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Abstract

We consider the motion of the N -vortex points that are equally spaced

along a line of latitude on sphere with fixed pole vortices, called “N -ring”.

We are especially interested in the case when the number of the vortex points

is odd. Since the eigenvalues that determine the stability of the odd N -

ring are double, each of the unstable and stable manifolds corresponding to

them is two-dimensional. Hence, it is generally difficult to describe the global

structure of the manifolds. In this article, based on the linear stability analysis,

we propose a projection method to observe the structure of the iso-surface of

the Hamiltonian, in which the orbit of the vortex points evolves. Applying the

projection method to the motion of the 3-ring and 5-ring, we characterize the

complex evolution of the unstable odd N -ring from the topological structure

of the iso-surface of the Hamiltonian.

PACS: 47.32.Cc, 47.20.Ky, 05.45.-a
Keywords: Vortex points; Flow on a sphere; Heteroclinic manifold; Projection method

1 Introduction

In the mathematical study of fluid motions on Earth, we often assume that the
incompressible and inviscid flow is confined to the surface of the sphere. Since the
vorticity is conserved along the path of a fluid particle like two-dimensional flows,
it is sufficient to consider the coherent local regions where the vorticity exists at
the initial moment. The following element we need to introduce is the effect of
rotation of the sphere. However, because of the Coriolis force due to the rotation,
not the vorticity but the potential vorticity becomes the conserved quantity[1].
Accordingly, it is insufficient to consider only the coherent initial vortex structure,
since the vorticity generates and disappears everywhere in the sphere during the
evolution. Thus, in this article, instead of dealing with the Coriolis force directly, we
incorporate two vortex points fixed at the poles of the sphere as an effect of rotation,
and then investigate the evolution of coherent vortex structures. In this model, the
effect of the Coriolis force is approximated just locally and no global interaction
between the vortex points and the background flow is taken into consideration,
which is a substantially different point from the real atmospheric flow. However,
this is a simple model for the fluid motion on the sphere with the rotating effect,
to which the analytic techniques for the two-dimensional flows are available.
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One of the coherent vortex structures is a vortex sheet, which is a discontinuous
surface of the velocity field. Numerical study of the vortex sheet on the sphere with
the pole vortices[18] indicates that it evolves into a structure with many rolling-up
spirals whose centers are arranged equally along a line of latitude and that the
number of the rolling-up spirals depends on the strengths of the pole vortices. In
order to describe further long time evolution of the vortex sheet, by concentrating
all the circulation contained in each of the spirals in its center point, we consider
the motion of the vortex points that are equally spaced along the line of latitude.
That is to say, let (Θm,Ψm) denote the position of the mth vortex point in the
spherical coordinates. Then the N -ring is represented by

Θm = θ0, Ψm =
2πm

N
, m = 1, 2, · · · , N. (1)

We call this polygonal configuration “N -ring”. Generally speaking, since each of
the spirals has different size, we need to consider the motion of N -ring with various
strengths. However, for the sake of simplicity, the strengths of all the vortex points
are assumed to be identical, say Γ, in the present paper.

The equations of the N -vortex points on the sphere with the pole vortices are
given by

Θ̇m = − Γ

4π

N∑

j 6=m

sinΘj sin(Ψm − Ψj)

1 − cos γmj
, (2)

sin ΘmΨ̇m = − Γ

4π

N∑

j 6=m

cosΘm sin Θj cos(Ψm − Ψj) − sin Θm cosΘj

1 − cos γmj

+
Γ1

4π

sin Θm

1 − cosΘm

− Γ2

4π

sin Θm

1 + cosΘm

, m = 1, 2, · · · , N, (3)

in which γmj represents the central angle between the mth and the jth vortex
points, and

cos γmj = cosΘm cosΘj + sinΘm sin Θj cos(Ψm − Ψj).

The strengths of the north and the south pole vortices are denoted by Γ1 and Γ2

respectively. The equations define a Hamiltonian dynamical system in the phase
space PN ≡ [0, π]N × (R/2πZ)

N ⊂ R2N [8, 14], whose Hamiltonian is given by

H = −Γ2

8π

N∑

m=1

N∑

j 6=m
log(1 − cos γmj)

−Γ1Γ

4π

N∑

m=1

log(1 − cosΘm) − Γ2Γ

4π

N∑

m=1

log(1 + cosΘm). (4)

Note that the system has the invariant
∑N

m=1 cosΘm due to the symmetry with
respect to the rotation around the pole.

The stability of the N -ring on the sphere has been studied in many papers. Lin-
ear stability of the polygonal N -ring on the sphere was investigated by Polvani and
Dritschel[16]. Then, Pekarsky and Marsden[15] studied the nonlinear stability of
three vortices with arbitrary strengths, including the 3-ring, by the energy momen-
tum method. Boatto and Cabral[2] carried out the linear and nonlinear stability
analysis of the N -ring on the sphere in the sense of a sufficient condition due to
Dirichlet. They showed that the range of the nonlinear stability coincided with that
of the linear stability. Kurakin[9] recently considered the nonlinear stability in the
sense of Routh and complemented the stability analysis of the N -ring on the sphere.
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The periodic orbits observed in the N -vortex points problem have become an
important theme recently[11, 19, 21]. Souliére and Tokieda[21] and Laurent-Polz[11]
gave algebraic methods to find periodic orbits and heteroclinic connections by re-
ducing the system with its symmetry. In the paper [19], all the eigenvalues and
their corresponding eigenvectors of the linearized equation for the stationaryN -ring
configuration were obtained, with which the even N -ring system was successfully
reduced to an invariant two-dimensional integrable system. The reduced system
showed the existence of the possible periodic orbits when the N -ring became un-
stable. In the present article, we generalize the techniques based on the linear
stability analysis in order to understand the complicated evolution of the unstable
odd N -ring.

