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ULTIMATE STATE OF THIN-WALLED HOLLOW CIRCULAR STEEL 
COLUMNS SUBJECTED TO BI-DIRECTIONAL HORIZONTAL SEISMIC 

FORCES AND TRI-DIRECTIONAL SEISMIC MOMENTS 

M. Assad. ALAMIRI 1*†, Yoshiaki. GOTO2 

1Department of Civil Engineering, Nagoya Institute of Technology, Japan 
2Department of Civil Engineering, Nagoya Institute of Technology, Japan 

ABSTRACT 
Torsional moment acts at the top of columns of bridge piers, when elevated curved girder bridges or 
elevated girder bridges supported by inverted L-shaped bridge piers are subjected to seismic 
accelerations. Therefore, to evaluate the safety of the bridge piers in the above types of bridges, it is 
essential to consider the effect of the torsional moment on piers. Herein, focusing on the effect of 
the torsional moment, versatile interaction surface expressed in terms of bi-directional horizontal 
seismic force and tri-directional seismic moment components is derived by the so-called pushover 
analysis to express the ultimate state of thin-walled hollow circular steel columns. The accuracy and 
validity of the derived ultimate interaction surface is examined by carrying out nonlinear dynamic 
response analysis on inverted L-shaped bridge pier models under variously factored bi-directional 
horizontal seismic acceleration components. As a result, it is observed that the derived ultimate 
interaction surface well predict the ultimate state of the pier models although it is a little 
conservative. 

Keywords: Steel piers, Torsional moment, Limit State, Seismic design, Nonlinear Analysis.  

1. INTRODUCTION  
 The elevated girder bridge piers are normally subjected to 3D components of seismic accelerations. 
However, our recent research (Goto and Ebisawa 2010) revealed that the coupling of two horizontal 
seismic acceleration components has a significant impact on the ultimate behaviors of elevated 
girder bridge piers. Therefore, to ensure their safety, it is essential to examine the ultimate behavior 
of bridge piers under bi-directional seismic accelerations and specify their ultimate state. For this 
purpose, authors (Obata and Goto 2007) first developed an accurate 3D loading system as well as a 
rigorous finite element nonlinear shell analysis (Goto et al. 2006). By the use of these tools, the 
ultimate behavior of thin-walled steel columns subjected to bi-directional horizontal seismic 
accelerations is extensively studied (Goto et al. 2006; Goto el at. 2009) both analytically and 
experimentally. Based on these studies, an interaction surface expressed in terms of bi-directional 
horizontal force components and bi-axial bending moment components acting at the top of 
thin-walled steel columns was derived to express the ultimate state of bridge piers (Goto el at. 2009; 
Goto and Ebisawa 2010). However, seismic accelerations induce torsional moment at the top of the 
columns of elevated curved girder bridge piers or the columns of inverted L-shaped bridge piers, as 
shown in Figure 1. Therefore, as a versatile interaction equation to predict the ultimate state of 
columns used for bridge piers, it is important to consider the effect of the torsional moment 
component in addition to that of bi-directional horizontal force components and bi-axial bending 
moment components. Gao et al. (2000) presented a formula to predict the ultimate states of inverted 
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L-shaped piers under out-of-plane horizontal loading where torsional moment acts at the top of the 
piers. However, this formula is only applicable to a specific case of the inverted L-shaped piers 
where an out-of-plane horizontal seismic force and a dead load act at a single point on the cross 
beam. 

 Herein, in order to derive the aforementioned versatile interaction equation of thin-walled circular 
steel columns used for bridge piers, the existing ultimate interaction surface (Goto and Ebisawa 
2010) for the columns under bi-directional horizontal force components and bi-axial bending 
moment components is modified to take into account the effect of torsional moment component. 
The thin-walled circular steel columns considered herein have the radius-to-thickness parameter in 
the range of  20.04 ( / )( / ) 3(1 ) 0.12ytR R t Eσ ν≤ = − ≤  . 

