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ABSTRACT 

This paper investigates the effects of thermal loading on the non-linear in-plane elastic buckling of 

shallow crown-pinned circular steel arches that is subjected to a uniform radial load. Differential 

equations of equilibrium are derived based on the principle of virtual work, and analytic solutions 

for the non-linear buckling loads are obtained. It is found that the thermal loading influences the 

non-linear buckling of shallow crown-pinned steel arches significantly. The non-linear buckling 

loads increases with an increase of the temperature. It is also founded that crown-pinned arches can 

buckle in a limit point instability mode, but cannot buckle in a bifurcation mode. 

Keywords: Buckling, crown-pinned arches, thermal loading, limit point instability. 

1. INTRODUCTION 

In many cases arches are built by joining two separate curvilinear segments together at the crown, thereby 

reducing the arch size to meet transport requirements and to create a statically determinate structure when 

the arch is also pin-ended which is insensitive to detrimental effects of foundation settlements.  

 

Figure 1: Crown-pinned circular arch. 

The joint location is often significantly weaker compared to the arch-rib, and so can be idealized as a pin. 
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This crown pin is able to transfer shear forces and normal forces but is unable to resist bending moments, 

leading to free rotation of the arch segments about the pin. This will affect the structural response of the 

arch to loading. When a shallow crown-pinned steel arch is subjected to thermal loading produced by 

a temperature increase, the thermal loading produces the additional deformations of the arch. 

Because of the nonlinearity of shallow arches, the thermal deformations will interact with the 

non-linear deformations produced by the uniform radial load and these may influence the non-linear 

equilibrium of the arch and its buckling and postbuckling behaviour (Pi and Bradford 2010a, 

2010b). This paper presents an investigation of the influence of the thermal loading on the 

non-linear in-plane elastic buckling of crown-pinned circular steel arches with pinned (three-pinned 

arches) or fixed ends (one-pinned arches) (Figure 1). Differential equations of equilibrium are 

derived based on the principle of virtual work, and analytical solutions for the elastic buckling loads 

are derived. 

2. NON-LINEAR EQUILIBRIUM  

Because the effect of the crown-pin has to be considered, the half arch shown in Figure 1 is used to 

derive the differential equations of equilibrium by using the principle of virtual work, which states 

that 
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where Θ is the half included angle of the arch (Figure 1), N and M are the axial compressive force 

and bending moment and from the Duhamel-Neumann equation (1978 Nowinski) they can be 

expressed as 
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in which the temperature increase 0TTT  , T is the temperature, T0 is the temperature of the 

arch in the normal service condition, A and Ix are the area and the second moment of area of the 

cross-section, R is the initial radius of the arch, and ET is the temperature-dependent modulus of 

elasticity of the steel. The expression of ET  proposed in Australian design code for steel structures 

AS4100 is used in this paper, which is written as (Pi and Bradford 2010c) 
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Integrating equation (1) by parts leads to differential equations of equilibrium as 
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and leads to the static boundary conditions 
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for one and three-pinned arches, and 

0~ v   at  θ = Θ (6) 

for three-pinned arches. 

In addition, the essential kinematical boundary conditions for one and three-pinned arches are 

0~ w   at  θ = 0  and  θ = Θ, and 0~ v   at  θ = Θ. (7) 

The dimensionless radial displacement can be obtained by solving equation (4) under the boundary 

conditions given by equations (5)-(7) as 
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for three-pinned arches, and 
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for one-pinned arches, where the dimensionless axial force parameter β = μΘ and the step function 

H(θ) is defined as  
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From the first of equation (4), the axial compressive force is a constant. Substituting the solutions 

given by equations (8) and (9) into the first of equation (2) and integrating over the arch length lead 

to the equations between the dimensionless load P and the dimensionless axial compressive force 

parameter β as 
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where the coefficients A1, A2, and A3 are given by 
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for three-pinned arches, and 

6

1

cos

1

2

3

2

tan
4

tan5
sec)1(

cos

8

4

1 22

21 




























A , (14) 



4 

 

3

11
1

tan
1

cos

21
222 























A ,  

22

2

3





T
A






,  

xr

S

2


  (15) 

for one-pinned archers. 

The non-linear equilibrium paths and the effects of the temperature change are shown in Figures 2 

for a three-pinned steel arch as variations of the dimensionless load qR/NE with the dimensionless 

central radial displacement vc/f, where the thermal expansion coefficient of steel 6103.11   is 

adopted, and NE is the second mode flexural buckling load of a corresponding pin-ended column 

under uniform axial compression and given by  

2

2

)2/(S

IE
N xT

E


  (16) 

in which S is the length of the arch. 

