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1 Introduction

In this thesis we consider submanifolds in the unit n-sphere from the view point of Legendrian

dualities between pseudo-spheres in Minkowski space-time. In [5, 8] Izumiya introduced the

mandala of Legendrian dualities between psudo-spheres in Minkowski space-time. There are

three kinds of pseudo-spheres in Minkowski space-time (i.e., the hyperbolic space, the de Sitter

space and the lightcone). Especially, if we investigate spacelike submanifolds in the lightcone,

this framework is essentially useful (see, also [13]). For the de Sitter space and the lightcone,

there exist naturally embedded unit spheres. If we have a submanifold in the unit sphere, then

we have the corresponding submanifolds in the embedded unit spheres in the lightcone or de

Sitter space. Since these canoncial embeddings are isometries, the geometric structures of those

two submanifolds are the same from the view point of the spherical geometry. We also have the

dual hypersurfaces in the lightcone as an application of the duality theorem in [8]. We have two

dual hypersurfaces depending on the embeddings of the sphere in the de Sitter sphere or the

lightcone. On the lightcone, there is a projection onto the canonically embedded unit sphere

(cf., §§2.1). We investigate the singular points of the dual hypersurfaces and the projection

images of the singular value sets onto the unit sphere in the lightcone. Of coruse, the singular

points of these two dual hypersurfaces are different in general. However, the situation depends

on the codimension of the submanifold for the projections of the singular values. One of the

consequences is that the projetion of the singular values of these dual hypersurfaces are equal

to the spherical focal set (or , the spherical evolute) for submanifolds of codimension one (cf.,

Theorem 3.1.7 and Theorem 5.2.5). However, these are different for submanifolds of higher

codimensions (cf., Proposition 4.2.2).

In §3, we study the lightcone dualities for curves in the unit 2-sphere. The dual curve of a

curve γ in the unit sphere is defined to be the front γ∨ equidistant by π/2 from the original

one. The dual curve γ∨ can be considered as the Gauss map of the original curve γ. Moreover

the pair (γ,γ∨) is a Legendrian immersion to the contact manifold (∆, K) in the product of

the spheres which gives the well-known spherical Legendrian duality. This means that the dual
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curve γ∨ can be interpreted as the wavefront set of the Legendrian immersion

Lγ = (γ,γ∨) : I −→ ∆ = {(v,w) ∈ S2 × S2 | v ·w = 0}

to the contact manifold (∆, K), where the contact structure K is defined by the 1-form θ =

(v1dw1+v2dw2+v3dw3)|∆. The duals in several different ambient spaces have been well-studied

so far ([18, 4, 19, 21, 8, 16, 1], etc.).

On the other hand, the spherical evolute of γ is naturally obtained as the envelope of the

family of normal geodesics to γ. The evolute in Euclidean plane is naturally interpreted as a

caustic [7]. The spherical evolute is also a caustic [17]. Moreover, it is the dual curve of the

unit tangent vector of the original curve [18]. However, there might be no interpretation on the

evolute from the view point of the dual of the original curve. In §3 we show that the spherical

evolute of a given curve can be interpreted as the critical value sets of these dual surfaces (cf.,

Theorem 3.1.7). We also investigate the singularities of these curves and surfaces (cf., Theorem

3.3.4). As a consequence, we obtain an interesting correspondence among these singularities

(cf., Remark 3.3.5).

In §4, we study the lightcone dualities for curves in the unit 3-sphere. In §3, the evolutes of

curves in the unit 2-sphere has been investigated from the view point of the Legendrian duality

[5, 8, 10]. It is known that the evolute of a curve in the unit 2-sphere is the dual of the tangent

indicatrix of the original curve [18]. For a curve in the unit 3-sphere, however, the dual is a

surface. Therefore, the dual of the tangent indicatrix of a curve is a surface which is called the

focal surface (or, the focal set) of the original curve. The critical locus of the focal surface is

the evolute of the original curve (cf., [18]). We remark that the focal set of a curve in the unit

2-sphere is a curve which is equal to the evolute.

For the de Sitter 4-space and the lightcone in Lorentz-Minkowski 5-space, there exist natu-

rally embedded unit 3-spheres. The de Sitter 4-space corresponds to the cosmic model, and the

lightcone also has its clear background in Physics [6]. In this section we investigate the curves

in the unit 3-sphere in the framework of the theory of Legendrian dualities between pseudo-

spheres in Lorentz-Minkowski 5-space([1, 4, 7, 8, 16, 18, 19, 21], etc.). If we have a regular
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curve in the unit 3-sphere, then we have the regular curve in the embedded unit 3-sphere in

the lightcone or de Sitter space. Therefore, we naturally have the dual hypersurfaces in the

lightcone as an application of the duality theorem in [8]. There are two kinds of lightcone dual

hypersurfaces of a curve in the unit 3-sphere. We will give the classifications of the singularities

of these hypersurfaces. In physics, the singularities of the lightcone are also studied [20]. The

critical value sets of these two hypersurfaces are called the lightcone focal surfaces respectively.

The projections of these focal surfaces to unit 3-sphere are different surfaces. In [10] we have

shown that the projection images of the critical value sets of lightcone dual surfaces for a curve

in the unit 2-sphere coincide with the evolute of the original curve. Therefore, the situation of

curves in the unit 3-sphere is quite different from that of curves in the unit 2-sphere. However,

the projections of the critical sets of lightcone focal surfaces are equal to the evolute of the

curve. In order to clarify such situation, we introduce the notion of discriminant set of higher

order for unfoldings of functions of one-variable (see, §§4.4).

In §5, we study the lightcone dualities for hypersurfaces in the unit n-sphere. For de Sitter

space and the lightcone in Minkowski (n + 2)-space, there exist naturally embedded unit n-

spheres. Moreover, we have the canonical projection from the lightcone to the unit sphere

embedded in the lightcone. In this section, we investigate hypersurfaces in the unit n-sphere

in the framework of the theory of Legendrian dualities between pseudo-spheres in Minkowski

(n+2)-space ([19, 21, 7, 8], etc.). If we have a hypersurface in the unit n-sphere, then we have

spacelike hypersurfaces in the embedded unit n-sphere in the lightcone and de Sitter space.

Therefore, we naturally have the dual hypersurfaces in the lightcone as an application of the

duality theorem in [8]. There are two kinds of lightcone dual hypersurfaces of a hypersurface

in the unit n-sphere. One is the dual of the hypersurface of the unit n-sphere embedded in de

Sitter space and another is the dual of the hypersurface of the unit n-sphere embedded in the

lightcone. By definition, these dual hypersurfaces are different.

On the other hand, we have studied the curves in the unit 2-sphere and the unit 3-sphere

from the view point of the Legendrian duality in §3 and §4 [10, 11]. In the unit 2-sphere, it

is known that the evolute of a curve in the unit 2-sphere is the dual of the tangent indicatrix
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of the original curve [18]. We have shown that the projection images of the critical value sets

of lightcone dual surfaces for a curve in the unit 2-sphere coincide with the evolute of the

original curve in [10]. However, this fact doesn’t hold for a curve in unit 3-sphere (cf., [11]).

For the curve case, these facts have been shown by the direct calculations in [10, 11]. We

have not known the geometric reason why the situations are different. In order to clarify these

situation, we investigate hypersurfaces in the unit n-sphere from the view point of the theory

of Legendrian singularities. The curves in the unit 2-sphere can be considered as a special case

of this paper. We can also show that the projection images of the critical value sets of two

different lightcone dual hypersurfaces for a hypersurface in the unit n-sphere also coincide with

the spherical evolute (cf., [17]) of the original hypersurface. We interpret geometric meanings

of the singularities of those two lightcone dual hypersurfaces. Here, we remark that we do

not have the notion of tangent indicatrices for higher dimensional submanifolds in the sphere.

Therefore, the situation is completely different from the curve case.
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2 Preliminary knowledge

2.1 The basic concepts

In this section we introduce the basic concepts in this thesis. Let Rn+2 be an (n+2)-dimensional

vector space. For any two vectors x = (x0, x1, . . . , xn+1),y = (y0, y1, . . . , yn+1) in Rn+2, their

pseudo scalar product is defined by ⟨x,y⟩ = −x0y0 + x1y1 + . . .+ xn+1yn+1. Here, (Rn+2, ⟨, ⟩) is

called Lorentz-Minkowski (n+2)-space (simply, Minkowski (n+2)-space), which is denoted by

Rn+2
1 . For any (n + 1) vectors x1,x2, . . . ,xn+1 ∈ Rn+2

1 , their pseudo vector product is defined

by

x1 ∧ x2 ∧ . . . ∧ xn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 · · · en+1

x01 x11 · · · xn+1
1

x02 x12 · · · xn+1
2

...
... · · · ...

x0n+1 x1n+1 · · · xn+1
n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where {e0, e1, · · · , en+1} is the canonical basis of Rn+2
1 and xi = (x0i , x

1
i , · · · , xn+1

i ). A non-zero

vector x ∈ Rn+2
1 is called spacelike, lightlike or timelike if ⟨x,x⟩ > 0, ⟨x,x⟩ = 0 or ⟨x,x⟩ < 0

respectively. The norm of x ∈ Rn+2
1 is defined by ∥ x ∥=

√
|⟨x,x⟩|.

Let γ : I → Rn+2
1 be a regular curve in Rn+2

1 (i.e., γ̇(t) ̸= 0 for any t ∈ I ), where

I is an open interval. For any t ∈ I, the curve γ is called spacelike, lightlike or timelike if

⟨γ̇(t), γ̇(t)⟩ > 0, ⟨γ̇(t), γ̇(t)⟩ = 0 or ⟨γ̇(t), γ̇(t)⟩ < 0 respectively. We call γ a nonlightlike curve

if γ is a spacelike or timelike curve. The arc-length of a nonlightlike curve γ measured from

γ(t0)(t0 ∈ I) is s(t) =
∫ t

t0
∥ γ̇(t) ∥ dt.

The parameter s is determined such that ∥ γ ′(s) ∥= 1 for the nonlightlike curve, where

γ ′(s) = dγ/ds(s) is the unit tangent vector of γ at s.

We define the de Sitter (n+ 1)-space by

Sn+1
1 = {x ∈ Rn+2

1 | ⟨x,x⟩ = 1}.
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We define the closed lightcone with the vertex a by

LCa = {x ∈ Rn+2
1 | ⟨x− a,x− a⟩ = 0}.

We define the open lightcone at the origin by

LC∗ = {x ∈ Rn+2
1 \{0} | ⟨x,x⟩ = 0}.

We consider a submanifold in the lightcone defined by

Sn
+ = {x ∈ LC∗ | x0 = 1},

which is called the lightcone unit sphere. We have a projection π : LC∗ −→ Sn
+ defined by

π(x) = x̃ =

(
1,
x1
x0
, . . . ,

xn+1

x0

)
,

where x = (x0, x1, . . . xn+1).We also define the n-dimensional Euclidean unit sphere in Rn+1
0 by

Sn
0 = {x ∈ Sn+1

1 | x0 = 0},

where Rn+1
0 = {x ∈ Rn+2

1 | x0 = 0}.

2.2 The Legendrian duality theorem

We now review some properties of contact manifolds and Legendrian submanifolds. Let N be a

(2n+1)-dimensional smooth manifold and K be a tangent hyperplane field on N . Locally, such

a field is defined as the field of zeros of a 1-form α. The tangent hyperplane field on K is non-

degenerate if α∧(dα)n ̸= 0 at any point of N . We say that (N,K) is a contact manifold ifK is a

non-degenerate hyperplane field. In this case, K is called a contact structure and α is a contact

form. Let ϕ : N −→ N ′ be a diffeomorphism between contact manifolds (N,K) and (N ′, K ′).

We say that ϕ is a contact diffeomorphism if dϕ(K) = K ′. Two contact manifolds (N,K) and

(N ′, K ′) are contact diffeomorphic if there exists a contact diffeomorphism ϕ : N −→ N ′. A

submanifold i : L ⊂ N of a contact manifold (N,K) is said to be Legendrian if dimL = n

and dix(TxL) ⊂ Ki(x) at any x ∈ L. We say that a smooth fiber bundle π : E −→ M is
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called a Legendrian fibration if its total space E is furnished with a contact structure and

its fibers are Legendrian submanifolds. Let π : E −→ M be a Legendrian fibration. For a

Legendrian submanifold i : L ⊂ E, π ◦ i : L −→ M is called a Legendrian map. The image

of the Legendrian map π ◦ i is called a wavefront set of i which is denoted by W (i). For any

p ∈ E, it is known that there is a local coordinate system (x1, . . . , xm, p1, . . . , pm, z) around

p such that π(x1, . . . , xm, p1, . . . , pm, z) = (x1, . . . , xm, z) and the contact structure is given by

the 1-form

α = dz −
m∑
1

pidxi

(cf. [1], 20.3). One of the examples of Legendrian fibrations is given by the unit spherical

tangent bundle of a Riemannian manifold. Let M be a Riemannian manifold and TM is

its tangent bundle. Let (x1, . . . , xn) be local coordinates on a neighbourhood U of M and

(v1, . . . , vn) be coordinates on the fiber over U. Let gij be the components of the metric ⟨, ⟩

with respect to the above coordinates. Then the canonical one-form can be locally denoted by

θ =
∑

i,j gijvjdqi where qi = xi ◦π for the projection π : TM −→M . Let π̃ : S(TM) −→M be

the unit spherical tangent bundle with respect to the metric ⟨, ⟩. Then the restriction of θ onto

S(TM) gives a contact structure and π̃ : S(TM) −→M is a Legendrian fibration (cf., [2]).

We now show the basic theorem in this paper which is the fundamental tool for the study of

spacelike submanifolds in pseudo-spheres in Minkowski space. We define one-forms ⟨dv,w⟩ =

−w0dv0+
∑n

i=1widvi, ⟨v, dw⟩ = −v0dw0+
∑n

i=1 vidwi on Rn+2
1 ×Rn+2

1 and consider the following

four double fibrations with one-forms:

(1)(a) Hn+1(−1)× Sn+1
1 ⊃ ∆1 = {(v,w) | ⟨v,w⟩ = 0},

(b) π11 : ∆1 −→ Hn+1(−1), π12 : ∆1 −→ Sn+1
1 ,

(c) θ11 = ⟨dv,w⟩|∆3, θ12 = ⟨v, dw⟩|∆3.

(2)(a) Hn+1(−1)× LC∗ ⊃ ∆2 = {(v,w) | ⟨v,w⟩ = −1},

(b) π21 : ∆4 −→ LC∗, π22 : ∆4 −→ LC∗,

(c) θ21 = ⟨dv,w⟩|∆2, θ22 = ⟨v, dw⟩|∆2.

(3)(a) LC∗ × S3
1 ⊃ ∆3 = {(v,w) | ⟨v,w⟩ = 1},

(b) π31 : ∆3 −→ LC∗, π32 : ∆3 −→ S3
1 ,
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(c) θ31 = ⟨dv,w⟩|∆3, θ32 = ⟨v, dw⟩|∆3.

(4)(a) LC∗ × LC∗ ⊃ ∆4 = {(v,w) | ⟨v,w⟩ = −2},

(b) π41 : ∆4 −→ LC∗, π42 : ∆4 −→ LC∗,

(c) θ41 = ⟨dv,w⟩|∆4, θ42 = ⟨v, dw⟩|∆4.

Here, πi1(v, w) = v, πi2(v, w) = w are the canonical projections. Moreover, θi1 = ⟨dv, w⟩ |△i

and θi2 = ⟨v, dw⟩ |△i
are the restrictions of the one-forms ⟨dv, w⟩ and ⟨v, dw⟩ on △i. We remark

that θ−1
i1 (0) and θ−1

i2 (0) define the same tangent hyperplane field over △i which is denoted by

Ki. The basic theorem in this thesis is the following theorem:

Theorem 2.2.1. Under the same notations as the previous paragraph, each (△i;Ki)(i =

1, 2, 3, 4) is a contact manifold and both of πij(j = 1; 2) are Legendrian fibrations. Moreover

those contact manifolds are contact diffeomorphic each other.

The proof of this theorem can be found in [8]. In this thesis, we will only consider (∆3, K3)

and (∆4, K4). If we have an isotropic mapping i : L→ ∆i (i.e., i
∗θi1 = 0), we say that πi1(i(L))

and πi2(i(L)) are ∆i-dual to each other (i = 3, 4). For detailed properties of Legendrian

fibrations, see [1].
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3 Lightcone dualities for curves in the 2-sphere

3.1 Curves in the unit sphere and lightcone duals

Let γ : I −→ S2
+ be a regular curve. We have a map Φ : S2

+ → S2
0 defined by Φ((v)) = v − e0,

which is an isometry. Then we have a regular curve γ : I → S2
0 defined by γ(s) = Φ(γ(s)) =

γ(s)− e0, so that γ and γ have the same geometric properties as spherical curves. Since γ is

a spacelike curve, we can reparameterize it by the arc-length s. So we have the unit tangent

vector t(s) = γ ′(s) of γ(s). We have another unit vector n(s) = γ(s) ∧ e0 ∧ t(s), then we

have a pseudo-orthonormal frame {γ, t,n} of R3
0 along γ. By standard arguments, we have the

following Frenet-Serret type formulae.


γ ′(s) = t(s)

t′(s) = κg(s)n(s)− γ(s)

n′(s) = −κg(s)t(s)

,

where κg(s) = ⟨t′(s),n(s)⟩. It is known that {γ, t,n} is called the Sabban frame of γ [12].

Here, κg is the geodesic curvature of γ in S2
0 . Under the above notation, the dual of γ is given

by γ∨(s) = n(s). Therefore, s0 is a singular point of γ∨ if and only if κg(s0) = 0. Moreover, it

has been known the following proposition [18, Proposition 1]:

Proposition 3.1.1. The dual curve γ∨ has an ordinary cusp at s0 if and only if κg(s0) = 0

and κ′g(s0) ̸= 0.

Here, we say that a curve has an ordinary cusp if it is locally diffeomorphic to the curve

C = {(x1, x2) | x21 = x32} (cf., Fig.1).

The point γ(s0) with κg(s0) = 0, κ′g(s0) ̸= 0 is said to be an ordinary inflection of γ.

On the other hand, the evolute εγ of the curve γ is defined to be the envelope of the family

of the normal geodesics to the curve γ. It is known that the evolute of γ is the dual of the

spherical curve given by the unit tangent vector t [18]. By the Frenet-Serret type formulae, we
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The ordinary cusp

Fig. 1

have

ε±γ (s) = ±t∨(s) =
±(κg(s)γ(s) + n(s))√

κ2g(s) + 1
.