2. ULTIMATE STATE UNDER BI-DIRECTIONAL HORIZONTAL SEISMIC 
ACCELERATIONS 

2.1. Ultimate State of Thin-walled Steel Columns 
 The conventional Japanese highway bridge design code (Japan Road Association 2012a) stipulates 
that the thin-walled steel column reaches its ultimate state at the limit point of the horizontal force 
vs. horizontal displacement curve. This criterion is reasonable both from theoretical and engineering 
viewpoints because the limit point is theoretically a transition point from stable to unstable state. 
Furthermore, the thin-walled columns used as bridge piers normally reach this point due to 
plastification together with the local buckling (Goto et al. 2006; Goto el at. 2009). This implies that 
the limit point is an initiation point of serious damage that may be considered as an ultimate state of 
thin-walled steel columns from engineering viewpoint. Under the seismic loads, even if a column 
temporarily falls into instability state, it can regain its stability after the major seismic acceleration 
is over. However, once column deforms beyond the limit point, the damage of column is likely to 
be evident. Herein, the initial transition point from stability state to instability state that is identified 
by the multi-dimensional elastic-plastic stability criterion (Hill 1958; Goto et al. 2009) is defined as 
the ultimate state of thin-walled steel columns under bi-directional horizontal force components, 
bi-axial bending moment components, and torsional moment component. As is well known, the 
static stability criterion cannot identify the occurrence of some types of dynamic instability 
phenomena. In these cases, however, if sway displacement increases large enough to inflict 
damages on columns, these columns will reach an instability state that can be identified by the static 
stability criterion. 

2.2. Stability Criterion of Thin-walled Steel Columns under Bi-directional Horizontal Force, 
Bi-axial Bending Moment and Torsional Moment 

 The stability criterion of multi-dimensional elastic-plastic static theory (Hill 1958) generally 
classifies the equilibrium state of columns as stable, critical and unstable according to whether the 
2nd order of work 2W∆ given by equation (1) is positive, zero or negative, respectively. 

 In our previous research (Goto and Ebisawa 2010), the stability criterion was shown for the case 
where bi-directional horizontal force components ( ),x yF F

 
and bi-axial bending moment 

components ( ),x yM M  act at the top of columns. In the present case, the effect of torsional 

moment zM has to be added. As a result, the 2nd order of work used for the stability criterion is 
expressed as 

2 ( ) / 2x x y y x x y y z zW F u F u M M Mθ θ θ∆ = ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆   (1) 
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where ( ),x yu u∆ ∆ and ( ), ,x y zθ θ θ∆ ∆ ∆ denote arbitrary small incremental components of 
bi-directional horizontal displacement components and rotational components around 3 orthogonal 
coordinate axes ( ), ,x y z from an equilibrium state.  ( ),x yF F∆ ∆ , ( ),x yM M∆ ∆ and zM∆  denote the 
resulting increments of bi-directional horizontal force components, bi-axial bending moment 
components and torsional moment component acting at the top of a column. 

 Theoretically, the stability of equilibrium state has to be examined by equation (1) for all the 
possible increments of displacement and rotation components. Practically, however, it is difficult to 
cover all the possible increments. Herein, as an acceptable alternative, 2W∆ is examined following 
the response history of a pier (Goto et al. 2009). It must be noted that the zero-crossing point of 

2W∆
 
from positive to negative so evaluated yields only a sufficient condition for instability 

initiation point. However, considering that the safety check in the conventional seismic design is 
made on the basis of displacements or forces calculated following the response history of structures, 
the proposed evaluation method for 2W∆  may be justified at least within the framework of the 
conventional design method. 

3. ULTIMATE INTERACTION SURFACE UNDER BI-DIRECTIONAL HORIZONTAL 
FORCES, BI-AXIAL BENDING MOMENTS AND TORSIONAL MOMENT 

3.1. Definition of Ultimate Interaction Surface 

 As an alternative method to identify the ultimate state of thin-walled steel columns, it will be 
convenient in practical seismic design to express the ultimate state in terms of response force 
components or response displacement components acting at the top of the columns. This is because 
these physical quantities are easily obtained by seismic response analysis. According to our 
previous research (Goto et al. 2009), the ultimate state of columns expressed by displacement 
components is strongly influenced by response history, whereas the ultimate state expressed by 
force components is less influenced. Therefore, authors proposed to use the mechanical quantities 
such as seismic force and moment components at the top of columns to express the ultimate state of 
columns of bridge piers subjected to bi-directional horizontal seismic accelerations and derived a 
versatile multi-dimensional interaction surface defined in terms of these force and bending moment 
components by employing pushover analysis (Goto and Ebisawa 2010). This multi-dimensional 
surface is referred to as an ultimate interaction surface. From numerical analysis together with 
shaking table test, it was confirmed that columns exhibit instability behavior after the response 
force components and moment components nearly touches the ultimate interaction surface (Goto et 
al. 2009; Goto and Ebisawa 2010). 

