

−∞
dqj exp {−iqj (xj+1 − xj)−H′ (hj,−iqj, xj)∆h}

=
1√

2πσ̄ (hj, xj)
2∆h

exp

{
−
(xj+1−xj

∆h
− ḡ (hj, xj)

)2
2σ̄ (hj, xj)

2 ∆h− µ̄ (hj, xj)∆h

}
,

(E.13)

(E.11) is given by
lim

∆h→0

∫
· · ·

∫
A

M−1∏
j=1

dxj√
2πσ (xj)

2 ∆h

M−1∏
j=0

exp
{
∆hL′

j

}∣∣∣
M∆h=h

L′
j := −

(xj+1−xj

∆h
− ḡ (hj, xj)

)2
2σ̄ (hj, xj)

2 − µ̄ (hj, xj) ,

(E.14)

When we set

∫ Xh=y

X0=x

D (x) := lim
∆h→0

∫
· · ·

∫
A

M−1∏
j=1

dxj√
2πσ̄ (hj, xj)

2∆h
,

then, we obtain the Lagrangian expression of the path integral as follows:

Kh (x→ y) =

∫ X̃h=y

X̃0=x

D (x) exp

{∫ h

0

dτL′
(
τ, ˙̃Xτ , X̃τ

)}

L′
(
τ, ˙̃Xτ , X̃τ

)
:= −

(
˙̃Xτ − ḡ

(
τ, X̃τ

))2

2σ̄
(
τ, X̃τ

)2 − µ̄
(
τ, X̃τ

)
.

(E.15)

For all of the cases, we set K0 (x→ y) = δ (x− y) Each expression is derived

from the others using the Legendre transform. Considering t > a and reusing
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the original coordinate, (t, a), in Eqs.(E.12) and (E.15), we obtain

Pt+h (a+ h, y) = nt−a (x) K̃a+h∈(0,α) (x→ y) .

Therefore, we have Eq.(9.17) as follows:

Pt (a, y) = nt−a (x) K̃a∈(0,α) (x→ y) .

We assume that

lim
a↓0

K̃a∈(0,α) (x→ y) := δ (x− y) .

Appendix F

Analytical solution of population vector in a simple model

The stable population vector P †
t (a, y) is given by

P †
t (a, y) = Qx,0 exp [λ

∗
x (t− a)]Ka

(
x→ y

∣∣∣y < x∗
)
.

Then, the fitness is given by Eq.(10.8), and the projection kernel is a solution

of the boundary value problem in Ka (x→ 0) = Ka (x→ x∗) = 0, and
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Ka

(
x→ y

∣∣∣y < x∗
)
=

1√
2πσ02a

exp

−
[
log x

y
−

(
γ − σ0

2

2

)
a
]2

2σ02a
− µ0a


− 1√

2πσ02a
exp

−2
(
γ − σ0

2

2

)
log x

y

σ02
−

[
log yx

x∗2 −
(
γ − σ0

2

2

)
a
]2

2σ02a
− µ0a

 ,

(F.1)

from the result on p.56 in [15]). Qx,0 becomes

Qx,0 =
Ĝλ∗

x
(x)

log x∗

x

∣∣∣∣σ02 log ϕ (x∗)log x∗

x

+ γ − σ0
2

2

∣∣∣∣ . (F.2)

Appendix G

Derivation of ψλ in a simple model

The adjoint operator H̄x, which is generated by Eq.(10.1) and Eq.(10.2),

represents

H̄x = −γx d
dx
− 1

2
σ2
0x

2 d
2

dx2
+ µ0, (G.1)

Substituting the operator into Eq.(5.2), we obtain an ODE such that

−γx d
dx
ψSλ (x)−

1

2
σ2
0x

2 d
2

dx2
ψSλ (x)+µ0ψSλ (x)+λψSλ (x)−FS (x) = 0, (G.2)
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where FS (x) is given by Eq.(6.2) and represents the boundary condition of

the ODE (G.2). Because only the condition x < x∗ is considered, it is enough

to solve the following equation:

−
(
H̄x + λ

)
ψSλ (x) = 0. (G.3)

We then assume a solution ψSλ (x) = Cxρ (C ̸= 0), and substitute it into

(G.3) as follows: (
γρ+

1

2
σ2
0ρ (ρ− 1)− µ0 − λ

)
Cxρ = 0. (G.4)

By solving (G.4) with respect to ρ, we obtain

ρ± =
1

2

(
1− 2γ

σ2
0

)
± 1

2

√(
1− 2γ

σ2
0

)2

+
8µ0

σ2
0

+
8λ

σ2
0

.

