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Analytic continuation of the Birkhoff–Rott
equation in complex-time domain
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Graduate School of Mathematics, Nagoya University, Furo-cho Chikusa-ku Nagoya Aichi 464-8602, Japan

(Received 26 September 2001; revised 15 January 2003)

A vortex sheet is a surface across which the velocity field of incompressible and inviscid flows

has a jump discontinuity. Mathematical and numerical studies reveal that a two-dimensional

vortex sheet, which is governed by the Birkhoff–Rott equation, acquires a singularity in

finite time without forming rolling-up spiral. On the other hand, numerical computation of

a regularized Birkhoff–Rott equation shows that the vortex sheet evolves into a rolling-up

doubly branched spiral. Because of the finite-time singularity, it is impossible to regard

the rolling-up spiral as a solution of the Birkhoff–Rott equation as long as time is real.

However, it may be possible to analytically continue the equation to the spiral along a

path to get around the singularity in complex-time plane. In the present article, we consider

singularities in complex-time plane for the regularized Birkhoff–Rott equation by numerical

means. Distribution of the complex singularities and their limiting behaviour indicate that

it is absolutely impossible to perform analytic continuation in complex-time domain to

the spiral solution. Furthermore, we propose a simple model of a doubly branched spiral

and investigate it mathematically. The model is successful in approximating the rolling-up

motion of the vortex sheet. Comparing the vortex-sheet motion with the model indicate that

the doubly branched spiral with infinite windings at the centre could be a solution of the

Birkhoff–Rott equation beyond the singularity time.

1 Introduction

A vortex sheet is a surface across which the velocity field of incompressible and inviscid

fluids has a jump discontinuity. The study of vortex sheets contributes to an understanding

of turbulent shear layers, since they approximate a coherent structure in an ideal flow

with high-Reynolds number. The motion of two-dimensional vortex sheets is governed

by an integro-differential equation, called the Birkhoff–Rott equation (Birkhoff [2]).

While theoretical studies proved a short-time existence of an analytic solution [3, 4, 20],

asymptotic analysis [11, 12] and numerical computations [9, 18] showed strong evidences

that 2D vortex sheets lost analyticity in finite time.

Numerical computation of the Birkhoff–Rott equation is practically quite difficult,

since not only do solutions blow up in finite time, but also linearization of the equation

leads to an ill-posed problem in the sense of Hadamard due to the Kelvin–Helmholtz

instability [15]. A treatment to avoid these numerical difficulties is regularization of

the equation [1, 10]. Krasny regularized the Birkhoff–Rott equation by introducing an

artificial parameter δ. Namely, let (x(Γ , t), y(Γ , t)) denote a two-dimensional vortex sheet,
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where Γ is a Lagrangian parameter along the sheet and t is time. A periodic boundary

condition is imposed on the vortex sheet: x(Γ +1, t) = x(Γ , t)+ 1 and y(Γ +1, t) = y(Γ , t).

Then the Birkhoff–Rott equation is given by

∂x

∂t
= −1

2

∫ 1

0

sinh 2π(y − ỹ)

cosh 2π(y − ỹ) − cos 2π(x − x̃)
dΓ̃ ,

∂y

∂t
=

1

2

∫ 1

0

sin 2π(x − x̃)

cosh 2π(y − ỹ) − cos 2π(x − x̃)
dΓ̃ ,

where x̃= x(Γ̃ , t) and ỹ= y(Γ̃ , t). Krasny proposed the following regularized equations:

∂x

∂t
= −1

2

∫ 1

0

sinh 2π(y − ỹ)

cosh 2π(y − ỹ) − cos 2π(x − x̃) + δ2
dΓ̃ , (1.1)

∂y

∂t
=

1

2

∫ 1

0

sin 2π(x − x̃)

cosh 2π(y − ỹ) − cos 2π(x − x̃) + δ2
dΓ̃ . (1.2)

We call (1.1), (1.2) the δ-equations. When δ is exactly zero, the δ-equations are identical

to the Birkhoff–Rott equation. By computing the δ-equations for a given initial condition

numerically, Krasny found that the regularized vortex sheet was smooth for all time and

evolved into a rolling-up doubly branched spiral. Furthermore, investigating the limiting

shape of the spiral as δ → 0, he discussed whether the spiral could be a solution of the

Birkhoff–Rott equation after the singularity time.