 Considering the accuracy and validity of the abovementioned ultimate interaction surface, the 
ultimate interaction surface of circular thin-walled steel columns with the effect of torsional 
moment is herein derived by modifying the existing ultimate interaction surface that considers the 
effect of bi-directional horizontal force components and bi-axial bending moment components 
(Goto and Ebisawa 2010). 

3.2. Ultimate Interaction Surface under Bi-directional Horizontal Forces and Bi-axial 
Bending Moments 

 The existing ultimate interaction surface of thin-walled circular columns under bi-directional 
horizontal force and bi-axial bending moment components (Goto and Ebisawa 2010) is expressed as  

22

1
eq eq

xu yu yu xu
P P
xu yu

F M h F M h

F F

⎛ ⎞⎛ ⎞+ −
+ =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                 (2) 
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where ( ),xu yuF F  and ( ),xu yuM M are the force and bending moment components at the top of a 
column when the column reaches the ultimate state. eqh is the equivalent height. In the numerical 
analysis, thin-walled circular columns are observed to reach their ultimate state when the bending 
moment at the height of ( )eqh h−  becomes equal to the bending moment capacity of thin-walled 
cross section under constant compressive force P . P

xuF  and P
yuF   are the maximum horizontal 

forces calculated by the unidirectional pushover analyses in the x and y directions. If the columns 
are fabricated within an allowable geometrical tolerance specified in Japanese design code (Japan 
Road Association 2012b), P

xuF and P
yuF  can be considered to be approximately coincident with the 

maximum horizontal force P
uF for ideal piers without geometrical imperfection. Therefore, 

P P P
xu yu uF F F≈ ≈  is herein assumed. Empirically obtained formulas to calculate eqh  and P

uF  are 
shown elsewhere (Goto and Ebisawa 2010). 

3.3. Ultimate Interaction Surface under Bi-directional Horizontal Forces, Bi-axial Bending 
Moments and Torsional Moment 

Considering the circular cross section of a column, the shape of the interaction surface is rotational 
symmetry in terms of the axis that denotes the magnitude of the torsional moment. Therefore, the 
ultimate interaction surface of a thin-walled circular column under bi-directional horizontal forces, 
bi-axial bending moments and torsional moment shown in Figure 1 (b) can be expressed as  

2 2

1
eq eq

xu yu yu xu zu
P P P
u u zu

F M h F M h M

F F M

α β⎧ ⎫⎛ ⎞ ⎛ ⎞+ − ⎛ ⎞⎪ ⎪+ + =⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
      (3) 

where ( ),xu yuF F  , ( ),xu yuM M and zuM are the bi-directional force, bi-axial bending moment and 
torsional moment components acting at the top of a column when the column reaches the ultimate 
state. P

zuM denotes the maximum torsional moment obtained by monotonically increasing twisting 
rotation zθ  around z  axis at the top of a column under constant compressive force P . In order 
to stabilize the numerical analysis to calculate P

zuM , the small geometrical initial imperfection with 
1/ 500R R∆ = shown in Figure 3 (c) or (d) is considered. R R∆ =1/500 is specified by Japanese 

design code as an allowable tolerance (Japan Road Association 2012b). α  and β  are the 
curve-fitting constants. These constants are determined so that the interaction surface best fits the 
ultimate points obtained by pushover analyses that are carried out into various directions as shown 
in Figure 2. These limit points are identified by the stability criterion, equation (1). 

 For the ease of expression, total equivalent horizontal force components ( ),eq eq
x yF F  defined as 

( )eq eq
x x yF F M h= +  and ( )eq eq

y y xF F M h= −  are hereinafter used. 