It can be seen from Figures 2 that when the upper limit point is reached, further increase of the 

displacement is associated with a decrease of the external load and with a decrease of the axial force 

along the unstable path until the lower limit point is reached. Following this, as the displacement 

continues to increase, the external load increases again along the remote stable equilibrium path 

(Figures 2(a) and 2(b)), but the axial compressive force continues to decrease until vanishes and 

then the axial force changes to tension (Figures 2(c) and 2(d)). 

 

Figure 2: Non-linear equilibrium paths of a three-pinned arch. 

By comparing Figure 2(a) (or Figure 2(c)) with Figure 2(b) (or Figure 2(d)), it can be seen that the 

arch under a uniform temperature field ΔT = 50
o
C has an initial upward radial displacement (i.e. in 

the convex direction of the arch) (Figure 2(b)) and an initial axial compressive force (Figure 2(d)) 
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while it has no initial radial displacement and axial compressive force when ΔT = 0
o
C (Figures 2(a) 

and 2(c)). The upper limit buckling loads of the arch when ΔT = 50
o
C (Figures 2(b) and 2(d)) are 

higher than those when ΔT = 0
o
C (Figures 2(a) and (2c)). It is noted when the axial force changes 

from compression to tension, the value of μ defined in equation (4) and the value of β=μΘ becomes 

imaginary numbers. In this case, the trigonometric functions in expressions for the radial 

displacement (equations (8) and (9)) and for the coefficients of equation (11) have to be converted 

to the corresponding hyperbolic functions by performing the following operations: 

, i , i  ),sinh()sin(  ii   ),cosh()cos(  i  and ).tanh()tan(  ii   The 

imaginary unit i will be cancelled out.  

 

The non-linear equilibrium paths of one-pinned arches are somewhat different from that of 

three-pinned arches as shown in Figures 3. Because both ends are fixed, the buckling load of the 

one-pinned arches is higher than that of the three-pinned arch. However, the effects of temperature 

changes on the structural responses of one-pinned arches are similar to those on three-pinned arches. 

It can be seen again that arch under a uniform temperature field ΔT = 80
o
C has an initial upward 

radial displacement (Figure 3(b)) and an initial axial compressive force (Figure 3(d)) and that The 

upper limit buckling loads of the arch when ΔT = 80
o
C (Figures 3(b) and 3(d)) are higher than those 

when ΔT = 0
o
C (Figures 3(a) and (3c)).  

 

Figure 3: Non-linear equilibrium paths of a one-pinned arch. 

3. LIMIT POINT INSTABILITYAND BIFURCATION BUCKLING 

Because the limit points are local extrema on the non-linear equilibrium paths, so differentiating 

equation (11) with respect to β leads to the equilibrium equation between the dimensionless load P 

and the axial force parameter β at the limit points as 
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where the coefficients B1, B2, and B3 are given by 
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Solving equations (11) and (17) simultaneously leads to the limit point buckling load and the 

corresponding axial force as shown in Figures 2 and 3. 

In addition to limit point instability, possibility of bifurcation buckling of crown-pinned steel arches 

is herein investigated. It has been shown (Pi et al. 2002) that the shape of bifurcation buckling is 

antisymmetric and that during bifurcation buckling, the nominal axial force qR is equal to the 

second mode flexural buckling load of a pin-ended column under uniform axial compression NE 

given by equation (16). However, the value of qR in a crown-pinned steel arch for the symmetric 

limit buckling loads are lower than NE as shown in Figure 4. Therefore, crown-pinned steel arches 

can buckle in a symmetric limit point instability mode under a load lower than NE, but cannot 

buckle in an antisymmetric bifurcation mode. It can also be seen from Figure 4 that as the modified 

slenderness of the arch λ decreases, the effects of thermal expansion on the in-plane buckling of 

crown-pinned steel aches increases. 

 

Figure 4: Buckling loads. 

4. CONCLUSIONS 

Effects of thermal loading on the non-linear in-plane elastic buckling of shallow crown-pinned 

circular steel arches under a uniform radial load have been investigated. It has been shown that the 

thermal loading influences the non-linear buckling of shallow crown-pinned steel arches 

significantly. The non-linear buckling loads increases with an increase of the temperature. It was 

also shown that the crown-pinned arches can buckle in a limit point instability mode, but cannot 

buckle in a bifurcation mode. 
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