However, there is a serious gap of analyticity: while the solution of the δ-equations

is smooth for all time, that of the Birkhoff–Rott equation is analytic only for a finite

time and never evolves into the smooth rolling-up spiral. As long as the time variable

is real, the solution of the Birkhoff–Rott equation cannot be analytically continued to

the smooth spiral due to the singularity formation. However, it might be possible to

choose a path to get around the singularity in the complex-time plane, along which we

define the smooth roll-up solution by analytic continuation. In the present paper, we

compute numerically all singularities of the δ-equations in the complex-time plane, which

we call complex singularity times. Thus, we consider their limiting behaviour as δ tends to

zero, to discuss whether the smooth rolling-up solution could be an analytically continued

solution of the Birkhoff–Rott equation.

The paper is organized as follows: in § 2, we introduce a numerical method to search the

complex singularity times. In § 3, by using the numerical method, we obtain the distribution

of the complex singularity times of the δ-equations and investigate its behaviour as δ

goes to zero. In § 4, we propose a simple model to describe a rolling-up double branched

spiral. By comparing the model spiral with the regularized vortex sheet, we show that

the model is successful in approximating the rolling-up motion of the vortex sheet in

complex-time domain. In addition, we discuss a solution of the Birkhoff–Rott equation

beyond the singularity time. Finally, we give conclusions in § 5.

2 Numerical method

We explain a numerical method to find complex singularity times. The numerical method

was originally developed by Sulem et al. [19] to detect critical times when singularities
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appear in partial differential equations. The method has been successfully applied to the

Birkhoff–Rott equation to investigate the singularity formation [9, 13, 14, 17, 18]. Here,

we extend the method so that it can detect complex singularity times.

Extending x(Γ , t) and y(Γ , t) to complex-valued functions defined for Γ ∈ R and t ∈ C,

we regard the δ-equations (1.1) and (1.2) as the equations for the four real-valued functions

x(Γ , t) = xr(Γ , t) + ixi(Γ , t) and y(Γ , t) = yr(Γ , t) + iyi(Γ , t). The real parts of the initial

conditions of x and y are the same as used by Krasny [9, 10]. We set the imaginary parts

of the initial conditions to zero. Namely,{
xr(Γ , 0) = Γ +0.01 sin 2πΓ , xi(Γ , 0) = 0,

yr(Γ , 0) = −0.01 sin 2πΓ , yi(Γ , 0) = 0.
(2.1)

These functions x and y are disctetized by N = 2048 points. To compute the integrations

of the right-hand sides of (1.1) and (1.2) numerically, we use the spectrally accurate

method proposed by Shelley [18].

As for the temporal integration, we give an integration path in complex-time plane,

along which the equations (1.1) and (1.2) are integrated temporally by using the fourth-

order Runge–Kutta method. Note that there is no worry about the path chosen, since

the temporal integration is independent of choice of the path as long as solutions are

analytic. In addition, every time step of the temporal integration, Krasny’s Fourier filtering

technique is implemented to avoid accumulation of the round-off error [6, 9, 18]. For a

detailed description of the filtering technique, refer to Krasny [9].

We explain how to find complex singularity times. Suppose that the functions x(Γ , t)

and y(Γ , t) are represented by Fourier series every time step:

x(Γ , t) =Γ +

N
2 −1∑

k= − N
2

pk(t)e
2πikΓ , y(Γ , t) =

N
2 −1∑

k= − N
2

qk(t)e
2πikΓ .