4. VERIFICATION OF ULTIMATE INTERACTION SURFACE UNDER SEISMIC 
ACCELALATIONS 

4.1. Test Models 
The validity of the ultimate interaction surface given by equation (3) is examined by computing 

the ultimate seismic behavior of thin-walled circular bridge piers numerically. An inverted 
L-shaped pier shown in Figure 3 is adopted as a bridge pier model so that the seismic torsional 
moment acts at the top of the columns in addition to the bi-directional seismic force and bi-axial 
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bending moment components. In this model, elastic diaphragms with the thickness of 12mm are 
assumed to be installed to the internal hollow space of the circular column with an equal interval of 

3d R= . In the pier model, the column is discretized by four-node shell elements (S4R), while the 
cross beam with a concentrated mass of eccentric distance e  is expressed by rigid beam element 
(MPC). Two types of the inverted L-shaped pier models used in the analysis are summarized in 
Table 1. In these models, two kinds of eccentricity ratios are adopted. However, the 
radius-to-thickness ratio parameter tR , slenderness ratio parameter λ , diaphragm interval ratio 

/(2 )d R  and axial force ratio yP P  are the same. Most of these quantities are determined referring 
to the model used by Gao et al (2000). For the ease of obtaining the convergence of solution, two 
kinds of cross sectional geometrical imperfection modes with magnitude of 1/ 500R R∆ =  
illustrated in Figure 3(c) and (d) are considered for the respective column models. The curve-fitting 
constants of the ultimate interaction surface expressed by equation (3) are determined for the above 
column model as 0.569α =  and 4.371β = . 

 To calculate the ultimate seismic behavior of the pier models, the geometrically and materially 
nonlinear dynamic shell analysis with the three-surface cyclic metal plasticity constitutive model is 
carried out by the general purpose finite element software ABAQUS (2007). As input bi-directional 
horizontal seismic acceleration waves, variously factored NS and EW components of JRT observed 
during the 1995 Kobe earthquake are simultaneously applied to the directions of x and y  axes, 
respectively, defined in terms of the inverted L-shaped pier model shown in Figure 1. The factored 
bi-directional waves used for dynamic response analysis are created by multiplying the 
magnification factor C ranging from 0.1 to 1.0. 
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Figure 3: Analytical model of pier 

(a) Inverted L-shaped circular pier (b) Ideal 
circular cross section (c and d) Circular 
cross section with initial imperfection 
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Figure 2: Loading path to derive the 

ultimate interaction surface 

Table 1: Geometrical Properties of Pier Models
 

Pier model P2-e1 P2-e2 
e h  0.1 0.2 

1000( )R mm= ; 34( )t mm= ; 8520( )h mm= ; 200( )sh mm= ;
1000( )Mass ton= ; 1/ 500R R∆ = ± ; 3d R= ;  
0.15yP P = ; 2( ) ( ) 3(1 ) 0.074t yR R t Eσ υ= − = ; 

0.3y crA Pλ σ= =  



6 

 

4.2. Validity of Ultimate Interaction Surface under Bi-directional Seismic Accelerations  

First, it is investigated in terms of the seismic response inertia force components ( ),x yF F  and 

moment components ( ), ,x y zM M M  at the top of columns how columns of the inverted L-shaped 
piers reach instability state. For this purpose, trajectories of the response components of 

( )/ , / , /
P Peq eq P
u ux y z zuF F F F M M

 
are expressed in comparison with the ultimate interaction surface. 

As an example, the trajectories are illustrated in Figure 4 for the column of pier model P2-e2 under 
JRT×0.1 and JRT×1.0. In this figure, in order to show the 3D trajectories, the projections of the 

trajectories on 2 2 / , /
Peq eq P
ux y z zuF F F M M⎛ ⎞+⎜ ⎟

⎝ ⎠
and

( )( ) ( )( )1/(2 ) 1/(2 )

// ,
1 / 1 /

PP eqeq uu yuxu

P P
z zu z zu

F FF F

M M M M
α αβ β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎜ ⎟
⎝ ⎠

 

planes are shown in Figure 4. In Figure 4, the notations such as ( )( )1/(2 )

1 /
eq eq P
xu xu z zuF F M M

αβ
= −  

and ( )( )1/(2 )

1 /
eq eq P
yu yu z zuF F M M

αβ
= −  are used to simplify the expression. 

 As can be seen from Figure 4, when JRT×0.1 wave with small acceleration magnitude is applied, 
the trajectory is located inside the ultimate interaction surface and the column is stable. However, 
when JRT×1.0 wave with larger acceleration magnitude is applied, the outermost trajectory comes 
very close to the ultimate interaction surface and proceeds along the interaction surface, instead of 
penetrating the surface straightly. When the trajectory almost touches the ultimate interaction 
surface, the pier becomes unstable afterwards. This behavior is almost the same as that of a column 
subjected to bi-directional horizontal seismic force components ( ),x yF F , (Goto et al. 2009). 
Therefore, the validity of the ultimate interaction surface can be confirmed for the present case 
where the 3D seismic moment components ( ), ,x y zM M M  in addition to the bidirectional 

horizontal seismic force components ( ),x yF F acts at the top of the column. 