For a general parametrized curve γ : I −→ S2
+, we can calculate that the geodesic curvature

is given by κg(t) =
det(γ(t), γ̇(t), γ̈(t))

∥γ̇(t)∥3
. Thus, we have the following proposition as a corollary

of Proposition 3.2.1:

Proposition 3.1.2. The evolute εγ of the curve γ is singular at s0 if and only if κ′g(s0) = 0.

Moreover, εγ has an ordinary cusp at s0 if and only if κ′g(s0) = 0 and κ′′g(s0) ̸= 0.

Proof. The geodesic curvature of t is given by

κg[t](s) =
det(t(s), t′(s), t′′(s))

∥t′(s)∥3
=

κ′g(s)(√
κ2g(s) + 1

)3 .
Hence, the first assertion holds. We also have

κg[t]
′(s) =

κ′′g(s)(κ
2
g(s) + 1)− 3κg(s)(κ

′
g)

2(s)(√
κ2g(s) + 1

)5 .

It follows that κg[t](s0) = 0 and κg[t]
′(s0) ̸= 0 if and only if κ′g(s0) = 0 and κ′′g(s0) ̸= 0. This

completes the proof.

The point γ(s0) with κ
′
g(s0) = 0, κ′′g(s0) ̸= 0 is said to be an ordinary vertex of γ.

On the other hand, γ is a curve in the Euclidean 3-space R3
0. Therefore, we have the Frenet

frame {T ,N ,B} along γ as a space curve. Let τ(s) be the torsion of γ at γ(s) with respect
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to the Frenet frame {T ,N ,B}. By a straightforward calculation, we have

τ(s) = −
κ′g(s)

κ2g(s) + 1
and τ ′(s) = −

κ′′g(s)(κ
2
g(s) + 1)− 2κg(s)(κ

′
g)

2(s)

(κ2g(s) + 1)2
.

Therefore, we have the following corollary.

Corollary 3.1.3. The evolute εγ of the curve γ is singular at s0 if and only if τ(s0) = 0.

Moreover, εγ has an ordinary cusp at s0 if and only if τ(s0) = 0 and τ ′(s0) ̸= 0.

We call the point γ(s0) with τ(s0) = 0, τ ′(s0) ̸= 0 an ordinary flattening point of γ.

We now define surfaces in LC∗ associated with the curves in S2
+ or S2

0 . Let γ : I −→ S2
+ be

a unit speed curve. We define LD
±
γ : I × R −→ LC∗ by

LD
±
γ (s, u) = γ(s) + un(s)±

√
u2 + 1e0.

We also define LDγ : I × R −→ LC∗ by

LDγ(s, u) =
u2 − 4

4
γ(s) + un(s) +

u2 + 4

4
e0.

Then we have the following proposition.

Proposition 3.1.4. Under the above notations, we have the followings:

(1) γ and LD
±
γ are ∆3-dual to each other.

(2) γ and LDγ are ∆4-dual to each other.

Proof. Consider the mapping L3(s, u) = (LD
±
γ (s, u),γ(s)). Then we have ⟨LD±

γ (s, u),γ(s)⟩ =

⟨γ(s),γ(s)⟩ = 1 and L ∗
3 θ32 = ⟨LD±

γ (s, u),γ
′(s)⟩ds = ⟨LD±

γ (s, u), t(s)⟩ds = 0. The assertion

(1) holds.

We also consider the mapping L4(s, u) = (LDγ(s, u),γ(s)). Since ⟨γ(s), e0⟩ = 1 and

⟨γ(s),γ(s)⟩ = 1, we have u2/4 − 1 − (u2/4 + 1) = −2. Moreover, we have L ∗
4 θ42 =

⟨LDγ(s, u)),γ
′(s)⟩ds = ⟨LDγ(s, u), t(s)⟩ds = 0. This completes the proof.

We call LD
±
γ the Lightcone dual surface of the de Sitter spherical curve γ and LDγ the

Lightcone dual surface of the lightlike spherical curve γ. Then we have two mappings π ◦LD±
γ :
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I × R → S2
+ and π ◦ LDγ : I × R → S2

+ defined by

π ◦ LD±
γ (s, u) = ±

(
1√

u2 + 1
γ(s) +

u√
u2 + 1

n(s)

)
+ e0,

π ◦ LDγ(s, u) =
(u2 − 4)

u2 + 4
γ(s) +

4u

u2 + 4
n(s) + e0.

In this paper we consider the singularities of these dual surfaces and mappings. By the

Frenet-Serret type formulae, we have

∂LD
±
γ

∂u
(s, u) = n(s)± u√

u2 + 1
e0,

∂LD
±
γ

∂s
(s, u) = (1− uκg(s))t(s),

∂LDγ

∂u
(s, u) =

u

2
γ(s) + n(s) +

u

2
e0,

∂LDγ

∂s
(s, u) =

(
u2 − 4

4
− uκg(s)

)
t(s).

Then we have the following proposition.

Proposition 3.1.5. Let γ : I −→ S2
+ be a unit speed curve. Then we have the followings:

(1) (s, u) is a singular point of LD
±
γ if and only if κg(s) ̸= 0 and u = 1/κg(s),

(2) (s, u) is a singular point of LDγ if and only if u = 2(κg(s)±
√
κ2g(s) + 1).

Proof. By the above calculations, ∂LD
±
γ /∂u(s, u), ∂LD

±
γ /∂s(s, u) are linearly dependent if and

only if 1− κg(s)u = 0. The assertion (1) follows. By the similar reason, we have the assertion

(2).

For simplification, we denote σ±
g (s) = κg(s)±

√
κ2g(s) + 1. Therefore, the critical value sets

of the above dual surfaces are given by

C(LD
±
γ ) =

{
γ(s) +

1

κg(s)
n(s)±

√
κ2g(s) + 1

κ2g(s)
e0

∣∣∣ s ∈ I, κg(s) ̸= 0

}
,

C(LDγ)
± = {((σ±

g (s))
2 − 1)γ(s) + 2σ±

g (s)n(s) + ((σ±
g (s))

2 + 1)e0 |s ∈ I }.
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Then the projections of these critical value sets to S2
+ are as follows:

π(C(LD
±
γ )) =

±(κg(s)γ(s) + n(s))√
κ2g(s) + 1

+ e0

∣∣∣ s ∈ I, κg(s) ̸= 0

 ,

π(C(LDγ)
±) = {

(σ±
g (s))

2 − 1

(σ±
g (s))

2 + 1
γ(s) +

2σ±
g (s)

(σ±
g (s))

2 + 1
n(s) + e0 |s ∈ I }.

We remark that each of
±(κg(s)γ(s) + n(s))√

κ2g(s) + 1
is the spherical evolute of γ(cf., [17]). This

means that the spherical evolute is obtained from the critical value set of the lightcone dual

surface of γ. On the other hand, what is the curve
(σ±

g (s))
2 − 1

(σ±
g (s))

2 + 1
γ(s) +

2σ±
g (s)

(σ±
g (s))

2 + 1
n(s)? Since

σ±
g (s) = κg(s)±

√
κ2g(s) + 1, we have (σ±

g (s))
2 = 2κg(s)σ

±
g (s) + 1. Therefore, we have

(
(σ±

g (s))
2 − 1

(σ±
g (s))

2 + 1

)2

=
κ2g(s)(σ

±
g (s))

2

κ2g(s)(σ
±
g (s))

2 + 2κg(s)σ±
g (s) + 1

=
κ2g(s)

κ2g(s) + 1

and (
2σ±

g (s)

(σ±
g (s))

2 + 1

)2

=
2κg(s)σ

±
g (s) + 1

(κg(s)σ±
g (s) + 1)2

=
1

κ2g(s) + 1
.

Thus we have the following proposition.

Proposition 3.1.6. Let γ : I −→ S2
+ be a unit speed curve. Then

(σ±
g (s))

2 − 1

(σ±
g (s))

2 + 1
γ(s) +

2σ±
g (s)

(σ±
g (s))

2 + 1
n(s) =

±(κg(s)γ(s) + n(s))√
κ2g(s) + 1

.

We define π̃ = Φ ◦ π : S2
+ → S2

0 . Then we have the following theorem as a corollary of

Proposition 3.1.6

Theorem 3.1.7. Both of the projections of the critical value sets C(LD
±
γ ) and C(LDγ)

± in

the unit sphere S2
0 are the image of the evolute of γ, that is

π̃(C(LD
±
γ )) = π̃(C(LDγ)

±) = {ε±γ (s) | s ∈ I }.
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3.2 Lightcone height functions

In order to study the singularities of Lightcone dual surfaces of spherical curves, we introduce

two families of functions and apply the theory of unfoldings. Let γ : I −→ S2
+ be a unit speed

curve, then we define two families of functions as follows:

H : I × LC∗ −→ R, H(s,v) = ⟨γ(s),v⟩ − 1,

H : I × LC∗ −→ R, H(s,v) = ⟨γ(s),v⟩+ 2.

We call H a lightcone height function of the de Sitter spherical curve γ. For any fixed v ∈ LC∗,

we denote hv(s) = H(s,v). We call H a lightcone height function of the lightlike spherical

curve γ. For any fixed v ∈ LC∗, we denote hv(s) = H(s,v). Then we have the following two

propositions on hv and hv.

Proposition 3.2.1. Let γ : I −→ S2
+ be a unit speed curve, then we have the followings:

(1) hv(s) = 0 if and only if there exist µ, ξ, η ∈ R with η2 = 1 + µ2 + ξ2 such that v =

γ(s) + µt(s) + ξn(s) + ηe0.

(2) hv(s) = h
′
v(s) = 0 if and only if there exist ξ, η ∈ R with η2 = 1 + ξ2 such that v =

γ(s) + ξn(s) + ηe0.

(3) hv(s) = h
′
v(s) = h

′′
v(s) = 0 if and only if κg(s) ̸= 0 and

v = γ(s) +
1

κg(s)
n(s)±

√
κ2g(s) + 1

κ2g(s)
e0.

(4) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = 0 if and only if κg(s) ̸= 0, κ′g(s) = 0 and

v = γ(s) +
1

κg(s)
n(s)±

√
κ2g(s) + 1

κ2g(s)
e0.

(5) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = h

(4)

v (s) = 0 if and only if κg(s) ̸= 0, κ′g(s) = κ′′g(s) = 0

and

v = γ(s) +
1

κg(s)
n(s)±

√
κ2g(s) + 1

κ2g(s)
e0.

15



Proof. (1) Since v ∈ LC∗, there exist ω, µ, ξ, η ∈ R with ω2 + µ2 + ξ2 − η2 = 0 such that

v = ωγ(s) + µt(s) + ξn(s) + ηe0. From hv(s) = ⟨γ(s),v⟩ − 1 = 0, we have ω = 1. So

v = γ(s) + µt(s) + ξn(s) + ηe0 and η2 = 1 + µ2 + ξ2. The converse direction also holds.

(2) Since h
′
v(s) = ⟨t(s),v⟩, hv(s) = h

′
v(s) = 0 if and only if h

′
v(s) = ⟨t(s),v⟩ = ⟨t(s),γ(s)+

µt + ξn + ηe0⟩ = µ = 0. It follows from the fact η2 = 1 + ξ2 that η = ±
√

1 + ξ2. Then we

have v = γ(s) + ξn(s) + ηe0 = γ(s) + ξn(s)±
√

1 + ξ2e0.

(3) Since h
′′
v(s) = ⟨κg(s)n(s) − γ(s),v⟩, hv(s) = h

′
v(s) = h

′′
v(s) = 0 if and only if h

′′
v(s) =

⟨κg(s)n(s) − γ(s),γ(s) + ξn(s) ±
√

1 + ξ2e0⟩ = κg(s)ξ − 1 = 0. Then we have ξ = 1/κg(s),

v = γ(s) + n(s)/κg(s)±
√

(1 + κ2g(s))/κ
2
g(s)e0 and κg(s) ̸= 0.

(4) Since h
′′′
v (s) = ⟨κ′g(s)n(s)−(κ2g(s)+1)t(s),v⟩, hv(s) = h

′
v(s) = h

′′
v(s) = h

′′′
v (s) = 0 if and

only if ⟨κ′g(s)n(s)−(κ2g(s)+1)t(s),γ(s)+n(s)/κg(s)±
√

(1 + κ2g(s))/κ
2
g(s)e0⟩ = κ′g(s)/κg(s) =

0. Then we have v = γ(s) + n(s)/κg(s)±
√
(1 + κ2g(s))/κ

2
g(s)e0, κg(s) ̸= 0 and κ′g(s) = 0.

(5) Since h
(4)

v (s) = ⟨(κ′′g(s)−κ3g(s)−κg(s))n(s)−3κg(s)κ
′
g(s)t(s)+(1+κ2g(s))γ(s),v⟩, hv(s) =

h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = h

(4)

v (s) = 0 if and only if h
(4)

v (s) = ⟨(κ′′g(s) − κ3g(s) − κg(s))n(s) −

3κg(s)κ
′
g(s)t(s) + (1 + κ2g(s))γ(s),γ(s) +n(s)/κg(s)±

√
(1 + κ2g(s))/κ

2
g(s)e0⟩ = κ′′g(s)/κg(s) =

0. Then we have v = γ(s) + n(s)/κg(s) ±
√

(1 + κ2g(s))/κ
2
g(s)e0, κg(s) ̸= 0, κ′g(s) = 0 and

κ′′g(s) = 0.

Proposition 3.2.2. Let γ : I −→ S2
+ be a unit speed curve, then we have the followings:

(1) hv(s) = 0 if and only if v = λγ(s)+µt+ξn+(λ+2)e0, where λ, µ, ξ ∈ R and µ2+ξ2−4λ−4 =

0.

(2) hv(s) = h′v(s) = 0 if and only if v = (ξ2/4− 1)γ(s) + ξn+ (ξ2/4 + 1)e0.

(3) hv(s) = h′v(s) = h′′v(s) = 0 if and only if

v = ((σ±
g (s))

2 − 1)γ(s) + 2σ±
g (s)n(s) + ((σ±

g (s))
2 + 1)e0.

(4) hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = 0 if and only if

v = ((σ±
g (s))

2 − 1)γ(s) + 2σ±
g (s)n(s) + ((σ±

g (s))
2 + 1)e0

and κ′g(s) = 0.
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(5) hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = h
(4)
v (s) = 0 if and only if

v = ((σ±
g (s))

2 − 1)γ(s) + 2σ±
g (s)n(s) + ((σ±

g (s))
2 + 1)e0,

κ′g(s) = 0 and κ′′g(s) = 0.

Proof. (1) Since v ∈ LC∗, there exist λ, µ, ξ, η ∈ R with λ2 + µ2 + ξ2 − η2 = 0 such that

v = λγ(s) + µt(s) + ξn(s) + ηe0. From hv(s) = ⟨γ(s),v⟩ + 2 = ⟨γ(s) + e0, λγ(s) + µt(s) +

ξn(s) + ηe0⟩ = λ − η + 2 = 0, we have η = 2 + λ. So v = λγ(s) + µt(s) + ξn(s) + (2 + λ)e0

and λ2 + µ2 + ξ2 − (2 + λ)2 = µ2 + ξ2 − 4λ− 4 = 0. The converse direction also holds.

(2) Since h′v(s) = ⟨t(s),v⟩, hv(s) = h′v(s) = 0 if and only if h′v(s) = ⟨t(s), λγ(s) + µt(s) +

ξn(s) + (2 + λ)e0⟩ = µ = 0. It follows from the fact λ2 + ξ2 − (2 + λ)2 = ξ2 − 4λ− 4 = 0 that

λ = ξ2/4− 1. Then we have v = (ξ2/4− 1)γ(s) + ξn(s) + (ξ2/4 + 1)e0.

(3) Since h′′v(s) = ⟨κg(s)n(s) − γ(s),v⟩, hv(s) = h′v(s) = h′′v(s) = 0 if and only if h′′v(s) =

⟨κg(s)n(s)−γ(s), (ξ2/4−1)γ(s)+ ξn(s)+ (ξ2/4+1)e0⟩ = κg(s)ξ− ξ2/4+1 = 0, then we have

ξ = 2κg(s) ± 2(κ2g(s) + 1)1/2 = 2σ±
g (s), then we have v = ((σ±

g (s))
2 − 1)γ(s) + 2σ±

g (s)n(s) +

((σ±
g (s))

2 + 1)e0.

(4) Since h′′′v (s) = ⟨κ′g(s)n(s)−(κ2g(s)+1)t(s),v⟩, hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = 0 if and

only if h′′′v (s) = ⟨κ′g(s)n(s)−(κ2g(s)+1)t(s), ((σ±
g (s))

2−1)γ(s)+2σ±
g (s)n(s)+((σ±

g (s))
2+1)e0⟩ =

2κ′g(s)σ
±
g (s) = 0. For σ±

g (s) ̸= 0, we have κ′g(s) = 0. Then we have v = ((σ±
g (s))

2 − 1)γ(s) +

2σ±
g (s)n(s) + ((σ±

g (s))
2 + 1)e0 and κ′g(s) = 0.

(5) Since h
(4)
v (s) = ⟨(κ′′g(s) − κ3g(s) − κg(s))n(s) − 3κg(s)κ

′
g(s)t(s) + (κ2g(s) + 1)γ(s),v⟩,

hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = h
(4)
v (s) = 0 if and only if h

(4)
v (s) = ⟨(κ′′g(s) − κ3g(s) −

κg(s))n(s)− 3κg(s)κ
′
g(s)t(s) + (κ2g(s) + 1)γ(s), ((σ±

g (s))
2 − 1)γ(s) + 2σ±

g (s)n(s) + ((σ±
g (s))

2 +

1)e0⟩ = 2κ′′g(s)σ
±
g (s) = 0. For σ±

g (s) ̸= 0, we have κ′′g(s) = 0. Then we have v = ((σ±
g (s))

2 −

1)γ(s) + 2σ±
g (s)n(s) + ((σ±

g (s))
2 + 1)e0, κ

′
g(s) = 0 and κ′′g(s) = 0.

3.3 Singularities of ligtcone duals of spherical curves

In this section we classify the singularities of LD
±
γ and LDγ as an application of the

unfolding theory of functions. Let F : (R × Rr, (s0,x0)) −→ R be a function germ, we call F
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an r-parameter unfolding of f , where f(s) = Fx0(s,x0). If f
(p)(s0) = 0 for all 1 ≤ p ≤ k and

f (k+1)(s0) ̸= 0, then we say that f has Ak-singularity at s0. Let F be an r-parameter unfolding

of f and f has Ak-singularity (k ≥ 1) at s0. We denote the (k− 1)-jet of the partial derivative

∂F/∂xi at s0 as

j(k−1)

(
∂F

∂xi
(s,x0)

)
(s0) =

k−1∑
j=1

αji(s− s0)
j, (i = 1, · · · , r).

