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I. INTRODUCTION

In quantum mechanics, in which a physical constant % := h/27 (h : the Planck
constant) plays an important role, the limit iz — 0 for various quantities (if it
exists) is called the classical limit. Trace formulas in the abstract boson Fock
space and the classical limit for the trace Z(Sh) (the partition function) of the
heat semigroup of a perturbed second quantization operator were derived by Arai
[ 4], where 8 > 0 denotes the inverse temperature. Generally speaking, the
classical limit is regarded as the zero-th order approximation in A. From this point
of view, it is interesting to derive higher order asymptotics of various quantities
in h. Such asymptotics are called semi-classical asymptotics. The purpose of this
paper is to derive an asymptotic formula for Z(Sh).

The outline of this paper is as follows. In Section II, we review some fundamental
facts in the abstract boson Fock space over .7¢, the complexification of a real
separable Hilbert space 7. In particular, a differential structure over a class
of locally convex spaces is introduced, which leads to the ()-space representation
L?(E,du) of the boson Fock space over #z. The differentiation discussed in this
section should be considered to be related to the infinite dimensional analysis in |
2, 3 ]. In Section III, following [ 4 ], we review a classical limit in the abstract boson
Fock space over a real separable Hilbert space . In Section IV, we introduce a



class of locally convex spaces. This gives a general framework for the semi-classical
analysis discussed in this paper. In the last section, we derive a semi-classical
asymptotic formula for Z(5h) mentioned above. The present paper is based on [
1].

I am very grateful to Professor Arai for his rigorous and hearty help. It is a real
delight that the teachings of him, which has been shown to me responding to my

consciousness on that occasion, let me discover some ideas in the present paper.

II. PRELIMINARIES

Let 4 be a real separable Hilbert space. We denote by .#¢ the complexification
of #. In general, we denote by < -, > and || - || the inner product and the norm
of a Hilbert space.

We denote by &,, the permutation group of n letters. For all ¢ € &,,, there
exists a unique unitary mapping U, on )" ¢ such that

Ua(f1®"'®fn):fo(1)®"'®f0(n)7 fl?"'afne%-

We define S,, by

1
Sn :E Z Uo-.

Ueen

Then S, is an orthogonal projection on K" . We set

é% = Sn(é %)7

which is called the n-fold symmetric tensor product of 7. Then ®: J¢ becomes
a Hilbert space. We set

0
®%;:c.

We define %, () by

Fo(He) = P K) .
n=0 s

Then %, () becomes a Hilbert space, which is called the boson Fock space over
.
For all n € Z, (the set of nonnegative integers), we define the mapping w,, from
Q. e to F () by
(unlp)(m) =1, m=n,
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()™ =0, m+#n, ¢ e ).

Then wu,, is a linear isometry from Q). H#¢ to F, () . We define L%En) (A¢) by
T (A - ®%

Then ﬁé")(%) can be identified with @ ¢ by u,. We define %, o(H#¢) b
Fro(He) = @n:ogﬂgn)(%),

where @ZO:O denotes algebraic infinite direct sum.

For all f € ¢, we denote by a(f) the boson annihilation operator in %, (.#¢)
(cf. [6]), which is defined to be the closed linear operator in .%,(.7¢) such that its
adjoint a(f)* takes the following form (for a linear operator A, D(A) denotes the
domain of A):

D(a(f)") = {4 € Zo(e)| Y _nllSu(f @ " D)|* < oo},

(a(f) )@ =0,
(a(f) )™ = VnS,(f @ ™), neN.

(
We define Q € 7" (#2) by
Q:=1¢€eC.

We have the following proposition.
PropPOSITION 2.1. (1) For all f,g € ¢,
[a(f)7 a’(g)*]lfg‘\byo(fffc) =< .f’ g >,

where for a linear operator A and a subspace D C D(A), A|p denotes the ristric-
tion of A to D. (2) For allm € N and f1,---, fn € ¢, a(f1)*--a(f,)*Q €
T A), and

a(fi)" - -a(fn) 2= msn(fl R ® fn).

Proof. See [ 6, Theorem 6.4 |. O



Let {J, }nez, be a family of Hilbert spaces, and T™ be a densely defined linear
operator in %,. We define @.- 7™ by

DIEPT™) = {y € @ #lv™ € D(T™), neZ},
n=0 n=0

((EB T(n))¢)(n) =TMWy™  nez,.
n=0

Then @77, 7™ is a linear operater in >, .
Let T be a densely defined closed linear operator in . For all n € N, we set

" J
n
T =%TIe T @ @ g piry,
j=1

where ®: denotes n-fold algebraic symmetric tensor product, and

We define dI'(T") by
dr(T) = P T
n=0

Then dI'(T) is a linear operator in .%,, (¢ ), which is called the second quantization
of T
We have the following proposition.

