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ABSTRACT 

This research is intended to establish a bridge damage detection approach employing only direct 

analyses of train-induced bridge vibration by means of introducing soft computing methods. In this 

approach, different from identifying structural damages using inverse analyses, the possible damage 

patterns of the bridge are assumed at first. Then, the running train-induced bridge vibration under a 

certain damage pattern is calculated employing a developed analysis procedure. When the 

calculated response is identical to the recorded one, this damage pattern will be the solution. 

However, owing to the large number of damage patterns, it is difficult to identify the exact solution. 

Therefore in this approach, the optimization method of Genetic Algorithm is applied to identify the 

damage pattern including the damage locations and degrees, in which the difference between the 

calculated results and the recorded responses is defined as the object function. The basic concepts 

and feasibility investigations of the proposed approach are introduced in this paper. 

Keywords: Damage Detection, Train-Bridge Interaction Analysis, Soft Computing, Health Monitoring 

1. INTRODUCTION 

In the maintenance scheme of railway viaducts nowadays in Japan, effective health monitoring and 

diagnosis processes become essential because of the huge number of the structures. Currently, the 

overall health condition of the Shinkansen viaducts is mainly examined by visual inspections, 

which demand a large number of technicians and also a considerable cost. It is already reported 

(Doebling et al. 1998; Alvandi and Cremona 2006) that the dynamic characteristics are possible to 

be used to identify the structural conditions. In fact, impact tests have been adopted to investigate 

the integrity of the bridge structure in Shinkansen system since 1991. However, the impact tests not 

only demand enormous manpower and cost, but also have the deficiency that it cannot be carried 
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out during the operational hours. If the train-induced vibration data can be effectively used for the 

health monitoring process, it will be an economical and convenient way. 

Some researches on structural identification and bridge health monitoring using traffic-induced 

vibration data have been initiated recently, which mostly need inverse analysis (Kim and Kawatani 

2008) to identify the structural damage. The numerical errors caused by the inverse analysis can 

bring considerable difficulties in practical applications with the increasing structural members. In 

this study, a structural identification approach using train-induced vibration data of the Shinkansen 

viaducts is developed, employing only direct analyses by means of introducing soft computing 

methods. In this approach, different from identifying the structural damages using inverse analyses, 

the possible damage patterns of the bridge are assumed according to theoretical and empirical 

considerations at first. Then, the running train-induced dynamic responses of the bridge under a 

certain damage pattern are calculated employing a train-bridge interaction analysis procedure 

established by the authors. If the calculated responses are identical to the recorded ones, this 

damage pattern will be the solution. However, owing to the large number of damage patterns, it will 

demand enormous computational work to identify the exact solution. Therefore in this approach, an 

effective optimization method is applied to identify the damage pattern including the damage 

locations and degrees. In this paper, the basic concept and feasibility investigations of this approach 

are represented using real train and simple bridge models. 

2. CONCEPTS OF THE PROPOSED DAMAGE IDENTIFICATION APPROACH 

To identify the structural characteristics of the bridge with traffic-induced vibration data, a currently 

conventional way is to perform the inverse analysis of vehicle-bridge interaction (Kim and 

Kawatani 2008). However, such an approach can encounter considerable difficulties in actual 

applications because of numerical errors caused by the inverse analysis due to the large number of 

members. In recent years, the applications to structural identification of soft computing methods 

including Genetic Algorithm (GA) (Perry et al. 2006; Koh and Perry 2009) and Neural Networks 

(NN) (Yun and Bahng 2000) are indicating remarkable progress. Therefore in this research, a 

structural identification approach is developed employing only direct analyses of train-induced 

bridge vibration by means of introducing soft computing methods to avoid the numerical error 

problems encountered in the inverse analysis. 

In the actual railway viaducts, the possible damage patterns of the structures are comprehended by 

the bridge engineers based on theoretical and empirical facts. Therefore in this approach, the 

damage patterns of the bridge members are assumed in advance and used as the input information. 

Then, the train-induced dynamic responses of the bridge under a certain damage pattern are 

calculated by a developed analytical procedure. In the assumed damage patterns, the one identical 

or nearest to the actual damage condition will give the most similar dynamic responses to the 

recorded ones, through which the exact solution can be identified. To make this approach applicable 



3 

 

to actual structures with enormous possible damage patterns, the soft computing methods of NN 

and GA are introduced and applied as follows. 

a) In this proposed approach, the traffic-induced bridge responses used to compare with measured 

ones will be simulated by a developed vehicle-bridge interaction analysis computer program. 

