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PATCH LOADING – STABILITY ANALYSIS WITH EXACT IN-PLANE 
STRESS FUNCTIONS 

O. MIJUSKOVIC1*, B. SCEPANOVIC1†, and B. CORIC2 

1 Faculty of Civil Engineering, University of Montenegro 
2 Faculty of Civil Engineering, University of Belgrade, Serbia  

ABSTRACT 

Past studies on the stability of rectangular plates under the influence of variable loads were based on 
assumptions of simplified stress distributions, which put the question of the accuracy of the results 
thus obtained. 

The procedure of applying the exact stress functions on the problem of elastic stability of the plate 
with different boundary conditions under effects of patch loading is presented in this paper. 

Mathieu (1890) obtained the exact solution for the plane-strain state for a rectangular element for 
certain types of variable stresses on the boundaries. Baker and Pavlovic (1993), following 
Mathieu’s results, analyzed the general problem of a rectangular plate loaded by completely 
arbitrary distributions of (normal and/or shear) stresses along the edges of the plate. Their method 
was based on splitting the solution into eight fundamental problems. Superposition of these basic 
cases, enables the definition of internal stress distributions for any type of external load.  

The problem of the elastic stability of rectangular plates with different boundary conditions under 
patch loading is investigated using the Ritz energy technique. The strain energy due to bending of 
the plate is defined in the traditional way. On the other hand, the exact stress distribution of 
Mathieu’s theory of elasticity is introduced through the potential energy of the plate associated with 
the work done by external loads. By adopting the exact stresses within a plate under any type of 
external loads and using the double Fourier series to represent any possible buckled profile, the 
buckling loads can be obtained in a very accurate way.  

Results for the critical load obtained by presented analytical approach are reaffirmed by numerical 
finite-element (FE) runs. 

 

Keywords: elastic stability of plates, exact stress function, mixed boundary conditions, patch 
loading 
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1. INTRODUCTION 

In steel structures, buckling problem of the high steel girders under variable external loads is still 
very interesting topic. Presently available literature abounds with data regarding this problem, but 
mostly obtained by numerical or experimental methods. Analytical approach has been avoided 
mostly because of unknown stress distribution. 

In the series of papers based on Mathieu’s method from 1890, Pavlovic, Baker and Tahan (1993) 
and later Liu (2006) and Mijuskovic (2008) developed very precise approach for exact stress 
function determination for main case of rectangular plate under arbitrary external load. Existence of 
such solutions created the basis for the analysis of very complex stability problems in real steel 
structures. 

Analytical approach to critical load determination based on exact stress functions implementation, 
is verified for relatively simple case of plate under (DEA) compression (Liu 2006, Mijuskovic 
2008, Mijuskovic et al. 2012). In this paper the next step is introduced through a significantly 
complicated problem of the plate under locally distributed stress (patch loading) applied on the 
upper flange of the steel girder. That way, the applicability and accuracy of introduced analytical 
approach can be proven on a more demanding and near to real life engineering problems. 

The case of patch loading can be analyzed by using different mathematical models which are 
describing the mentioned problem with different levels of accuracy. Considering models with 
different levels of complexity, it is possible to compare the results and analyze contribution of 
individual parameters to the value of the critical load. 

In this paper, the first, basic mathematical model is chosen to represent buckling problems of plates 
under locally distributed compression (Figure 1.1). As shown in Figures 2.1 and 2.2, superposition 
of two fundamental load types (DEA and DEB) is used to describe initial model for the case of 
patch loading. 

The next step would be raising model to a more complex level through introduction of the shear 
stresses along vertical stiffeners with task to equilibrate external loads (the third fundamental load 
SEB).The final goal would be defining and analyzing model with effects of shear stress at the 

 
 

Figure 1.1:  Basic model for patch-loading analysis 
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flange-web junction (load SOA) whose distribution depends on the rigidity of the flange. Until now, 
such effect has never been discussed.  