PROPOSITION 2.2. Let T be a self-adjoint operator in F¢.
(1) dT(T) is self-adjoint.
(2)

o(dl(T)) = {0} U (JOD_ NI €a(T), j=1.---,n}).

n=1 j=1
oy dr(T)) = {0} U (LSl € 0p(T), = 1,0+ 1))
n=1 j=1
Proof. See [ 5, Theorem 4.14 |. O

Let & be a real locally convex space such that & is dense in 7 and the embed-
ding mapping of & into 7 is continuous. Then we can see that

ECHCE
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where &' denotes the topological dual of &.
Following the fact that for all ¢ € 7 and f € &,

< o, f>=o(f),

for all p € & and f € &, we set

< o, f >=o(f).

Let # be the Borel field generated by {< -, f > |f € &}, and u be a probability
measure on (&, %) such that

/ N dp(d) = e W2, fee
(g’/

Then we have

[ orau) =10 se.

Hence the mapping f ——< -, f > from & to L*(&”’,du) is continuous linear
and it extends to the continuous linear mapping T from 5 to L*(&”,du). For all
f e and ¢ € &, we define < ¢, f > by

<, f>=T(f)(9).

For all f € 7 and ¢ € &, we define ¢(f) by

o(f) =< o, f>.

Then we have

/€i¢>(f)dlu<¢):€||f2%)/2’ fexn

Let {E, }nen be a family of Banach spaces with the property that

Eni1 C En, (|9l < [[0lln415 & € Ensa,

for all n € N, where |||, denotes the norm of E,,. Then, the topology defined by the
norms {||-||n fnen turns [, .y En into a Fréchet space. In particular, (), LP(&”, dp)
can be provided with the structure of Fréchet space.

We have the following proposition.

PROPOSITION 2.3. For all f € 5, < -, f >€ )
feH—<- f> from A to)

en LP (67, dp), and the mapping

ben L2 (&7, dp) is continuous linear.



Let F' be a function on R™ and Gy, --- , G, be real valued functions on &’. We
define F(Gy,--- ,G,) by

F(Gr,+,Gn)(9) = F(Gi(9),- - ,Gu(d)), ¢€&

Let { %, }nen be a family of subsets of the linear space of the functions on R™.

We define {Z, },en(87) by
{F o nen(&) = L{F(< - f1 >, < fu>),1|F € Fy, f1, , fu € 5, n €N}

Let {Z,}nen be the family of the linear space of the polynomials of n real
variables with complex coefficients. We define Z2(&”) by

P(E") = { P }nen(E).
Similarly, we define .7 (&”) by
(&) = {FR") }nen (&),

where .(R"™) is the Schwartz space of rapidly decreasing functions on R™. Then
we have the following proposition.

PROPOSITION 2.4. Z(&") and . (&) are dense in L*(&', du).

Proof. See [ 6, Theorem 2.10 |.
[l

DEFINITION 2.5. Let 2(8") be a linear subspace of the linear space of the functions
on &', and {Dy¢} e be a family of linear mappings from Z(&") to itself. The pair
(2(8"),{Ds}ren) is said to be a differential structure over &' if the following
propoties are satisfied.

(1) Forallge 2, 1, <-,g>€ (&),

Dl =0, Dy(< -, g>)=<f,g>.
(2) For all F,G € 2(&"), FG € 9(&),

Dy(FG) = (D;F)G + F(D;Q).

(3) Let n € N be arbitary. Then, for all differentiable functions F on R™ and
all real valued functions G; € (&), j=1,---,n, F(Gy,---,G,) € (&),

Dp(F(Gh,--+,Gn)) = > (0;F)(Gr,--- ,Go)DsGy, [ €A

=1
(4) For all F € 92(&"), F* € 2(&") (F* is the complex conjugate of F'),
Dy(F") = (DsF)",  fe .



We can see that Z(&8') U L (&) C 2(&7).

DEFINITION 2.6. Let F' be a C*®-function on R". We say that F is in 7 (R") if
and only if
(1) for all affine mappings A; on R, j=1,--- n,

lim (0°F)(Ast, -, Agt)e™ ™ =0, a€Z, a>0,

[t| =00

(2) for all f1,---,fn € J, and o € Z7}, (0°F)(< - f1r >, ,< -, fa >) €
Mpen LP(E7,dp), and the mapping (fi,- -+, fu) = (OF)(< -, f1 >, < fo >)
from F" to (e LP(E", dp) is continuous.