Then we study the asymptotic behaviour of the spectra pk(t) and qk(t); we use an ansatz

for their asymptotic decay. Assume that the leading terms of the spectra become

|pk(t)| ∼ Cpk
−βp

(
1 + Dp

1

k

)
exp(−αp(t)k),

(2.2)

|qk(t)| ∼ Cqk
−βq

(
1 + Dq

1

k

)
exp(−αq(t)k).

This ansatz is the same as Shelley’s, which are derived from Moore’s asymptotic analysis

of the vortex sheet. We compute the values of Cp, Dp, αp and βp by requiring that (2.2)

holds pointwise at consecutive four points of pi for i= k, k+1, k+2 and k+3. In the same

way, the values of Cq , Dp, αq and βq are computed by the fit to qk(t). Note that, as shown

in Shelley [18], if the numerical computation is sufficiently accurate, these values are

determined independently of k when the integration path approaches the singularity time.

To achieve accurate computation this time, we implemented all the numerical procedures

with 128 bit floating-point numbers. If either αp or αq is close to zero, we estimate the

time when it vanishes by extrapolation. This is the critical time when x(Γ , t) or y(Γ , t)
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Figure 1. The fits to αp and αq as functions of the real time, when δ = 0 and the integration path

is the real-time axis.

loses its analyticity, since at that time |x(Γ , t)| or |y(Γ , t)| is expressed asymptotically as

|x(Γ , t)| ∼ Γ +
∑
k

|Cp||k|−βp or |y(Γ , t)| ∼
∑
k

|Cq||k|−βq .

We give an example showing that the method works well, in which we apply the

method to the Birkhoff–Rott equation; when the regularization parameter δ is zero and

an integration path goes along the real-time axis. Figure 1 shows the fits to αp and αq as

functions of the real time. The value of αp monotonically decreases towards zero and is

estimated to be zero at t ≈ 0.374 + 0i by extrapolation. The critical time is equal to that

Krasny [9] estimated up to the second digit. In this paper, the critical time is denoted

specifically by tc.

3 Complex singularity times of the δ-equations

3.1 Distribution of complex singularity times when δ = 0.1

Figure 2 shows the distribution of complex singularity times of the δ-equations in the

complex-time plane. The regularization parameter δ is 0.1. The complex singularity times

exist continuously on the boundaries between gray regions and the white region. At

each complex singularity time, the solution of the δ-equations loses analyticity for some

real Γ . The distribution is symmetric with respect to the real-time axis. Because of the

continuity of the distribution, we can define no analytic solution inside the gray regions

by analytic continuation for any integration path starting from the origin. On the other

hand, if we take an integration path along the real-time axis, we define an analytic solution

along the path by analytic continuation, since there is no complex singularity time in

the path. This is why Krasny’s regularization works well to compute the δ-equations

numerically.
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Figure 2. Distribution of the complex singularity times of the δ-equations when δ = 0.1. The

complex singularity times are on the boundaries between gray regions and the white region.
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Figure 3. Distribution of the complex singularity times in the neighbourhood of the real-time

axis. They are distributed approximately periodically in the real-time direction after Re t ≈ 0.85.

Now, let us describe the distribution precisely; there are narrow band-like white regions

between the gray regions. The band regions exist periodically in the imaginary time

direction. In Figure 3, we re-plot the distribution in the neighbourhood of the real-

time axis. The figure also shows that the distribution is approximately periodic in the

real-time direction beyond Re t ≈ 0.85. We observe the same periodic structure for other

band regions. It indicates that the complex singularity times are approximately distributed

doubly periodically in the band regions.

Next, we examine the relation between the distribution and evolution of the vortex

sheet. Figure 4 shows an evolution of the vortex sheet when an integration path is taken
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Figure 4. (Left) Numerical solution of the δ-equations when δ = 0.1. (Right) Integration path,

which is taken along the real-time axis.