Now, we review the results of the paper[19], which are required to describe our
method. Substituting (1) into the equations (2) and (3), we obtain

Θ̇m = 0, Ψ̇m = V0(N),

in which

V0(N) =
Γ1 − Γ2

4π sin2 θ0
+

(Γ1 + Γ2 + 2π) cos θ0

4π sin2 θ0
− 1

2N

cos θ0

sin2 θ0
.

Hence, it is a steady solution in the spherical coordinates rotating in the longitudinal
direction with the constant angular speed V0(N). When we perturb the steady
solution,

Θm(t) = θ0 + εθm(t), Ψm(t) =
2πm

N
+ V0(N)t+ εϕm(t), ε� 1, (5)

then we have the linearized equations of O(ε) for the perturbations:

θ̇m =
1

2N sin θ0

N∑

j 6=m

ϕm − ϕj

1 − cos 2π
N

(m− j)
, (6)

ϕ̇m =
1

2N sin3 θ0

N∑

j 6=m

θm − θj

1 − cos 2π
N

(m− j)
+BNθm. (7)

The parameter BN is represented by

BN =
1 + cos2 θ0

2N sin3 θ0
− κ1(1 + cos2 θ0)

2 sin3 θ0
− κ2 cos θ0

2 sin3 θ0
. (8)

in which κ1 and κ2 are the equivalent parameters to Γ1 and Γ2 defined by

κ1 =
Γ1 + Γ2 + 2π

2π
, κ2 =

Γ1 − Γ2

π
.

The eigenvalues of the linearized equations (6) and (7) are given explicitly as
follows[19].

Theorem 1. For p = 0, 1, · · · , N − 1, the eigenvalues λ±p are represented by

λ±p = ±
√

ξpηp, (9)

in which

ξp =
p(N − p)

2N sin θ0
, ηp =

p(N − p)

2N sin3 θ0
+BN . (10)
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The expression (9) indicates that λ±0 = 0 and λ±p = λ±N−p. Hence, when N =

2M , there exist zero eigenvalues λ±0 = 0, double eigenvalues λ±p for p = 1, · · · ,M−1,

and simple eigenvalues λ±M . WhenN = 2M+1, we have zero eigenvalues λ±0 = 0 and
double eigenvalues λ±p for p = 1, · · · ,M . Hence, the multiplicity of the eigenvalues

λ±M is different.
If ξpηp < 0, then λp is pure imaginary due to (9). Therefore we have the following

stability proposition.

Proposition 2. For p = 1, 2, · · · ,M , if ηp < 0, or equivalently due to (10)

pN − p2

N
+

1 + cos2 θ0
N

< κ1(1 + cos2 θ0) + κ2 cos θ0 ≡ κ. (11)

then the eigenvalues λ±p are pure imaginary numbers and consequently they are
neutrally stable.

Note that the stability of the N -ring is determined by that of the largest eigen-
values, since the eigenvalues satisfy the following order due to (9),

(
λ±1

)2
<

(
λ±2

)2
< · · · <

(
λ±M

)2
. (12)

Thus, it is the double eigenvalue λ+
M that becomes unstable when the odd N -ring

loses its stability. Hence, the unstable manifold corresponding to λ+
M has the two-

dimensional tangent space, and thus the motion of the perturbed N -ring could be
complicated for the odd case. Actually, numerical computation of the 3-ring at
the equator[20] pointed out the existence of a heteroclinic structure in the high-
dimensional phase space, which results in a non-trivial recurrent evolution. In
the present paper, we confirm the numerical conjecture by a proposing projection
method.

This paper consists of five sections. In §2, we introduce a Hamiltonian projection
method, which makes it possible to project the iso-surface of the Hamiltonian on
two-dimensional eigenspaces. Applying the projection method to the 3-ring and
the 5-ring problems in §3 and §4 respectively, we investigate the complex evolution
from the structure of the iso-surface of the Hamiltonian. Summary and remarks are
given in the last section.

2 Hamiltonian projection method

Our projection method starts with the explicit representations of the eigenvectors
corresponding to λ±p , whose proof was given in [19].

Theorem 3. The eigenvectors ~φ±p and ~ψ±
p corresponding to the eigenvalues λ±p for

p = 0, · · · ,M are given by

~ψ±
p = t

(
√

ξp,
√

ξp cos
2π

N
p, · · · ,

√

ξp cos
2π

N
(N − 1)p,

±√
ηp,±

√
ηp cos

2π

N
p, · · · ,±√

ηp cos
2π

N
(N − 1)p

)

, (13)

~φ±p = t

(

0,
√

ξp sin
2π

N
p, · · · ,

√

ξp sin
2π

N
(N − 1)p,

0,±√
ηp sin

2π

N
p, · · · ,±√

ηp sin
2π

N
(N − 1)p

)

. (14)
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Noting that the eigenvectors have pure imaginary components if the eigenvalues
λ±p are neutrally stable, namely ηp < 0, we define the inner product of the two
vectors ~x =t (x1, x2, . . . , xN ) and ~y =t (y1, y2, . . . , yN) by

(~x, ~y ) ≡
N∑

m=1

xiy
∗
i ,

in which y∗ denotes the complex conjugate of y. Then, we have the following lemma.

Lemma 4. The eigenvectors ~ψ±
p and ~φ±p satisfy

(~ψ±
p ,
~φ±q ) = 0, (~ψ±

p ,
~ψ±
q ) = (~φ±p , ~φ

±
q ) = 0 for p 6= q,

(~ψ+
p ,
~ψ−
p ) = (~φ+

p ,
~φ−p ) =

N

2
(ξp − |ηp|), |~ψ±

p |2 = |~φ±p |2 =
N

2
(ξp + |ηp|).