We define .7 (&) by
T (&) = {T(R")}nen(&").
Then we have the following proposition.

PROPOSITION 2.7. (1) F(&") is a linear subspace of 2(&") N L*(&',dp).
(2) (& UL (&) C T(&).
(3) For all F,G € T (&") and all f € I,

FG, DsF, F* € (&").

PROPOSITION 2.8. Let f € 7 and F,G € T (&"). Then

ANFGauto) = [ (DF)Gdn+ [ F(D,G)a
&’ &’

(9@/

For all f € 2, we can regard Dy as a densely defined linear operator in
L*(&',dp) by
D(Dy) := T (&").

PROPOSITION 2.9. For all f € 2,
T(&") € D(Dy*), (Dg)|7er) = o(f) — Dy.
Since 7 (&) is dense in L*(&”,du), Dy is closable.

PROPOSITION 2.10. Let f € 7, F € (&) and G € D(Dy). Then

[ olnFGino) = [ (DPGau+ [ FDiGYn



Forall fy, -+, fn € 2, D}, --- D} 1 € P(&'), which is called the Wick product
of the randum variables < -, f; >,--- < - f, >. For all ¢ € &', we define

t(fr) - d(fa) Dy
2o(f1) - 0(fn) = (Dy, -+ Dy, 1)(9).
Then we have the following proposition.

ProposITION 2.11. Let fj,gr € 7€, j=1,---,n, k=1,--- ,m. Then

(1) [Dy, Dl 71y =< f,9>, f,g€H, )

(2) Dy o(f1) - 0(fa) = 2oy < [ fs >0 0(f1) - 0(f5) - bl fa) s [ €,
where ¢(f;) indicates omission of ¢(f;).

(3)

< O(f1) - o(fn) 1 9(g1) -+ B(Gm) > 1267 ap)
= 5n,m < a(fl)* e 'CL(fn)*Qa a(gl>* e -a(gm)*Q > T (He) -

We have the following theorem.

THEOREM 2.12. There exists a unique unitary mapping U from F,(H#2) to L*(&', du)
such that
U =1,

Ua(fi)"---alfu)" Q) = 0(f1) -~ 0(fa) o i fun€
Proof. See [6, Theorem 6.34]. O

ITITI. A CLASSICAL LiMIT IN THE ABSTRACT BOSON
FOoCK SPACE

In this section we review a classical limit for the trace of a perturbed second
quantization operator and some fundamental facts related to it, following the work
of Arai [ 4 ].

Let S be a real separable Hilbert space, and A be a strictly positive self-adjoint
operator acting in . We denote by {J7(A) }scr the Hilbert scale associated with
A [4]. Forall s € R, the dual space of J(A) can be naturally identified with
A (A).

We denote by .# () the ideal of the trace class operators on 7. Let v > 0
be fixed. Throughout this paper, we assume the following.



Assumption 1. A% € 7 ().
Under Assumption I, the embedding mapping of . into
E .= ,(A)

is Hilbert-Schmidt. Hence, by Minlos’ theorem, there exists a unique probability
measure p on (E, #) such that the Borel field 4 is generated by {¢(f)|f € 74, (A)}
and

/emmmwyzgwaﬂ, Fean
E

where || - ||+ denotes the norm of 7.

The complex Hilbert space L?(E,du) is canonically isomorphic (Theorem 2.12
with & = FE) to the boson Fock space over s, which is called the @Q-space
representation of it. We denote by dI'(A) the second quantization of A and set

Hy = dI'(A).
Then for all 8 > 0, e7#H0 € 7 (L*(E,dp)).

DEFINITION 3.1. A mapping V' of a Banach space X into a Banach space Y
1s said to be polynomially continuous if there exists a polynomial P of two real
variables with positive coefficients such that

V(@) = V@)l < Pl [vDlle =4I, é,9 € X.

Let V be a real valued function on E. Throughout this paper, we assume the
following.

Assumption 11. The function V' is bounded from below, 3-times Fréchet differ-
entiable, and V,V' V" V" are polynomially continuous.

For h > 0, we define V}, by
Vi(¢) =V (Vho), ¢€E.

and set

.1
Hh = Ho—f—ﬁ‘/;‘;,

where 4 denotes the quadratic form sum.
Under Assumption I, 11, for all 8 > 0, e #Hn € #(L*(E,du)) [ 4]. The trace
Tre PHr is called the partition function of Hj. For all s € R, A%/? is a continuous

linear operator from .7;(A) to E and it extends to a continuous linear operator
from 7,1 s(A) to E.