Figure 5. (Left) Numerical solution of the δ-equations when δ = 0.1. (Right) Integration path,

which is taken along Im t= 1.

along the real-time axis. When the path enters the band region, i.e. Re t > 0.75, the vortex

sheet begins rolling up in the middle. Figure 5 shows an another example when we take

an integration path along Im t= 1. The vortex sheet also rolls up at the boundary after

the path gets into the band region. As for the other band regions, we can verify that the

vortex sheet likewise rolls up when the integration path gets into the band regions. These

numerical results indicate that there is a close relation between the doubly periodic band

structure of complex singularity times and the rolling-up motion of the vortex sheet.
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Figure 6. Distributions of complex singularity times in the neighbourhood of the real-time axis

for various δ.

Figure 7. Position of the complex singularity times that are the nearest to the real-time axis when

δ = 0.1. They are located at the tips of the band region.

3.2 Behaviour of the distribution as δ → 0

We study how the distribution of the complex singularity times behaves when δ → 0.

Figure 6 shows distributions in the neighbourhood of the real-time axis for δ = 0.05, 0.075

and 0.1. While the distribution moves to the left, the width of the band regions gets

smaller as δ → 0.

To see how the band regions behave, we focus on two complex singularity times that

are the nearest to the real-time axis, located at the tips of the distribution; see Figure 7.
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Figure 8. Positions of the pair of the complex singularity times which are the nearest to the

real-time axis for δ = 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45 from the left.

They converge at the critical time tc of the Birkhoff–Rott equation in the real-time axis.

They are complex conjugate with each other because of the symmetry of the distribution.

We plot the two nearest complex singularity times in Figure 8 when δ decreases from

0.45 to 0. The pair of the nearest complex singularity times approach each other as δ

tends zero and then collide at the singularity time tc in the real-time axis. This means

that the entrance of the band region is blocked at tc. Hence, it is impossible to define an

analytic solution of the Bikhoff–Rott equation beyond tc by analytic continuation along

the real-time axis. This is why the solution of the Birkhoff–Rott equation blows up in

finite time, although the solution of the δ-equations is smooth for all time. Furthermore,

as for the another band regions, the widths of their entrances get smaller when δ tends to

zero and likewise close when δ is exactly zero. Consequently, no integration path starting

from the origin can enter the band regions, which means that the Birkhoff–Rott equation

cannot be analytically continued to the smooth rolling-up spiral not only along the real

time axis but also along any path in the complex-time domain.

4 Model of a rolling-up double branched spiral

We propose a simple model of a rolling-up double branched spiral. The model is based on

an observation of the rolling-up motion of the vortex sheet; the vorticity shifts to the centre

of the spiral and forms a high-vorticity region in the centre while the vortex sheet rolls

up. This is our model: for a given curve with the periodic boundary condition, we assume

that a point vortex is located in the middle of the curve and passive scalars are distributed

uniformly in the curve except of the centre. Since this model approximates the rolling-up

vortex sheet motion, the analysis of the model gives more information about the sturucture

of complex singularity times and its limiting behaviour of the vortex sheet problem.



Analytic continuation of the Birkhoff–Rott equation 47

Figure 9. (a) Numerical solution of the δ-equations for δ = 0.3. (b) Numerical solution of the

model equation for δ = 0.6. These evolutions look similar qualitatively except the size of the spiral.

4.1 Equation and its solution

We investigate a regularized equation of the passive scalars advected by the point vortex.

We assume that the point vortex is located at the origin and the passive scalars are

distributed in the segment [−0.5, 0.5) at the beginning. That is,

x(Γ , 0) = −0.5 + Γ , y(Γ , 0) = 0, (0 � Γ < 1, Γ � 0.5). (4.1)

Then, while the point vortex is steady for all time, the regularized equation of the passive

scalars at (x(Γ , t), y(Γ , t)) are described by

dx

dt
= −1

2

sinh 2πy

cosh 2πy − cos 2πx + δ2
,

dy

dt
=

1

2

sin 2πx

cosh 2πy − cos 2πx + δ2
, (4.2)

whose initial conditions are given by (4.1). We compare evolutions of the passive scalars

and the vortex sheet. Figure 9 shows a numerical solution of the vortex sheet from t= 1.2

when δ = 0.3 and that of the passive scalars from t= 0.4 when δ = 0.6. Although the

starting times of these evolutions are different, the time interval between each figures are

the same and the winding number of the spirals looks similar. The comparison tells us

that the model approximates qualitatively the evolution of the rolling-up motion of the

vortex sheet when δ is chosen properly.