Proof: It follows from the formula
∑N−1

m=0 ω
m
p =

1−ωN
p

1−ωp
= 0 for ωp = e

2πip
N that

N−1∑

m=0

cos
2πmp

N
=

N−1∑

m=1

sin
2πmp

N
= 0, p = 1, 2, · · · , N − 1. (15)

Hence, we have

(~ψ+
p ,
~φ±q ) = (

√

ξpξq ±
√
ηp
√
ηq

∗)
N−1∑

m=1

cos
2πmp

N
sin

2πmq

N

=
1

2
(
√

ξpξq ±
√
ηp
√
ηq

∗)
N−1∑

m=1

(

sin
2πm(p+ q)

N
− sin

2πm(p− q)

N

)

= 0.

and for p 6= q

(~ψ+
p ,
~ψ±
q ) = (

√

ξpξq ±
√
ηp
√
ηq

∗)
N−1∑

m=0

cos
2πmp

N
cos

2πmq

N

=
1

2
(
√

ξpξq ±
√
ηp
√
ηq

∗)
N−1∑

m=0

(

cos
2πm(p+ q)

N
+ cos

2πm(p− q)

N

)

= 0.

Similarly, we obtain

(~ψ+
p ,
~ψ±
p ) = (ξp ± |ηp|)

N−1∑

m=0

cos2
2πmp

N

=
1

2
(ξp ± |ηp|)

N−1∑

m=0

(

cos
4πmp

N
+ 1

)

=
N

2
(ξp ± |ηp|).

In the same way, (~φ+
p ,
~φ±p ) = N

2 (ξp ± |ηp|). 2

In what follows, we assume that the number of the vortex points is odd, say
N = 2M +1. Then, since the eigenvectors ~ψ±

p and ~φ±p for p = 1, · · · ,M are linearly

independent, they form the basis of the 4M -dimensional subspace of R2N . A basic
idea of the Hamiltonian projection method is to express the motion of the N -ring
by the linear combination of the eigenvectors, and so two more linearly independent
vectors are required, which are simply provided in the following lemma. The proof
is straightforward in view of (15).
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Lemma 5. Let ~ζ± be defined by

~ζ± =
1√
2N

t (1, 1, · · · , 1,±1,±1, · · · ,±1) .

Then, they satisfy (~ψ±
p ,
~ζ±) = 0, (~φ±p , ~ζ

±) = 0 and (~ζ+, ~ζ−) = 0.

Now, let the position of the vortex points ~x = (Θ1,Θ2, · · · ,ΘN ,Ψ1,Ψ2, · · · ,ΨN) ∈
PN be represented by the following linear combination of the eigenvectors and the
complementary vectors.

~x = ~x0 +

M∑

p=1

(ap ~ψ
+
p + bp ~ψ

−
p + cp~φ

+
p + dp~φ

−
p ) + e~ζ+ + f~ζ−, (16)

in which ap, bp, cp, dp, e, f ∈ C, and ~x0 denotes the odd N -ring equilibrium, which
is represented by

~x0 =






θ0, θ0, · · · , θ0
︸ ︷︷ ︸

N

, 0,
2π

N
,
4π

N
, · · · , 2πM

N
︸ ︷︷ ︸

M

,−2πM

N
, · · · ,−4π

N
,−2π

N
︸ ︷︷ ︸

M






. (17)

Here, we adjust the equilibrium configuration longitudinally so that Ψ1 = 0 for the
sake of analytic convenience. Then, it follows from Lemma 4 and Lemma 5 that
the coefficients are represented by

ap = 1
2Nξp

(~x− ~x0, ~ψ
+
p + ~ψ−

p ) + 1
2N |ηp|(~x− ~x0, ~ψ

+
p − ~ψ−

p ),

bp = 1
2Nξp

(~x− ~x0, ~ψ
+
p + ~ψ−

p ) − 1
2N |ηp|(~x− ~x0, ~ψ

+
p − ~ψ−

p ),

cp = 1
2Nξp

(~x− ~x0, ~φ
+
p + ~φ−p ) + 1

2N |ηp| (~x− ~x0, ~φ
+
p − ~φ−p ),

dp = 1
2Nξp

(~x− ~x0, ~φ
+
p + ~φ−p ) − 1

2N |ηp| (~x− ~x0, ~φ
+
p − ~φ−p ),

e = (~x− ~x0, ~ζ
+), f = (~x− ~x0, ~ζ

−).

(18)

Therefore, the constraint conditions for the projection of the evolution of the vor-
tex points on the two-dimensional phase spaces spanned by ~ψ±

p , ~φ±p and ~ζ± are
equivalent to

~ψ±
p : aq = bq = 0 (q 6= p), cq = dq = 0 (∀q), e = f = 0,
~φ±p : aq = bq = 0 (∀q), cq = dq = 0 (q 6= p), e = f = 0,
~ζ± : aq = bq = 0 (∀q), cq = dq = 0 (∀q).

(19)

Substituting (13), (14) and (17) into (19), we rewrite the constraint conditions for
the projection as follows.

Proposition 6. The motion of the odd N -ring projected on the two-dimensional
phase space spanned by ~ψ±

p satisfies the following constraint conditions;

N∑

k=1

Θk cos
2πq

N
(k − 1) = 0,

N∑

k=1

Ψk cos
2πq

N
(k − 1) = 0, (q 6= p),

N∑

k=2

Θk sin
2πq

N
(k − 1) = 0,

N∑

k=2

Ψk sin
2πq

N
(k − 1) = 2

M∑

k=1

2π

N
k sin

2πq

N
k, (∀q),

N∑

k=1

Θk = Nθ0,

N∑

k=1

Ψk = 0.

(20)
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Proposition 7. The motion of the odd N -ring projected on the two-dimensional
phase space spanned by ~φ±p satisfies the following constraint conditions;

N∑

k=1

Θk cos
2πq

N
(k − 1) = 0,

N∑

k=1

Ψk cos
2πq

N
(k − 1) = 0, (∀q),

N∑

k=2

Θk sin
2πq

N
(k − 1) = 0,

N∑

k=2

Ψk sin
2πq

N
(k − 1) = 2

M∑

k=1

2π

N
k sin

2πq

N
k, (q 6= p),

N∑

k=1

Θk = Nθ0,

N∑

k=1

Ψk = 0.