 Second, the accuracy of the interaction surface is examined for two types of inverted L-shaped pier 
models P2-e1 and P2-e2 with the different eccentricity ratios of 0.1e h =  and 0.2. These pier 
models are assumed to have two types of initial geometrical imperfection modes illustrated in 
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Figure 4: Trajectories of response force components and ultimate interaction surface 
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Figure 3(c) and (d) with magnitude of 1/ 500R R∆ = . The ultimate behaviors of these piers are 
calculated by applying bi-directional horizontal components of variously factored JRT waves. 
Magnification factors considered, herein, are C = 0.1, 0.4, 0.7, 0.8, 0.9 and 1.0. The accuracy of the 
ultimate interaction surface (equation (3)) is examined for the cases when instability occurs by 
comparing the maximum response points with the ultimate interaction surface. For this purpose, the 
quantity / uf fΣ Σ  defined by equation (4) is used. 

2 22 2 2 2eq eqeq eq
y yux xu zuz

P P P P P P
u u u zu u u zu

F Ff F F MM
f F F M F F M
Σ

Σ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (4) 

where eq
xuF , eq

yuF  and zuM are the quantities on the point of the ultimate interaction surface where 

the extended response vector ( )/ , / , /
P Peq eq P
u ux y z zuF F F F M M  intersects. fΣ  and ufΣ  are 

schematically shown in Figure 5. For the cases when instability occurs, the maximum response 
points of / uf fΣ Σ before the occurrence of the first instability are marked by filled circles in the 

space defined in terms of ( )/ , / , /
P Peq eq P
u ux y z zuF F F F M M  coordinates. On the other hand, when 

instability does not occur during the whole response history, the maximum response points of 
/ uf fΣ Σ are similarly marked by empty circles. The 3D distribution of the aforementioned maximum 

response points are expressed by the projections of these points on 
2 2 / , /

Peq eq P
ux y z zuF F F M M⎛ ⎞+⎜ ⎟

⎝ ⎠
plane and ( ),

eq P eq P
xu u yu uF F F F plane are shown in Figure 6. From 

Figure 6, it is observed that all the filled circles are located very close to the interaction surface and 
the empty circles are inside the interaction surface. Therefore, the interaction surface expressed by 
equation (3) well approximates in a conservative manner the ultimate states of columns under the 
coupling of the seismic response inertia force components ( ),x yF F  and moment components 

( ), ,x y zM M M  at their top. However, as can be seen from Figure 6, the response torsional moment 

ratio 
P
zuzM M is less than 0.2. In this range, the effect of the torsional moment on the ultimate 

behavior of columns is too small to verify the accuracy of the interaction surface in wider range. 
Therefore, it will be necessary to use inverted L-shaped pier models with larger eccentricity ratios 
that exceed 0.2 in order to examine the accuracy of the interaction surface extensively, although the 
piers with the eccentricity ratio 0.4e h ≥  are not common in practice. 

5. SUMMARY AND CONCLUSION 

 In the view of the importance to ensure the safety of thin-walled hollow circular steel columns 
under torsional moment in addition to the bi-directional horizontal seismic force and bi-axial 
bending moment components, a versatile interaction surface is derived by the so-called pushover 
analysis to specify the ultimate state of thin-walled bridge piers. This ultimate interaction surface is 
herein expressed in terms of the torsional moment component together with the bi-directional 
horizontal force components and the bi-axial bending moment components acting at the top of the 
column. The validity and accuracy of this ultimate interaction surface is examined by carrying out 
nonlinear dynamic response analysis on inverted L-shaped bridge pier models under variously 
factored bi-directional horizontal seismic acceleration components. As a result, it is demonstrated 
that the derived ultimate interaction surface well predicts the ultimate state of the pier models 
although it is a little conservative. However, the response torsional moment ratio / P

z zuM M  that 
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acts on the column of the inverted L-shaped pier models is a little too small to verify the accuracy 
of the interaction surface in a wider range. Therefore, in order to examine the accuracy of the 
interaction surface more extensively, it will be necessary to use inverted L-shaped pier models with 
extremely larger eccentricity ratios, although such piers are not common in practice. 
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Figure 5: Schematic explanation for fΣ  and ufΣ  
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