THEOREM 3.2. [4]. Let > 0. Then
Tr e~ AMHn 2
— _ _ Z A7
}g% Tr e—AhHo /Eexp ( v (\/;A ¢>) dp(9)-

Q=F v=pe@up.

We set

Then v is a probability measure on ().
Let {\,}52, be the eigenvalues of A, and {e,}>2, be the complete orthonormal
system (CONS) of 27 with Ae, = \,e,, and

o0

1
Y —5 < (3.1)
n=1 )\Z

Let ¢ be a bijection from N x N to N. For all n,m € N, we set fnm = €umm)-
Then { fomfrom=1 is @ CONS of . For all ¢ € E, we define

(bn = ¢(en)7 ¢n,m = ¢(fn,m)

Then {¢,}, and {@pnm }nm are families of independent Gaussian random variables
such that for all n,m,n’,m’ € N,

E E
[E DGt (D) = BB (3.3)
For all my,---,m, € N, we have
Sl ) < (3.4)

For all N, M € N, we set

FN7M(€,W,S) = \/72 e, + ZZ 62/\2 /\(7127Tm)2)(1/;n7mcos(271'm3>

n=1 m=1

+  Opmsin 27rms))en, >0, w=1(0,1,0)€Q, 0<s<1. (3.5)

Then we have

Tre—BhHn

1
T =y lm [ e (_5 /0 V(FNM(E,w,s))ds) (),  (36)

N,M—oc0

where € = Sh (See [ 4 ], Lemma 5.2, Lemma 5.3. ).
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IV. A CrLASS OofF LocALLy CONVEX SPACES

We denote by R, the set of the nonnegative real numbers.

DEFINITION 4.1. A mapping f from Ry to a locally convex space X is said to be
locally bounded if for all 6 > 0 and every continuous seminorm p on X,

ps(f) = sup p(f(e)) < occ.
0<e<s
We denote by (X®+),, the linear space of the locally bounded mappings from
R; to X. The topology defined by the seminorms {ps},s turns (X®+), into a
locally convex space. If X is a Fréchet space, (X R+)1'b. is a Fréchet space.
Let {E,}nen be a family of Banach spaces with the property that

En+1 - ETH ||¢Hn S ||¢”n+17 ¢ € En+17

for all n € N, where || - ||,, denotes the norm of E,,. Then, the topology defined by
the norms {|| - || }nen turns (7, oy

Let (X, P) be a probability space and Y be a Banach space. We denote by
LP(X,dP;Y) the Banach space of the Y-valued LP-functions on (X, P). Then
pen LP(X,dP;Y) can be provided with the structure of Fréchet space.

E,, into a Fréchet space.

DEFINITION 4.2. Let f be a mapping from Ry to (Ve LP(X,dP;Y). We say
that f is in ((eny L7 (X, dP; YY)t if and only if for each § > 0, there ezists a
nonnegative function g € (), LP(X, dP) such that

sup [|f(e)(2)lly < g(x),

0<e<o

P-a.e.x.

The set ((,en LP(X, dP; Y))EE is a linear subspace of (Mpen P (X, dP;Y))ﬁ;.

u.i.

In what follows, we omit z in f(e)(x).

LEMMA 4.3. Let {fi}rea and {ga}ren be nets in ([
that

LP(X, dP))]fg_. Suppose

peEN

hm sup/|fA )|PAP < oo and gy — 0

0<e<d

in (Mpen L (X, dP))l.g, forallp € Nand § > 0. Then fagx — 0 in ((,en LP(X, dP))]l%.

Proof. Let p € N and 6 > 0. For each € > 0, by the Schwarz inequality, we have

/X|fx(5)gx(5)|pdp < (/X|fk(5)|2de)l/2 (/X|gA(e)|2de)1/2.

11



Hence we have

2
AL CIIE (sup / |fA<a>|2de) (sup / oa(e |2de) .
0<e<d J X 0<e<d J X 0<e<é

Then, by the assumption on f, and g, we have f g, — 0. [

Let Xy, ---, X, and Z be non-empty sets and G be a real-valued function on
X1 X -+ x X, and F; be a mapping from Z to X;, j = 1,---,n. We define
G(F,- -, F,), the real-valued function on Z, by

G(Fy, - F)(2) = GFi(2), -+, Fu(2)), z€ 2.

Ry
LP(X,dP;Y))

LEMMA 4.4. Let ) be a polynomial of n real variables and F; € (ﬂ
Lb.

j=1,---.n. Then, for all 6 > 0,

peN

lim P :

o s [ QUGHE. - IGa(E)DIaP < o0

Proof. Tt is sufficient to consider the case where Q(xy, -+ ,x,) = 2 -+ aPr xy,--- @, €
R

R, pi,--,pn € N. Let G, € (ﬂpeNLP(X,dP;Y)> " j = 1.---,n By the
Lb.