If the rank of k× r matrix (α0i, αji) is k (k ≤ r), then F is called a versal unfolding of f , where

α0i = ∂F/∂xi(s0,x0). The discriminant set of F is defined by

DF =

{
x ∈ Rr | ∃s ∈ R, F (s,x) =

∂F

∂s
(s,x) = 0

}
.

For the discriminant set of F , we have the following theorem [3].

Theorem 3.3.1. Let F : (R×Rr, (s0,x0)) −→ R be an r-parameter unfolding of f which has

Ak-singularity at s0. Suppose F is a versal unfolding of f , then we have the following assertions.

(a) If k = 1, then DF is locally diffeomorphic to {0} × Rr−1.

(b) If k = 2, then DF is locally diffeomorphic to C × Rr−2.

(c) If k = 3, then DF is locally diffeomorphic to SW × Rr−3.

Here, C is the ordinary cusp and C ×R is called a cuspidal edge (Fig.2). Moreover, SW =

{(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is called a swallow tail (Fig.3).

The cuspidal edge

Figure 2

The swallow tail

Figure 3

By Propositions 3.2.1 and 3.2.2, the discriminant set of H and H are

DH = {γ(s) + un(s)±
√
u2 + 1e0 | (s, u) ∈ I × R},

DH = {(u2/4− 1)γ(s) + un(s) + (u2/4 + 1)e0 | s ∈ I, u ∈ R}.
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These are the lightcone dual surface of γ and the lightcone dual surface of γ respectively. We

have the following key propositions on H and H.

Proposition 3.3.2. If hv0(s) has Ak-singularity (k = 1, 2, 3) at s0, then H is a versal unfolding

of hv0 .

Proof. For v ∈ LC∗, we have v = (±(v21 + v22 + v23)
1/2, v1, v2, v3), then

H(s,v) = ⟨γ(s),v⟩ − 1 = x1(s)v1 + x2(s)v2 + x3(s)v3 − 1.

Thus we have
∂H

∂v1
(s,v) = x1(s),

∂H

∂v2
(s,v) = x2(s),

∂H

∂v3
(s,v) = x3(s),

∂2H

∂s∂v1
(s,v) = x′1(s),

∂2H

∂s∂v2
(s,v) = x′2(s),

∂2H

∂s∂v3
(s,v) = x′3(s),

∂3H

∂s2∂v1
(s,v) = x′′1(s),

∂3H

∂s2∂v2
(s,v) = x′′2(s),

∂3H

∂s2∂v3
(s,v) = x′′3(s).

For a fixed point v0 = (v00, v01, v02, v03), the 2-jet of ∂H/∂vi(s,v0)(i = 1, 2, 3) at s0 is

j(2)
∂H

∂vi
(s,v0)(s0) = x′i(s0)(s− s0) + x′′i (s0)(s− s0)

2/2, (i = 1, 2, 3).

It is enough to show that the rank of the matrix A is three, where

A =


x1(s0) x2(s0) x3(s0)

x′1(s0) x′2(s0) x′3(s0)

x′′1(s0) x′′2(s0) x′′3(s0)

 .

Then we have

detA = ⟨e0 ∧ γ(s0) ∧ γ ′(s0),γ
′′(s0)⟩ = ⟨−n(s0), κg(s0)n(s0)− γ(s0)⟩ = −κg(s0) ̸= 0.

So the rank of A is three, this completes the proof.

Proposition 3.3.3. If hv0(s) has Ak-singularity (k = 1, 2, 3) at s0, then H is a versal unfolding

of hv0 .
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Proof. For v ∈ LC∗, we have v = (±(v21 + v22 + v23)
1/2, v1, v2, v3), then

H(s,v) = ⟨γ(s),v⟩+ 2 = ∓(v21 + v22 + v23)
1/2 + x1(s)v1 + x2(s)v2 + x3(s)v3 + 2.

Thus we have

∂H

∂v1
(s,v) = −v1/v0 + x1(s),

∂H

∂v2
(s,v) = −v2/v0 + x2(s),

∂H

∂v3
(s,v) = −v3/v0 + x3(s),

∂2H

∂s∂v1
(s,v) = x′1(s),

∂2H

∂s∂v2
(s,v) = x′2(s),

∂2H

∂s∂v3
(s,v) = x′3(s),

∂3H

∂s2∂v1
(s,v) = x′′1(s),

∂3H

∂s2∂v2
(s,v) = x′′2(s),

∂3H

∂s2∂v3
(s,v) = x′′3(s).

For a fixed v0 = (v00, v01, v02, v03), the 2-jet of ∂H
∂vi

(s,v0)(i = 1, 2, 3) at s0 is

j(2)
∂H

∂vi
(s,v0)(s0) = x′i(s0)(s− s0) + x′′i (s0)(s− s0)

2/2, (i = 1, 2, 3).

It is enough to show that the rank of the matrix A is three, where

A =


−v01/v00 + x1(s0) −v02/v00 + x2(s0) −v03/v00 + x3(s0)

x′1(s0) x′2(s0) x′3(s0)

x′′1(s0) x′′2(s0) x′′3(s0)

 .

By straight calculation, we have

detA = −⟨e0 ∧ γ ′(s0) ∧ γ ′′(s0),v0⟩/v00 + ⟨e0 ∧ γ(s0) ∧ γ ′(s0),γ
′′(s0)⟩

= −⟨e0 ∧ t(s0) ∧ (κg(s0)n(s0)− γ(s0)),v0⟩/v00 + ⟨−n(s0), κg(s0)n(s0)− γ(s0)⟩

= ⟨κg(s0)γ(s0) + n(s0),v0⟩/v00 − κg(s0).

Since v0 ∈ DH is a singular point, we have

v0 = ((σ±
g (s0))

2 − 1)γ(s0) + 2σ±
g (s0)n(s0) + ((σ±

g (s0))
2 + 1)e0.
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Moreover we have

v00 = (σ±
g (s0))

2 + 1.

Therefore we have

detA = ±2(κ2g(s0) + 1)1/2/v00 ̸= 0

So the rank of A is three, this completes the proof.

We have the following theorem:

Theorem 3.3.4. Let γ : I −→ S2
+ be a unit speed curve.

(A) For the lightcone dual LD
±
γ of γ, we have the following assertions:

(1) The lightcone dual LD
±
γ of γ is locally diffeomorphic to the cuspidal edge C × R at

(s0, u0) if and only if k′g(s0) ̸= 0 and u0 = 1/κg(s0).

(2) The lightcone dual LD
±
γ of γ is locally diffeomorphic to the swallowtail at (s0, u0) if and

only if κ′g(s0) = 0, κ′′g(s0) ̸= 0 and u0 = 1/κg(s0).

(B) For the lightcone dual LDγ of γ, we have the following assertions:

(1) The lightcone dual LDγ of γ is locally diffeomorphic to the cuspidal edge C × R at

(s0, u0) if and only if k′g(s0) ̸= 0 and u0 = 2σ±
g (s0).

(2) The lightcone dual LDγ of γ is locally diffeomorphic to the swallowtail at (s0, u0) if and

only if κ′g(s0) = 0, κ′′g(s0) ̸= 0 and u0 = 2σ±
g (s0).

Proof. By Propositions 3.2.1 and 3.2.2, the discriminant sets of H and H are the lightcone

duals of γ and γ respectively. By Propositions 3.2.1 and 3.2.2, both of hv0 and hv0 have

Ak singularities (k = 1, 2, 3) respectively if and only if the above conditions on the geodesic

curvatures hold. By Propositions 3.3.2 and 3.3.3, H and H are versal unfoldings of hv0 and

hv0 at any point s0 ∈ I respectively. We apply Theorem 3.3.1, so that we have the above

assertions.

Remark 3.3.5. As a consequence of Proposition 3.1.2, Corollary 3.1.3 and Theorem 3.3.4, we

can summarize the relationship between the singularities of εγ , LD
±
γ and LDγ :
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γ(s0) in S
2
+ κ′g(s0) ̸= 0 κ′g(s0) = 0, κ′′g(s0) ̸= 0

γ(s0) in R3
0 τ(s0) ̸= 0 τ(s0) = 0, τ ′(s0) ̸= 0

εγ(s0) the regular point the ordinary cusp

LD
±
γ (s0, 1/κg(s0)) the cuspidal edge the swallowtail

LDγ(s0, 2σ
±
g (s0)) the cuspidal edge the swallowtail

We can interpret the above correspondence between the cusps of the spherical evolute and

the swallowtails of lightcone duals from the view point of the theory of Legendrian/Lagrangian

singularities. For spherical curves, however, we only need the curvature or the torsion. Such a

framework is really needed for the higher dimensional case.
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4 Lightcone dualities for curves in the 3-sphere

4.1 Curves in the unit 3-sphere and focal surfaces

Let γ : I −→ S3
+ be a regular curve. We have a map Φ : S3

+ → S3
0 defined by Φ(v) = v−e0,

which is an isometry. Then we have a regular curve γ : I → S3
0 defined by γ(s) = Φ(γ(s)) =

γ(s)− e0, so that γ and γ have completely the same geometric properties as spherical curves.

Since γ is a spacelike curve, we can reparameterize it by the arc-length s. So we have the unit

tangent vector t(s) = γ ′(s) of γ(s). Suppose that ∥t′(s)∥ ̸= 1. Then ∥t′(s) + γ(s)∥ ̸= 0, so

that we have another unit vector n(s) = t′(s)+γ(s)
∥t′(s)+γ(s)∥ . We also define a unit vector by b(s) =

γ(s) ∧ e0 ∧ t(s) ∧ n(s), then we have a pseudo-orthonormal frame field {γ(s), t(s),n(s), b(s)}

of R4
0 along γ(s). By standard arguments, we have the following Frenet-Serret type formulae.



γ ′(s) = t(s)

t′(s) = κg(s)n(s)− γ(s)

n′(s) = −κg(s)t(s) + τg(s)b(s)

b′(s) = −τg(s)n(s)

,

where κg(s) = ∥t′(s)+γ(s)∥ and τg(s) = −det(γ(s),γ ′(s),γ ′′(s),γ ′′′(s))/κ2g(s).We call {γ, t,n, b}

a Sabban frame of γ [12]. Here, κg is called a geodesic curvature and τg a geodesic torsion of γ

in S3
0 respectively.

We now consider the focal surface of a curve γ : I → S3
0 analogous to the case for curves in

Euclidean space. We define F± : I × J → S3
0 by

F±(s, u) = uγ(s) +
u

κg(s)
n(s)±

√
κ2g(s)− u2(κ2g(s) + 1)

κg(s)
b(s).

We call each image of F± the spherical focal surface of γ. We remark that the focal surfaces of

γ satisfies the equations ⟨γ ′(s), F±(s, u)⟩ = ⟨γ ′′(s), F±(s, u)⟩ = 0. This means that each one of

the focal surface F±(s, u) of γ is the spherical dual of t in the sense of [16]. By straightforward
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calculations, we have

∂F±

∂u
(s, u) = γ(s) +

1

κg(s)
n(s)±

−u(κ2g(s) + 1)

κg(s)
√
κ2g(s)− u2(κ2g(s) + 1)

b(s),

∂F±

∂s
(s, u) = −

uκ′g(s)± τg(s)κg(s)
√
κ2g(s)− u2(κ2g(s) + 1)

κ2g(s)
n(s)

+
uτg(s)κg(s)

√
κ2g(s)− u2(κ2g(s) + 1)± u2κ′g(s)

κ2g(s)
√
κ2g(s)− u2(κ2g(s) + 1)

b(s).

It follows that {∂F±/∂u, ∂F±/∂s} is linearly dependent if and only if

τg(s)κg(s)
√
κ2g(s)− u2(κ2g(s) + 1)± uκ′g(s) = 0,

so that we have

u =
±τg(s)κ2g(s)√

κ′2g (s) + κ4g(s)τ
2
g (s) + κ2g(s)τ

2
g (s)

.

Therefore each critical value set of F± is given by

ε±γ (s) =
±τg(s)κ2g(s)√

κ′2g (s) + κ4g(s)τ
2
g (s) + κ2g(s)τ

2
g (s)

{
γ(s) +

1

κg(s)
n(s) +

(
1

κg(s)

)′
1

τg(s)
b(s)

}
.

We remark that each curve of ε±γ satisfies the equations

⟨γ ′(s), ε±γ (s)⟩ = ⟨γ ′′(s), ε±γ (s)⟩ = ⟨γ ′′′(s), ε±γ (s)⟩ = 0.

In [18] Porteous introduced the notion of the evolute of γ in the unit 3-sphere. He defined it as

the curve satisfies the above equations, so that we call each image of ε±γ the spherical evolute of

γ in the unit 3-sphere. We remark that ε−γ (s) = −ε+γ (s). For s = s0, we fix that v±
0 = ε±γ (s0)

and ⟨γ(s0), ε±γ (s0)⟩ = c±. Since v−
0 = −v+

0 and c− = −c+, we have a hyperplane

HP (v+
0 , c

+) = {x ∈ R4
0 | ⟨x,v+

0 ⟩ = c+ } = {x ∈ R4
0 | ⟨x,v−

0 ⟩ = c− } = HP (v−
0 , c

−),

so that we have a sphere

S2(v±
0 , c

±) = HP (v±
0 , c

±) ∩ S3
0 .
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We call S2(v±
0 , c

±) an osculating sphere of γ at s0. Therefore the spherical evolutes ε±γ (s) are

the loci of the centers of osculating spheres of γ respectively.

Proposition 4.1.1. There exists a sphere S2(v, c) ⊂ S3
0 such that γ(I) ⊂ S2(v, c) if and only

if both of the spherical evolutes ε±γ of γ are constant.

Proof. If one of the spherical evolutes ε+γ of γ is constant, we can set that ε+γ (s) = v+.

In this case another spherical evolute ε−γ is constant too. Then ⟨γ(s),v+⟩′ = ⟨γ ′(s),v+⟩ =

⟨t(s), ε+γ (s)⟩ = 0, so we have ⟨γ(s),v+⟩ = c+ and γ(I) ⊂ S2(v+, c+). On the contrary, if

γ(I) ⊂ S2(v, c), then at any point on γ, the osculating spheres is S2(v, c) itself. So the locus

of the centers of osculating spheres of γ is v and −v. Therefore, both of the spherical evolutes

ε±γ of γ are constant. This completes the proof.

4.2 Lightcone duals of curves in the unit 3-sphere

We now define hypersurfaces in LC∗ associated with the curves in S3
+ or S3

0 . Let γ : I −→ S3
+

be a unit speed curve. We define LD
±
γ : I × R2 −→ LC∗ by

LD
±
γ (s, u, v) = γ(s) + un(s) + vb(s)±

√
u2 + v2 + 1e0.

We also define LDγ : I × R2 −→ LC∗ by

LDγ(s, u, v) =
u2 + v2 − 4

4
γ(s) + un(s) + vb(s) +

u2 + v2 + 4

4
e0.

Then we have the following proposition.

Proposition 4.2.1. Under the above notations, we have the followings:

(1) γ and LD
±
γ are ∆3-dual to each other.

(2) γ and LDγ are ∆4-dual to each other.

Proof. Consider the mapping L3(s, u, v) = (LD
±
γ (s, u, v),γ(s)). Then we have

⟨LD±
γ (s, u, v),γ(s)⟩ = ⟨γ(s),γ(s)⟩ = 1
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and

L ∗
3 θ32 = ⟨LD±

γ (s, u, v),γ
′(s)⟩ds = ⟨LD±

γ (s, u, v), t(s)⟩ds = 0.

The assertion (1) holds.

We also consider the mapping L4(s, u, v) = (LDγ(s, u, v),γ(s)). Since ⟨γ(s), e0⟩ = −1 and

⟨γ(s),γ(s)⟩ = 1, we have ⟨LDγ(s, u, v),γ(s)⟩ = (u2 + v2)/4 − 1 − ((u2 + v2)/4 + 1) = −2.

Moreover, we have

L ∗
4 θ42 = ⟨LDγ(s, u, v)),γ

′(s)⟩ds = ⟨LDγ(s, u, v), t(s)⟩ds = 0.

This completes the proof.

We call each one of LD
±
γ the Lightcone dual haypersurface of the de Sitter spherical curve

γ and LDγ the Lightcone dual hypersurface of the lightlike spherical curve γ. Then we have

two mappings π ◦ LD±
γ : I × R2 → S3

+ and π ◦ LDγ : I × R2 → S3
+ defined by

π ◦ LD±
γ (s, u, v) = ±

(
1√

u2 + v2 + 1
γ(s) +

u√
u2 + v2 + 1

n(s) +
v√

u2 + v2 + 1
b(s)

)
+ e0,

π ◦ LDγ(s, u, v) =
u2 + v2 − 4

u2 + v2 + 4
γ(s) +

4u

u2 + v2 + 4
n(s) +

4v

u2 + v2 + 4
b(s) + e0.

In this paper we consider the singularities of these dual surfaces and mappings. By the

Frenet-Serret type formulae, we have

∂LD
±
γ

∂u
(s, u, v) = n(s)± u√

1 + u2 + v2
e0,

∂LD
±
γ

∂v
(s, u, v) = b(s)± v√

1 + u2 + v2
e0,

∂LD
±
γ

∂s
(s, u, v) = (1− uκg(s))t(s)− vτg(s)n(s) + uτg(s)b(s),

∂LDγ

∂u
(s, u, v) =

u

2
γ(s) + n(s) +

u

2
e0,

∂LDγ

∂v
(s, u, v) =

v

2
γ(s) + b(s) +

v

2
e0,

∂LDγ

∂s
(s, u, v) =

u2 + v2 − 4uκg(s)− 4

4
t(s)− vτg(s)n(s) + uτg(s)b(s).

Then we have the following proposition.
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Proposition 4.2.2. Let γ : I −→ S3
+ be a unit speed curve. Then we have the followings:

(1) (s, u, v) is a singular point of LD
±
γ if and only if u = 1/κg(s).

(2) (s, u, v) is a singular point of LDγ if and only if v = ±
√

4 + 4uκg(s)− u2.

Proof. By the above calculations, {∂LD±
γ /∂u(s, u, v), ∂LD

±
γ /∂v(s, u, v), ∂LD

±
γ /∂s(s, u, v) } is

linearly dependent if and only if u = 1/κg(s).The assertion (1) follows. By the similar reason,

we have the assertion (2). This completes the proof.