From the linearity of (G.3), the solution of the equation can be written as

ψSλ (x) = c1x
ρ+ + c2x

ρ− .

Because ψSλ (x) has to satisfy ψSλ (0) = 0 and ψSλ (x
∗) = ϕ (x∗) from FS (x),

we choose c1 = ϕ (x∗) /x∗ρ+ and c2 = 0. Therefore, the solution ψλ (x
∗)

required is given by

ψSλ,x∗ (x) = ψSλ (x) = ϕ (x∗)
( x
x∗

)ρλ
,

where

ρλ := ρ+.
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Appendix H

Derivation of reproductive success in a simple model

For simplicity, we change the variables in Eq.(5.1) as follows:

z = log x

z∗ = log x∗

exp {−µ0a}wa (z) = ua (x) .

(H.1)

Then, we obtain
∂

∂a
wa (z) =

(
γ − σ0

2

2

)
∇zwa (z) +

σ0
2

2
∆zwa (z)

w0 (z) = FS (exp {z}) ,
(H.2)

where ∇z and ∆z represent a dimensional nabla and Laplacian, respectively,

with respect to z. From Eq.(5.2), ψ̃λ (z) is the Laplace transform of wa (z),

which satisfies 

λψ̃λ (z) + H̃∗
zψ̃λ (z) = 0

H̃∗
z := −

(
γ − σ0

2

2

)
∇z −

σ0
2

2
∆z

lim
z→−∞

ψ̃λ (z) = 0, ψ̃λ (z
∗) = ϕ (exp {z∗}) ,

(H.3)

at z < z∗. Equations (H.2) and (H.3) represent a first passage time problem

in Brownian motion, with drift (γ − σ02/2) at z → z∗, (see [13]). The solution
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of Eq.(H.3) becomes

ψ̃λ,z∗ (z) = ϕ (exp {z∗}) exp {ρ̃ (z − z∗)}

ρ̃ =
1

2

(
1− 2γ

σ02

)
+

1

2

√(
1− 2γ

σ02

)2

+
8λ

σ02

= ϕ (exp {z∗})
∫ ∞

0

da
(z∗ − z)√
2πσ02a3

exp

−λa−
[
z∗ − z −

(
γ − σ0

2

2

)
a
]2

2σ02a


Therefore, we obtain

wa,z∗ (z) = ϕ (exp {z∗}) (z∗ − z)√
2πσ2

0a
3
exp

−
[
z∗ − z −

(
γ − σ0

2

2

)
a
]2

2σ02a

 (H.4)

(see the appendix of [52]). Then, the distribution

P (a ∈ da) = (z∗ − z)√
2πσ02a3

exp

−
[
z∗ − z −

(
γ − σ0

2

2

)
a
]2

2σ02a

 da,

is an inverse Gaussian distribution [53, 54], and it represents a distribution

of the first time passage of Brownian motion at z → z∗. Reusing the original

variables in wa,z∗ (z), we obtain ua,x∗ (x) as follows:

uSa (x) = ϕ (x∗)
log x∗

x√
2πσ02a3

exp

−
[
log x∗

x
−

(
γ − σ0

2

2

)
a
]2

2σ02a
− µ0a

 . (H.5)
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Appendix I

Mature age density of semelparous species in the two-
resources utilization model

Because optimal utilization is constant, we can use the mature age distribu-

tion, Eq(10.21). The mature age density of a semelparous species follows

AS (a) =

=
log x∗

x√
2π

[
σ2
1v

2 + σ2
2 (1− v)

2]a3
× exp

{
−
[
log x∗

x
−
(
[γ1 (1− v) + γ2v]− 1

2

[
σ2
1v

2 + σ2
2 (1− v)

2]) a]2
2
[
σ2
1v

2 + σ2
2 (1− v)

2] a + ρv log
x∗

x
− µ0a

}

ρv :=
1

2

(
1− 2 [γ1 (1− v) + γ2v]

σ2
1v

2 + σ2
2 (1− v)

2

)

+
1

2

√(
1− 2 [γ1 (1− v) + γ2v]

σ2
1v

2 + σ2
2 (1− v)

2

)2

+
8µ0

σ2
1v

2 + σ2
2 (1− v)

2 .

(I.1)
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