Schwarz inequality, we have

/XHGl(f)le---HGn(s)Hp"dPS (/X\IGH(S)HQ“dP)l/2 (/X !IGz(f)!\2”"--'IlGn(é)!V”"dP)l/Q-

Then, for all § > 0,

swp [ 1GNP [Gale) PP

0<e<d J X

/2 1/2
< (sup / Texe |2p1dP) (sup / ||G2<e>||2p"---||Gn<e>||2p"dp) .
0<e<d 0<e<d J X

B

Y 1/2 1/2
(sup / ||Gl<s>||2mdp) - (sup / ||F1<s>||2mdp) |
0<e<d J X 0<e<d J X

as G; — F, we inductively have

lim sup / |G ()|t - - - |Gr(e)||PrdP < 0.
X

G1—Fy, ,Gpn—Fy 0<e<s
]

PROPOSITION 4.5. Let ) be a polynomial of n real valuables. Then the mapping
n Ry
(Fu e B = QUIRL -+ Il from ((Myew (X, aPY))E) o (Mye LP(X, dP))

X 3 u.i.
18 continuous.
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Proof. We first show that the mapping in the Proposition 4.5 is well defined. Let
6>0,pi, - ,pn €N, and Fj € ([, LP(X, dP; Y))]R+ j=1,---,n. We assume

u.i.’

that there exists a nonnegative function g € [y LP(X, dP) such that

sup ([|E(e)[” -~ - [[Ea(e)[™) < g,
0<e<s
P-a.e.. By the assumption on [, there exists a nonnegative function h € () LP(X, dP)
such that

sup [[Fi(e)[[”* < h,
0<e<é

P-a.e.. Then, we have

sup [[Fu(e)[P - IFa ()P < sup [[Fu(e)[” sup [[Fa(e) || - - [|Fn(e) 1P
0<e<é 0<e<é 0<e<é

hg,

IN

P-a.e..
By the Schwarz inequality, we have hg € ﬂpeN LP(X,dP). Hence, we inductively
have

R+
1P || FuP e (ﬂ IP(X, dP)) .

peN u.i.

u.i.’

Let Gj € (Mpen LP(X,dP;Y))it, j=1,-+,n Then

L[ ER [P = Gl - - |Gl
n
<Y NG NG allP= LGP = I GllP T Fy gl [P+ - [ F P
j=1

Then, there exist polynomials {Qj}?zl of 2n variables with positive coefficients
such that
[P P = G- (|Gl

<Y QA NEM NGl NGall) 1155 = Gl
j=1
Applying Lemma 4.3 and Lemma 4.4, we have
D QiU I NG S IGall) 15 = G5l — 0,
j=1
as Fy - Gy, , F, = G,. Hence the mapping in the Proposition 3.5 is continu-
ous. O
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PROPOSITION 4.6. Let Z; be a Banach space (j = 1,---,n), L be a continuous
multilinear form on Zy X --- X Z,, and V; be a polynomially continuous map-

ping from'Y to Z;j(j = 1,---,n). Then the mapping (Fy,--- ,F,) — L(Vj o
n R
Fi,--- Vo F,) from ((ﬂpeN LP(X, dP;Y))ﬂff{) to (ﬂpeN LP(X, dP)) " is con-

. u.i.
tinuous.

Proof. We first show that the mapping in the Proposition 4.6 is well defined. Let
Fj € (ﬂpEN Lp(X7 dey))R+ j = 17 e, N Then

[L(Vio By, - Vio B[ LIV o Fyf] -+ - [V o Full.

Since V; is polynomially bounded, there exists a polynomial ) of n real variables
with positive coefficients such that

[L(VioFy, - Voo F)[ < QUIALL -+ [ FulD):
R
By Proposition 4.5, Q(||Fill,-- -, || Full) € (ﬂpeN LP(X, dP)) + . Hence we have
R u.l.
L(‘/loFb'“ 7VTLOFTL) € (mpENLp(X7dP)> +

LP(X,dP;Y)Et j=1,--- n. Then

u.t.)