Therefore, the critical value sets of the above dual surfaces are given by

C(LD
±
γ ) =

{
γ(s) +

1

κg(s)
n(s) + vb(s)±

√
1 + κ2g(s) + v2κ2g(s)

κ2g(s)
e0

∣∣∣ v ∈ R, s ∈ I, κg(s) ̸= 0

}
,

C(LDγ)
± = {κg(s)uγ(s) + un(s)±

√
4 + 4uκg(s)− u2b(s) + (κg(s)u+ 2)e0|u ∈ R, s ∈ I }.

We respectively denote that

LF±
γ (s, v) = γ(s) +

1

κg(s)
n(s) + vb(s)±

√
1 + κ2g(s) + v2κ2g(s)

κ2g(s)
e0,

LF±
γ (s, u) = κg(s)uγ(s) + un(s)±

√
4 + 4uκg(s)− u2b(s) + (κg(s)u+ 2)e0,

where we have the relation v = ±
√

4 + 4uκg(s)− u2. We respectively call each one of LF±
γ

the lightcone focal surface of the de Sitter spherical curve γ and each one of LF±
γ the ligtcone

focal surface of the lightcone spherical curve γ. Then the projections of these surfaces to S3
+

are given as follows:

π(C(LD
±
γ )) =

±(κg(s)γ(s) + n(s) + vκg(s)b(s))√
1 + κ2g(s) + v2κ2g(s)

+ e0

∣∣∣ v ∈ R, s ∈ I, κg(s) ̸= 0

 ,

π(C(LDγ)
±) =

{
uκg(s)γ(s) + un(s)±

√
4 + 4uκg(s)− u2b(s)

κg(s)u+ 2
+ e0 |u ∈ R, s ∈ I

}
.

On the other hand, we define π̃ = Φ ◦ π : LC∗ → S3
0 . By the previous calculations,

π̃(C(LD
±
γ )) is different from π̃(C(LDγ)

±). In [10], it was shown that the projections of the

critical value sets of the lightcone dual surfaces of γ and γ are the same for a curve γ : I → S2
+.

Moreover, it is equal to the spherical evolute of γ. Therefore, the situation for curves in S3
+ is

quite different from that for curves in S2
+.
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4.3 Lightcone height functions

In order to study the singularities of Lightcone dual surfaces of spherical curves, we introduce

two families of functions and apply the theory of unfoldings. Let γ : I −→ S3
+ be a unit speed

curve, then we define two families of functions as follows:

H : I × LC∗ −→ R, H(s,v) = ⟨γ(s),v⟩ − 1,

H : I × LC∗ −→ R, H(s,v) = ⟨γ(s),v⟩+ 2.

We call H a lightcone height function of the de Sitter spherical curve γ. For any fixed v ∈ LC∗,

we denote hv(s) = H(s,v). We call H a lightcone height function of the lightlike spherical

curve γ. For any fixed v ∈ LC∗, we denote hv(s) = H(s,v). Then we have the following two

propositions on hv and hv.

For simplification, we denote ρ(s) =
√

(κ4g(s)τ
2
g (s) + κ2g(s)τ

2
g (s) + κ′2g (s))/κ

4
g(s)τ

2
g (s) and

σ±(s) = (κ2g(s)τg(s)±
√
κ′2g (s) + κ2g(s)τ

2
g (s) + κ4g(s)τ

2
g (s))/(κ

′2
g (s) + κ2g(s)τ

2
g (s)).

Proposition 4.3.1. Let γ : I −→ S3
+ be a unit speed curve, then we have the followings:

(1) hv(s) = 0 if and only if there exist λ, µ, ξ, η ∈ R with η2 = 1 + λ2 + µ2 + ξ2 such that

v = γ(s) + λt(s) + µn(s) + ξb(s) + ηe0.

(2) hv(s) = h
′
v(s) = 0 if and only if there exist µ, ξ, η ∈ R with η2 = 1 + µ2 + ξ2 such that

v = γ(s) + µn(s) + ξb(s) + ηe0 = γ(s) + µn(s) + ξb(s)±
√
1 + µ2 + ξ2e0.

(3) hv(s) = h
′
v(s) = h

′′
v(s) = 0 if and only if κg(s) ̸= 0 and

v = γ(s) +
1

κg(s)
n(s) + ξb(s)±

√
1 + κ2g(s) + κ2g(s)ξ

2

κ2g(s)
e0.

(4) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = 0 if and only if κg(s) ̸= 0, τg(s) ̸= 0 and

v = γ(s) +
1

κg(s)
n(s)−

κ′g(s)

κ2g(s)τg(s)
b(s)± ρ(s)e0.

(5) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = h

(4)

v (s) = 0 if and only if κg(s) ̸= 0, τg(s) ̸= 0,((
−1

κg(s)

)′
1

τg(s)

)′

− τg(s)

κg(s)
= 0
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and

v = γ(s) +
1

κg(s)
n(s)−

κ′g(s)

κ2g(s)τg(s)
b(s)± ρ(s)e0.

(6) hv(s) = h
′
v(s) = h

′′
v(s) = h

′′′
v (s) = h

(4)

v (s) = h
(5)

v (s) = 0 if and only if κg(s) ̸= 0, τg(s) ̸= 0,((
−1

κg(s)

)′
1

τg(s)

)′

− τg(s)

κg(s)
=

{((
−1

κg(s)

)′
1

τg(s)

)′

− τg(s)

κg(s)

}′

= 0

and

v = γ(s) +
1

κg(s)
n(s)−

κ′g(s)

κ2g(s)τg(s)
b(s)± ρ(s)e0.

Proof. (1) Since v ∈ LC∗, there exist ω, λ, µ, ξ, η ∈ R with ω2+λ2+µ2+ ξ2− η2 = 0 such that

v = ωγ(s) + λt(s) + µn(s) + ξb(s) + ηe0. From hv(s) = ⟨γ(s),v⟩ − 1 = 0, we have ω = 1. So

v = γ(s) + λt(s) + µn(s) + ξb(s) + ηe0 and η2 = 1+ λ2 + µ2 + ξ2. The converse direction also

holds.

(2) Since h
′
v(s) = ⟨t(s),v⟩, hv(s) = h

′
v(s) = 0 if and only if

h
′
v(s) = ⟨t(s),v⟩ = ⟨t(s),γ(s) + λt(s) + µn(s) + ξb(s) + ηe0⟩ = λ = 0.

It follows from the fact η2 = 1 + µ2 + ξ2 that η = ±
√
1 + µ2 + ξ2. Then we have v =

γ(s) + µn(s) + ξb(s) + ηe0 = γ(s) + µn(s) + ξb(s)±
√

1 + µ2 + ξ2e0.

(3) Since h
′′
v(s) = ⟨κg(s)n(s)− γ(s),v⟩, hv(s) = h

′
v(s) = h

′′
v(s) = 0 if and only if

h
′′
v(s) = ⟨κg(s)n(s)− γ(s),γ(s) + µn(s) + ξb(s)±

√
1 + µ2 + ξ2e0⟩ = κg(s)µ− 1 = 0.

Then we have κg(s) ̸= 0, µ = 1/κg(s) and

v = γ(s) + n(s)/κg(s) + ξb(s)±
√
(1 + κ2g(s) + κ2g(s)ξ

2)/κ2g(s)e0.

(4) Since h
′′′
v (s) = ⟨κ′g(s)n(s)− (κ2g(s)+1)t(s)+κg(s)τg(s)b(s),v⟩, hv(s) = h

′
v(s) = h

′′
v(s) =

h
′′′
v (s) = 0 if and only if

h
′′′
v (s) = ⟨κ′g(s)n(s)− (κ2g(s) + 1)t(s) + κg(s)τg(s)b(s),

γ(s) + n(s)/κg(s) + ξb(s)±
√
(1 + κ2g(s) + κ2g(s)ξ

2)/κ2g(s)e0⟩

= κ′g(s)/κg(s) + κg(s)τg(s)ξ = 0.
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Then we have κg(s) ̸= 0, τg(s) ̸= 0, ξ = −κ′g(s)/κ2g(s)τg(s) and v = γ(s) + n(s)/κg(s) −

κ′g(s)b(s)/κ
2
g(s)τg(s)± ρ(s)e0.

(5) Since h
(4)

v (s) = ⟨(κ′′g(s)−κ3g(s)−κg(s)−κg(s)τ 2g (s))n(s)−3κg(s)κ
′
g(s)t(s)+(2κ′g(s)τg(s)+

κg(s)τ
′
g(s))b(s) + (1 + κ2g(s))γ(s),v⟩, hv(s) = h

′
v(s) = h

′′
v(s) = h

′′′
v (s) = h

(4)

v (s) = 0 if and only

if

h
(4)

v (s) =
⟨
(κ′′g(s)− κ3g(s)− κg(s)− κg(s)τ

2
g (s))n(s)− 3κg(s)κ

′
g(s)t(s)

+(2κ′g(s)τg(s) + κg(s)τ
′
g(s))b(s) + (1 + κ2g(s))γ(s),

γ(s) +
1

κg(s)
n(s)−

κ′g(s)

κ2g(s)τg(s)
b(s)± ρ(s)e0

⟩
=
κg(s)κ

′′
g(s)τg(s)− 2κ′2g (s)τg(s)− κg(s)κ

′
g(s)τ

′
g(s)− κ2g(s)τ

3
g (s)

κ2g(s)τg(s)
= 0.

This is equivalent to the condition ((−1/κg(s))
′/τg(s))

′ − τg(s)/κg(s) = 0. Then we have

κg(s) ̸= 0, τg(s) ̸= 0, ((−1/κg(s))
′/τg(s))

′ − τg(s)/κg(s) = 0 and v = γ(s) + n(s)/κg(s) −

κ′g(s)b(s)/κ
2
g(s)τg(s)± ρ(s)e0.

(6)Since h
(5)

v (s) = ⟨(κ4g(s) + 2κ2g(s) + κ2g(s)τ
2
g (s) + 1− 3κ′2g (s)− 4κg(s)κ

′′
g(s))t(s) + (κ′′′g (s)−

κ′g(s)−6κ2g(s)κ
′
g(s)−3κ′g(s)τ

2
g (s)−3κg(s)τg(s)τ

′
g(s))n(s)+(3κ′′g(s)τg(s)+3κ′g(s)τ

′
g(s)+κg(s)τ

′′
g (s)−

κg(s)τg(s)−κ3g(s)τg(s)−κg(s)τ 3g (s))b(s)+5κg(s)κ
′
g(s)γ(s),v⟩, hv(s) = h

′
v(s) = h

′′
v(s) = h

′′′
v (s) =

h
(4)

v (s) = h
(5)

v (s) = 0 if and only if

h
(5)

v (s) =
⟨
(κ4g(s) + 2κ2g(s) + κ2g(s)τ

2
g (s) + 1− 3κ′2g (s)− 4κg(s)κ

′′
g(s))t(s)

+(κ′′′g (s)− κ′g(s)− 6κ2g(s)κ
′
g(s)− 3κ′g(s)τ

2
g (s)− 3κg(s)τg(s)τ

′
g(s))n(s)

+(3κ′′g(s)τg(s) + 3κ′g(s)τ
′
g(s) + κg(s)τ

′′
g (s)− κg(s)τg(s)− κ3g(s)τg(s)− κg(s)τ

3
g (s))b(s)

+5κg(s)κ
′
g(s)γ(s),

γ(s) +
1

κg(s)
n(s)−

κ′g(s)

κ2g(s)τg(s)
b(s)± ρ(s)e0

⟩
=

1

κ2g(s)τg(s)
(κ′′′g (s)κg(s)τg(s)− 2κg(s)κ

′
g(s)τ

3
g (s)− 3κ2g(s)τ

2
g (s)τ

′
g(s)− 3κ′g(s)κ

′′
g(s)τg(s)

−3κ′2g (s)τ
′
g(s)− κg(s)κ

′
g(s)τ

′′
g (s))

=
(κg(s)κ

′′
g(s)τg(s)− 2κ′2g (s)τg(s)− κg(s)κ

′
g(s)τ

′
g(s)− κ2g(s)τ

3
g (s))

′

κ2g(s)τg(s)
= 0.
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This is equivalent to the condition ((−1/κg(s))
′/τg(s))

′−τg(s)/κg(s) = (((−1/κg(s))
′/τg(s))

′−

τg(s)/κg(s))
′ = 0. Then we have κg(s) ̸= 0, τg(s) ̸= 0, ((−1/κg(s))

′/τg(s))
′ − τg(s)/κg(s) =

(((−1/κg(s))
′/τg(s))

′ − τg(s)/κg(s))
′ = 0 and v = γ(s) + n(s)/κg(s) − κ′g(s)b(s)/κ

2
g(s)τg(s) ±

ρ(s)e0. This completes the proof.

Proposition 4.3.2. Let γ : I −→ S3
+ be a unit speed curve, then we have the followings:

(1) hv(s) = 0 if and only if v = λγ(s) + µt(s) + ξn(s) + ηb(s) + (λ+ 2)e0, where λ, µ, ξ, η ∈ R

and µ2 + ξ2 + η2 − 4λ− 4 = 0.

(2) hv(s) = h′v(s) = 0 if and only if v = ((ξ2+η2)/4−1)γ(s)+ ξn+ηb(s)+((ξ2+η2)/4+1)e0.

(3) hv(s) = h′v(s) = h′′v(s) = 0 if and only if

v = κg(s)ξγ(s) + ξn(s)±
√

4 + 4κg(s)ξ − ξ2b(s) + (κg(s)ξ + 2)e0.

(4) hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = 0 if and only if κ′2g (s) + κ2g(s)τ
2
g (s) ̸= 0 and

v = 2κ2g(s)τg(s)σ
±(s)γ(s)+2κg(s)τg(s)σ

±(s)n(s)−2κ′g(s)σ
±(s)b(s)+(2κ2g(s)τg(s)σ

±(s)+2)e0.

(5) hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = h
(4)
v (s) = 0 if and only if κ′2g (s) + κ2g(s)τ

2
g (s) ̸= 0,((

−1

κg(s)

)′
1

τg(s)

)′

− τg(s)

κg(s)
= 0

and

v = 2κ2g(s)τg(s)σ
±(s)γ(s)+2κg(s)τg(s)σ

±(s)n(s)−2κ′g(s)σ
±(s)b(s)+(2κ2g(s)τg(s)σ

±(s)+2)e0.

(6) hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = h
(4)
v (s) = h

(5)
v (s) = 0 if and only if κ′2g (s)+κ

2
g(s)τ

2
g (s) ̸= 0,

((
−1

κg(s)

)′
1

τg(s)

)′

− τg(s)

κg(s)
=

{((
−1

κg(s)

)′
1

τg(s)

)′

− τg(s)

κg(s)

}′

= 0

and

v = 2κ2g(s)τg(s)σ
±(s)γ(s)+2κg(s)τg(s)σ

±(s)n(s)−2κ′g(s)σ
±(s)b(s)+(2κ2g(s)τg(s)σ

±(s)+2)e0.
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Proof. (1) Since v ∈ LC∗, there exist λ, µ, ξ, η, ω ∈ R with λ2 + µ2 + ξ2 + η2 − ω2 = 0

such that v = λγ(s) + µt(s) + ξn(s) + ηb(s) + ωe0. From hv(s) = ⟨γ(s),v⟩ + 2 = ⟨γ(s) +

e0, λγ(s) + µt(s) + ξn(s) + ηb(s) + ωe0⟩ + 2 = λ − ω + 2 = 0, we have ω = 2 + λ. So v =

λγ(s)+µt(s)+ξn(s)+ηb(s)+(2+λ)e0 and λ
2+µ2+ξ2+η2−(2+λ)2 = µ2+ξ2+η2−4λ−4 = 0.

The converse direction also holds.

(2) Since h′v(s) = ⟨t(s),v⟩, hv(s) = h′v(s) = 0 if and only if

h′v(s) = ⟨t(s), λγ(s) + µt(s) + ξn(s) + ηb(s) + (2 + λ)e0⟩ = µ = 0.

By λ2 + ξ2 + η2 − (2 + λ)2 = ξ2 + η2 − 4λ − 4 = 0, we have λ = (ξ2 + η2)/4 − 1. So,

v = ((ξ2 + η2)/4− 1)γ(s) + ξn(s) + ηb(s) + ((ξ2 + η2)/4 + 1)e0.

(3) Since h′′v(s) = ⟨κg(s)n(s)− γ(s),v⟩, hv(s) = h′v(s) = h′′v(s) = 0 if and only if

h′′v(s) =

⟨
κg(s)n(s)− γ(s),

(
ξ2 + η2

4
− 1

)
γ(s) + ξn(s) + ηb(s) +

(
ξ2 + η2

4
+ 1

)
e0

⟩
= (4κg(s)ξ − ξ2 − η2 + 4)/4 = 0,

so that we have η = ±
√
4 + 4κg(s)ξ − ξ2 and v = κg(s)ξγ(s)+ξn(s)±

√
4 + 4κg(s)ξ − ξ2b(s)+

(κg(s)ξ + 2)e0.

(4) Since h′′′v (s) = ⟨κ′g(s)n(s)− (κ2g(s)+1)t(s)+κg(s)τg(s)b(s),v⟩, hv(s) = h′v(s) = h′′v(s) =

h′′′v (s) = 0 if and only if

h′′′v (s) =
⟨
κ′g(s)n(s)− (κ2g(s) + 1)t(s) + κg(s)τg(s)b(s),

κg(s)ξγ(s) + ξn(s)±
√

4 + 4κg(s)ξ − ξ2b(s) + (κg(s)ξ + 2)e0

⟩
= κ′g(s)ξ + κg(s)τg(s)η = κ′g(s)ξ ± κg(s)τg(s)

√
4 + 4κg(s)ξ − ξ2 = 0,

so that we have κ′2g (s) + κ2g(s)τ
2
g (s) ̸= 0, ξ = 2κg(s)τg(s)σ

±(s) and v = 2κ2g(s)τg(s)σ
±(s)γ(s) +

2κg(s)τg(s)σ
±(s)n(s)− 2κ′g(s)σ

±(s)b(s) + (2κ2g(s)τg(s)σ
±(s) + 2)e0.

(5) Since h
(4)
v (s) = ⟨(κ′′g(s)−κ3g(s)−κg(s)−κg(s)τ 2g (s))n(s)−3κg(s)κ

′
g(s)t(s)+(2κ′g(s)τg(s)+

κg(s)τ
′
g(s))b(s) + (1 + κ2g(s))γ(s),v⟩, hv(s) = h′v(s) = h′′v(s) = h′′′v (s) = h

(4)
v (s) = 0 if and only

if
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h(4)v (s) = ⟨(κ′′g(s)− κ3g(s)− κg(s)− κg(s)τ
2
g (s))n(s)− 3κg(s)κ

′
g(s)t(s)

+(2κ′g(s)τg(s) + κg(s)τ
′
g(s))b(s) + (1 + κ2g(s))γ(s),

κg(s)ξγ(s) + ξn(s) + ηb(s) + (κg(s)ξ + 2)e0⟩

= (κ′′g(s)− κg(s)τ
2
g (s))ξ + (2κ′g(s)τg(s) + κg(s)τ

′
g(s))η = 0.

