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STABILITY DIAGRAM AIDED MULTIVARIATE AR ANALYSIS FOR 
IDENTIFYING THE MODAL PARAMETERS OF A STEEL TRUSS 

BRIDGE SUBJECTED TO ARTIFICIAL DAMAGE 

K.C. Chang1*, C.W. Kim1†, and S. Kitauchi1 

1 Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 615-8540, Japan 

ABSTRACT 

This study is intended to investigate the validity of the stability diagram (SD) aided multivariate 

autoregressive (MAR) analysis for identifying modal parameters of a real truss bridge subjected to 

two artificial damage scenarios. The MAR models are adopted to fit the time series of the dynamic 

accelerations recorded from a number of observation points on the bridge; then the modal 

parameters are extracted from the MAR model coefficient matrix. The SD is adopted to determine 

physically meaningful modes. Furthermore, in plotting the SD, a number of stability criteria are 

further adopted for filtering out those modes with unstable modal parameters. The first five modal 

frequencies and mode shapes are identified with very high precision, while the damping ratios are 

identified with acceptably high precision for the 1st mode but with less precision for higher modes. 

It is observed that those modal parameters changed due to the artificial damage. Moreover, the 

ability of the SD in selecting structural modes without getting involved in any model-order 

optimization problem is highlighted through a comparison study. 

Keywords: automatic mode selection; system identification; field dynamic experiment; damage 

detection. 

1. INTRODUCTION 

The modal frequencies, damping ratios and mode shapes of a bridge are important parameters in 

realizing its dynamic characteristics, which have served as useful indices in many applications such 

as the structural health monitoring (SHM) [Doebling et al. 1998; Carden and Fanning 2004], model 

updating [Mottershead and Friswell 1993] and vibration control. To identify the modal parameters, 

multivariate autoregressive (MAR) models can be adopted to fit the time series of the dynamic 

responses recorded from a number of observation points on the bridge [Ljung 1999]; then the modal 

parameters are extracted from the MAR model coefficients.  

An open problem for real world application in SHM is how to determine physically meaningful 

modes efficiently and accurately. One way to determine physically meaningful modes is aided by 
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the stability diagram (SD) [Allemang and Brown 2010], which is known as a model order vs. 

eigenfrequency diagram covering a wide range of model order. It is believed that a physically 

meaningful mode may stably yield close eigenfrequencies while the model order is over-specified 

and therefore display a nearly vertical line in the SD, but the spurious ones may not. Applying such 

a mode-selection approach avoids the tough task in model-order selection. Although an optimal 

model order can be determined by certain existing criteria, it may offer more than physical modes. 

This feature is demonstrated in a comparison study in this 

paper. 

Furthermore, in plotting the SD, a number of stability criteria 

are further adopted for filtering out the modes with unstable 

dynamic parameters: only the modes with their identified 

modal parameters close (within a pre-defined tolerance) to 

those of several adjacent model orders are identified as stable 

and thus retained.  

This study investigates the validity of the SD aided MAR 

analysis for identifying modal parameters of a real truss 

bridge subjected to different damage scenarios. Within this 

scope, firstly the algorithm of modal-parameter identification 

is given, followed by a brief description on the field dynamic 

experiment. Then the modal parameters of the bridge are 

identified by the present analysis method, with focus on their 

identification precision, feature in physical-mode selection, 

and the changes due to the artificial damage.   

2. ALGORITHM OF MODAL-PARAMETER IDENTIFICATION 

Given a set of discrete time series X(n)={x1(n), x2(n), …, xk(n)}T of length N (n= 1, 2, …, N) 

measured at k observation points on the bridge, the algorithm for identifying the modal parameters 

of the bridge can be illustrated as in Figure 1 and briefly described as follows.   

2.1. Multivariate Autoregressive (MAR) Analysis 

In the first step (ST1), fit X(n) with MAR models with respect to (w.r.t.) a wide range of model 

order. For each model order, modal parameters, including modal frequencies f’s, modal damping 

ratios ξ’s, and mode shapes φ’s, can be calculated from the estimated coefficients of MAR model. A 

brief operational algorithm of such an MAR analysis is given as follows, while more details are 

available in many other works (e.g. Huang 2001; Kim et al. 2012). 