Let Gj € (m

peN
’L(‘/]_OF]_,"‘ 7Vnan)_L(‘/loG17”' 7VTLOGTL)|
LY IVioGull -+ [IVii 0 GiallllV o = Vio Gyll | Viga 0 Fyall - -+ [V o .
7=1

Since V; is polynomially continuous, there exist polynomials {Q;}7_; of 2n real
variables with positive coefficients such that

|L(‘/10F17"' 7VTLOFTL>_L(‘/10G17H' 7V7LOG7L>|

<D QAL IE NG - 1Gall) 15 = G-
j=1
Applying Lemma 4.3 and Proposition 4.5, we have
D QUE - NEMNG - IGal) 15 = Gyl — 0,
j=1
as F1 — G1,--- , F,, = G,. Hence the mapping in the Proposition 3.6 is continu-
ous. O
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Let P; be a probability measure on a set Xj, j = 1,2. For I € ([, LP(X1 X
Xy, d(PL® Py)))at, we define a mapping fX2 FdP, from R, to the set of functions

on X; by :
</ FdPQ) (e) = / F(e)dP,, ¢>0.
X2 X2

/ |F(€)|de2dP1 < 00
X1 JXo

for all e > 0 and p € N, we have

By the property

|F(e)|PdPy < o0,

X2
Pr-a.e.. Hence [ y, FdP, is well defined.
Let 0 > 0. Then, by the assumption on F, there exists a nonnegative function
9 € Npen LP (X1 X Xy, d(P1 @ P)) such that

sup |F(e)|<g, Pi®P,—ae.

0<e<é

Then, we have

sup
0<e<6

< sup |F(e)|dPy

0<e<6 J x5

S / g dP27
X2

Pi-a.e.. For all p € N, by Jensen’s inequality,

p
/ /gdpg dPl S //gpdpgdpl
X1 1V X2 X1 J X2
< o
R

Hence we have [, FdP; € (ﬂpeN LP(Xq, dP1)> +

/X F(e)dP,

PROPOSITION 4.7. The mapping F — [ FdP; from
Ry
(Mpext /(X1 % X, d(Py @ P)))ii to (Myen L(X1,dP))

Proof. Let I € ((,en L7 (X1 x X2, d(P1 ® P5)))%t. Then, by Jensen’s inequality,

/X F()dP,

Hence, for all 6 > 0, we have
sup / / F(e)dP,y
0<e<é J X1 |/ Xo

as ' — 0in (), oy LP(X1 X X, d(Py ® Py)))[. Hence the mapping is continuous.
[

1s continuous linear.

p
S |F(€)‘de2

X2

p
dP1 S sup / |F(€)|de2dP1
0<e<s J X1 J X
— 0

peEN
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V. AN ASymMPTOTIC FORMULA
We set

1
Z(e)= lim exp (—6/ FNﬁM(s,w,s)ds) dv(w), ¢€2>0, (5.1)
Q 0

N,M—oc0

(See (3.5) and (3.6)). In this section, we examine the differentiability of Z. For
all n,m € N, we set

(e) = 4e2 )\, >0
ST BEN @) T

Then, for all § > 0, there exists a constant C' > 0 such that

_ oA,

|apm(e)] < o n,meN, 0<e<é. (5.2)
|a, . (e)] < Cﬁ", n,meN, 0<e<d. (5.3)
oy ()] < Cj\jﬂ, n,meN, 0<e <4 (5.4)
o (@) < O(A’iﬂm* M) meN 0<e<s (5.5)

For n,m € N, we set
Brm(w, 8) = Ynmcos(2rms) + O, sin(2rms), weQ, seR.
We denote by MELO)U the Lebesgue measure on [ 0,1 |.

LEMMA 5.1. {Fy,mpnmen: {FN advmen, {EN v v men, {FN v men are Cauchy
nets in ((,ey LP(Q % [0,1],d(v® /JELO,)l s E))Er

Proof. By (5.2), (5.3), (5.4), (5.5), Fna, Fars N FN o € (N
L R

Ko B

The set {/\%/26”}20:1 is a CONS of E. Then, for N, N’ € N with N > N/,

S [ A
E —e,|l = E .
VA, . PR

LP(Qx[0,1],d(ve

peEN

n=N'+1 n=N'+1
Then, for all p € N,
N 2p N D
> el - (3 )
n=N'+1 \/Xn E n=N'+1 An

N

1 1 9
= Z _)\Wirl vl G2, OR .
n np

ni, ,np=N'+1
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By (3.4) and the fact that

o0

> <o
+1 )
n=1 >\’y
we have
2p
Z dv(¢) — 0,
N’+1
as N, N' — 0.