By the above condition, we have the equation (κ′′g(s)−κg(s)τ 2g (s))/(2κ′g(s)τg(s)+κg(s)τ ′g(s)) =

κ′g(s)/κg(s)τg(s). It is equivalent to ((−1/κg(s))
′/τg(s))

′ − τg(s)/κg(s) = 0. Then we have

κ′2g (s)+κ2g(s)τ
2
g (s) ̸= 0, ((−1/κg(s))

′/τg(s))
′− τg(s)/κg(s) = 0 and v = 2κ2g(s)τg(s)σ

±(s)γ(s)+

2κg(s)τg(s)σ
±(s)n(s)− 2κ′g(s)σ

±(s)b(s) + (2κ2g(s)τg(s)σ
±(s) + 2)e0.

(6) Since h
(5)
v (s) = ⟨(κ4g(s) + 2κ2g(s) + κ2g(s)τ

2
g (s) + 1− 3κ′2g (s)− 4κg(s)κ

′′
g(s))t(s) + (κ′′′g (s)−

κ′g(s)−6κ2g(s)κ
′
g(s)−3κ′g(s)τ

2
g (s)−3κg(s)τg(s)τ

′
g(s))n(s)+(3κ′′g(s)τg(s)+3κ′g(s)τ

′
g(s)+κg(s)τ

′′
g (s)−

κg(s)τg(s)−κ3g(s)τg(s)−κg(s)τ 3g (s))b(s)+5κg(s)κ
′
g(s)γ(s),v⟩, hv(s) = h′v(s) = h′′v(s) = h′′′v (s) =

h
(4)
v (s) = h

(5)
v (s) = 0 if and only if

h(5)v (s) = ⟨(κ4g(s) + 2κ2g(s) + κ2g(s)τ
2
g (s) + 1− 3κ′2g (s)− 4κg(s)κ

′′
g(s))t(s)

+(κ′′′g (s)− κ′g(s)− 6κ2g(s)κ
′
g(s)− 3κ′g(s)τ

2
g (s)− 3κg(s)τg(s)τ

′
g(s))n(s)

+(3κ′′g(s)τg(s) + 3κ′g(s)τ
′
g(s) + κg(s)τ

′′
g (s)− κg(s)τg(s)− κ3g(s)τg(s)− κg(s)τ

3
g (s))b(s)

+5κg(s)κ
′
g(s)γ(s), κg(s)ξγ(s) + ξn(s) + ηb(s) + (κg(s)ξ + 2)e0⟩

= (κ′′′g (s)− κ′g(s)− κ2g(s)κ
′
g(s)− 3κ′g(s)τ

2
g (s)− 3κg(s)τg(s)τ

′
g(s))ξ

+(3κ′′g(s)τg(s) + 3κ′g(s)τ
′
g(s) + κg(s)τ

′′
g (s)− κg(s)τg(s)− κ3g(s)τg(s)− κg(s)τ

3
g (s))η = 0.

By the above condition, we have the equation (κ′′′g (s) − κ′g(s) − κ2g(s)κ
′
g(s) − 3κ′g(s)τ

2
g (s) −

3κg(s)τg(s)τ
′
g(s))/(3κ

′′
g(s)τg(s)+3κ′g(s)τ

′
g(s)+κg(s)τ

′′
g (s)−κg(s)τg(s)−κ3g(s)τg(s)−κg(s)τ 3g (s)) =

κ′g(s)/κg(s)τg(s). It is equivalent to ((−1/κg(s))
′/τg(s))

′−τg(s)/κg(s) = (((−1/κg(s))
′/τg(s))

′−

τg(s)/κg(s))
′ = 0. Then we have κ′2g (s) + κ2g(s)τ

2
g (s) ̸= 0, ((−1/κg(s))

′/τg(s))
′ − τg(s)/κg(s) =

(((−1/κg(s))
′/τg(s))

′−τg(s)/κg(s))′ = 0 and v = 2κ2g(s)τg(s)σ
±(s)γ(s)+2κg(s)τg(s)σ

±(s)n(s)−

2κ′g(s)σ
±(s)b(s) + (2κ2g(s)τg(s)σ

±(s) + 2)e0. This completes the proof.
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According to the assertions of Propositions 4.3.1 and 4.3.2, we define an invariant

κS(s) =

((
−1

κg(s)

)′
1

τg(s)

)′

− τg(s)

κg(s)
,

which we call a spherical curvature of γ. We have the following proposition.

Proposition 4.3.3. For a unit speed curve γ : I → S3
+, both of the spherical evolutes ε±γ (s)

are constant if and only if κS ≡ 0.

Proof. ε′±γ (s) = ±(κg(s)κ
′
g(s)(2κ

′2
g (s)τg(s)+κg(s)κ

′
g(s)τ

′
g(s)+κ

2
g(s)τ

3
g (s)−κg(s)κ′′g(s)τg(s)){γ(s)+

n(s)/κg(s)+(1/κg(s))
′b(s)/τg(s)}/(κ′2g (s)+κ4g(s)τ 2g (s)+κ2g(s)τ 2g (s))3/2+(2κ′2g (s)τg(s)+κg(s)κ

′
g(s)

τ ′g(s) + κ2g(s)τ
3
g (s)− κg(s)κ

′′
g(s)τg(s))b(s)/κg(s)τg(s)(κ

′2
g (s) + κ4g(s)τ

2
g (s) + κ2g(s)τ

2
g (s))

1/2).

On the other hand κS(s) = ((−1/κg(s))
′/τg(s))

′−τg(s)/κg(s) = (κg(s)κ
′′
g(s)τg(s)−2κ′2g (s)τg(s)

−κg(s)κ′g(s)τ ′g(s)−κ2g(s)τ 3g (s))/κ3g(s)τ 2g (s) = 0. So ε′±γ ≡ 0 if and only if κS ≡ 0. This completes

the proof.

4.4 Singularities of lightcone duals of spherical curves

In this section we classify the singularities of LD
±
γ and LDγ as an application of the

unfolding theory of functions. Let F : (R × Rr, (s0,x0)) −→ R be a function germ, we call F

an r-parameter unfolding of f , where f(s) = Fx0(s,x0). The discriminant set of F is defined

by

DF =

{
x ∈ Rr | ∃s ∈ R, F (s,x) =

∂F

∂s
(s,x) = 0

}
.

By Propositions 4.3.1, (2) and 4.3.2, (2), the discriminant sets of H and H are

DH = {γ(s) + un(s) + vb(s)±
√
u2 + v2 + 1e0 | s ∈ I, u, v ∈ R},

DH = {(u2 + v2 − 4)γ(s)/4 + un(s) + vb(s) + (u2 + v2 + 4)e0/4 | s ∈ I, u, v ∈ R}.

These are the lightcone dual surfaces of γ and the lightcone dual surface of γ respectively.

Moreover, the both assertions (4) of Propositions 4.3.1 and 4.3.2 describe the singularities of

the lightcone focal surfaces of γ and γ respectively.
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Proposition 4.4.1. The critical value sets of LF±
γ and LF±

γ are give as follows:

C(LF±
γ ) =

{
γ(s) +

1

κg(s)
n(s)−

κ′g(s)

κ2g(s)τg(s)
b(s)± ρ(s)e0

∣∣∣ s ∈ I

}
,

C(LF±
γ ) = {2κ2g(s)τg(s)σ±(s)γ(s) + 2κg(s)τg(s)σ

±(s)n(s)

−2κ′g(s)σ
±(s)b(s) + (2κ2g(s)τg(s)σ

±(s) + 2)e0 | s ∈ I }.

Then we have the following theorem as a corollary.

Theorem 4.4.2. Both of the projections of the critical value sets C(LF±
γ ) and C(LF±

γ ) in the

unit 3-sphere S3
0 are the images of the spherical evolutes of γ, that is

π̃(C(LF±
γ )) = π̃(C(LF±

γ )) = {ε±γ (s) | s ∈ I }.

Proof. We know that

π̃(C(LF±
γ )) =

{
±
(
γ(s)

ρ(s)
+

n(s)

ρ(s)κg(s)
−

κ′g(s)b(s)

ρ(s)κ2g(s)τg(s)

) ∣∣∣ s ∈ I

}
and

π̃(C(LF±
γ )) =

{
κ2g(s)τg(s)σ

±(s)γ(s) + κg(s)τg(s)σ
±(s)n(s)− κ′g(s)σ

±(s)b(s)

κ2g(s)τg(s)σ
±(s) + 1

∣∣∣ s ∈ I

}
.

By straightforward calculations, we have

κ2g(s)τg(s)σ
±(s)

κ2g(s)τg(s)σ
±(s) + 1

=
κ2g(s)τg(s)(κ

2
g(s)τg(s)±

√
κ′2g (s) + κ2g(s)τ

2
g (s) + κ4g(s)τ

2
g (s))

κ′2g (s) + κ2g(s)τ
2
g (s) + κ4g(s)τ

2
g (s)± κ2g(s)τg(s)

√
κ′2g (s) + κ2g(s)τ

2
g (s) + κ4g(s)τ

2
g (s)

=
±κ2g(s)τg(s)√

κ′2g (s) + κ2g(s)τ
2
g (s) + κ4g(s)τ

2
g (s)

=
±1

ρ(s)
.

Similarly, we can calculate that

κg(s)τg(s)σ
±(s)

κ2g(s)τg(s)σ
±(s) + 1

=
±1

ρ(s)κg(s)
,

κ′g(s)σ
±(s)

κ2g(s)τg(s)σ
±(s) + 1

=
±κ′g(s)

ρ(s)κ2g(s)τg(s)
.
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So we have

π̃(C(LF±
γ )) = π̃(C(LF±

γ )) = {ε±γ (s) | s ∈ I }.

In order to understand the geometric properties of the discriminant set of order ℓ, we introduce

an equivalence relation among the unfoldings of functions. This completes the proof.

Inspired by Propositions 4.3.1, 4.3.2 and Theorem 4.4.2, we define the following set:

Dℓ
F =

{
x ∈ Rr | ∃s ∈ R, F (s,x) =

∂F

∂s
(s,x) = · · · = ∂ℓF

∂sℓ
(s,x) = 0

}
,

which is called a discriminant set of order ℓ. Of course, D1
F = DF . Let F and G be r-

parameter unfoldings of f(s) and g(s), respectively. We say that F and G are P-R-equivalent

if there exists a diffeomorphism germ Φ : (R × Rr, (s0,x0)) −→ (R × Rr, (s′0,x
′
0)) of the form

Φ(s,x) = (Φ1(s,x), ϕ(x)) such that G ◦ Φ = F. By straightforward calculations, we have the

following proposition.

Proposition 4.4.3. Let F and G be r-parameter unfoldings of f(s) and g(s), respectively. If F

and G are P-R-equivalent by a diffeomorphism germ Φ : (R×Rr, (s0,x0)) −→ (R×Rr, (s′0,x
′
0))

of the form Φ(s,x) = (Φ1(s,x), ϕ(x)), then ϕ(D
ℓ
F ) = Dℓ

G as set germs.

By Propositions 4.3.1 and 4.3.2, we have the following proposition.

Proposition 4.4.4. Under the same notations as in the previous paragraphs, we have

DH = D1
H
= ImagesLD

±
γ , D

2
H
= ImagesLF±

γ , π̃(D
3
H
) = Images ε±γ ,

DH = D1
H = ImageLDγ , D

2
H = ImagesLF±

γ , π̃(D
3
H) = Images ε±γ .

For a function f(s), we say that f has Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k

and f (k+1)(s0) ̸= 0. Let F be an r-parameter unfolding of f and f has Ak-singularity (k ≥ 1)

at s0. We denote the (k − 1)-jet of the partial derivative ∂F/∂xi at s0 as

j(k−1)

(
∂F

∂xi
(s,x0)

)
(s0) =

k−1∑
j=1

αji(s− s0)
j, (i = 1, · · · , r).

If the rank of k × r matrix (α0i, αji) is k (k ≤ r), then F is called a versal unfolding of f ,

where α0i = ∂F/∂xi(s0,x0). We have the following classification theorem of versal unfoldings

[3, Page 149, 6.6].
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Theorem 4.4.5. Let F : (R×Rr, (s0,x0)) −→ R be an r-parameter unfolding of f which has

Ak-singularity at s0. Suppose F is a versal unfolding of f , then F is P-R-equivalent to one of

the following unfoldings:

(a) k = 1 , ±s2 + x1,

(b) k = 2 , s3 + x1 + sx2,

(c) k = 3 , ±s4 + x1 + sx2 + s2x3,

(d) k = 4 , s5 + x1 + sx2 + s2x3 + s3x4.

We have the following classification result as a corollary of the above theorem.

Corollary 4.4.6. Let F : (R×Rr, (s0,x0)) −→ R be an r-parameter unfolding of f which has

Ak-singularity at s0. Suppose F is a versal unfolding of f , then we have the following assertions:

(a) If k = 1, then DF is diffeomorphic to {0} × Rr−1 and D2
F = ∅.

(b) If k = 2, then DF is diffeomorphic to C(2, 3) × Rr−2, D2
F is diffeomorphic to {0} × Rr−2

and D3
F = ∅.

(c) If k = 3, then DF is diffeomorphic to SW ×Rr−3, D2
F is diffeomorphic to C(2, 3, 4)×Rr−3,

D3
F is diffeomorphic to {0} × Rr−3 and D4

F = ∅.

(d) If k = 4, then DF is locally diffeomorphic to BF ×Rr−4, D2
F is diffeomorphic to C(BF )×

Rr−4, D3
F is diffeomorphic to C(2, 3, 4, 5)×Rr−4, D4

F is diffeomorphic to {0}×Rr−4 and D5
F = ∅.

We remark that all of diffeomorphisms in the above assertions are diffeomorphism germs.

Here, we respectively call C(2, 3) = {(x1, x2) | x1 = u2, x2 = u3} a (2, 3)-cusp, C(2, 3, 4) =

{(x1, x2, x3) | x1 = u2, x2 = u3, x3 = u4} a (2, 3, 4)-cusp, C(2, 3, 4, 5) = {(x1, x2, x3, x4) | x1 =

u2, x2 = u3, x3 = u4, x4 = u5} a (2, 3, 4, 5)-cusp, SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 =

4u3 + 2uv, x3 = v} a swallow tail, BF = {(x1, x2, x3.x4) | x1 = 5u4 + 3vu2 + 2wu, x2 =

4u5+2vu3+wu2, x3 = u, x4 = v} a butterfly and C(BF ) = {(x1, x2, x3, x4) | x1 = 6u5+u3v, x2 =

25u4 + 9u2v, x3 = 10u3 + 3uv, x4 = v} a c-butterfly (i.e., the critical value set of the butterfly).

We have the following key propositions on H and H.

Proposition 4.4.7. If hv0 has Ak-singularity (k = 1, 2, 3, 4) at s0, then H is a versal unfolding

of hv0 .
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Proof. For v ∈ LC∗, we have v = (±(v21 + v22 + v23 + v24)
1/2, v1, v2, v3, v4). We denote that

γ(s) = (0, x1(s), x2(s), x3, (s)x4(s)). Then

H(s,v) = ⟨γ(s),v⟩ − 1 = x1(s)v1 + x2(s)v2 + x3(s)v3 + x4(s)v4 − 1.

Thus we have

∂H

∂v1
(s,v) = x1(s),

∂H

∂v2
(s,v) = x2(s),

∂H

∂v3
(s,v) = x3(s),

∂H

∂v4
(s,v) = x4(s),

∂2H

∂s∂v1
(s,v) = x′1(s),

∂2H

∂s∂v2
(s,v) = x′2(s),

∂2H

∂s∂v3
(s,v) = x′3(s),

∂2H

∂s∂v4
(s,v) = x′4(s),

∂3H

∂s2∂v1
(s,v) = x′′1(s),

∂3H

∂s2∂v2
(s,v) = x′′2(s),

∂3H

∂s2∂v3
(s,v) = x′′3(s),

∂3H

∂s2∂v4
(s,v) = x′′4(s),

∂4H

∂s3∂v1
(s,v) = x′′′1 (s),

∂4H

∂s3∂v2
(s,v) = x′′′2 (s),

∂4H

∂s3∂v3
(s,v) = x′′′3 (s),

∂4H

∂s3∂v4
(s,v) = x′′′4 (s).

For a fixed point v0 = (v00, v01, v02, v03, v04), the 3-jet of ∂H/∂vi(s,v0)(i = 1, 2, 3, 4) at s0 is

j(3)
∂H

∂vi
(s,v0)(s0) = x′i(s0)(s− s0) + x′′i (s0)(s− s0)

2/2 + x′′′i (s0)(s− s0)
3/6, (i = 1, 2, 3, 4).

It is enough to show that the rank of the matrix A is 4, where

A =


x1(s0) x2(s0) x3(s0) x4(s0)

x′1(s0) x′2(s0) x′3(s0) x′4(s0)

x′′1(s0) x′′2(s0) x′′3(s0) x′′4(s0)

x′′′1 (s0) x′′′2 (s0) x′′′3 (s0) x′′′4 (s0)

 .

Then we have

detA = ⟨e0 ∧ γ(s0) ∧ γ ′(s0) ∧ γ ′′(s0),γ
′′′(s0)⟩ = −κ2g(s0)τg(s0) ̸= 0.

So the rank of A is 4. This completes the proof.

Proposition 4.4.8. If hv0 has Ak-singularity (k = 1, 2, 3, 4) at s0, then H is a versal unfolding

of hv0 .
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Proof. For v ∈ LC∗, we have v = (v0, v1, v2, v3, v4) = (±(v21 + v22 + v23 + v24)
1/2, v1, v2, v3, v4). We

denote that γ(s) = (1, x1(s), x2(s), x3, (s)x4(s)). Then we have

H(s,v) = ⟨γ(s),v⟩+ 2 = ∓(v21 + v22 + v23 + v24)
1/2 + x1(s)v1 + x2(s)v2 + x3(s)v3 + x4(s)v4 + 2.