Comparative analysis of the three models defining stability problem of rectangular plates with 
different boundary conditions under patch loading, can point to interesting conclusions about the 
relevance of various parameters and their influence on the value of the critical load.  

2. BASIC OUTLINE 

2.1. Introduction 

Analytical approach to stability problems of the plates due to the patch-loading begins with 
determination of exact stress functions for selected model. 

In the previous papers (Baker et al. 1993, Liu 2006) it has been already explained that any arbitrary 
load (normal and/or shear) which acts along the edges of the plate, can be described by the chosen 
functions (even and/or odd in relation to the coordinate axes), so the total solution is obtained by the 
adequate combination of eight basic cases (Figure 2.1).  

 
Figure 2.1: Eight basic load cases 

For the presented initial model, external load is obtained by combining symmetrical (DEA) and 
anty-symmetrical (DEB) basic types (Figure 2.2). Since the results for stress functions for the DEA 
and DEB cases can be found in literature (Liu 2006, Mijuskovic 2012, 2013) only Mathieu’s basic 
approach will be presented in this paper. 

Figure 2.2:  Creation of model by combination of two basic load cases 

In the Figure 2.2 the procedure for obtaining the exact stress distribution for the adopted model is 
explained by superposition of the adequate DEA and DEB solutions. The possibility to achieve 
exact stress functions for complex cases of plates under patch loading guarantees accurate analytical 



4 

 

approach to critical load determination. So far, in the literature, only in the researches of Pavlovic 
and Liu (2006), it is possible to find analytical results for buckling loads, but exclusively for simply 
supported plates. Up to now, for this load case and the plates with different boundary conditions, 
there are no precise analytical solutions. 

All the results in this paper are reaffirmed by numerical finite-element (ANSYS) runs. 

2.2.  Mathieu's solution 

Although basic equations can be found in literature, before proceeding with solution it is 
necessary to summarize the main governing expressions of two-dimensional elasticity, since 
Mathieu’s notation and approach (XIX century work) depart from current conventions.  

In his paper (1890), Mathieu expressed the known equilibrium equations, without the presence 
of body forces, in terms of displacements: 

dy
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where: 
Δ  - Laplase's operator, 
u, v - displacements along the x and y directions respectively, 

y
v

x
u

∂
∂+

∂
∂=ν - volumetric dilatation, (2)  

( )μλμε += /  - parameter related to Lamé's constants. (3) 

With the quite simple mathematical operations system (1) can be transformed into the following 
form: 

0=Δν  (4) 

Mathieu's approach to the 2D elasticity problem starts with the careful selection of two ordinary 
Fourier series for ν (4) with infinite unknown coefficients, taking into account the symmetry or 
anti-symmetry of the stresses with respect to the x and y directions. 

21 ννν +=  (5) 

The following step presents the introduction of the function F (F1+F2), from the conditions that the 
equation is fulfilled: 
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Finally, when displacements u and v are determined 
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where 
μ

μλα )2( +=   is constant expressed in terms of Lamé’s parameters, 

normal stresses N1 and N2 are defined along the axes x and y, as well as the in-plane shear stress T3.  
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As it is pointed above, solutions for the basic cases DEA and DEB has already been presented (Liu 
2006, Mijuskovic et al. 2012 and 2013), and in this paper, special attention is paid to buckling 
analysis of the plates under patch loading. 

2.3.  Analytical approach to plate buckling 

The problem of the elastic stability of rectangular plates with different boundary conditions is 
investigated using the Ritz energy technique. The strain energy due to bending of the plate is 
defined in the traditional way. On the other hand, the exact stress distribution of Mathieu’s theory of 
elasticity is introduced through the potential energy of the plate associated with the work done by 
external loads. By adopting the exact stresses within a plate under patch loading and using the 
double Fourier series to represent any possible buckled profile, the buckling loads can be obtained 
in a very accurate way. Analytical approach to plate buckling under patch loading is presented in 
the examples of the rectangular simply supported plates (SSSS) as well as in plates with two edges 
simply supported and other two clamped (CSCS). In order to verify the results from analytical 
method, the finite-element method (ANSYS) is used to produce buckling coefficients for the 
considered problem. Presently available literature has no records on analytical solutions dealing 
with the subject. 

