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EFFECT OF BASE ISOLATION ON SEISMIC FRAGILITY OF 
ABOVEGROUND LNG STORAGE TANKS 

T.-H. LEE1*, W.-S. CHOI2, and T.-S. HAN2† 

1Department of Civil Engineering, Konkuk University, Seoul, Korea 
2Department of Civil and Environmental Engineering, Yonsei University, Seoul, Korea 

ABSTRACT 

Fragility curves of base-isolated and non-isolated LNG storage tanks are developed to investigate 

the effect of the base isolation design to seismic performance of LNG storage tanks. A non-isolated 

LNG storage tank is selected and two base isolation designs with respect to acceleration and 

displacement criteria are applied to this tank. Nonlinear time history analyses of the fixed and two 

base-isolated models are performed for a suite of 20 ground motions scaled to have a specified PGA. 

Thresholds based on the crack strain at the base of the concrete tank wall defined the limit states for 

fragility curves. Finally, empirical fragility curves are fitted by lognormal CDF. Comparison of 

fragility curves of fixed and base-isolated tanks revealed that the base isolation considerably 

reduces the risk of damage under a specified level of earthquake. The identified performance 

demand will be later used for constructing tailor-made base isolation devices. 

Keywords: Base isolation, Seismic fragility, Failure probability, Limit state, LNG tank. 

1. INTRODUCTION 

Base isolation has been known to be one of the effective approaches for seismic hazard mitigation 

of infrastructural systems. As the tools for estimating the behavior of infrastructures under seismic 

loadings advances both experimentally and numerically, the accurate prediction of performance 

demand of the base isolation devices becomes possible. At the same time, using constantly 

improving technologies for constructing damping devised and adopting innovative materials, more 

fine-tuned base isolation devices can be provided for optimal performance of earthquake resistant 

infrastructures. 

Most researches on the seismic base isolation of infrastructures are focused on the development of 

effective base-isolators and optimization design of base-isolators (e.g. Marti et al. 2010) while only 

a few studies on the effect of the base-isolation to the seismic performance of infrastructures are 

found. The objective of this study is to investigate the effect of the base-isolation design of 

infrastructure to its seismic performance in terms of fragility functions. As an example 
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infrastructure, a liquefied natural gas (LNG) storage tank is selected because the base isolation is 

commonly used to protect LNG storage tanks from earthquakes. Seismic fragility curves of the 

non-isolated and base-isolated LNG storage tanks are developed and compared to each other. A 

suite of 20 different ground motions are adopted to consider uncertainty in the ground motion 

profile in order to develop fragility curves. 

2. BASE ISOLATION DESIGN OF LNG TANKS 

The purpose of the base-isolation design is to reduce the inertial force induced by ground 

accelerations by shifting the fundamental period of the non-isolated structure to a longer period. 

However, a structure with a longer fundamental period would experience a larger relative lateral 

displacement. Therefore, a base isolation design is usually controlled by a window of periods 

defined by an acceleration-induced and displacement-induced periods. 

2.1. Description of LNG Tank 

In this study, 140,000kL-capacity aboveground LNG storage tank is selected for example. A full 

containment tank consists of an inner steel tank and an outer concrete tank. The concrete outer tank 

protects the inner tank and the insulation from various outside hazards, and also prevents leakage of 

LNG when it is accidentally spilled or leaked from the inner tank. The inner tank is not considered 

in this study. The radius and wall height are 82.4m and 35.4m, respectively, and the height of the 

dome peak is 10.03m. This fixed (as opposed to base isolated) tank is seismically designed for the 

horizontal peak ground acceleration of 0.2g for a Safe Shutdown Earthquake (SSE). 

2.2. Selection of Base-Isolators 

The mechanical property of a base isolation system is commonly represented by a bi-linear 

force-displacement relation as shown in Figure 1. A base isolator is designed by properly defining 

the initial stiffness (Ku), the yield strength (Fy), and the hardening stiffness (Kd) to guarantee a 

desired performance of the superstructure. In this study, two different base isolation designs are 

considered; acceleration-based design and displacement-based design. The former is determined 

based on reduced acceleration demand and the latter is determined by the displacement limitation. 

2.3. Finite Element Modeling of LNG Storage Tanks 

To evaluate the dynamic behavior of the fixed and base-isolated LNG storage tanks, finite element 

models are developed within the capability of OpenSees, a software framework for earthquake 

engineering simulations. LNG storage tanks are often modeled by so-called ‘tuning-fork model’ 

(Haroun and Housner 1981) where the flexural and shear stiffness of the tank are modeled by frame 

elements and the mass is lumped at nodes. In the present study, only the concrete outer wall is 

modeled where the tank wall and the dome roof are modeled using elastic frame elements and the 

base-isolator is modeled using elastomericBearing element, explicitly designed to model a 

base-isolator in OpenSees. 
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this region when an earthquake occurs. In this study, the limit state based on the crack of the critical 

concrete section is considered. According to the literature (Hurlbut 1985), the tensile strain of 

125με causes the crack initiation in concrete sections. Therefore, the maximum axial strain of 125με 

at the critical section of the concrete tank wall is defined as the threshold of Damage State 2 (DS2). 

Damage State 1 is considered as no damage. Subsequently, Damage States 3, 4, and 5 (DS3, DS4, 

and DS5, respectively) are defined also by the maximum axial strain at the critical section, of 250με, 

375με, and 500με, respectively. It should be noted that limit states DS2 to DS5 denote minor, 

moderate, major, and complete damage. 

3.3. Fragility curves 

Fragility curves of the fixed, 3.5T, and 5.5T models with respect to four limit states, i.e., DS2 to 

DS5, are developed. Sample probability that the maximum axial strain exceeds the damage state for 

specified earthquake intensity is computed based on a set of 20 time-history analyses where the 

peak ground acceleration (PGA) is used as the measure of earthquake intensity. Sample 

probabilities are computed for a range of PGAs, i.e. from 0.01g to 5.0g with 0.01g interval. 

Empirical fragility curves are developed based on the sample probabilities where these curves are 

fitted by lognormal cumulative distribution functions (CDFs). A lognormal CDF is expressed as 

P ൌ Φቀ୪୬௉ீ஺ି୪୬௖
఍

ቁ (1) 

where c is the median and  is the standard deviation of the lognormal distribution. Parameters 

defining fragility curves are listed in Table 1 and fragility curves are shown in Figure 3. 

It is observed that the crack will not likely initiate when the design level earthquake (0.2g) occurs 

for all three tanks. Furthermore, the two base-isolated tanks will not experience any crack in the 

tank when an earthquake with PGA of 1.5g or less occurs. For DS2 limit state, the median values of 

the lognormal distribution for the fixed, 3.5T, and 5.5T models are computed as 0.66g, 4.70g, and 

10.0g, respectively, as shown in Table 1. It can be concluded that vulnerability of the LNG storage 

tank is greatly reduced by the base-isolation design. A large displacement demand of a higher PGA 

is taken care of by the base isolator while relative displacements of the LNG tanks are kept small.  

Table 1: Parameters of fragility curves. 

Parameter 
Fixed model 3.5T model 5.5T model

DS2 DS3 DS4 DS5 DS2 DS3 DS2 
c 0.66 1.22 1.81 3.7 4.70 8.00 10.0 
 0.26 0.26 0.27 0.28 0.35 0.37 0.40 
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