The time series X(n) can be fitted with an MAR model of order M as 

MAR analysis w.r.t. 
model order

Bridge vibrations induced 
by a passing vehicle

Stability criteria

Stability diagram

Identifying statistically 
dominant modes

Structural modes 
 f, ξ, φ

(IP)

(ST1)

(ST2)

(ST3)

(OP1)

(OP2)

(STn: step n; IP: input; OPn: output n)

Modal parameters

(OP3)

Figure 1: Flow chart. 
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where A(m) denotes the m-th AR coefficient matrix and U(n) the white-noise vector. To estimate 

the model coefficients, one can utilize the Yule-Walker equation, which is expressed as  

GT1 = T2 , (2) 

with  (1), (2),..., ( )G A A A M ,  2 (1), (2), , ( )T R R R q   , (2a, b) 
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where R(r) is the covariance matrix with time lag r (r= 1, 2, …, q). The maximum time lag q should 

be selected greater than k×M. The matrix G, assembled by the 1st to M-th AR coefficient matrices, 

can be solved using pseudo-inverse technique as  

G = (T2T1
T)(T1T1

T)-1 . (3) 

After obtaining M coefficient matrices (from G), one can assemble the observable transformed 

system matrix S as follows 
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The complex conjugated pairs of eigenvalues μ’s and μ*’s of S have been proved to relate to ω’s 

(=2πfi) and ξ’s as (taken the i-th eigenvalue conjugates μi and μi
* for example) 

  * 2, exp 1i i i i i ij t         , (5) 

where Δt is the sampling time interval and j the imaginary unit; with equation (5), ωi’s and ξi’s can 

be solved. As for the corresponding eigenvectors vi’s of S, they are exactly φi’s.  

2.2. Stability Criteria 

In the second step (ST2), apply the following stability criteria on all the modes to filter out unstable 

modes. Supposed that the modal frequency fm, damping ratio ξm, and mode shape φm, of MAR order 

m have been obtained, they are regarded as locally stable if they satisfy the following stability 

criteria: 1) for fm, fm+p - fε < fm < fm+p + fε ; 2) for ξm, ξm+p - ξε < ξm < ξm+p + ξε ; 3) for φm, MACl < 

MAC(m,m+p) ; p = -ps, …, -1, 1,…, ps, where ps is a pre-selected number of MAR order to be 

evaluated, fε a pre-selected frequency deviation tolerance, ξε a pre-selected damping deviation 
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tolerance, MAC(m,m+p) is the modal assurance criteria (MAC) between φm and φm+p , and MACl is a 

pre-selected MAC lower bound. Herein, those parameters are adopted empirically as fε = 0.1 Hz, ξε 

= 1%, MACl = 0.95, and ps = 3. A mode with locally stable modal frequency, damping ratio, and 

mode shape is called a locally stable mode.  

2.3. Stability Diagram (SD) 

Plotting those frequencies of locally stable modes versus model order yields a SD. It has been 

observed that meaningful structural-modes show nearly the same frequency value when the model 

order is over-specified, but the spurious modes do not (Reynders et al. 2012). The statement may 

also be true for the damping ratios and mode shapes. 

Based on the above statements, the structural modes can be identified in the third step (ST3) in a 

statistical manner: the modes appearing frequently throughout a wide range of model order, i.e., the 

statistically dominant modes, are identified as structural modes. The modal parameters such 

identified are expressed in terms of their means, i.e., the mean frequencies, mean damping ratios, 

and mean mode shapes, of the corresponding locally stable modes. For simplification, the term 

“mean” is omitted hereinafter.  

With the aid of SD, one can identify the modal parameters without getting involved in any 

model-order optimization problem. On the other hand, without the aid of SD, one has to select a 

proper model order so that the time series are well fitted. Several criteria may help in selecting an 

optimal model order, with which the estimated information loss is minimized while a certain 

large-order penalty is introduced, from a number of candidate model orders. This study adopts the 

Akaike information criterion (AIC) (Akaike 1974), defined as AIC = -2(ML) + 2(NP), where ML 

denotes the maximum logarithm likelihood and NP the number of independently adjusted 

parameters within the model. For a MAR model of order M, ML can be expressed as ML= 

-(klog(2π) + log|VM| + k) × N/2, where VM is the cross-covariance matrix of the estimated residual, 

and NP as NP= Mk2+k(k+1)/2, leading the AIC to the following expression AICM = Nklog(2π) + 

Nlog|VM| + Nk + 2Mk2 + k(k+1). Among a number of candidate model orders, the one that yields the 

minimum AIC value is selected as the optimal model order Mo.  

Although, with the aid of AIC, the optimal model can be determined, not all the identified modal 

parameters based on such a model are physically meaningful. Some of the estimated coefficients of 

the model are merely for a better fitting of the mathematical model to the real time series; some of 

them are related to the structural modal parameters of engineers’ interest. The AIC offers no clue on 

deciding physically meaningful modes, which will be illustrated below.  