Another advantage in considering the model equation is that it can be solved explicitly.

The denominator of the right-hand side of the equations (4.2), which is denoted by
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Kδ(Γ , t), is invariant in time because dKδ

dt
= 0. Hence, we define Kδ by

Kδ(Γ , t) =Kδ(Γ , 0) = 2(1 + cos 2πΓ + δ2) ≡ Kδ(Γ ).

Introducing a new time variable τ= 2πt
Kδ (Γ )

and space variables X = sin 2πx, Y =

cos 2πx, P = sinh 2πy and Q= cosh 2πy, we rewrite the equation (4.2) as follows:

dY

dτ
=XP ,

dQ

dτ
=XP . (4.3)

Initial conditions of the variables are X(Γ , 0) = − sin 2πΓ , Y (Γ , 0) = − cos 2πΓ ,

P (Γ , 0) = 0 and Q(Γ , 0) = 1, respectively. It follows from (4.3) that Y − Q is independent

of τ. Accordingly, we also define an another invariant, A(Γ ), by

Y (Γ , τ) − Q(Γ , τ) =Y (Γ , 0) − Q(Γ , 0) = −(1+ cos 2πΓ ) ≡ A(Γ ).

We obtain Y (Γ , τ) =Q(Γ , τ) + A(Γ ). Note that since 0 � Γ < 1 and Γ � 0.5, −2 �
A(Γ ) < 0. On the other hand, there are relations between the space variables; X2 +Y 2 = 1

and Q2 − P 2 = 1. Substituting them into (4.3), we obtain the equation only for Q:

(
dQ

dτ

)2

= −(1 − (Q + A)2) (1 − Q2). (4.4)

The solution of this equation is an elliptic function. If we put Q= 1
Q1

+ 1, then (4.4)

becomes (
dQ1

dτ

)2

= −2A(A + 2)Q3
1 − (A2 + 6A + 4)Q2

1 − 2(A + 2)Q1 − 1,

the solution of which is

Q1(A, τ) = − 2

A(A + 2)

(
℘(τ) +

A2 + 6A + 4

12

)
.

The function ℘(τ) is Weierstrass’s elliptic function, which is an elliptic function with index

two. Since τ= 2πt
Kδ

and Kδ(Γ ) = 2(δ2 −A(Γ )), the function Q is given explicitly as a function

of A and t by

Q(A, t) = 1 − 6A(A + 2)

12℘
(

πt
δ2−A

)
+ A2 + 6A + 4

.

The explicit representation of the solution Q makes us possible to consider complex

singularity times of Q, which satisfy the following equation:

12℘

(
πt

δ2 − A

)
+ (A2 + 6A + 4) = 0. (4.5)

According to the properties of ℘ function, for fixed δ � 0 and A � 0, there are two

solutions of (4.5) in a fundamental period-parallelogram of the ℘-function, which are

symmetric with respect to the pole. Furthermore, they are distributed doubly periodically

in whole complex-time plane. Hence, when solving the equation (4.5) for all A, we obtain

doubly periodic band-like sequences of the complex singularity times of Q. This explains
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qualitatively the numerical results in § 3 that the evolution of the rolling-up vortex sheet

is closely related to the doubly periodic band structure of the complex singularity times

in both the real-time and the imaginary-time directions.

4.2 Behaviour of the complex singularity times as δ → 0

We are interested in a singular behaviour such as collision of the complex singularity

times of the model as δ → 0. When A� 0 and δ = 0, the complex singularity times satisfy

the following equation:

12℘

(
−πt

A

)
+ (A2 + 6A + 4) = 0.