However, for a large-scale structure even one time of such an analysis will demand considerable 

computational capacities, which will leads to the infeasibility in an actual identification process that 

needs a great number of interaction analyses. Therefore in this research, the NN techniques (Kartam 

et al. 1997) are planned to be used to simulate the running train-induced bridge response, which can 

shorten the computational time to an acceptable degree in actual applications. To establish such a 

NN tool, it is impossible to use measured results to carry out the supervised learning process, thus 

the results from the train-bridge interaction analysis program have to be used as the sample data. 

Not to mention, adequate accuracy for such an analytical program is indispensable in the actual 

applications. In this paper, owing to usage of a simple bridge model that demand only small 

computational capacities, the establishment of the NN tool is ignored.  

b) The calculated train-induced bridge responses under certain damage patterns described above are 

then used for the identification process. However, even only the possible damage patterns based on 

engineering facts are assumed, the number can still be considerable large and difficult to identify. 

This is a typical combinatorial optimization problem and can be solved by some metaheuristic 

search algorithms. In this research, the GA technique (Goldberg 1989) is adopted to find the exact 

damage pattern. In the GA algorithm, the damage patterns are set as the population and the 

difference between the calculated results and the recorded ones is defined as the object function. It 

is obvious that the proper definition of the object function can be a determinative factor for the 

identification results in actual applications. 

3. SIMPLE GIRDER BRIDGE AND 15-DOF TRAIN MODELS 

In this paper, a real train and a simple bridge models are used to examine the feasibility of the 

proposed approach. Figure 1 shows a train car modeled as 3D sprung-mass system. The variants 

employed in the car model are shown in Table 1. The definition of dimensions of the car is shown in 

Table 2. The notations of the train properties are indicated in Table 3. One car of the 15-DOF train 

model formulized above is used for the analysis. The velocity of the train is assumed as 60 km/h. 

The rail surface roughness is considered and measured data are used. 

A typical simply-supported steel girder bridge in Shinkansen lines, as shown in Figure 2, is adopted 

for the feasibility evaluation of the proposed approach. The properties of the bridge are also 

indicated in the figure. In general, such a steel girder bridge has the fundamental frequency as about 

175/l based on the field investigation (Matsuura 1976). In this analysis, as shown in Figure 2, the 

girder model is uniformly dived into 10 beam elements. 
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Figure 1: Sprung-mass dynamic train car 3D model 

Table 1: Variants employed in train model 

Definition (jth car) Notation 

Lateral translation of car body
Sway of front bogie 
Sway of rear bogie 
Bouncing of car body 
Parallel hop of front bogie 
Parallel hop of rear bogie 
Rolling of car body 
Axle tramp of front bogie 
Axle tramp of rear bogie 
Pitching of car body 
Windup of front bogie 
Windup of rear bogie  
Yawing of car body 
Yawing of front bogie 
Yawing of rear bogie  

yj1

yj21 

yj22 

zj1 
zj21 
zj22 
θjx1 
θjx21 

θjx22 

θjy1 
θjy21 

θjy22 

θjz1 

θjz21 
θjz22 

 

Table 2: Definition of dimensions of the train model 

1/2 length of car body in x-direction
Distance of centers of bogies in x-direction 
1/2 distance of centers of bogies in x-direction 
1/2 distance of axes in x-direction 
1/2 width of track gauge 
1/2 distance of vertical lower springs in y-direction 
1/2 distance of vertical upper springs in y-direction 
1/2 distance of longitudinal upper springs in y-direction 
Distance from centroid of body to axis in z-direction 
Distance from centroid of body to lateral upper spring in z-direction 
Distance from centroid of bogie to lateral upper spring in z-direction 
Distance from centroid of bogie to lateral lower spring in z-direction 
Radius of wheel 

c
x 
x1 

x2 

y1 

y2 
y3 
y4 

z
z1 

z2 
z3 

r 

12.50 m
17.50 m 
8.75 m 
1.25 m 
0.70 m 
1.00 m 
1.23 m 
1.42 m 
0.97 m 
0.50 m 
0.37 m 
0.10 m 
0.43 m 
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Table 3: Properties of the train model 