(21)

Proposition 8. The motion of the odd N -ring projected on the two-dimensional
phase space spanned by ~ζ± satisfies the following constraint conditions; For 1 ≤ q ≤
M , they are

N∑

k=1

Θk cos
2πq

N
(k − 1) = 0,

N∑

k=1

Ψk cos
2πq

N
(k − 1) = 0,

N∑

k=2

Θk sin
2πq

N
(k − 1) = 0,

N∑

k=2

Ψk sin
2πq

N
(k − 1) = 2

M∑

k=1

2π

N
k sin

2πq

N
k.

(22)

Since the perturbed N -ring evolves in the iso-surface of the Hamiltonian embed-
ded in PN , and hardly grows in the directions of the neutrally stable eigenvectors,
we project the iso-surface of the Hamiltonian on the planar phase space spanned by
the pair of the unstable and the stable eigenvectors with the above constraint condi-
tions in order to observe the unstable evolution of the N -ring. Generally speaking,
the projection conditions (20) and (21) just restrict the system to the eigenspaces,
and fail to reduce the N -ring system to the two-dimensional invariant dynamical
system. That is to say, the projected iso-surface of the Hamiltonian disagree with
the actual orbit of the N -ring evolution. In addition, since the projection is based
on the local expansion (16), it also provides us with a little information on the
global structure of the iso-surface of the Hamiltonian. However, as we will see in
the following sections, applying the projection method to the 3-ring and the 5-ring
cases, we can describe their complicated evolutions when the largest eigenvalue λ+

M

becomes unstable from the projected iso-surface. In particular, for a special 3-
ring system, the projection method successfully reduce the system to the invariant
two-dimensional dynamical system, from which we can show that there exists a
heteroclinic orbit in the high-dimensional phase space.

Finally, we mention the meaning of the projection of the iso-surface of the Hamil-
tonian on the special subspace spanned by ~ζ±. It is easy to rewrite the constraint
conditions in Proposition 8 in a simpler form.

Corollary 9. The constraint conditions (22) are equivalent to

Θ1 = Θ2 = · · · = ΘN , (23)

Ψj =

{
Ψ1 + 2π

N
(j − 1), 2 ≤ j ≤M + 1,

Ψ1 − 2π
N

(N − j + 1), M + 2 ≤ j ≤ N.
(24)

Proof: It follows from (15) that the condition (23) satisfies the equations for the
Θ-variables in (22). Next we can show that the condition (24) solves the equations
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for the Ψ-variables as follows:

N∑

k=1

Ψk cos
2πq

N
(k − 1) =

M+1∑

k=1

(

Ψ1 +
2π

N
(k − 1)

)

cos
2πq

N
(k − 1)

+
N∑

k=M+2

(

Ψ1 −
2π

N
(N − k + 1)

)

cos
2πq

N
(k − 1)

= Ψ1

N∑

k=1

cos
2πq

N
(k − 1) +

M+1∑

k=2

2π

N
(k − 1) cos

2πq

N
(k − 1)

−
N∑

k=M+2

2π

N
(N − k + 1) cos

2πq

N
(k − 1)

The first term becomes zero due to (15).In the last term, exchanging the variables
k to k′ by N − k + 1 = k′ − 1, we have

M+1∑

k=2

2π

N
(k − 1) cos

2πq

N
(k − 1) −

M+1∑

k′=2

2π

N
(k′ − 1) cos

2πq

N
(N − k′ + 1)

=
M+1∑

k=2

2π

N
(k − 1) cos

2πq

N
(k − 1) −

M+1∑

k′=2

2π

N
(k′ − 1) cos

2πq

N
(k′ − 1) = 0.

In the similar way, we obtain

N∑

k=1

Ψk sin
2πq

N
(k − 1) =

M+1∑

k=2

2π

N
(k − 1) sin

2πq

N
(k − 1)

−
M+1∑

k′=2

2π

N
(k′ − 1) sin

2πq

N
(N − k′ + 1)

= 2

M+1∑

k=2

2π

N
(k − 1) sin

2πq

N
(k − 1)

= 2
M∑

k=1

2π

N
k sin

2πq

N
k. 2

Imposing the constraint conditions (23) on the Hamiltonian (4), we have the pro-
jected Hamiltonian H~ζ±

:

H~ζ±
= −Γ2

8π

N∑

m=1

N∑

j 6=m
log(1 − cos2 Θ1 − sin2 Θ1 cos(Ψm − Ψj))

−Γ1Γ

4π
N log(1 − cosΘ1) −

Γ2Γ

4π
N log(1 + cosΘ1).

Since (24) indicates that Ψm−Ψj is independent of Ψ1, the projected Hamiltonian
depends only on the variables Θ1. Hence, the contour of the projected Hamiltonian
in the phase space (Θ1,Ψ1) is equivalent to a straight line, Θ1 = Constant. In
addition, the constraint conditions (23) and (24) indicate that when the orbit of

the vortex points intersects the ~ζ±-plane, the vortex points form the N -ring config-
uration. In other words, if the distance between the orbit and the ~ζ±-plane, defined
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by

L
(N)
ζ =

∣
∣
∣~x− ~x0 − e~ζ+ − f~ζ−

∣
∣
∣

=

√
√
√
√
N

2

M∑

p=1

{
ξp

(
|ap + b∗p|2 + |cp + d∗p|2

)
+ |ηp|

(
|ap − b∗p|2 + |cp − d∗p|2

)}
,

vanishes, the configuration of the vortex points becomes the N -ring.

3 Heteroclinic connections in the 3-ring

Then N = 3, the constraint conditions in Proposition 6 and Proposition 7 are
equivalent to

~ψ±
1 :







Θ2 − Θ3 = 0,
Θ1 + Θ2 + Θ3 = 3θ0,
Ψ2 − Ψ3 = 4

3π,
Ψ1 + Ψ2 + Ψ3 = 0,

~φ±1 :







2Θ1 − Θ2 − Θ3 = 0,
Θ1 + Θ2 + Θ3 = 3θ0,
2Ψ1 − Ψ2 − Ψ3 = 0,
Ψ1 + Ψ2 + Ψ3 = 0.