Thus we have
∂H

∂v1
(s,v) = −v1/v0 + x1(s),

∂H

∂v2
(s,v) = −v2/v0 + x2(s),

∂H

∂v3
(s,v) = −v3/v0 + x3(s),

∂H

∂v4
(s,v) = −v4/v0 + x4(s),

∂2H

∂s∂v1
(s,v) = x′1(s),

∂2H

∂s∂v2
(s,v) = x′2(s),

∂2H

∂s∂v3
(s,v) = x′3(s),

∂2H

∂s∂v4
(s,v) = x′4(s),

∂3H

∂s2∂v1
(s,v) = x′′1(s),

∂3H

∂s2∂v2
(s,v) = x′′2(s),

∂3H

∂s2∂v3
(s,v) = x′′3(s),

∂3H

∂s2∂v4
(s,v) = x′′4(s),

∂4H

∂s3∂v1
(s,v) = x′′′1 (s),

∂4H

∂s3∂v2
(s,v) = x′′′2 (s),

∂4H

∂s3∂v3
(s,v) = x′′′3 (s),

∂4H

∂s3∂v4
(s,v) = x′′′4 (s).

For a fixed v0 = (v00, v01, v02, v03, v04), the 3-jet of ∂H/∂vi(s,v0)(i = 1, 2, 3, 4) at s0 is

j(3)
∂H

∂vi
(s,v0)(s0) = x′i(s0)(s− s0) + x′′i (s0)(s− s0)

2/2 + x′′′i (s0)(s− s0)
3/6, (i = 1, 2, 3, 4).

It is enough to show that the rank of the matrix B is 4, where

B =


−v01/v00 + x1(s0) −v02/v00 + x2(s0) −v03/v00 + x3(s0) −v04/v00 + x4(s0)

x′1(s0) x′2(s0) x′3(s0) x′4(s0)

x′′1(s0) x′′2(s0) x′′3(s0) x′′4(s0)

x′′′1 (s0) x′′′2 (s0) x′′′3 (s0) x′′′4 (s0)

 .

By straightforward calculations, we have

detB = ⟨e0 ∧ γ ′(s0) ∧ γ ′′(s0) ∧ γ ′′′(s0),v0⟩/v00 + ⟨e0 ∧ γ(s0) ∧ γ ′(s0) ∧ γ ′′(s0),γ
′′′(s0)⟩

= ⟨κ2g(s0)τg(s0)γ(s0),v0⟩/v00−⟨κ′g(s0)b(s0),v0⟩/v00+⟨κg(s0)τg(s0)n(s0),v0⟩/v00−κ2g(s0)τg(s0).

In this case, hv0(s) has A4-singularity, then we have

v0 = 2κ2g(s0)τg(s0)σ
±(s0)γ(s0) + 2κg(s0)τg(s0)σ

±(s0)n(s0)− 2κ′g(s0)σ
±(s0)b(s0)

39



+(2κ2g(s0)τg(s0)σ
±(s0) + 2)e0.

Moreover we have

v00 = 2κ2g(s0)τg(s0)σ
±(s0) + 2.

Therefore by calculation, we have

detB = ±
κ2g(s0)τ

2
g (s0) + κ′2g (s0)√

κ′2g (s0) + κ2g(s0)τ
2
g (s0) + κ4g(s0)τ

2
g (s0)± κ2g(s0)τg(s0)

̸= 0

So the rank of B is 4. This completes the proof.

We have the following theorem:

Theorem 4.4.9. Let γ : I −→ S3
+ be a unit speed curve.

(A) For each one of the lightcone duals LD
±
γ of γ, we have the following assertions:

(1) Each one of the lightcone duals LD
±
γ of γ is locally diffeomorphic to C(2, 3) × R2 at

(s0, u0, v0) if and only if

κg(s0) ̸= 0, u0 =
1

κg(s0)
and v0 ̸=

(
1

κg(s0)

)′
1

τg(s0)
.

In this case, each one of LF±
γ is non-singular and each one of Images ε±γ is empty.

(2) Each one of the lightcone duals LD
±
γ of γ is locally diffeomorphic to SW×R at (s0, u0, v0)

if and only if

κg(s0) ̸= 0, τg(s0) ̸= 0, u0 =
1

κg(s0)
, v0 =

(
1

κg(s0)

)′
1

τg(s0)
and κS(s0) ̸= 0.

In this case, each one of LF±
γ is locally diffeomorphic to C(2, 3, 4)×R and each one of Images ε±γ

is a regular curve.

(3) Each one of the lightcone duals LD
±
γ of γ is locally diffeomorphic to BF at (s0, u0, v0)

if and only if

κg(s0) ̸= 0, τg(s0) ̸= 0, u0 =
1

κg(s0)
, v0 =

(
1

κg(s0)

)′
1

τg(s0)
, κS(s0) = 0 and κ′S(s0) ̸= 0.

In this case, each one of LF±
γ is locally diffeomorphic to C(BF )×R and each one of Images ε±γ

is locally diffeomorphic to the projection of the C(2, 3, 4, 5)-cusp.
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(B) For the lightcone dual LDγ of γ, we have the following assertions:

(1) The lightcone dual LDγ of γ is locally diffeomorphic to C(2, 3)×R2 at (s0, u0, v0) if and

only if

u0 ̸= 2κg(s0)τg(s0)σ
±(s0) and v0 = ±

√
4 + 4κg(s0)u0 − u20.

In this case, each one of LF±
γ is non-singular and each one of Images ε±γ is empty.

(2) The lightcone dual LDγ of γ is locally diffeomorphic to SW × R at (s0, u0, v0) if and

only if

κ′2g (s0) + κ2g(s0)τ
2
g (s0) ̸= 0, u0 = 2κg(s0)τg(s0)σ

±(s0), v0 = −2κ′g(s0)σ
±(s0) and κS(s0) ̸= 0.

In this case, each one of LF±
γ is locally diffeomorphic to C(2, 3, 4)×R and each one of Images ε±γ

is a regular curve.

(3) The lightcone dual LDγ of γ is locally diffeomorphic to BF at (s0, u0, v0) if and only if

κ′2g (s0) + κ2g(s0)τ
2
g (s0) ̸= 0, u0 = 2κg(s0)τg(s0)σ

±(s0), v0 = −2κ′g(s0)σ
±(s0),

κS(s0) = 0 and κ′S(s0) ̸= 0.

In this case, each one of LF±
γ is locally diffeomorphic to C(BF )×R and each one of Images ε±γ

is locally diffeomorphic to the projection of the C(2, 3, 4, 5)-cusp.

Proof. By Propositions 4.3.1 and 4.3.2, the discriminant sets of H and H are the lightcone

duals of γ and γ respectively. By Propositions 4.3.1 and 4.3.2, both of hv0 and hv0 have Ak

singularities (k = 1, 2, 3, 4) respectively if and only if the above conditions on the geodesic

curvatures and geodesic torsion hold. By Propositions 4.4.7 and 4.4.8, H and H are versal

unfoldings of hv0 and hv0 at any point s0 ∈ I respectively. We apply Corollary 4.4.6, so that

we have the above assertions. This completes the proof.
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5 Lightcone dualities for hypersurfaces in the sphere

5.1 The hypersurfaces in the unit n-sphere

Let x : U −→ Sn
+ be an embedding from an open set U ⊂ Rn−1. We identify M = x(U)

with U through the embedding x. Obviously, the tangent space TpM are all spacelike (i.e.,

consists only spacelike vectors), so M is a spacelike hypersuface in Sn
+ ⊂ Rn+2

1 . We have a map

Φ : Sn
+ → Sn

0 defined by Φ(v) = v − e0, which is an isometry. Then we have a hypersurface

x : U → Sn
0 defined by x(u) = Φ(x(u)) = x(u)−e0, so that x and x have the same geometric

properties as spherical hypersurfaces. For any p = x(u), we can construct a unit normal vector

n(u) as

n(u) =
x(u) ∧ e0 ∧ xu1(u) ∧ . . . ∧ xun−1(u)

∥x(u) ∧ e0 ∧ xu1(u) ∧ . . . ∧ xun−1(u)∥
.

We have ⟨n(u),n(u)⟩ = 1, ⟨e0, e0⟩ = −1 and ⟨e0,n⟩ = ⟨n,xui
⟩ = ⟨n,x⟩ = 0. The system

{e0,n(u),x(u),xu1(u), . . . ,xun−1(u)} is a basis of TpRn+2
1 . We define a map G : U −→ Sn

0 by

G(u) = n(u). We call it the Gauss map of the hypersurface M = x(U). We have a linear

mapping provided by the derivation of the Gauss map at p ∈ M , dG(u) : TpM −→ TpM.

We call the linear transformation Sp = −dG(u) the shape operator of M at p = x(u). The

eigenvalues of Sp denoted by {κi(p)}n−1
i=1 are called the principal curvatures of M at p. The

Gauss-Kronecker curvature of M at p is defined to be K(p) = detSp. A point p is called an

umbilic point if all the principal curvatures coincide at p and thus we have Sp = κ(p)idTpM for

some κ(p) ∈ R. We say that M is totally umbilic if all the points on M are umbilic. Since x

is a spacelike embedding, we have a Riemannian metric (or the first fundamental form) on M

given by ds2 =
∑n−1

i,j=1 gijduiduj, where gij(u) = ⟨xui
(u),xuj

(u)⟩ for any u ∈ U . The second

fundamental form on M is given by hij(u) = −⟨nui
(u),xuj

(u)⟩ at any u ∈ U . Under the

above notations, we have the following Weingarten formula [16]:

Gui
= −

n−1∑
j=1

hjixuj
(i = 1, . . . , n− 1),

where (hji ) = (hik)(g
kj) and (gkj) = (gkj)

−1. This formula induces an explicit expression of

the Gauss-Kronecker curvature in terms of the Riemannian metric and the second fundamental
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invariant given by K = det(hij/det(gαβ). A point p is a parabolic point if K(p) = 0. A point p

is a flat point if it is an umbilic point and K(p) = 0.

In [17] the spherical evolute of a hypersurface has been introduced and investigated the

singularities. Then each spherical evolute of M = x(U) is defined to be

ε±
M

=
n−1∪
i=1

{
±

(√
κ2i (p)

1 + κ2i (p)
x(u) +

√
1

1 + κ2i (p)
n(u)

) ∣∣∣ p = x(u) ∈M = x(U)

}
.

5.2 The lightcone dual hypersurfaces and the lightcone height func-

tions

We now define hypersurfaces in LC∗ associated with the hypersurfaces in Sn
+ or Sn

0 . Let

x : U −→ Sn
+ be a hypersurface. We define LD

±
M : U × R −→ LC∗ by

LD
±
M(u, µ) = x(u) + µn(u)±

√
µ2 + 1e0.

We also define LDM : U × R −→ LC∗ by

LDM(u, µ) = (µ2/4− 1)x(u) + µn(u) + (µ2/4 + 1)e0.

Then we have the following proposition.

Proposition 5.2.1. Under the above notations, we have the followings:

(1) x and LD
±
M are ∆3-dual to each other.

(2) x and LDM are ∆4-dual to each other.

Proof. Consider the mapping L3 : U × R −→ ∆3 defined by L3(u, µ) = (LD
±
M(u, µ),x(u)).

Then we have

⟨LD±
M(u, µ),x(u)⟩ = ⟨x(u),x(u)⟩ = 1

and

L∗
3θ32 = ⟨LD±

M(u, µ), dx(u)⟩ =
n−1∑
i=1

⟨LD±
M(u, µ),xui

⟩dui = 0.
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The assertion (1) holds. We also consider the mapping L4 : U×R −→ ∆4 defined by L4(u, µ) =

(LDM(u, µ),x(u)). Since ⟨x(u), e0⟩ = −1 and ⟨x(u),x(u)⟩ = 1, we have ⟨LDM(u, µ),x(u)⟩ =

µ2/4− 1− (µ2/4 + 1) = −2. Moreover, we have

L∗
4θ42 = ⟨LDM(u, µ), dx(u)⟩ =

n−1∑
i=1

⟨LDM(u, µ),xui
⟩dui = 0.

This completes the proof.

We call each one of LD
±
M the lightcone dual hypersurface along M ⊂ Sn

0 and LDM the

lightcone dual hypersurface alongM ⊂ Sn
+. Then we have two mappings π◦LD±

M : U×R −→ Sn
+

and π ◦ LDM : U × R −→ Sn
+ defined by

π ◦ LD±
M(u, µ) = ±

(
1√
µ2 + 1

x(u) +
µ√
µ2 + 1

n(u)

)
+ e0,

π ◦ LDM(u, µ) =
µ2 − 4

µ2 + 4
x(u) +

4µ

µ2 + 4
n(u) + e0.

Let x : U −→ Sn
+ be a hypersurface in the lightcone unit sphere. Then we define two

families of functions as follows:

H : U × LC∗ −→ R, H(u,v) = ⟨x(u),v⟩ − 1,

H : U × LC∗ −→ R, H(u,v) = ⟨x(u),v⟩+ 2.

We call H a lightcone height function of the de Sitter spherical hypersurface M . For any fixed

v0 ∈ LC∗, we denote hv0(u) = H(u,v0). We also call H a lightcone height function of the

lightlike spherical hypersurface M. For any fixed v0 ∈ LC∗, we denote hv0(u) = H(u,v0).

Proposition 5.2.2. Let M be a hypersurface in Sn
0 and H the lightcone height function on

M . For p = x(u) and p = x(u) ̸= v±, we have the followings:

(1) hv±(u) = ∂hv±/∂ui(u) = 0(i = 1, . . . , n− 1) if and only if

v± = LD
±
M(u, µ) for some µ ∈ R\{0}.

(2) hv±(u) = ∂hv±/∂ui(u) = 0(i = 1, . . . , n− 1) and det Hess (hv±)(u) = 0 if and only if

v± = LD
±
M(u, µ), 1/µ is one of the non-zero principle curvatures κi(p) of M.
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Proof. (1) Since v ∈ LC∗, there exist λ, µ, ξi, (i = 1, . . . , n− 1), η ∈ R such that v = λx(u) +

µn(u)+
∑n−1

i=1 ξixui
(u)+ ηe0 with λ

2+µ2+
∑n−1

i,j=1 ξiξjgij(u)− η2 = 0. The condition hv(u) =

⟨x(u),v⟩ − 1 = ⟨x(u), λx(u) + µn(u) +
∑n−1

i=1 ξixui
(u) + ηe0⟩ − 1 = λ− 1 = 0 implies λ = 1,

so that v = x(u) + µn(u) +
∑n−1

i=1 ξixui
(u) + ηe0 and 1 + µ2 +

∑n−1
i,j=1 ξiξjgij(u) − η2 = 0.

Therefore, hv(u) = ∂hv/∂ui(u) = 0 if and only if ∂hv/∂ui(u) = ⟨xui
(u),v⟩ = ⟨xui

(u),x(u) +

µn(u) +
∑n−1

i=1 ξixui
(u) + ηe0⟩ =

∑n−1
j=1 gijξj = 0. Since gij is positive definite, we have ξj =

0(j = 1, . . . , n − 1). Then we have 1 + µ2 − η2 = 0, so that η = ±
√
1 + µ2. Thus, we have

v± = x(u) + µn(u)±
√

1 + µ2e0. The converse direction also holds.

(2) Suppose that hv±(u) = ∂hv±/∂ui(u) = 0. Then we have Hess (hv±)(u) = (⟨xuiuj
(u),v⟩) =

(⟨xuiuj
(u),x(u)+µn(u)±

√
1 + µ2e0⟩) = (⟨xuiuj

(u),x(u)⟩)+µ(⟨xuiuj
(u),n(u)⟩) = −(gij(u))+

µ(hij(u)). It follows that detHess (hv±)(u) = 0 if and if detHess (hv±)(u)(gij(u))
−1/µ =

det((hji (u)) − I/µ) = 0. Thus, detHess (hv±)(u)=0 if and only if 1/µ is one of the non-zero

principle curvatures of M at p.

Proposition 5.2.3. Let M be a hypersurface in Sn
+ and H be the lightcone height function on

M . For p = x(u) ̸= v, we have the followings.

(1) hv(u) = ∂hv/∂ui(u) = 0, (i = 1, . . . , n− 1) if and only if

v = LDM(u, µ) for some µ ∈ R\{0}.

(2) hv(u) = ∂hv/∂ui(u) = 0, (i = 1, . . . , n− 1) and det Hess (hv)(u) = 0 if and only if

v = LDM(u, µ), (µ/4− 1/µ) is one the non-zero principle curvatures κi(p) of M.

Proof. (1) Since v ∈ LC∗, there exist λ, µ, ξi, (i = 1, . . . , n− 1), η ∈ R such that v = λx(u) +

µn(u)+
∑n−1

i=1 ξixui
(u)+ ηe0 with λ

2+µ2+
∑n−1

i,j=1 ξiξjgij(u)− η2 = 0. The condition hv(u) =

⟨x(u),v⟩+2 = ⟨x(u)+e0, λx(u)+µn(u)+
∑n−1

i=1 ξixui
(u)+ηe0⟩+2 = λ−η+2 = 0 means that

η = 2+λ, so that v = λx(u)+µn(u)+
∑n−1

i=1 ξixui
(u)+(2+λ)e0 and λ

2+µ2+
∑n−1

i,j=1 ξiξjgij(u)−

(2 + λ)2 = µ2 +
∑n−1

i,j=1 ξiξjgij(u) − 4λ − 4 = 0. Therefore, hv(u) = ∂hv/∂ui(u) = 0 if and

only if ∂hv/∂ui(u) = ⟨xui
(u),v⟩ = ⟨xui

(u), λx(u) + µn(u) +
∑n−1

i=1 ξixui
(u) + (2 + λ)e0⟩ =
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∑n−1
j=1 gijξj = 0. Since gij is positive definite, we have ξj = 0 (j = 1, . . . , n− 1). Then we have

µ2−4λ−4 = 0, so that λ = µ2/4−1. Thus, we have v = (µ2/4−1)x(u)+µn(u)+(µ2/4+1)e0.

The converse direction also holds.

(2) Suppose that hv(u) = ∂hv/∂ui(u) = 0. Then we have

Hess (hv)(u) = (⟨xuiuj
(u),v⟩)

= (⟨xuiuj
(u), (µ2/4− 1)x(u) + µn(u) + (µ2/4 + 1)e0⟩)

= (µ2/4− 1)(⟨xuiuj
(u),x(u)⟩) + µ(⟨xuiuj

(u),n(u)⟩)

= (1− µ2/4)(gij(u)) + µ(hij(u)).

Therefore, det Hess (hv)(u) = 0 if and if detHess (hv)(u)(gij(u))
−1/µ = det((hji )(u) − (µ/4 −

1/µ)I) = 0, so that detHess (hv)(u)=0 if and only if (µ/4−1/µ) is one of the non-zero principle

curvatures of M at p.