Definition Notation Value 
Weight of car body 
Weight of bogie 
Weight of wheel

w1

w2 

w3

321.6 kN 
25.9 kN 
8.8 kN 

Mass moment of inertia of car 
body  

Ix1

Iy1 
Iz1

49.2 kN·s2·m 
2512.6 kN·s2·m 
2512.6 kN·s2·m 

Mass moment of inertia of bogie 
Ix2

Iy2 
Iz2

2.9 kN·s2·m 
4.1 kN·s2·m 
4.1 kN·s2·m 

Spring constant  

k1 

k2 

k3 

k21 

k22 

k23

5000 kN/m 
176.4 kN/m 
443 kN/m 
17500 kN/m 
4704 kN/m 
1210 kN/m 

Damping coefficient  
c2

c3 
c23

39.2 kN·s/m 
21.6 kN·s/m 
19.6 kN·s /m 

 

 

Figure 2: Simple girder bridge model 

 

4. TRAIN-BRIDGE INTERACTION ANALYSIS PROCEDURE 

Dynamic responses of the train-bridge interaction system are simulated using a developed computer 

program based on the formulization process described below. Modal analysis technique is applied to 

the simultaneous dynamic differential equations of the structure. The Newmark’s β step-by-step 

numerical integration method is applied to solve the dynamic differential equations. 

4.1. Formulization of the train body 

The differential equations of the train motion can be obtained based on D’Alembert’s Principle as 

follows. 
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In the above equations, the subscript j is the sequence number of the car. The subscripts l and m are 

described as: l = 1, 2 respectively indicate the front and rear bogies; m = 1, 2 respectively indicate 

the right and left axles of each train body. vjxlm(t), vjylm(t) vjzlm(t) denotes the forces due to the 

expansion of the springs and dampers which corresponding directions. 

4.2. Formulization of front and rear bogies 

The equation of the front and rear bogie body’s vibrations is denoted as follows. 
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In the above equations, the subscripts k and m are described as: k = 1, 2 respectively indicate the 

front and rear axle of rear bogies; m = 1, 2 respectively indicate the right and left axles of each 

bogie. vjxlkm(t), vjylkm(t), vjzlkm(t) denotes the forces due to the expansion of the springs and dampers 

which corresponding directions. wjylkm, wjzlkm denotes the dynamic displacement at the contact point 

of bogie wheel and railway.  

4.3. Formulization of the bridge 

The dynamic differential equations of the bridge can be derived as follows, based on FEM theories 

and D’Alembert’s Principle. 

bbbbbbb FwKwCwM                 (11) 
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where, Mb, Cb, Kb and wb respectively denote the bridge mass, damping, stiffness matrices and the 

nodal displacement vector. Herein, the damping matrix Cb is calculated by Rayleigh damping 

(Agabein 1971). The external force vector, Fb, can be expressed as follows, where, Pjlk(t) andjlk(t) 

respectively denote the wheel load and the distribution vector, while h is the total car number. 

   
  


h

j l k
jlkjlk tPt

1

2

1

2

1
ΨFb                (12) 

Applying the modal analysis technique to the bridge system, the structural displacement vector, wb, 

can be expressed as follows using eigenvectors φi and generalized coordinates qi, where, subscript i 

is the mode number and n indicates the highest one to be considered. 

qΦφw  


n

i
iib q

1
                (13) 

Substitute wb into the bridge vibration equation will obtain the following equation. 

bbbb FqΦKqΦCqΦM                  (14) 

Multiply  T to both sides, 

b
T

b
T

b
T

b
T FΦqΦKΦqΦCΦqΦMΦ               (15) 

According to the orthogonality of eigenvectors, and sssuming T
iφ Fb=Fi, the bridge equation 

corresponding to each mode can be expressed as follows by generalized coordinates. 

iiiiiii FqKqCqM                  (16) 

Based on the above formula, the bridge-train coupled equations can be expressed as below in matrix 

form, where, Mq, Cq and Kq respectively denote the equivalent mass, damping and stiffness matrices 

of the bridge taking into account the influence of the train, while Mqv, Cqv and Kqv respectively 

indicate the coupled components of the train-bridge system. Fq
* and Fv

* compose the external force 

vector of the coupled system, which are obtained from Fq and Fv by removing the coupled 

components to the left side. 
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5. GA OPTIMIZATION PROCEDURE 

In this paper, the simple GA algorithm (Goldberg 1989, Koh and Perry 2009) is used for the 

identification process due to the simplicity of the structure. The flow-chart of GA is shown in 

Figure 3, in which the calibrated crossover rate is set as 60 percent, the mutation rate as 10 percent, 

and the number of initial population as 50. For the bridge structure, the damage degrees of members 

are treated as discrete values, and each value is encoded by a three binary digits gene string. The 

definition of the gene strings and the discrete values of damage degrees are given in Table 4, which 
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can detect 0 to 70 percent damage of the structure with an interval of 10 percent. Then, an 

individual (chromosome) is composed of 10 gene strings corresponding to the 10 finite elements, 

which is used as the input data for the train-bridge interaction analysis program. 