3. EXPERIMENT DESCRIPTION 

The experiment bridge was a simply-supported through-type steel Warren truss bridge, as shown in 

Figure 2(a). It was 59.2 m in span length, 8.2 m in maximum height, and 3.6 m in width, designed 
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for single lane. During the experiment, the bridge had been closed to traffic, and therefore no 

vehicles besides an experiment vehicle were allowed. Eight uni-axial accelerometers were installed 

vertically on the experiment bridge, five at the damage side (A1-A5) and three at the opposite side 

(A6-A8). The sampling frequency was set as 200 Hz for all sensors. 

(a)
  8@7400= 59200 mm  

P1 P2

A1 A2 A3 A4 A5

A6 A7 A8

DMG1
DMG2

Passing direction

Ai: Accelerometer No. i (Vert.)
DMGi: damage scenario i
Pi: Pier No.i 

  (b)
INT DMG1

Half 
cut

Full 
cut

DMG2
 

Figure 2: Sketch of (a) experiment bridge and sensor layout; (b) artificial damage. 

 

Three scenarios are considered in this study, as sketched in Figure 2(b). Initially, the INT scenario 

denotes the intact bridge with no artificial damage. Then, two damage scenarios were applied 

consecutively. The first damage (DMG1) denotes a half cut applied by a cutting torch in the vertical 

member at the mid-span; the second damage (DMG2) denotes a full cut applied in the same 

member. Those applied cuts were designed to imitate real damage patterns that had been inspected 

previously, probably caused by corrosion or overloading.  

A moving vehicle experiment was performed on the experiment bridge. During the experiment, the 

bridge was travelled by the experiment vehicle, which was a two-axle commercial van of 21kN in 

weight, and the bridge vertical acceleration responses were measured by the accelerometers. In this 

study, taken for analysis were 30-sec free-vibration (FrV) intervals about 5 seconds after the vehicle 

exited the bridge. A 5-sec spacing was adopted for securing the bridge responses fully free from 

vehicle-bridge interactions, although theoretically the bridge shows FrV just after the vehicle leaves 

the bridge. 

4. EXPERIMENT RESULTS AND DISCUSSIONS 

4.1. Identified Modal Parameters and Their Precision 

To illustrate the algorithm of SD aided MAR analysis and its ability in choosing physically 

meaningful modes, Run 1 of the INT scenario is considered for example. Performing the MAR 

analysis on the bridge FrVs measured with all eight sensors and then applying stability criteria to 

every candidate mode, one can plot a SD with modes of locally stable frequency, damping ratio, 

and mode shape, as shown in Figure 3(a), or a SD with locally stable modes, as shown in Figure 

3(b). From the SD, the structural modes, i.e., the statistically dominant modes that appear steadily 
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throughout a wide range of model order, can be identified, as those marked in Figure 3(b) in vertical 

green virtual lines. In this example, the modal parameters thus identified are given in Figure 4.  

(a) (b)  

Figure 3: Stability diagram of intact bridge with (a) modes of locally stable frequency, 

damping ratio, and mode shape; and (b) stable modes. 

 

Figure 4: Modal parameters of intact bridge of the 1st to 5th (left to right) modes  

(solid line: A1-A5 side; dashed line: A6-A8 side). 

 

Table 1: Identified modal frequencies (f, Hz) and damping ratios (ξ) of the first five modes 

along with their statistical properties. 

  INT DMG1 DMG2    INT DMG1 DMG2  INT DMG1 DMG2
 No. 5/5 12/12 10/10   No. 5/5 12/12 9/10 No. 5/5 12/12 10/10
 M 2.975 2.976 2.885   M 6.872 6.887 6.876 M 9.608 9.685 9.663

f1 STD 0.001 0.002 0.001  f2 STD 0.002 0.003 0.002 f3 STD 0.005 0.007 0.002
 CV 0.05% 0.05% 0.04%   CV 0.03% 0.04% 0.03% CV 0.05% 0.07% 0.02%
 M 0.0032 0.0029 0.0032   M 0.0028 0.0029 0.0033 M 0.0036 0.0030 0.0027
ξ1 STD 0.0001 0.0001 0.0001  ξ2 STD 0.0003 0.0005 0.0004 ξ3 STD 0.0004 0.0005 0.0002
 CV 0.05% 3.96% 2.25%   CV 9.46% 17.24% 11.75% CV 11.52% 16.69% 8.18%