Let (u, µ) be a singular point of each one of LD
±
M . By Proposition 5.2.2, we have 1/µ =

κi(p)(1 ≤ i ≤ n− 1), where κi(p) is one of the non-zero principle curvatures of M at p = x(u).

It follows that µ = 1/κi(p). Therefore the critical value sets of LD
±
M are given by

C(LD
±
M) =

n−1∪
i=1

{
x(u) +

1

κi(p)
n(u)±

√
1

κ2i (p)
+ 1e0

∣∣∣ u ∈ U

}
.

Let (u, µ) be a singular point of LDM(u, µ). By Proposition 5.2.3, we have µ/4 − 1/µ =

κi(p)(1 ≤ i ≤ n− 1). It follows that we have µ = 2(κi(p)±
√

1 + κ2i (p)). For simplification, we

write that σ±(κi(p)) = κi(p)±
√

1 + κ2i (p). Then the critical value sets of LDM are given by

C(LDM)± =
n−1∪
i=1

{((σ±(κi(p)))
2 − 1)x(u) + 2σ±(κi(p))n(u) + ((σ±(κi(p)))

2 + 1)e0 | u ∈ U }.

We respectively denote that

LF±
M

=
n−1∪
i=1

{
x(u) +

1

κi(p)
n(u)±

√
1

κ2i (p)
+ 1e0

∣∣∣ u ∈ U

}
,

LF±
M =

n−1∪
i=1

{((σ±(κi(p)))
2 − 1)x(u) + 2σ±(κi(p))n(u) + ((σ±(κi(p)))

2 + 1)e0 | u ∈ U }.
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We respectively call each one of LF±
M

the lightcone focal hypersurface of the de Sitter spherical

hypersurface x and each one of LF±
M the ligtcone focal hypersurface of the lightcone spherical

hypersurface x. Then the projections of these surfaces to Sn
+ are given as follows:

π(C(LD
±
M)) =

n−1∪
i=1

{
±

(√
κ2i (p)

1 + κ2i (p)
x(u) +

√
1

1 + κ2i (p)
n(u)

)
+ e0

∣∣∣ u ∈ U

}
,

π(C(LDM)±) =
n−1∪
i=1

{
(σ±(κi(p)))

2 − 1

(σ±(κi(p)))2 + 1
x(u) +

2σ±(κi(p))

(σ±(κi(p)))2 + 1
n(u) + e0 | u ∈ U

}
.

By definition, we have ε±
M

= Φ ◦ π(C(LD±
M)), where ε±

M
is the spherical evolute of M = x(U).

This means that the spherical evolutes are obtained from the critical value sets of the lightcone

dual hypersurfaces ofM = x(U). Since σ±(κi(p)) = κi(p)±
√

1 + κ2i (p), we have(σ
±(κi(p)))

2 =

2κi(p)σ
±(κi(p)) + 1 . By straightforward calculations, we have(

(σ±(κi(p)))
2 − 1

(σ±(κi(p)))2 + 1

)2

=
κ2i (p)(σ

±(κi(p)))
2

κ2i (p)(σ
±(κi(p)))2 + (σ±(κi(p)))2

=
κ2i (p)

1 + κ2i (p)

and (
2σ±(κi(p))

(σ±(κi(p)))2 + 1

)2

=
(σ±(κi(p)))

2

κ2i (p)(σ
±(κi(p)))2 + (σ±(κi(p)))2

=
1

1 + κ2i (p)
.

Thus we have the following proposition.

Proposition 5.2.4. Let x : U −→ Sn
+ be a hypersurface in Sn

+. Then

(σ±(κi(p)))
2 − 1

(σ±(κi(p)))2 + 1
x(u) +

2σ±(κi(p))

(σ±(κi(p)))2 + 1
n(u) = ±

(√
κ2i (p)

1 + κ2i (p)
x(u) +

√
1

1 + κ2i (p)
n(u)

)
.

We define π̃ = Φ ◦ π : LC∗ −→ Sn
0 . Then we have the following theorem as a corollary of

Proposition 5.2.4.

Theorem 5.2.5. Both of the projections of the critical value sets C(LD
±
M) and C(LDM)± in

the unit sphere Sn
0 are the images of the spherical evolutes of M .

π̃(C(LD
±
M)) = π̃(C(LDM)±) = ε±

M
.
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5.3 The lightcone dual hypersurfaces as wave fronts

We now naturally interpret the lightcone dual hypersurfaces of the submanifolds in Sn
+ as

wave front sets in the theory of Legendrian singularities. Let π : PT ∗(LC∗) −→ LC∗ be the

projective cotangent bundles with canonical contact structures. Consider the tangent bundle

τ : TPT ∗(LC∗) −→ PT ∗(LC∗) and the differential map dπ : TPT ∗(LC∗) −→ T (LC∗) of π.

For any X ∈ TPT ∗(LC∗), there exists an element α ∈ T ∗(LC∗) such that τ(X) = [α]. For an

element V ∈ Tv(LC
∗), the property α(V ) = 0 dose not depend on the choice of representative

of the class [α]. Thus we have the canonical contact structure on PT ∗(LC∗) by

K = {X ∈ TPT ∗(LC∗) | τ(X)(dπ(X))} = 0.

On the other hand, we consider a point v = (v0, v1, . . . , vn+1) ∈ LC∗, then we have

v0 = ±
√
v21 + . . .+ v2n+1. So we adopt the coordinate system (v1, . . . , vn+1) of LC

∗. For the local

coordinate neighborhood (U, (±
√
v21 + . . .+ v2n+1, v1, . . . , vn+1)) in LC

∗, we have a trivialization

PT ∗(LC∗) ≡ LC∗ × P (Rn)∗ and we call ((±
√
v21 + . . .+ v2n+1, v1, . . . , vn+1), [ξ1 : · · · : ξn+1])

homogeneous coordinates of PT ∗(LC∗), where [ξ1 : · · · : ξn+1] are the homogeneous coordi-

nates of the dual projective space P (Rn)∗. It is easy to show that X ∈ K(v,[ξ]) if and only if∑n+1
1 µiξi = 0, where dπ(X) =

∑n+1
1 µi∂/∂vi ∈ TvLC

∗. An immersion i : L −→ PT ∗(LC∗)

is said to be a Legendrian immersion if dim L = n and diq(TqL) ⊂ Ki(q) for any q ∈ L.

The map π ◦ i is also called the Legendrian map and we call the set W (i)=imageπ ◦ i the

wave front of i. Moreover, i(or the image of i) is called the Legendrian lift of W (i). Let

F : (Rk×Rn,0) −→ (R, 0) be a function germ. We say that F is aMorse family of hypersurfaces

if the map germ ∆∗F : (Rk×Rn,0) −→ (Rk+1,0) defined by ∆∗F = (F, ∂F/∂u1, · · · , ∂F/∂uk).

is nonsingular. In this case, we have the following smooth (n−1)-dimensional smooth subman-

ifold.

Σ∗(F ) =

{
(u,v) ∈ (Rk × Rn,0) | F (u,v) = ∂F

∂u1
(u,v) = · · · = ∂F

∂uk
(u,v) = 0

}
= (∆∗F )−1(0).
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The map germ LF : (Σ∗(F ),0) −→ PT ∗Rn defined by

LF (u,v) =

(
v,

[
∂F

∂v1
(u,v) : . . . :

∂F

∂vn
(u,v)

])
.

is a Legendrian immersion germ. Then we have the following fundamental theorem of Arnol’d

and Zakalyukin [1, 23].

Proposition 5.3.1. All Legendrian submanifold germs in PT ∗Rn are constructed by the above

method.

We call F a generating family of LF (Σ∗(F )). Therefore the wave front of LF is

W (LF ) =

{
v ∈ Rn | ∃u ∈ Rk such that F (u,v) =

∂F

∂u1
(u,v) = . . . =

∂F

∂uk
(u,v) = 0

}
.

We claim here that we have a trivialization as follows:

Φ : PT ∗(LC∗) ≡ LC∗ × P (Rn)∗,Φ([
n+1∑
i=1

ξidvi]) = (v0, v1, · · · , vn+1), [ξ1 : · · · ξn+1])

by using the above coordinate system.

Proposition 5.3.2. The lightcone height function H : U × LC∗ −→ R is a Morse family of

the hypersurfaces around (u,v) ∈ Σ∗(H).

Proof. Without the loss of the generality, we consider the future component LC∗
+. For any v =

(v0, v1, · · · , vn+1) ∈ LC∗, we have v0 =
√
v21 + · · ·+ v2n+1. For x(u) = (1, x1(u), · · · , xn+1(u)) ∈

Sn
+, we have

H(u,v) = −
√
v21 + · · ·+ v2n+1 + x1(u)v1 + · · ·+ xn+1(u)vn+1 + 2.

We have to prove the mapping

△∗H =

(
H,

∂H

∂u1
, · · · , ∂H

∂un−1

)
is non-singular at any point on (∆∗H)−1(0). If (u,v) ∈ (∆∗H)−1(0), then v = LDM(u, µ) by

Proposition 5.2.3. The Jacobian matrix of ∆∗H is given as follows:
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A =


⟨xu1 ,v⟩ · · · ⟨xun−1 ,v⟩ −v1/v0 + x1 · · · −vn+1/v0 + xn+1

⟨xu1u1 ,v⟩ · · · ⟨xu1un−1 ,v⟩ x1u1 · · · xn+1u1

...
...

...
...

...
...

⟨xun−1u1 ,v⟩ · · · ⟨xun−1un−1 ,v⟩ x1un−1 · · · xn+1un−1

 ,

We now prove that rank A = n. For (0, x1, · · · , xn+1) = x and (0, v1/v0, · · · , vn+1/v0) =

v/v0 − e0 = (µ2 − 4)x/(µ2 + 4) + 4µn/(µ2 + 4), we have

(0,−v1/v0 + x1, · · · ,−vn+1/v0 + xn+1) = x− v/v0 + e0 = 8x/(µ2 + 4)− 4µn/(µ2 + 4).

Since {8x/(µ2 +4)− 4µn/(µ2 +4),xu1 , · · · ,xun−1} are linearly independent, rankA = n. This

completes the proof.

By the similar arguments to the above proof, we have the following proposition.

Proposition 5.3.3. The lightcone height function H : U × LC∗ −→ R is a Morse family of

the hypersurfaces around (u,v) ∈ Σ∗(H).

Here, we consider the Legendrian immersion

L4 : (u, µ) −→ ∆4, L4(u, µ) = (LDM(u, µ),x(u)).

We define the following mapping:

Ψ : ∆4 −→ LC∗ × P (Rn)∗,Ψ(v,w) = (v, [v0w1 − v1w0 : · · · : v0wn+1 − vn+1w0]).

For the canonical contact form θ =
∑n+1

i=1 ξidvi on PT
∗(LC∗), we have Ψ∗θ = (v0w1−v1w0)dv1+

· · ·+(v0wn+1−vn+1w0)dvn+1|∆4 = v0(−w0dv0+w1dv1+ · · ·+wn+1dvn+1)−w0(−v0dv0+v1dv1+

· · ·+ vn+1dvn+1)|∆4 = v0⟨w, dv⟩|∆4 = v0θ42|∆4 . Thus Ψ is a contact morphism.

Theorem 5.3.4. For any hypersurface x : U −→ Sn
+, the lightcone height function H :

U × LC∗ −→ R is a generating family of the Legendrian immersion L4.

50



Proof. Since H is a Morse family of hypersurfaces, we have a Legendrian immersion LH :

Σ∗(H) −→ PT ∗(LC∗) defined by LH(u,v) = (v, [∂H/∂v1(u,v) : · · · : ∂H/∂vn+1(u,v)]), where

v = (v0, . . . , vn+1) and Σ∗(H) = {(u,v) ∈ U × LC∗ | u ∈ U,v = LDM(u, µ), µ ∈ R}. We

observe that H is a generating family of the Legendrian submanifold LH(Σ∗(H)) whose wave

front is the image of LDM . We have

∂H

∂vi
(u,v) = − li(u, µ)

l0(u, µ)
+ xi(u)(i = 1, · · · , n+ 1),

where x(u) = (1, x1(u), · · · , xn+1(u)) and v = LDM(u, µ) = (l0(u, µ), · · · , ln+1(u, µ)). It

follows that

LH(u, LDM(u, µ)) = (LDM(u, µ), [x1(u)l0(u, µ)− l1(u, µ) : · · · : xn+1(u)l0(u, µ)− ln+1(u, µ)]).

Therefore we have Ψ ◦ L4(u, µ) = LH(u, µ). This completes the proof.

Similarly, we consider the Legendrian immersions L±
3 : (u, µ) −→ ∆3 defined by L±

3 (u, µ) =

(LD
±
M(u, µ),x(u)). Then we have the following theorem.

Theorem 5.3.5. For any hypersurface x : U −→ Sn
0 , the lightcone height function H :

U × LC∗ −→ R is a generating family of the Legendrian immersions L±
3 .

5.4 Contact with parabolic (n−1)-spheres and parabolic n-hyperquadrics

Before we start to consider the contact between hypersurfaces in the sphere with parabolic

(n − 1)-sphere and parabolic n-hyperquadrics, we briefly review the theory of contact due to

Montaldi[15]. Let Xi, Yi(i = 1, 2) be submanifolds of Rn with dim X1=dim X2 and dimY1=dim

Y2. We say that the contact of X1 and Y1 at y1 is the same type as the contact of X2 and

Y2 at y2 if there is a diffeomorphism Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and

Φ(Y1) = Y2. In this case, we write K(X1, Y1, y1) = K(X2, Y2, y2). Of course, in the definition,

Rn can be replaced by any manifold. Two function germs fi : (Rn, ai) −→ R(i = 1, 2) are called

K-equivalent if there is a diffeomorphism germ Φ : (Rn, a1) −→ (Rn, a2), and a function germ

λ : (Rn, a1) −→ R with λ(a1) ̸= 0 such that f1 = λ · (f2 ◦ Φ).
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Theorem 5.4.1 (Montaldi [15]). LetXi, Yi(for i=1,2) be submanifolds ofRn with dimX1=dimX2

and dimY1=dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→

(Rp,0) be submersion germs with (Yi, yi) = (f−1
i (0), yi). Then K(X1, Y1, y1) = K(X2, Y2, y2) if

and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

Returning to the lightcone dual hypersurface LDM , we now consider the function h : Sn
+ ×

LC∗ −→ R defined by h(u,v) = ⟨u,v⟩ + 2 and the function g : LC∗ × LC∗ −→ R defined by

g(u,v) = ⟨u,v⟩+2 . For a given v0 ∈ LC∗, we denote hv0(u) = h(u,v0) and gv0(u) = g(u,v0),

then we have h−1
v0
(0) = Sn

+ ∩ HP (v0,−2) and g−1
v0
(0) = LC∗ ∩ HP (v0,−2). For any u0 ∈ U ,

µ0 ∈ R, we take the point v0 = LDM(u0, µ0). Then we have

gv0 ◦ x(u0) = g ◦ (x× idLC∗)(u0,v0) = hv0 ◦ x(u0) = h ◦ (x× idLC∗)(u0,v0) = H(u0,v0) = 0.

We also have
∂(gv0 ◦ x)

∂ui
(u0) =

∂(hv0 ◦ x)
∂ui

(u0) =
∂H

∂ui
(u0,v0) = 0

for i = 1, · · · , n−1. This means that the (n−1)-sphere h−1
v0
(0) = Sn

+∩HP (v0,−2) is tangent to

M = x(U) at p0 = x(u0). In this case, we call it the lightcone tangent parabolic (n−1)-sphere of

M at p0, which is denoted by TPSn−1
+ (x,u0). The n-hyperquadric g

−1
v0
(0) = LC∗∩HP (v0,−2)

is also tangent toM at p0. In this case, we call it the lightcone tangent parabolic n-hyperquadric

of M at p0, which is denoted by TPHn(x,u0). For the lightcone dual surfaces LD
±
M , we

consider a function h : Sn
0 × LC∗ −→ R defined by h(u,v) = ⟨u,v⟩ − 1 and a function

g : Sn+1
1 × LC∗ −→ R defined by g(u,v) = ⟨u,v⟩ − 1 . For a given v0 ∈ LC∗, we denote

that hv0(u) = h(u,v0) and gv0(u) = g(u,v0). Then we have h
−1

v0
(0) = Sn

0 ∩ HP (v0, 1) and

g−1
v0
(0) = Sn+1

1 ∩HP (v0, 1). For any u0 ∈ U and the points v±
0 = LD

±
M(u0, µ0), we have

gv±
0
◦x(u0) = g◦ (x× idLC∗)(u0,v

±
0 ) = hv±0 ◦x(u0) = h◦ (x× idLC∗)(u0,v

±
0 ) = H(u0,v

±
0 ) = 0.

We also have
∂(gv±0 ◦ x)

∂ui
(u0) =

∂(hv±
0
◦ x)

∂ui
(u0) =

∂H

∂ui
(u0,v

±
0 ) = 0

for i = 1, · · · , n − 1. It follows that each one of the (n − 1)-sphere h
−1

v±0
(0) = Sn

0 ∩ HP (v±
0 , 1)

is tangent to M at p0 = x(u0). In this case, we call each one the de-Sitter tangent parabolic
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(n − 1)-sphere of M at p0, which are denoted by TPSn−1±
0 (x,u0). Also we have each of the

n-hyperquadric g−1

v±
0

(0) = Sn+1
1 ∩HP (v±

0 , 1) is tangent toM at p0. In this case, we call each one

the de-Sitter tangent parabolic n-hyperquadric ofM at p0, which are denoted by TPSn±
1 (x,u0).

Let xi : (U, ui) −→ (Sn
+, pi)(i = 1, 2) be hypersurface germs. For vi = LDMi

(ui, µi), we

denote hi,vi : (U,ui) −→ (R, 0) by hi,vi(ui) = H(ui,vi). Then we have hi,vi(u) = (hi,vi ◦

xi)(u) = (gi,vi ◦ xi)(u). For v±
i = LD

±
M i(

ui, µi), We denote hi,v±i : (U,ui) −→ (R, 0) by

hi,v±i (ui) = H(ui,v
±
i ). Then we have hi,v±i (u) = (hi,v±i ◦ xi)(u) = (gi,v±i ◦ xi)(u). By Theorem

5.4.1, we have the following proposition.

Proposition 5.4.2. Let xi : (U, ui) −→ (Sn
+, pi)(i = 1, 2) be hypersurface germs. For vi =

LDMi
(ui, µi), the following conditions are equivalent:

(1) K(x1(U), TPS
n−1
+ (x1,u1),v1) = K(x2(U), TPS

n−1
+ (x2,u2),v2).