Solving the equations, we have the relations between the variables as follows.

~ψ±
1 :

{
Θ1 = 3θ0 − 2Θ2, Θ3 = Θ2,
Ψ1 = −2Ψ2 + 4

3π, Ψ3 = Ψ2 − 4
3π,

~φ±1 :

{
Θ1 = θ0, Θ3 = 2θ0 − Θ2,
Ψ1 = 0, Ψ3 = −Ψ2.

Substituting these relations into (4), we have the following projected Hamiltonians;

H~ψ±

1

= −Γ2

4π
log

(

1 − cos(3θ0 − 2Θ2) cosΘ2 − sin(3θ0 − 2Θ2) sin Θ2 cos

(

3Ψ2 −
4

3
π

))

−Γ2

4π
log

(

1 − cos(3θ0 − 2Θ2) cosΘ2 − sin(3θ0 − 2Θ2) sin Θ2 cos

(

3Ψ2 −
2

3
π

))

−Γ2

4π
log

(

1 − cos2 Θ2 +
1

2
sin2 Θ2

)

−Γ1Γ

4π
log(1 − cos(3θ0 − 2Θ2))(1 − cosΘ2)

2

−Γ2Γ

4π
log(1 + cos(3θ0 − 2Θ2))(1 + cosΘ2)

2,

and

H~φ±

1

= −Γ2

4π
log(1 − cos θ0 cosΘ2 − sin θ0 sin Θ2 cosΨ2)

−Γ2

4π
log(1 − cos θ0 cos(2θ0 − Θ2) − sin θ0 sin(2θ0 − Θ2) cosΨ2)

−Γ2

4π
log(1 − cosΘ2 cos(2θ0 − Θ2) − sin Θ2 sin(2θ0 − Θ2) cos 2Ψ2)

−Γ1Γ

4π
log(1 − cos θ0)(1 − cosΘ2)(1 − cos(2θ0 − Θ2))

−Γ2Γ

4π
log(1 + cos θ0)(1 + cosΘ2)(1 + cos(2θ0 − Θ2)).

We plot the contour lines of H~ψ±

1

and H~φ±

1

in the (Ψ2,Θ2)-plane to see the global

structure of the iso-surface of the Hamiltonian. When plotting the contours, we
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must note that the variable Θ2 moves in the range of [0, π] ∩ [ 12 (3θ0 − π), 3
2θ0] for

H~ψ±

1

, and [0, π] ∩ [2θ0 − π, 2θ0] for H~φ±

1

respectively, due to 0 ≤ Θ1,Θ2,Θ3 ≤ π.

According to Proposition 2, the stability of the largest eigenvalues λ±
1 changes

at κ = 1 + 1
3 cos2 θ0. Hence, we show the contour plot of the projected Hamil-

tonians for the unstable case, κ < 1 + 1
3 cos2 θ0. Figure 1 (a) and (b) show

the contour plots of H~φ±

1

and H~ψ±

1

respectively, when (Γ1,Γ2) = (−0.2π,−0.2π)

and the 3-ring is located at the equator, i.e. θ0 = π
2 . In Figure 1 (a), the re-

stricted iso-surface departing from (Ψ2,Θ2) = ( 2
3π,

π
2 ), which corresponds to the

original 3-ring configuration (π2 ,
π
2 ,

π
2 , 0,

2
3π,− 2

3π) ∈ P3, connects to another 3-ring
equilibrium (Ψ2,Θ2) = ( 4

3π,
π
2 ), which is the mirror symmetric 3-ring equilibrium

(π2 ,
π
2 ,

π
2 , 0,− 2

3π,
2
3π). As a matter of fact, when Γn = Γs and θ0 = π

2 , the projection

condition to the ~φ±1 -plane reduces the 3-ring system to the invariant two-dimensional
system embedded in the high-dimensional phase space, since substitution of the con-
dition to the original equations yields Θ̇1 = 0, Θ̇2+Θ̇3 = 0, Ψ̇1 = 0 and Ψ̇2+Ψ̇3 = 0.
Hence, the contour line in Figure 1 (a) agrees with the actual orbit of the three vor-
tex points, which indicates that there really exists the heteroclinic orbit connecting
between the 3-ring and the mirror symmetric 3-ring. On the other hand, while the
projection condition to the ~ψ±

1 -plane does not reduce the dynamical system, the
restricted iso-surface in Figure 1 (b) has the heteroclinic connection between the
3-ring and the longitudinally shifted 3-ring equilibrium, (π2 ,

π
2 ,

π
2 ,

2
3π,− 2

3π, 0) ∈ P3.
Then, when the unstable 3-ring is slightly perturbed, the orbit of the perturbed
3-ring evolves in an iso-surface of the Hamiltonian in the neighborhood of the hete-
roclinic structure. We confirm the invariant two-dimensional dynamical system and
the heteroclinic connection of the iso-surface affect the evolution of the unstable
N -ring.

In order to observe the evolution of the perturbed 3-ring configuration quanti-

tatively, we use the distance L
(3)
ζ . Since η1 > 0 when the 3-ring is linearly unstable

due to Proposition 2, all the coefficients a1, b1, c1 and d1 are real due to (13), (14)

and (18). Hence, the distance L
(3)
ζ is explicitly given by

L
(3)
ζ =

√

3

2
ξ1((a1 + b1)2 + (c1 + d1)2) +

3

2
η1((a1 − b1)2 + (c1 − d1)2)

=

√

(2Θ1 − Θ2 − Θ3)2

6
+

(Θ2 − Θ3)2

2
+

(2Ψ1 − Ψ2 − Ψ3)2

6
+

(Ψ2 − Ψ3 − 4
3π)2

2
.

Here, instead of L
(3)
ζ , we introduce the following distance l

(3)
ζ :

l
(3)
ζ =

√

(2Θ1 − Θ2 − Θ3)2

6
+

(Θ2 − Θ3)2

2
+

1

6
sin2 2Ψ1 − Ψ2 − Ψ3

4
+

1

2
sin2 Ψ2 − Ψ3 − 4

3π

4
.