 
  INT DMG1 DMG2    INT DMG1 DMG2  
 No. 4/5 11/12 9/10   No. 4/5 5/12 6/10  
 M 10.559 10.594 10.568   M 13.418 13.494 13.461  

f4 STD 0.005  0.015 0.004   f5 STD 0.004 0.015 0.008 Note 
 CV 0.04% 0.14% 0.04%   CV 0.03% 0.11% 0.06% No.: number of runs (success/total) 
 M 0.0063 0.0055 0.0046   M 0.0044 0.0059 0.0055 M: mean 
ξ4 STD 0.0027 0.0026 0.0013  ξ5 STD 0.0011 0.0015 0.0018 STD: standard deviation 
 CV 42.18% 46.71% 29.53%   CV 25.41% 26.27% 32.64% CV: coefficient of variance 
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Following the same procedure, the modal parameters can be identified for all runs of all scenarios. 

Table 1 summarizes the number (No.) of successful runs and the mean (M), standard deviation 

(STD), and coefficient of variance (CV) of the identified modal frequencies and damping ratios of 

the first five modes for all scenarios. In most runs, the 1st to 3rd modes are successfully identified, 

but the 4th and 5th modes are identified successfully in less runs. For the modal frequencies, they 

are identified with very high precision, with CV smaller than 0.2% for all modes and all scenarios. 

For the damping ratios, they are identified with acceptably high precision (CV smaller than 4%) for 

the 1st mode, with lower precision (CV up to 17%) for the 2nd and 3rd modes, and with poor 

precision (CV up to 46%) for the 4th and 5th modes. As for the mode shapes, those in the same 

scenario are almost identical, despite no relevant statistical property given herein for brevity.  

Table 2: Number of non-structural modes identified with the aid of SD and AIC.  

 Number of non-structural modes Remark: 
Run SD AIC optimal order 

1 0 4 5 
2 1 9 8 
3 1 9 8 
4 0 14 16 
5 0 8 7 

4.2. Comparison Study: Stability Diagram vs. Optimal Model Order 

As has been mentioned in Sec. 2.3, with the aid of SD, one can identify the modal parameters 

without getting involved in any model-order optimization problem. Without the aid of SD, one has 

to select an optimal model order with the aid of a certain information criteria, e.g. the AIC herein, 

so that the time series are well fitted. However, a mathematically well-fitted model generally offers 

more than structural modes. Such a feature can be illustrated in Table 2, which compares the 

numbers of modes besides the above five structural modes obtained with the aid of AIC to SD. For 

brevity, only the results in INT scenario are given, but those in other scenarios show the same 

feature as well; for discrimination, the modes besides the above five structural modes are called 

non-structural modes, even though some of them might be related to true structural modes but not 

included above.  

In Table 2, SD always offer few non-structural modes, e.g. at most 1 for Runs 2 and 3, verifying its 

validity in filtering out non-structural modes. Contrarily, the optimal models (i.e. the models of an 

optimal order) determined by AIC always offer many non-structural modes, up to 14 for Run 4. If 

no further criterion is introduced, it is generally difficult to differentiate structural modes from 

non-structural modes.  

4.3. Effect of Artificial Damage 

From Table 1, the change of the modal frequency and damping ratio due to different artificial 

damage scenarios can be observed. As DMG1 was applied, the first five (mean) modal frequencies 

increased slightly. As DMG2 was applied, the 1st modal frequency decreased obviously from those 



8 

 

in INT and DMG1 scenarios, but the 2nd to 5th modal frequencies decreased slightly from those in 

DMG1 scenario and increased from those in INT scenario. Similar results were observed by means 

of FDD and FFT. As for the damping ratios, they did not show specific trend as DMG1 and DMG2 

was applied. The change of the modal parameters may serve as damage sensitive features in SHM, 

even though the mechanisms of the change in modal parameter are still under investigation.  

5. CONCLUDING REMARKS 

This study validates the SD aided MAR analysis for identifying modal parameters of a real truss 

bridge subjected to two artificial damage scenarios. By the analysis method, the first five modal 

frequencies and mode shapes are identified with very high precision; the damping ratios are 

identified with acceptably high precision for the 1st mode but with lower precision for higher 

modes. It is observed that those modal parameters changed due to the artificial damage, but the 

mechanisms of the change are still under investigation. Moreover, the ability of the SD in selecting 

structural modes without getting involved in any model-order optimization problem is highlighted 

through a comparison study.  
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