(2) K(x1(U), TPH
n(x1,u1),v1) = K(x2(U), TPH

n(x2,u2),v2).

(3) h1,v1 and h2,v2 are K-equivalent.

Moreover, for v±
i = LD

±
M i

(ui, µi), the following conditions are equivalent:

(4) K(x1(U), TPS
n−1±
0 (x1,u1),v

±
1 ) = K(x2(U), TPS

n−1±
0 (x2,u2),v

±
2 ).

(5) K(x1(U), TPS
n±
1 (x1,u1),v

±
1 ) = K(x2(U), TPS

n±
1 (x2,u2),v

±
2 ).

(6) h1,v±1 and h2,v±2 are K-equivalent.

On the other hand, we return to the review on the theory of Legendrian singularities. We

introduce a natural equivalence relation among Legendrian submanifold germs. Let F,G :

(Rk × Rn,0) −→ (R, 0) be Morse families of hypersurfaces. Then we say that LF (Σ∗(F ))

and LG(Σ∗(G)) are Legendrian equivalent if there exists a contact diffeomorphism germ H :

(PT ∗Rn, z) −→ (PT ∗Rn, z′) such that H preserves fibers of π and that H(LF (Σ∗(F ))) =

LG(Σ∗(G)), where z = LF (0), z
′ = LG(0). By using the Legendrian equivalence, we can define

the notion of Legendrian stability for Legendrian submanifold germs by the ordinary way (see,

[1][Part III]). We can interpret the Legendrian equivalence by using the notion of generating

families. We denote by En the local ring of function germs (Rn,0) −→ R with the unique

maximal ideal Mn = {h ∈ En | h(0) = 0 }. Let F,G : (Rk × Rn,0) −→ (R,0) be function
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germs. We say that F and G are P -K-equivalent if there exists a diffeomorphism germ Ψ :

(Rk × Rn,0) −→ (Rk × Rn,0) of the form Ψ(q,x) = (ψ1(q,x), ψ2(x)) for (q,x) ∈ (Rk ×

Rn,0) such that Ψ∗(⟨F ⟩Ek+n
) = ⟨G⟩Ek+n

. Here Ψ∗ : Ek+n −→ Ek+n is the pull back R-algebra

isomorphism defined by Ψ∗(h) = h◦Ψ. We say that F is an infinitesimally K-versal deformation

of f = F |Rk × {0} if

Ek = Te(K)(f) +

⟨
∂F

∂x1
|Rk × {0}, . . . , ∂F

∂xn
|Rk × {0}

⟩
R
,

where

Te(K)(f) =

⟨
∂f

∂q1
, . . . ,

∂f

∂qk
, f

⟩
Ek
.

The main result in the theory of Legendrian singularities ([1], §20.8 and [23], THEOREM 2) is

the following:

Proposition 5.4.3 (Arnol’d, Zakalyukin). Let F,G : (Rk×Rn,0) −→ (R,0) be Morse families

and we denote the corresponding Legendrian immersion germs by LF ,LG. Then

(1) LF and LG are Legendrian equivalent if and only if F and G are P-K-equivalent.

(2) LF is Legendrian stable if and only if F is K-versal deformation of f .

Since F and G are function germs on the common space germ (Rk ×Rn,0), we do not need

the notion of stably P -K-equivalences under this situation [23, page 27]. For any map germ

f : (Rn,0) −→ (Rp,0), we define the local ring of f by Qr(f) = En/(f ∗(Mp)En + Mr+1
n ). We

have the following classification result of Legendrian stable germs (cf. [9, Proposition A.4])

which is the key for the purpose in this section.

Proposition 5.4.4. Let F,G : (Rn × Rk,0) −→ (R,0) be Morse families. Suppose that

Legendrian immersion germs LF and LG are Legendrian stable, then the following conditions

are equivalent.

(1) W (LF ) and W (LG) are diffeomorphic as set germs.

(2) LF and LG are Legendrian equivalent.

(3) Qn+1(f) and Qn+1(g) are isomorphic as R-algebras, where f = F |Rk×{0} and g =

G|Rk×{0}.
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Let Qn+1(x, u0) be the local ring of the function germ hv0 : (U, u0) −→ R defined by

Qn+1(x,u0) = C∞
u0
(U)/(⟨hv0⟩C∞

u0
(U) +Mn+2

n−1),

and Q±
n+1(x, u0) be the local rings of the function germs hv±0 : (U, u0) −→ R defined by

Q±
n+1(x,u0) = C∞

u0
(U)/(⟨hv±0 ⟩C∞

u0
(U) +Mn+2

n−1),

where v0 = LDM(u0, µ0), v
±
0 = LD

±
M(u0, µ0) and C

∞
u0
(U) is the local ring of function germs at

u0 with the unique maximal ideal Mn−1.

Theorem 5.4.5. Let xi : (U, ui) −→ (Sn
+, pi)(i = 1, 2) be hypersurface germs such that

the corresponding Legendrian immersion germs are Legendrian stable. Then the following

conditions are equivalent.

(1) The lightcone hypersurface germs LDM1(U × R) and LDM2(U × R) are diffeomorphic.

(2) Legendrian immersion germs L1
4 and L2

4 are Legendrian equivalent.

(3) The lightcone height functions germs H1 and H2 are P-K-equivalent.

(4) h1,v1 and h2,v2 are K-equivalent.

(5) K(x1(U), TPS
n−1
+ (x1,u1),v1) = K(x2(U), TPS

n−1
+ (x2,u2),v2).

(6) K(x1(U), TPH
n(x1,u1),v1) = K(x2(U), TPH

n(x2,u2),v2).

(7) Local rings Qn+1(x1,u1) and Qn+1(x2,u2) are isomorphic as R-algebras.

Proof. By Proposition 5.4.3 and Proposition 5.4.4, the conditions (1)∼(3)and (7) are equivalent.

By definition, the condition (3) implies the condition (4). By Proposition 5.4.3, Hi is a K-versal

deformation of hi,vi . We can apply the uniqueness result of K-versal deformations (cf., [14]), so

that the condition (4) implies the condition (3). By Theorem 5.4.1, the conditions (4)∼(6) are

equivalent. This completes the proof.

Theorem 5.4.6. Let xi : (U,ui) −→ (Sn
0 , pi)(i = 1, 2) be hypersurface germs such that

the corresponding Legendrian immersion germs are Legendrian stable. Then the following

conditions are equivalent.

(1) The lightcone hypersurface germs LD
±
M1

(U × R) and LD±
M2

(U × R) are diffeomorphic.
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(2) Legendrian immersion germs L1±
3 and L2±

3 are Legendrian equivalent.

(3) The lightcone height functions germs H1 and H2 are P-K-equivalent.

(4) h1,v±1 and h2,v±2 are K-equivalent.

(5) K(x1(U), TPS
n−1±
0 (x1,u1),v

±
1 ) = K(x2(U), TPS

n−1±
0 (x2,u2),v

±
2 ).

(6) K(x1(U), TPS
n±
1 (x1,u1),v

±
1 ) = K(x2(U), TPS

n±
1 (x2,u2),v

±
2 ).

(7) Local rings Q±
n+1(x1,u1) and Q

±
n+1(x2,u2) are isomorphic as R-algebras.

The proof is similar to the proof of the above theorem, so that we omit it.

Lemma 5.4.7. Let x : U −→ Sn
+ be a hypersurface germ such that the corresponding Leg-

endrian immersion germs L4 and L±
3 are Legendrian stable. Then at the singular point v0 =

LDM(u0, 2σ
±(κi(p0)))(1 ≤ i ≤ n−1) of LDM and the singular points v±

0 = LD
±
M(u0, 1/κi(p0))

of LD
±
M , we have the following equivalent assertions:

(1) The lightcone hypersurface germs LDM(U × R) and LD±
M(U × R) are diffeomorphic.

(2) Legendrian immersion germs L±
3 and L4 are Legendrian equivalent.

(3) The lightcone height functions germs H and H are P-K-equivalent.

(4) hv0 and hv±0 are K-equivalent.

(5) K(x(U), TPSn−1
+ (x,u0),v0) = K(x(U), TPSn−1±

0 (x,u0),v
±
0 ).

(6) K(x(U), TPHn(x,u0),v0) = K(x(U), TPSn±
1 (x,u0),v

±
0 ).

(7) Local rings Q±
n+1(x,u0) and Qn+1(x,u0) are isomorphic as R-algebras.

Proof. By definition, we have hv0(u) = ⟨x(u), ((σ±(κi(p0)))
2 − 1)x(u0) + 2σ±(κi(p0))n(u0) +

(σ±(κi(p0)))
2 + 1)e0⟩+ 2, so that

hv0(u)

(σ±(κi(p0)))2 + 1
= ⟨x(u) + e0,±

(√
κ2i (p0)

1 + κ2i (p0)
x(u) +

√
1

1 + κ2i (p0)
n(u0)

)
+ e0⟩

and

+
1√

1 + κ2i (p0)(
√

1 + κ2i (p0)± κi(p0))

= ⟨x(u),±

(√
κ2i (p0)

1 + κ2i (p0)
x(u) +

√
1

1 + κ2i (p0)
n(u0)

)
+ e0⟩ ∓

κi(p0)√
1 + κ2i (p0)

.
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We also have

hv±0 (u) = ⟨x(u),x(u0) +
1

κi(p0)
n(u0)±

√
1

κ2i (p0)
+ 1e0⟩ − 1

and

±
κi(p0)hv±0 (u)√
κ2i (p0) + 1

= ⟨x(u),±

(√
κ2i (p0)

1 + κ2i (p0)
x(u) +

√
1

1 + κ2i (p0)
n(u0)

)
+ e0⟩ ∓

κi(p0)√
1 + κ2i (p0)

.

Therefore, we have

hv±0 =
±
√
κ2i (p0) + 1

κi(p0)((σ±(κi(p0)))2 + 1)
hv0 .

This means that the assertion (4) holds. By the uniqueness of the K-versal deformation,

we have the assertion (3). By Proposition 5.4.3, we have the assertion (2). By Proposition

5.4.4, we have the assertions (1) and (7). On the other hand, for gv0 ◦ x = hv0 ◦ x = hv0 and

gv±0 ◦x = hv±0 ◦x = hv±0 , by Theorem 5.4.1, we have the assertions (5) and (6). This completes

the proof.

By Lemma 5.4.7, we have our main result as the following theorem.

Theorem 5.4.8. Let xi : (U,ui) −→ (Sn
+, pi)(i = 1, 2) be hypersurface germs such that the

corresponding Legendrian immersion germs are Legendrian stable. At the singular points v±
i =

LD
±
M(u0, 1/κj(p))(1 ≤ j ≤ n− 1) of LD

±
M , and the singular points vi = LDM(u0, 2σ

±(κj(p)))

of LDM , the conditions (1) ∼ (7) in Theorem 5.4.5 and the conditions (1) ∼ (7) in Theorem

5.4.6 are all equivalent.

5.5 Surfaces in the 3-sphere

In this section, we stick to the case n = 3. We consider the surfaces in the 3-sphere as

a special case of the previous sections. First we consider the generic properties of spacelike

submanifolds in the unit sphere S3
0 . We consider the space of embeddings Emb(U, S3

0) with

Whitney C∞-topology. We also consider the function H : S3
0 × LC∗ −→ R which is given by

H(u,v) = ⟨u,v⟩−1. We claim that hv is a submersion for any v ∈ LC∗, where hv(u) = H(u,v).
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For any x ∈ Emb(U, S3
0) , we have H = H ◦ (x× idLC∗). We have the k-jet extension

jk1H : U × LC∗ −→ Jk(U,R)

defined by jk1H(u,v) = jkhv(u). We consider the trivialization Jk(U,R) = U × R × Jk(2, 1).

For any submanifold Q ⊂ Jk(2, 1), we denote Q̃ = U × 0 × Q. Then we have the following

proposition as a corollary of [22, Lemma 6].

Proposition 5.5.1. Let Q be a submanifold of Jk(2, 1). Then the set

TQ = {x ∈ Emb(U, S3
0) | jk1H is transversal to Q̃}

is a residual subset of Emb(U, S3
0). If Q is a closed set, then TQ is open.

By the previous arguments and the Appendix of [9], we have the following theorem.

Theorem 5.5.2. There exists an open dense subset O ⊂ Emb(U, S3
0) such that for any x ∈ O,

the corresponding Legendrian immersion germs L±
3 at any point are Legendrian stable.

If we consider H : S3
+ × LC∗ −→ R defined by H(u,v) = ⟨u,v⟩ + 2 instead of H :

S3
0 × LC∗ −→ R, we can show that the corresponding Legendrian immersion germ L4 at any

point is Legendrian stable for a generic hypersurface x : U −→ S3
+.

We now classify the singularities of the lightcone dual hypersurfaces. Here we only consider

the case for M = x(U) in S3
0 . By Proposition 5.4.5, a K-invarint for the height function

hv is an invariant for the diffeomorphism class of the singularities of the lightcone duals of a

hypersurface in S3
0 . Let x : U −→ S3

0 be an embedding from an open set U ⊂ R2, we define

the K-codimension (or Tyurina number) of the function germ hv±0 by

H-ord
±
(x, u0) = dimC∞

u0
/⟨hv±0 , ∂hv±0 /∂ui⟩C∞

u0
.

We call it the order of contact ofM with parabolic (n−1)-spheres and parabolic n-hyperquadrics.

We also define the corank of the function germ hv±0 by

H-corank
±
(x, u0) = 2− rank Hess(hv±0 )(u0).
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By Theorem 5.3.5, Theorem 5.5.2 and Proposition 5.4.3, the lightcone height function H

is a K-versal deformation of hv±0 at each point (u0,v
±
0 ) ∈ U × LC∗. Therefore we can apply

the classification of K-versal deformations of function germs up to 4-parameters[1]. Suppose

that the lightcone height function H is a K-versal deformation of hv±0 at each point (u0,v
±
0 ) ∈

U × LC∗. Then it is P-K-equivalent to one of the following germs:

(Ak) F (u1, u2,λ) = uk+1
1 ± u22 + λ1 + λ2u1 + · · ·+ λku

k−1
1 , (1 ≤ k ≤ 4),

(D+
4 ) F (u1, u2,λ) = u31 + u32 + λ1 + λ2u1 + λ3u2 + λ4u1u2,

(D−
4 ) F (u1, u2,λ) = u31 − u1u

2
2 + λ1 + λ2u1 + λ3u2 + λ4(u

2
1 + u22).

For any F (u1, u2,λ), we have

W (LF ) =

{
λ ∈ R4 | ∃u ∈ R2 such that F (u,λ) =

∂F

∂u1
(u,λ) =

∂F

∂u2
(u,λ) = 0

}
.

Let fi : (Ni, xi) −→ (Pi, yi)(i = 1, 2) be C∞ map germs. We say that f1 and f2 are A-

equivalent if there exist diffeomorphism germs ϕ : (N1, x1) −→ (N2, x2) and ψ : (P1, y1) −→

(P2, y2) such that ψ ◦ f1 = f2 ◦ ϕ. Then we have the following theorem.

Theorem 5.5.3. There exists an open dense subset O ⊂ Embsp(U, S
3
0) such that for any

x ∈ O, we have the following classification:

(a) If H-corank
±
(x, u0) = 1, then there are two distinct principle curvatures κ1 and κ2. In this

case H-ord±(x, u0) ≤ 4 and we have the following:

(A1) If H-ord
±(x, u0) = 1, then each one of LD

±
M is A-equivalent to

f(u1, u2, u3) = (u1, u2, u3, 0).

(A2) If H-ord
±(x, u0) = 2, then each one of LD

±
M is A-equivalent to

f(u1, u2, u3) = (3u21, 2u
3
1, u2, u3).

The image of f is diffeomorphic to C × R2.
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(A3) If H-ord
±(x, u0) = 3, then each one of LD

±
M is A-equivalent to

f(u1, u2, u3) = (4u31 + 2u1u2, 3u
4
1 + u2u

2
1, u2, u3).

The image of f is diffeomorphic to SW × R.

(A4) If H-ord
±(x, u0) = 4, then each one of LD

±
M is A-equivalent to

f(u1, u2, u3) = (5u41 + 3u2u
2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u2, u3).

The image of f is diffeomorphic to BF .

(b) If H-corank
±
(x, u0) = 2 and the principle curvature κ ̸= 0, then u0 is a non-flat umbilic

point. In this case we have H-ord±(x, u0) = 4 and the following two cases:

(D+
4 ) Each one of LD

±
M is A-equivalent to

f(u1, u2, u3) = (2(u31 + u32) + u1u2u3, 3u
2
1 + u2u3, 3u

2
2 + u1u3, u3).

(D−
4 ) Each one of LD

±
M is A-equivalent to

f(u1, u2, u3) = (2(u31 − u1u
2
2) + (u21 + u22)u3, u

2
2 − 3u21 − 2u1u3, u1u2 − u2u3, u3).

Here, C = {(x1, x2) | x1 = u2, x2 = u3} is the ordinary cusp, SW = {(x1, x2, x3) | x1 =

3u4 + u2v, x2 = 4u3 + 2uv, x3 = v} is called a swallowtail and BF = {(x1, x2, x3, x4) | x1 =

5u4 + 3vu2 + 2wu, x2 = 4u5 + 2vu3 + wu2, x3 = u, x4 = v} is called a butterfly.

Proof. By Theorem 5.5.2, there exists an open dense subsetO ⊂ Embsp(U, S
3
0) such that for any

x ∈ O, the corresponding Legendrian immersion germs L±
3 at any point are Legendrian stable.

Therefore, the height function H is P-K-equivalent to one of the germs of (Ak) (k = 1, 2, 3, 4)

and D±
4 . If we consider the germ F (u1, u2,λ) = u31 ± u22 + λ1 + λ2u1, then we have

W (LF ) = {(2u31,−3u21, λ3, λ4) | (u1, λ3, λ4) ∈ R3},

so that the corresponding Legendrian map germ is (A2) f(u1, u2, u3) = (3u21, 2u
3
1, u2, u3). Sup-

pose that H is P-K-equivalent to F of type (A2). By Propositions 5.4.3 and 5.4.4, LD
±
M is

A-equivalent to (A2). Of course, the image of f is C × R2. Moreover, the K-codimension of

f(u1, u2) = u31 ± u22 is 2, so that we have H-ord±(x, u0) = 2. The proof of the other assertions

are similar to this case. Therefore, we omit it.
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By Lemma 5.4.7, the lightcone dual surface LDM of x : U −→ S3
+ is locally diffeomorphic

to the lightcone dual surfaces LD
±
M . Therefore, we obtain exactly the same assertions as the

above theorem for the lightcone dual surface LDM .
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