In this analysis, the object function (OBJ) is defined as the difference between the analytical 

acceleration response and the measurement data, as Equation (18). Where, f(i) is the discrete values 

of the measurement data and f *(i) is the analytical results, respectively. Here, i and t respectively 

indicate the number and the total number of the time steps employed in the interaction analyses. In 

this paper, the simulated dynamic responses of these damage scenarios are assumed as 

pseudo-measurement data. Here, only the acceleration response of one node (Node 6) is used 

considering the simple structure. This means only one sensor is needed on the bridge to record the 

response. Of course, as mentioned above, for actual complex problems dynamic responses of 

multiple nodes as well as additional dynamic characteristics may be necessary. 

    



t

i
ifif

t
OBJ

1

21
*               (18) 

The effectiveness of the GA algorithm depends greatly on the methods of crossover and mutation as 

well as the convergence condition, and calibration is needed for a certain problem. In this paper, 

two-point crossover is adopted, while the mutation is generated by random numbers. The criterion 

of convergence condition is determined as 10-5. 

 

Table 4: Definition of gene strings 

Gene string Damage degree (%) 

000 0 

001 10 

010 20 

011 30 

100 40 

101 50 

110 60 

111 70 

 

Figure 3: Flow-chart of GA algorithm 
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Table 5: Identification results by GA 

Elem. 
No. 

Case-1 Case-2 Case-3 Case-4 Case-5 
M A M A M A M A M A 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 20 0 20 

4 0 0 0 0 0 0 0 0 0 0 

5 30 30 30 30 30 30 30 0 30 0 

6 0 0 0 0 0 0 0 0 0 10 

7 0 0 0 0 0 0 0 10 0 0 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

C.G 43 26 26 14 10 

 

6. DAMAGE SCENARIOS AND IDENTIFICATION RESULTS 

To carry out the structural damage identification using GA algorithm, the following 5 cases of 

damage scenarios are assumed for investigation. In all the 5 cases, only Element No.5 is assumed to 

have a 30 percent damage expressed by a 30 percent decrease of its bending moment of inertia, 

while the measurement points are changed for each case. In the current development stage, the 

simulated dynamic responses of these damage scenarios are assumed as pseudo-measurement data. 

For Case-1 to Case-5, the measurement points of each case are respectively set as Nodes No.6, No.2, 

No.9, No.1 and No.11. In structural identification problem, it is desirable to use a small number of 

sensors as possible due to not only the costs but also the limit of sensor locations. Thus in this 

analysis, only one of the Nodes is used as the measurement point. Then, Case-1 expresses the 

situation that the sensor location is near to the damaged member, while Case-2 and Case-3 indicates 

a far measurement point from the damage location. Case-4 and Case-5 suppose that the sensor is set 

on the end, i.e. the support, of the girder, which is the easiest way to install sensors. 

The identification results based on the approach described so far are shown in Table 5 for all cases. 

In the table, M means pseudo-measurement value, A means Analysis result and C.G denotes 

Convergence Generation, respectively. In Case-1 to Case-3, the damage member is effectively and 

accurately identified by the developed approach. This result indicates that the damage can be 

identified even by using only one sensor and a relatively far sensor location, which can lead to 

considerable economical benefits. On the other hand, the identification process converged with 

wrong identification results in Case-4 and Case-5. The reason is considered as that the dynamic 

responses of Node No.1 and Node No.11 which are located on the supports of the bridge are 

relatively complicated compared with other nodes. For such cases, more sensitive object function is 

needed to carry out the identification properly. 
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7. CONCLUSIONS 

In this paper, using train-induced vibration response of the bridge, a damage detection approach 

taking advantage of only direct structural analysis via introducing soft computing methods is 

proposed and preliminarily established. The basic concept and process of the approach are 

represented. A train-bridge interaction analysis procedure employing a real bullet train model is 

formulized and coded to simulate the structural dynamic responses. Then, the feasibility of this 

approach is examined based on the analytical results using simple structural and train models. This 

study laid a foundation toward developing a practical structural identification approach to actual 

bridge structures, although more detailed models and critical discussions are necessary. 
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