Let Ay, Ay be finite subsets of N. Then,

Z(Z%mma%:§j<z%m@0

nen; meAg E neA meAg
For all p € N,
2p
E ( E an,m(e)ﬁn,m) €n
ncA1 \meAs E

_ Z Z Z . )\7 —— Oy, (5)(1,11,;1 (€)--- foT— (E)Oénp,lp ()

ni, - ,NpEAL M1, mpEAg Iy, ,IPEAQ

Xﬂnl,mlﬁnhll o '5np,mpﬁnp,lp-
By (3.3), (5.2), and the fact that

=1
2

m=1

we have

r, — 0,

F — F ! I
1Enar = Fivrn Hmpgw(ﬂx[o,lLd(u@ufﬁ? DEN,

as N, N', M, M' — oco.
Similarly, by

W
=
A
3

S
Il
—

and (5.3), we have

—>O

[Fiw— F: R
N T ENGMl (@] 0.1 L doeuS) )i

as N,N',M,M' — oco. By

3
Il
i

M8
=
A
3

and (5.4), we have

HF N,M FN’M’ JR+ —)O

(Npen LP(@X[ 0,1 L d(v@u(s)y B,

17



as N,N', M, M’ — oco. By

Z : <
o0
~—9 5
n=1 An

and (5.5), we have

" u
HFN,M - F /’M/

g, — 0
(Npen LP(2x[ 0,1 Ld(veuly)) B, ’

as N, N', M, M’ — oc. m

LP(Qx[0,1],d(ve

peN

LEMMA 5.2. The mapping F' — exp (—ﬂ fol Vo Fds) from (N
/LELO?H); E))et to (Mpen LP(Q, dv))et is continuous.

Proof. Let F\G € ((en LP(2x [0,1],d(v & u(ﬁ)

[01]} E))]IRJ Since V' is bounded

from below, by the inequality

’ez_ey|§<el+ey)‘x_y" 1’7ZJGR7
there exists a constant C' > 0 such that
1 1 1 1
exp (—ﬁ/ VOFds) — exp (—B/ VOGdS)‘ <cC / VOFds—/ Vo Gds
0 0 0 0
Hence, by Proposition 4.7,

exp (—5/01V0Fds) — exp (—ﬁ/OlVoGds)

as I' = G. OJ

— 0,

For all N, M € N, we set
1
Gna(e,w) = exp (—ﬂ/ V (Fnm(e,w,s)) ds) £>0, we .
0

LEMMA 5.3. {Gn o }vmens { Gyt narens {GN a v mens {GN b v e are Cauchy
nets in ((,en LP(22, dv))et .

Proof. By Lemma 5.1, Lemma 5.2 and the completeness of ([, LP(2x[ 0,1 ],d(v®
ufg?l]; E)S, {G Nt naren is a Cauchy net in (Mpen LP(, dv))Et.

For all € > 0,

1
Gy (e, w) = —BCxpr(e,w) /0 V! (Fy (6w, 8))(Fle ng (€10, 8))ds.

In general, for each n-times continuously Fréchet differentiable mapping F' from
a Banach space X to a Banach space Y, ¢ € X, and n € N, F("(¢) is identi-
fied with an element in 2 (X", Y)(the Banach space of continuous multilinear

18



mapping from X" to Y). The mapping (L,xy, - ,z,) —> L(z1, -+ ,z,) from
LM(X"Y) x X" to Y is continuous multilinear. Then, by Proposition 4.6, 4.7,
and Lemma 5.1, {G'y y/} v men is a Cauchy net in ([, L7(2, dv))t.

Similarly and inductively, {G7 1/} v men and {G y}nvmen are Cauchy nets in
(ﬂpEN Lp(Q’ d’/))]ET [

Now we have the following theorem.

THEOREM b5.4. The function Z defined by (5.1) is 3-times continuously differen-
tiable with the following properties :

2(0) = /E exp (—BV (\/%A—l%)) au(9) (5.6)

Z'(0)=0 (5.7)

20 = 3 [ anteyinte) e (<7 (1/5470))
% (\/gA/qﬁ) <A1/2 (ﬁ i:j wm> AL/ (ﬁ ij z/m))

(5.8)

Proof. By Lemma 5.1, Lemma 5.3, and the fact that «, ,, is infinitely differentiable
for all n,m € N, [, Hyu (e,w)dv(w) with Hyy = Gy, Gy G G
uniformly converges in €. Hence one can interchange the limit limy a0 With
differentiations in €. Hence Z is 3-times continuously differentiable in R,..

By Theorem 3.2, we obtain (5.6).

For e > 0

Z'(e) = lim /QG’MM(E,w)du(w).

