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ABSTRACT 

The number of sensors and the corresponding locations are very important for the success of 
structural health monitoring (SHM) using vibration data. Most works related to the optimal sensor 
placement (OSP) problem in the literature are based on discrete-coordinate systems which are 
usually modelled by the finite element (FE) method. Although FE method can provide a convenient 
and practical approach to the dynamic response analysis of arbitrary structures, the solutions 
obtained can only approximate their actual dynamic behaviour because the motions are only 
represented by a limited number of displacement coordinates, where the sensors are confined to be 
put. For structures having typical distributed properties, it’s more reasonable and accurate to be 
modelled as distributed-parameter system with analytical formulation. Furthermore, although much 
attention has been paid to the OSP problem in various fields, such as modal testing and model 
parameters updating, the particular purpose for structural damage detection has seldom been 
involved. The main purpose of this paper is to develop an effective methodology for investigating 
the OSP problem for distributed-parameter system based on the information entropy for the damage 
detection purpose. Where, the information entropy is employed as a measure to quantify the 
uncertainty of the identified crack parameters, and it is minimized by the generic algorithm (GA) to 
give the optimal sensor configurations. The proposed method is demonstrated by the numerical 
simulation of an Euler-Bernoulli beam model. 

Keywords: Optimal sensor placement, Damage detection, Information entropy, Genetic algorithm. 

1. INTRODUCTION 

The quantity and quality of the measured data, i.e., the number of sensors and the corresponding 
locations are very important for the success of SHM utilizing measured dynamic responses. In most 
field tests, the sensor locations are decided based on the experience of the researchers taking into 
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account a series of practical constraints. It is important to ensure that the selected sensor locations 
can measure the required information by following a mathematically rigorous way to determine the 
optimal locations for placing sensors. 

The problem of OSP was first investigated by Shah and Udwadia (1978). Later, many researchers 
have studied the issue of optimally installing a given number of sensors on the target structure for 
the purposes of model and modal parameter identification (Kammer 1991; Penny et al. 1994). In 
2000, Papadimitriou et al. (2000) introduced the information entropy, representing a direct measure 
of the uncertainties in model parameter estimates, to the OSP problem, and the optimal sensor 
locations is determined by minimizing the information entropy measure. Recently, the methodology 
proposed in reference (Papadimitriou et al. 2000) is adopted for studying the sensor placement of a 
transmission tower model (Chow et al. 2011). 

It’s found from the literature that, most relevant works for studying the OSP problem employ the 
discrete-coordinate systems following the FE technique. The discrete-coordinate models can 
provide a convenient approach to the dynamic response analysis of arbitrary and complex structures, 
but the solutions obtained can only approximate their actual dynamic behavior as the motions are 
represented by a limited number of displacement coordinates. Although the precision of the results 
obtained can be made as refined as desired by increasing the number of degrees of freedom (DOF) 
considered in the analyses, it would undoubtedly increase the computation effort as well as the 
number of potential DOFs for placing sensors especially with large number of iterative calculations 
usually required. For such reason, the sensor placement procedure is usually carried out based on a 
very coarse mesh model, which will induce large modeling errors. Moreover, with the coarse FE 
model, the sensors are confined to be placed at only a very limited number of available locations, 
which is “optimal” only with respect to the particular coarse model. Moreover, the majority of 
relevant works in the literature does not handle sensor placement problem for damage detection 
purpose, which is very important for real applications, since the measured responses should be as 
sensitive to damage as possible. 

In this paper, a sensor placement technique based on the information entropy for 
distributed-parameter system is developed particularly for the purpose of structural damage 
detection. The proposed method adopts the analytical formulation to model each structural segment, 
and the sensor locations are identified by their coordinates that are continuous within the region of 
interest. Thus, the proposed method is independent of the potential number of candidate sensor 
locations required in other methods based on discrete-coordinate models. A numerical case studies 
for a beam model is utilized to demonstrate the proposed method with the binary-coded GA. 

2. THEORETICAL DEVELOPEMENTS 

For a parameterized class of structural models M with the vector of parameters NR∈ θθ chosen to 
describe the input-output behavior of a structure, the Bayesian statistical system identification 
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methodology developed in reference (Beck and Katafygiotis 1998) is adopted to estimate the values 
of the parameters set θ and their associated uncertainties using the information provided from 
dynamic measurement data D, assuming that the prediction error is both spatially and temporally 
independent and normally distributed with zero mean and variance 2σ . 