Although there are two solutions of this equation, they never collide. Hence, no singular

behaviour is observed in this case. Now, we consider behaviour of the complex singularity

times when A= 0. Since the function Q is undefined at A= 0, we define the function Q(0, t)

as the limit value of Q(A, t) when A → 0 for δ � 0, and then observe how the complex

singularity times behave as δ → 0.

• Continuity of Q at A= 0: As A → 0, Q(0, t) → 1 for all t. Hence, y(0.5, t) = 0 for all

time.

• First derivative of Q with respect to Γ at A= 0:

dQ

dΓ
=

dQ

dA
· dA

dΓ
=

dQ

dA
· 2π sin 2πΓ .

Substituting A= 0 into it, we obtain dQ
dΓ

(0, t) = 0 for all t.

• Second derivative of Q with respect to Γ at A= 0: Since

d2Q

dΓ 2
=

d2A

dΓ 2
· dQ

dA
+

d2Q

dA2
·
(

dA

dΓ

)2

,

the second derivative of Q at A= 0 is given by

d2Q

dΓ 2
(0, t) =

12π2

3℘
(

πt
δ2

)
+ 1

. (4.6)

Since Q(0, t) and its first derivative are constant for all time, it is the second derivative of

Q that can show singular behaviour when δ → 0. Hence, we study the complex singularity

times of the second derivative. First, we consider an equation for complex τ:

℘(τ) = −1

3
.

There are two symmetric solutions in a fundamental period-parallelogram, which are

distributed doubly periodically in the complex τ-plane. Then mapping these complex

singularity times into the complex t-plane by the scaling relation between t and τ, i.e.

τ= πt
δ2 , we find that the complex singularity times as well as the period-parallelogram

contracts to the origin in complex t-plane when δ tends to zero. Hence, when δ is exactly
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Figure 10. Evolution of the second derivative of Q with respect to Γ at A= 0 (Γ = 0.5).

(Upper): Plot for the model spiral (δ = 0.3). (Lower): Plot for the vortex sheet (δ = 0.1).

zero, all the complex singularity times with A= 0 concentrate into the origin, which is a

quite singular behaviour.

We verify that the quadratic contracting behaviour is observed in the vortex sheet

motion. Figure 10 shows the second derivative of the model (δ = 0.3) and of the vortex

sheet (δ = 0.1). While the second derivative of the model just changes periodically, that of

the vortex sheet increases at the beginning, then decreases, and finally begins oscillating

at t ≈ 0.7, after which the vortex sheet rolls up. These figures indicate that the model

approximates the rolling-up motion of the vortex sheet only after t ≈ 0.7. Here, we pay

attention to the wavelength of the second derivative while the vortex sheet rolls up. This is

because the wavelength corresponds to one of the periods of the doubly periodic function

(4.6). Figure 11 shows the periods of the second derivative of the model (× marks) and

of the vortex sheet (+ marks) for various δ. Dotted lines in the figure are computed by a

least-squares fit to these data. The period of the model decreases as δ2. As for the period

of the vortex sheet, we fit the data to three types of functions: (a) a1δ
3 + a2δ

2 + a3δ + a4,

(b) b1δ
2 + b2δ + b3 and (c) c1δ

2 + c2δ. Table 1 shows these fitting functions and their

least square errors. The least square fit (a) indicates that the period of the vortex sheet

decreases like a quadratic function rather than a cubic function. This agrees with the
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Table 1. The fitting functions to the data of periods of the second derivative of Q for the

vortex sheet obtained by the least square s method and errors

Type Fitted function Error

(a) −0.0001δ3 + 1.0579δ2 + 0.8346δ + 0.0034 9.658e-06

(b) 1.0273δ2 + 0.8578δ + 0.0001 1.037e-05

(c) 1.0252δ2 + 0.8389δ 1.037e-05

model. Then, since the least square errors of the fits (b) and (c) become the same order,

it is impossible to determine which fit is appropriate for the data. However, the periods

approach to almost zero when δ → 0 as that of the model does.