N,M—o00

In particular

and
/N,M(07w) = —p GN’M(ONU)/O v’ (\/%Z \;b:\l_> (Za/n,m((nﬁn,m(wvs)en) ds
= —8Gnu(0,w)V’ (@Z j;%) (/0 Za;m(O)Bnm(w, s)ends>

By the fact that
1 1
/ cos(2mms)ds = / sin(2rms)ds =0, m €N,
0 0
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we obtain (5.7). For e > 0
1
Glinle.w) = =B Giynlew) [ V' (Far(e,0,5)) (Fioae(e.io,5))ds
0

1
—B GN,M(€7 CU) / V//(FN,M(€7 W, S))(F;V,M(Zf? w, S)a F],V,M(ga w, 8))
0
+V,(FN7M<€7 W, 5>>(F]I\//,M<€7 W, S))dS.
In particular,

Z//(O)

i fosmcrm (o (30

- % =) (mmm /)

where we have used the fact that
1
/ cos(2mms) sin(2mns)ds = 0,
0

1 1
5mn

/ cos(2mms) cos(2mns)ds = / sin(2rms) sin(27ns)ds = - mmE N.

0 0

By (3.2), we have

=1
/Z}\v-&-ldu = gwé@%du(@
=1
- Z)\%Jrl

n=1
< Q.

Hence we have

A7V2¢ = Zﬂen cel, p—ae ek

Then, for all p, N € N,

7 6 |7

I
VR

@I @I

IN

Z )\’Y+1 /\7+1¢ ' np’



p—a.e. ¢ € E. Then, by (3.4), we have

N
/ sup ||V” \/ZZ
E NeN B =
For all m € N,
= [ Ynm
> : AHdu(lﬁ)
n=1 n

Then we have

Al/Q <§: 77Z}n,m6n> =
n=1

p—ae. P € £, meN.
For all N,m € N,

p—ae. Y € E,meN.
Then, for all N,m € N,

4

N
Z \/A_n¢n,m€n
n=1

p—a.e. Y € E,meN.
Then, by (3.4), we have

J

N

sup
NeN

n=

b,
V"

N
Z V Anwn,m €n
n=1

IN

\/A_n¢n,m€n
1

2
dp() < .

Z2)(ExE,R)

> [ vt
n=1 """

o0

1
v—1
n=1 An
Q.
00
> VAtbwmen € E,
n=1
2 N g
= 2 o5
= P
n=1 )\n
o8] 2
n,m
= ZF7
n=1 """
(Oo | )2
>
~v—1
n=1 An
00

1 1, 9
2 : -1 —1 ¥ni,m " na,m’
Azl A%2 1 2

ni,no=1

4
dp(v) < oo.
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Since V' is bounded from below, there exists a constant C' > 0 such that

e (5 50))

., D) N ¢n N 1 N 1
xV (\/%; \/—)\—n> (; \/——wn,m\/A_neny Z ﬂwn,m\/)‘_nen>

2

N 2 4
2 ¢
< Csup ||V”" — - su v Ay, mEn
o NGII\)I (\/;; \/X) NeIIzI Z WY
On the other hand, we have
On
sup ||[V” \/7 sup VAnUnmen|| du(d)d
/EQ NeN ( B =V NeN Z ¥ #(O)du(¥)
= sup VH (\/7 > / sup Z \/ ¢n mE€En dl’b )
E NeN E NeN

Hence, by the dominated convergence theorem, we have for all M € N,

i/ﬂ dp()dp(v) (=) exp <_3V (\/?i Pn €n>>
NIRRT (ﬁz On ) <¢_m2\/_¢nm n,f i\/rn%men)
— Xij /E dp(@)dp() (~B) exp (—w (\f 412 )

2 = 1 1
" _A—1/2 A1/2 § : A1/2 E e
" ' <\/; ¢) ( (nzl \/Bﬂ-m ) (nzl \/Bﬂ-md)n?m n)) ’

as N — oo. There exists a constant C' > 0 such that

[ antrute) ()0 (—pv ({[5477%)

v (o) (4 (S e ) 4% (3
ol el G|
© (o) (£ - o)
= 3 (L (o) e >( )

IN

dpi(p)dpu(e)

IN




where we have used (3.2). By the fact that

we obtain (5.8). O

Thus, we have an asymptotic formula for the partition function Tre #"» as
follows.

THEOREM 5.5. For all > 0,

Tre—PhHn
Tre—AhHo

- [ (_@v (\/%A‘l/%)) du()

_5?2 mi /E du(9)du(¥) exp (—BV (\/%Al%))

=1

" g —1/2 1/2 1 S 1/2 —1 N
x V (\/;A <z>> <A ( ﬂm;wmen),A ( ﬂm;wn,men»

+o(h?)

as h — 0.
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