Following the Bayes’ theorem, the posterior (or updated) probability density function (PDF) of the 
set of structural model and prediction error parameters ( , )σθ for a given set of measurement data D 
is denoted by ( , | , )p σθ D M . Employing the total probability theorem, the posterior marginal PDF 
for the set of structural model parameters θ, i.e., ( | , )p θ D M can be obtained by integrating with 
respect to σ. For a non-informative (uniform) prior PDF ( )σπ σ , the integration over σ results in 

[ ]( | , ) ( ) ( ; , ) JNp c Jπ −= θθ θ θD M D M  (1) 

where ( 1) / 2J ON NN= − − . ON is the number of measurement points, and N is the number of 
measured time steps at each measurement point. c is a normalizing constant such that the integration 
of the PDF in equation (1) over the predefined domain is equal to unity. ( )πθ θ is the prior PDF of 
the parameter set θ, which allows judgment about the relative plausibility of the values of θ to be 
considered. ( ; , )J θ D M denoting the measure-of-fit function between the measured and the model 
predicted time domain response is given by 

2

1
ˆ( ; , ) 1/ ( ) ( ) ( ; )N

O n
J NN n n

=
= −∑θ q q θD M  (2) 

where ⋅ is the usual Euclidian norm. ˆ ( )nq is the 1ON × vector of the measured time domain 
response at the nth time step, ( ; )nq a  is the 1ON × vector of the calculated time domain response at 
nth time step based on the model class M for a specified set of parameters θ. 

By utilizing ( | , )p θ D M  given in equation (1), a unique scalar measure of the uncertainty in the 
estimate of the structural parameters θ is provided by the information entropy as 

[ ] [ ] [ ]( , ) E ln ( | , ) ln E ln ( ) E ln ( ; , )Jp c N Jπ= − = − − +θ θ θ θθ θ θD M D M D MΗ  (3) 

where Eθ denotes mathematical expectation with respect to θ. The aim of sensor configuration 
design ensures that for the parameter set θ, the measured data D are most informative, indicating 
that θ can be estimated with the least uncertainties. Thus, the sensor configuration that minimizes 
the information entropy is chosen as the optimal one. Unfortunately, the test data D are not 
available when design the sensor configuration, and thus the explicit dependence of information 
entropy on the data D should be dropped. This goal can be asymptotically accomplished for large 
number of data ( N →∞ ) by defining the information entropy with the optimal value of the model 
parameters θ̂ and associated prediction error 2σ̂ expected for a set of measured data. Noting that an 
estimate of θ̂ and 2σ̂ can still not be achieved as the test data D are not available, a useful design 
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suggested in reference (Papadimitriou et al. 2000) is to replace θ̂ and 2σ̂ with some nominal 
ones 0θ and 2

0σ chosen by the designer to be representative of the discrete-coordinate systems.  

For the purpose of structural model updating, it’s usually assumed that updated model is close to the 
nominal one, i.e., the updated values of the model parameters do not deviate significantly from the 
nominal model parameter values θ0 and 2

0σ . The optimal sensor configuration for this purpose can 
be carried out by minimizing the information entropy given in equation (3). However, this is not the 
case for damage detection problems when using θ to model stiffness terms in a structure, and large 
uncertainty in the values will arise due to the possibility of significant reduction in the structural 
stiffness due to severe damage. In such situation, equation (3) should be modified to account for the 
uncertainty in θ0 and 0σ , which can be quantified using a prescribed PDF, i.e., 0 0( , | )p σθ M , for 
θ0 and 0σ to represent the designer’s uncertainty in these parameters. The problem of optimal sensor 
configuration can be solved by minimizing the change of information entropy over the sensor 
configuration vector δ and given by (Papadimitriou et al. 2000) 

[ ] [ ]
0 0 0 0 0 0 0 0, , , , , 0 0 , 0 0( , ) ( ) E ln ( , , | , ) E ln ( , | )p pσ σ σ σσ σΔ = − = − − −θ θ θ θ θ θδ θ θ δ θM M M MΗ Η Η  (4) 