4.3 On a solution of the Birkhoff–Rott equation beyond the singularity time

The period of the second derivative of Q when δ = 0 suggests how a solution of the

Birkhoff–Rott equation looks beyond the singularity time: the second derivative of Q at

A= 0 is equivalent to square of the first derivative of y at the centre of the spiral, namely

d2Q

dΓ 2
(0, t) =

(
d

dΓ

)2

cosh 2πy(Γ , t)

∣∣∣∣∣
Γ =0.5

=

(
2π

dy

dΓ
(0, t)

)2

.

Therefore, the periodic behaviour of the second derivative indicates that the y-component

of the tangent vector to the doubly branched spiral at the centre changes periodically,

which represents the rotation of the spiral. Furthermore, the period corresponds to how

fast the doubly branched spiral rotates. That means, the smaller the period becomes, the
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faster the spiral rotates. According to the fit to the period of the second derivative of the

model in Figure 11, the period becomes zero when δ = 0, which means that the spiral

rotates with infinite speed. On the other hand, since the period of the vortex sheet almost

tends to zero as δ goes to zero, the solution of the regularized Birkhoff–Rott equation

approaches to a doubly branched spiral with very large (or possibly infinite) windings.

In the present numerical computation, it is hard to decide whether these quantities are

exactly zero when δ = 0 because it is hard to resolve the data by the fit more accurately

than the accuracy of the numerical computation. However, both quantities are very close

to zero when δ = 0, which supports that a doubly branched spiral with infinite windings

is the solution of the Birkhoff–Rott equation beyond the singularity time.

5 Conclusions and discussions

We investigated numerically complex singularity times when a solution of the δ-equations

lost its analyticity by regarding time variable as complex number. We gave distribution

of the complex singularity times in complex-time plane, according to which they are

distributed on the band like sequence that are doubly periodically in the imaginary-time

and the real-time directions, while the vortex sheet is rolling up. Since the real-time axis

is put between the structure, we define an analytic solution of the δ-equations by analytic

continuation. This is why numerical solutions of the δ-equations is smooth for all time.

We also pointed out a relation between the doubly periodic band-like structure of the

complex singularity times and the rolling-up motion of the vortex sheet.

Then, we studied the behaviour of the distribution as δ approaches zero. The width of

the band regions are getting smaller. When we observe carefully the complex singularity

times that are the nearest to the real-time axis, they get closer to each other and collide

at the singularity time of the Birkhoff–Rott equation when δ = 0. That means that the

entrance of the band region is blocked at t= tc. Therefore, we can define no analytic

solution of the Birkhoff–Rott equation beyond tc into the band region by analytic

continuation along the real-time axis. This is the reason why the solution of the Birkhoff–

Rott equation blows up in finite time, although the solution of the δ-equations is smooth

for all time. In addition, since the entrances of the other band regions close as well, it

is impossible to continue analytically the Birkhoff–Rott equation to smooth rolling-up

solutions of the δ-equations in the complex-time domain.

We proposed a simple model that describes a rolling-up doubly branched spiral. The

model approximates the motion of the regularized vortex sheet qualitatively well after

it begins rolling up. It explains the relation between the doubly periodic band structure

of complex singularity times and the rolling-up doubly branched spiral. Comparison of

the limiting behaviour of the complex singularity times of the vortex sheet with that

of the model when δ → 0 implies that the solution of the regularized Birkhoff–Rott

equation tends to the doubly branched spiral with infinite windings. Finally, let us note

that the model explains the motion of the regularized vortex sheet well only during the

intermediate time interval when the doubly branched vortex sheet is simply rotating. The

model can’t reveal both the initial evolution of the vortex sheet before it begins rolling

up and a long-time evolution like what Sakajo & Okamoto [16] computed.
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