These two distances are the same in the sense that they measure the distance
between the orbit of the three vortex points and the ζ±-plane in P3. That is to

say, if l
(3)
ζ = 0, then 2Θ1 − Θ2 − Θ3 = Θ2 − Θ3 = 0, 2Ψ1 − Ψ2 − Ψ3 = 4nπ

and Ψ2 − Ψ3 − 4
3π = 4mπ for m,n ∈ Z, which leads to L

(3)
ζ = 0 because Ψi

is 2π-periodic. Hence when l
(3)
ζ = 0, then the three vortex points form the 3-

ring configuration. On the other hand, when the vortex points form the mirror

symmetric 3-ring configuration, we have l
(3)
ζ =

√
6

4 . Therefore, if l
(3)
ζ = 0 or

√
6

4 , the
three vortex points form the 3-ring configuration.

The initial configuration of the three vortex points are given by

(Θ1(0),Θ2(0),Θ3(0),Ψ1(0),Ψ2(0),Ψ3(0)) = ~x0 + ε(µ~ψ+
1 + (1 − µ)~φ+

1 ), (25)
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in which ε = 10−7 is the small amplitude of perturbation. The parameter µ (0 ≤
µ ≤ 1) denotes the ratio of the initial unstable direction, since the unstable manifold

is tangent to the plane spanned by ~φ+
1 and ~ψ+

1 .
We show the evolutions of the perturbed 3-ring for various µ. First, Figure 2

(a) shows the evolutions of cosΘ1, cosΘ2 and cosΘ3 when the initial unstable
direction is µ = 0.0. Since the initial perturbation lies in the neighborhood of the
two-dimensional invariant dynamical system the ~φ±1 -plane, the evolution follows
the heteroclinic orbit in the two-dimensional reduced system at the initial time

interval. Indeed, the distance l
(3)
ζ shows that it stays zero up to around t = 70

and then transfers to
√

6
4 at t = 100, which indicates that the 3-ring transforms to

the mirror symmetric 3-ring configuration. After then, due to the existence of the
unstable direction ~ψ+

1 transverse to the reduced system, the orbit eventually goes
off the reduced phase space and exhibits the complicated behavior. However, the
evolution repeat not periodic but similar pattern, in which the evolution sometimes
acquires the symmetry cosΘ1 = 0 and cosΘ2 + cosΘ3 = 0, in other words Θ1 = π

2
and Θ2 + Θ3 = π, at around t = 400 and t = 550. At t = 400, the evolution
approaches the reduced invariant dynamical system in the ~φ±1 -plane and follows in

the neighborhood of the heteroclinic orbit, since l
(3)
ζ moves near zero to

√
6

4 . At
t = 550, the distance is just approaching the mirror symmetric 3-ring equilibrium.

Second, we plot in Figure 3 the evolutions of (a) cosΘ1, cosΘ2 and cosΘ3, and

(b) the distances l
(3)
ζ for µ = 1.0. Although the direction of the perturbation ~ψ±

1

is transverse to the ~φ±1 -plane, the evolution repeats similar pattern like µ = 0.0.
The orbit approaches in the neighborhood of the hetercolinic orbit in the reduced

dynamical system. Actually, the distance l
(3)
ζ transfers from near

√
6

4 to zero at
around t = 280. These two examples indicates that there exists an orbit of the
perturbed 3-ring returning to the invariant dynamical system.

Third, we plot the evolutions of cosΘ1, cosΘ2 and cosΘ3 in Figure 4. They
show periodic behavior and enter in the vicinity of the zero-line periodically, at
which the three vortices forms the 3-ring equilibrium at the equator. The periodic
evolution occurs when the orbit evolves in the closed iso-surfaces inside the hetero-
clinic connections in the restricted ~ψ±

1 and the reduced ~φ±1 -planes. The evolution of

the distance l
(3)
ζ in Figure 4 (b) shows that it approaches zero when both cosΘ1 and

cosΘ2 get into the neighborhood of the zero line. Hence, the three vortex points
return to the original 3-ring configuration periodically.

The above three examples support the heteroclinic connections affect the evo-
lution of the unstable 3-ring at the equator. On the other hand, however, since the
orbit of the perturbed 3-ring is just a one-dimensional curve evolving in the four di-
mensional iso-surface of the Hamiltonian, it does not always follow the heteroclinic
orbit nor return in the neighborhood of the invariant dynamical system. Actually,
as we see in Figure 5 showing (a) the evolutions of cosΘ1, cosΘ2 and cosΘ3 and
(b) the distance for µ = 0.7, while the distance occasionally approaches near zero

or
√

6
4 , the evolutions look very irregular. Thus, the evolutions of the perturbed

3-ring also depends on the initial distance of the perturbation.
The heteroclinic connection of the iso-surface of the Hamiltonian is still observed

when the 3-ring is located at another latitude. Figure 6 shows the contour plots

of (a) H~φ±

1

and (b) H~ψ±

1

, and (c) the evolution of the distance l
(3)
ζ with the initial

direction µ = 0.2 when the 3-ring is located at θ0 = π
4 and the strengths of the pole

vortices are given by (Γ1,Γ2) = (−0.3π,−0.4π). Since the projection condition to

the ~φ±1 -plane no longer reduces the system to the two-dimensional invariant dynami-
cal system, we conclude nothing about the existence of the heteroclinic orbit like the
previous case. However, since both of the restricted iso-surfaces of the Hamiltonian
departing from the 3-ring in Figure 6 (a) and (b) have the heteroclinic connections

11



(a) (b)

Figure 1: Contour plots of the projected Hamiltonians (a) H~φ±

1

and (b) H~ψ±

1

in (Ψ2,Θ2)-plane, when the 3-ring is located at the equator for (Γ1,Γ2) =
(−0.2π,−0.2π). The circle in the figures denotes the steady 3-ring.

with the mirror symmetric 3-ring and the longitudinally shifted 3-ring respectively,
the orbit of the perturbed 3-ring is governed by the heteroclinic structure. Indeed,

the distance l
(3)
ζ for the evolution of the perturbed 3-ring for µ = 0.2 in Figure 6 (c)

shows that it evolves regularly with returning to the 3-ring configuration.