Assuming θ0 and 0σ being statistically independent, and after some manipulation, the change of 
information entropy in equation (4) takes the following simplified form 

2
0 0 0 0 0

1 1ln(2 ) 1 ln d ln det ( , ) ( )d
2 2

N pθ π σ σ⎡ ⎤Δ = + + −⎣ ⎦∫ ∫ Q δ θ θ θΗ  (5) 

It is obvious from equation (5) that the optimal sensor configuration are obtained by maximizing the 
quantity of multidimensional numerical integration over θ0, i.e., 0 0 0ln det ( , ) ( )dJ p= ∫Q Q δ θ θ θ , the 
calculation of which can be carried out approximately but efficiently using an asymptotic expansion 
developed to treat this type of integral (Papadimitriou et al. 1997), valid for large number of data (N 
→ ∞). For continuous-coordinate system with the excitation locations considered, the Q matrix in 
equation (5) is proposed as 

0

T
0 1 1

( , , ) ( , ; , ) ( , ; , )ON N
k kn k

y n y n
= = =

⎡ ⎤= ⎣ ⎦∑ ∑ θ θ
θ θ

Q δ χ θ δ χ θ δ χ θ∇ ∇  (6) 

where O DN NR∈δ is the sensor configuration vector and given by T
1 2{ , , , }

ON=δ δ δ δ… , including the 
coordinates of all measurement points. Similarly, T

1 2{ , , , } I D

I

N N
N R= ∈χ χ χ χ… denotes the actuator 

configuration vector and includes the coordinates of all excitation points, and IN is the number of 
excitation points. DN

k R∈δ  ( 1,2, , Ok N= … ), DN
l R∈χ ( 1,2, , Il N= … ) denote the coordinate for the 

kth measurement and the lth excitation points, respectively. 1,2,3DN = is the dimension of the 
target structural model. θ∇ denotes the usual gradient vector with respect to the parameter vector θ. 

( , ; , )ky n δ χ θ  is the kth element of ( ; )nq θ . Noting that for the case of ambient vibration, the vector χ 
indicating the excitation locations should be dropped. Unlike the majority of existing methods, the 
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problem of OSP in the proposed method runs into a continuous optimization procedure, which can 
be efficiently solved by GA, a simple yet very powerful routine for obtaining global minimums. 

3. NUMERICAL SIMULATIONS 

To demonstrate the proposed method for distributed-parameter systems, an Euler-Bernoulli beam 
simply-supported at one end and clamped at the other end with a single open and non-propagating 
crack is employed (see Figure 1). The beam is uniform in both material and geometry properties. 
The length L, width b, and height h of the beam are 1.25 m, 0.0094 m, and 0.0158 m, respectively. 
The Young’s modulus E and mass density ρ are 5.8×1010 N/m2 and 2780 Kg/m3, respectively. The 
crack is characterized by the relative location /C CL Lζ = and relative depth /C Cd h h= . It’s assumed 
that the structure is excited by a single impulsive load applied in the transverse direction, and the 
dynamic response of the beam is calculated by the modal superposition method involving the first 
four lower vibration modes. A uniform 1% modal damping ratio is assumed for all modes, and the 
sampling frequency is 5000 Hz with a duration of 0.2 s.  

hC

y 

LC 

L

x 
O 

Crack 

 

Figure 1: Euler-Bernoulli beam with a transverse crack. 

It should be noted that larger crack depth would certainly induce more significant influence on the 
dynamic response, and including crack-depth parameter in optimization process would always make 
the identified most probable value touch the pre-defined upper boundary. But this is not the case for 
the crack-location parameter. Thus, in the present study, only crack-location parameter are 
considered for identification by keeping the crack depth to be constant, and the non-dimensional 
scalar parameter θ with unity nominal value is used to scale the relative crack location Cζ . 
Binary-coded GA is employed, and the number of bits for coding each variable is denoted by Nbits. 
It divides the 1-D searching domain into bits2 1N − regions, or equivalently, provides the solution with 
a resolution of bits1 / (2 1)N − . Without loss of generality, two typical values of Nbits (i.e., Nbits=4 and 
8) with the number of sensors ranging from 1 to 4 are employed in present case study. 

Table 1 shows the optimal sensor locations obtained by the proposed method with various Nbits and 
number of sensors ON , where the excitation locations χ1 get the values of 0.3 and 0.5, respectively. 
It’s clear from the 4-th column of this table that the objective function value JQ increases (or 
equivalently, the change of information entropy in equation (5) decreases) with the increase of the 
number of sensors, implying that involving more sensors could reduce the uncertainties of the 
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identified crack parameters. Although not shown in this paper, it is also found from the numerical 
simulations that involving more number of modes in modal superposition process can also reduce 
the associated uncertainties. 

Table 1: Optimal sensor locations obtained by the proposed methodology 

Optimal Sensor Locations Excitation  
Location χ1 

Nbits NO Objective 
Function JQ δ1 δ2 δ3 δ4 

1 0.8545 0.4000    
2 0.8563 0.4000 0.7333   
3 0.8951 0.4000  0.6667 0.7333  4 

4 0.9052 0.3333   0.4000 0.6667 0.7333 
1 0.9757 0.7020    
2 1.0920 0.3922 0.7020   
3 1.1626 0.3882 0.3922 0.7020  

0.3 

8 

4 1.2187 0.3882 0.3922 0.3961 0.7020 
1 0.6377 0.5333    
2 0.7219 0.5333 0.8000   
3 0.7733 0.2667 0.5333 0.8000  4 

4 0.7998 0.2667 0.5333 0.8000 0.8667 
1 0.6476 0.5294    
2 0.7428 0.5294 0.5373   
3 0.7987 0.5294 0.5373 0.5412  

0.5 

8 

4 0.8400 0.5255 0.5294 0.5333 0.5373 

In order to study the effect of excitation locations on the OSP results by the proposed method, the 
impulse excitation at relative locations 0.3 and 0.5 are considered, and summarized in Table 1. It is 
clear from the table that the optimal sensor locations depend very much on the excitation location, 
and the sensors should be installed as close to the excitation location as possible, which is similar to 
the results in reference (Chow et al. 2011). 

Another important observation found from Table 1 is that the optimal locations of some sensors are 
very close to each other for larger number of bits, and the location differences between each pair of 
close sensors are calculated. Taking the results with excitation location χ1=0.3 as an example, it’s 
clear that the distances between the closely placed sensors for Nbits=8 are all equal to 0.003922. 
Noting that this distance value is just the resolution for the binary-coded GA with Nbits=8. Moreover, 
it can be further anticipated that by increasing Nbits, the distance between these sensors would 
continue to decrease to the value of resolution corresponding to the new Nbits, until the limit state 
being reached, i.e., these sensors were finally put at the same location (if allowed). This implies that 
for the OSP problem with respect to distributed-parameter system for the purpose of damage 
detection, minimizing the change of information entropy in equation (5) alone leads to the situation 
that some of the sensor locations were overlapped. 

Although not provided here, by comparing the dynamic response measured from optimal sensor 
locations, one can find that the responses from each channel are much more similar to each other for 
Nbits=8 than for Nbits=4, especially for the case with excitation location at 0.5. This is expected 
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referring to Table 1, i.e., the optimal sensor locations are more different for Nbits=4 as compared 
with those for Nbits=8, and the closer the sensors are, the more similar the response would be. 

4. CONCLUSIONS 

In this paper, a statistical methodology based on Bayesian theorem and information entropy is 
developed for the OSP problem on distributed-parameter system for the purpose of structural 
damage detection. This is performed by minimizing the change of information entropy measure (or 
uncertainties) associated with the identified crack modeling parameters with the sensor 
configurations as the minimization variables. A simple distributed-parameter system, i.e., a 
Euler-Bernoulli beam with a single crack is taken as the numerical example to demonstrate the 
proposed methodology. It’s concluded from the numerical simulation results that, for the OSP 
problem with respect to the distributed-parameter system with the purpose of structural damage 
detection, minimizing the change of information entropy alone would lead to the situation that part 
of sensors tend to be placed in an overlapping manner, and the collected dynamic response from 
these sensors would be extremely similar to each other. However, this phenomenon is not practical 
since the sensors could not be placed so close to each other in practice and the duplicated data 
would be measured. The improved approach for avoiding this situation is under investigation, and 
will be presented in more detail in the coming papers. 
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