4 Homocllinic connections in the 5-ring

When N = 5, solving the constraint conditions in Proposition 6 and 7, we have the
following relations between the variables:

~ψ±
2 :







Θ1 =
√

5θ0 + (1 −
√

5)Θ2,

Θ3 = 1
2 (5 −

√
5)θ0 − 1

2 (3 −
√

5)Θ2,

Θ4 = 1
2 (5 −

√
5)θ0 − 1

2 (3 −
√

5)Θ2,
Θ5 = Θ2,

Ψ1 = (1 −
√

5)(Ψ2 − 2
5π),

Ψ3 = 4
5π − 1

2 (3 −
√

5)(Ψ2 − 2
5π),

Ψ4 = − 4
5π − 1

2 (3 −
√

5)(Ψ2 − 2
5π),

Ψ5 = Ψ2 − 4
5π,

~ψ±
1 :







Θ1 = −
√

5θ0 + (1 −
√

5)Θ2,

Θ3 = 1
2 (5 +

√
5)θ0 − 1

2 (3 +
√

5)Θ2,

Θ4 = 1
2 (5 +

√
5)θ0 − 1

2 (3 +
√

5)Θ2,
Θ5 = Θ2,

Ψ1 = (1 +
√

5)(Ψ2 − 2
5π),

Ψ3 = 4
5π − 1

2 (3 +
√

5)(Ψ2 − 2
5π),

Ψ4 = − 4
5π − 1

2 (3 +
√

5)(Ψ2 − 2
5π),

Ψ5 = Ψ2 − 4
5π,

and

~φ±2 :







Θ1 = θ0,

Θ3 = θ0 − 1
2 (
√

5 + 1)(Θ2 − θ0),

Θ4 = θ0 + 1
2 (
√

5 + 1)(Θ2 − θ0),
Θ5 = 2θ0 − Θ2,
Ψ1 = 0,

Ψ3 = 4
5π − 1

2 (
√

5 + 1)(Ψ2 − 2
5π),

Ψ4 = − 4
5π + 1

2 (
√

5 + 1)(Ψ2 − 2
5π),

Ψ5 = −Ψ2,

~φ±1 :







Θ1 = θ0,

Θ3 = θ0 + 1
2 (
√

5 − 1)(Θ2 − θ0),

Θ4 = θ0 − 1
2 (
√

5 − 1)(Θ2 − θ0),
Θ5 = 2θ0 − Θ2,
Ψ1 = 0,

Ψ3 = 4
5π + 1

2 (
√

5− 1)(Ψ2 − 2
5π),

Ψ4 = − 4
5π − 1

2 (
√

5 − 1)(Ψ2 − 2
5π),

Ψ5 = −Ψ2.

Substituting them into the Hamiltonian (4), we obtain the projected Hamiltonians
H~ψ±

2

, H~ψ±

1

, H~φ±

2

and H~φ±

1

. Linear stability analysis for N = 5 indicates that the

largest eigenvalue λ+
2 becomes unstable at κ = 1

5 (7 + cos2 θ0) and λ+
1 becomes

unstable at κ = 1
5 (5 + cos2 θ0). Thus we plot the contour lines of the projected

Hamiltonians H~ψ±

2

and H~φ±

2

in (Θ2,Ψ2)-plane when only the largest eigenvalue λ+
2

is unstable, namely 1
5 (5 + cos2 θ0) < κ < 1

5 (7 + cos2 θ0). On the other hand, when

both of the eigenvalues λ+
2 and λ+

1 are unstable, i.e. 1
5 (5 + cos2 θ0) > κ, we plot

the contour lines of H~ψ±

2

, H~φ±

2

, H~ψ±

1

and H~φ±

1

. We note again that we have to
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Figure 2: (a) Evolutions of cosΘ1, cosΘ2 and cosΘ3, and (b) the distance l
(3)
ζ for

the perturbed unstable 3-ring at the equator when (Γ1,Γ2) = (−0.2π,−0.2π). The

dashed lines in (b) represent the value of 0 and
√

6
4 respectively. The initial unstable

direction is µ = 0.0.
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Figure 3: (a) Evolutions of cosΘ1, cosΘ2 and cosΘ3, and (b) the distance l
(3)
ζ for

the perturbed unstable 3-ring at the equator when (Γ1,Γ2) = (−0.2π,−0.2π). The

dashed lines in (b) represent the value of 0 and
√

6
4 respectively. The initial unstable

direction is µ = 1.0. The evolutions repeat the similar pattern and the distance

l
(3)
ξ passes in the neighborhood of 0 or

√
6

4 when both of the evolutions enter in the
vicinity of the zero-line.
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Figure 4: (a) Evolutions of cosΘ1, cosΘ2 and cosΘ3, and (b) the distance l
(3)
ζ for

the perturbed unstable 3-ring at the equator when (Γ1,Γ2) = (−0.2π,−0.2π). The

dashed lines in (b) represent the value of 0 and
√

6
4 respectively. The initial unstable

direction is µ = 0.4. The distance approaches zero periodically.
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Figure 5: (a) Evolutions of cosΘ1, cosΘ2 and cosΘ3, and (b) the distance l
(3)
ζ for

the perturbed unstable 3-ring at the equator when (Γ1,Γ2) = (−0.2π,−0.2π). The

dashed lines in (b) represent the value of 0 and
√

6
4 respectively. The initial unstable

direction is µ = 0.7. The distance occasionally approaches in the neighborhood of

0 and
√

6
4 , but the evolutions look very irregular.
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Figure 6: Contour plots of the projected Hamiltonians (a) H~φ±

1

and (b) H~ψ±

1

in

(Ψ2,Θ2)-plane, when the unstable 3-ring is located at θ0 = π
4 and (Γ1,Γ2) =

(−0.3π,−0.4π). The circles in the figures denote the steady 3-ring. (c) Evolu-

tion of the distance l
(3)
ζ for µ = 0.2. The dashed lines represent the value of 0 and

√
6

4 respectively.
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(a) (b)

Figure 7: Contour plots of the projected Hamiltonians (a) H~φ±

2

and (b) H~ψ±

2

in

(Ψ2,Θ2)-plane, when the 5-ring is located at the equator for (Γ1,Γ2) = (0.2π, 0.2π).
The circles in the figures denote the steady 5-ring.

restrict the range of Θ2 by using the constraint conditions, due to 0 ≤ Θi ≤ π for
i = 1, · · · , 5.

Figure 7 shows the contour plot of the projected Hamiltonians H~φ±

2

and H~ψ±

2

in (Ψ2,Θ2)-plane for (Γ1,Γ2) = (0.2π, 0.2π), in which the largest eigenvalue λ+
2

becomes unstable and the second largest λ±1 are neutrally stable. The projected
unstable and stable manifolds departing from the 5-ring return to the original po-
sition, which indicates that the iso-surface of the Hamiltonian has the homoclinic
connection in P5. On the other hand, when both of the eigenvalues λ+

1 and λ+
2

become unstable, we plot the iso-surface of the projected Hamiltonians (a) H~φ±

2

,

(b) H~ψ±

2

, (c) H~φ±

1

and (d) H~ψ±

1

in Figure 8. In this case, the unstable and the

stable manifolds no longer correspond to each other, nor do they connect to other
5-ring configurations.

We see the equilibrium-like points along the line Θ2 = π
2 in the projected spaces,

but in fact they are not real equilibria except the original 5-ring. However, since
the homoclinic connection we observe in the former case is a local structure, we
expect that the homoclinic structure of the iso-surface of the Hamiltonian in the
neighborhood of the original 5-ring affect the evolution of the perturbed 5-ring,
even if the projection method is just a restriction of the system based on the local
expansion. On the contrary, as for the latter case, since we can hardly see any local
structure, the projection method fails to give any useful information of the structure
of the Hamiltonian.

5 Summary and remark

We have investigated the motion of the N -ring on the sphere when the effect of
the rotation is approximated locally by the fixed pole vortices. Since the linear
stability analysis o the N -ring gives the explicit representation of the eigenvectors
λ±p and their linearly independent eigenvectors ~ψ±

p and ~φ±p for p = 1, · · · ,M , it
is possible to express the orbit of the vortex points in the phase space PN as the
linear combination of the eigenvectors. The linear combination provides us with the
projection conditions, with which we can restrict the 2N -dimensional dynamical
system to the collection of the two-dimensional systems spanned by the pair of the
unstable and stable eigenvectors. Thus projecting the iso-surface of the Hamiltonian
to the restricted phase spaces, we observe the global structure of the iso-surface, in
which the orbit of the vortex points exists.

Since the projection method just restrict the high-dimensional dynamical system
to the two-dimensional eigenspaces, it is generally difficult to extract some infor-
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(a) (b)

(c) (d)

Figure 8: Contour plots of the projected Hamiltonians (a) H~φ±

2

, (b) H~ψ±

2

, H~φ±

1

and

H~ψ±

1

in (Ψ2,Θ2)-plane, when the 5-ring is located at the equator for (Γ1,Γ2) =

(−0.1π,−0.1π). The circles in the figures denote the steady 5-ring.

mation of the original system by the restriction. However, in some specific cases of
the 3-ring and the 5-ring, the restriction indicates the local and global structures
of the iso-surface of the Hamiltonian help us characterize the unstable evolution;
Applying the projection method to the 3-ring at the equator with the same pole
vortices, we show the existence of the invariant two-dimensional dynamical system,
in which there exists the heteroclinic orbit. In addition, since the iso-surface has
the heteroclinic connection, when the unstable 3-ring is perturbed slightly, the pe-
riodic and the non-trivial recurrent evolutions are observed. However, since the
co-dimension of the orbit in the high dimensional iso-surface of the Hamiltonian is
high, the unstable 3-ring sometimes shows the irregular behavior depending on the
initial direction of the perturbation. In the similar manner, we apply the projection
method to the 5-ring case and observe the homoclinic connection of the iso-surface
of the Hamiltonian.

Finally, we remark the application of the projection method to the case of even
vortex points which has already been studied in [19]. As we stated in the introduc-
tion, the multiplicity of the largest eigenvalues λ±M is different from the odd case.

That is to say, the largest eigenvalues λ±M have just one eigenvectors ~ψ±
M (= ~φ±M ). In

the paper [19], we successfully reduced the 2N -dimensional dynamical system to the
planar system with the alternately pairing condition introduced heuristically from
the symmetry of the eigenvectors ~ψ±

M . As a matter of fact, the alternately pairing
symmetry is justified by the projection method; When we apply the projection to
the even case, the orbit of the vortex points ~x can be similarly expressed by the
linear combination of the eigenvectors ~φ±p , ~ψ±

p for p = 1, · · · ,M − 1, ~ψ±
M and the

complementary vectors ~ζ± as follows:

~x = ~x0 + aM ~ψ+
M + bM ~ψ−

M +
M−1∑

p=1

(ap ~ψ
+
p + bp ~ψ

−
p + cp~φ

+
p + dp~φ

−
p ) + e~ζ+ + f~ζ−.

The constraint condition to project the orbit on the two-dimensional eigenspace
spanned by ~ψ±

M are provided by solving ap = bp = cp = dp = 0 for p = 1, · · · ,M−1,
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and e = f = 0. Solving these equations, we obtain the alternately pairing condition.
Thus, unlike the odd case, the projection method always reduces the even N -ring
system to the two-dimensional invariant dynamical system regardless of the position
of the ring and the strengths of the pole vortices.
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