2.3.1. The adopted deflection series 

In order to guarantee the accuracy, the double Fourier series are used to represent buckled profiles 
of the two chosen types of plates (9 - 10). These series satisfy all boundary conditions, term by 
term, and, as it has been previously shown, are capable of representing any possible buckled 
profiles for very wide range of aspect ratios and load cases.   

Case 1 

 

edges x = ± a/2  simply supported (S) 
edges y = ± b/2  simply supported (S) 

 
Figure 2.4. Simply supported plate SSSS 
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Case 2 

 

edges x = ± a/2  clamped (C) 
edges y = ± b/2  simply supported (S) 

 

Figure 2.5. Plate with mixed boundary conditions CSCS 
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2.3.2. Strain energy due to bending 

During the evaluation of the total potential energy of the plate, the first step is defining the strain 
energy due to plate bending in the traditional way: 
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where D is flexural rigidity of the plate. 
The part of the potential energy of the plate associated with the work done by external loads is 
presented by the expression (12). In this expression, the stresses within the plate N1, N2 and T3 are 
given by equations (Mijuskovic et al. 2012 and 2013) that represent solutions of the Mathieu's exact 
approach: 
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Introducing the exact stress functions makes the expression for the work done by external forces 
more complex. It presents the basic difference in relation to the all previous analyses of the stability 
of plates which are not simply supported along all edges 

2.3.3. Formulation of eigenvalue problem 

Finally, after the definition of the strain energy of the plate bending U, and of the value which 
responds to the work done by external forces V, the total potential energy of the system can be 
written in form: 

VU +=Π  (13) 

From the minimum potential energy principle, the condition (13) is given by 

mnmnmn W
V

W
U

W ∂
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∂
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which basically represents linear system of m·n homogenous equations per unknown coefficients 
Wmn. The existence of nontrivial solution, expressed through condition that the determinant of the 
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system is equal to zero, leads to the solution of the classical eigenvalue problem. In its scope, the 
lowest value has the only practical importance, which presents the requested critical load. Surely, 
the usage of the corresponding software (MATHEMATICA) was necessary in the solving process 
because of the complexity of the analytical procedure. The complexity directly depends on the 
adopted number of terms of the stress functions, as well as of number of terms of the deflection 
functions.  

3. RESULTS AND CONCLUSIONS 

With the detailed analysis of the presented results for buckling coefficients (Tables 1 and 2), it is 
very easy to notice very good behavior of analytical solution for both types of boundary conditions 
in the complete considered ranges of the plate (φ = 0.3 –1) and load (γ = 0.1 – 1) aspect ratios. 
Tables 1 and 2, which present values of buckling coefficients of two types of plates (SSSS, CSCS) 
under patch loading refer to the maximal discrepancy of 0.95% (CSCS φ = 0.3 and γ = 1) in relation 
to the results evaluated by the application of the finite element method.  
It is important to point out that for the problems regarding stability of the plates, buckling 
coefficients obtained by finite element method are below exact values, as a result of limited number 
of terms in interpolation functions. Knowing that, small existing discrepancy between presented 
results confirms accuracy of the analytical approach. 

Table 1 – Buckling coefficients for plate SSSS (φ = 0.3 - 1, γ = 0.1 – 1) 

Plate SSSS – patch loading  Example φ = 0.5 i γ = 0.3 

K2 = 
Kφ2γ 

φ = 0.3 φ =0.5 φ =0.7 φ =0.9 φ =1.0 Results 

0.6838 1.2217 1.7687 2.4838 2.9493 A. Solution 

0.6819 1.2202 1.7659 2.4780 2.9415 MKE (Ansys) γ = 0.1 

(-0.274) (-0.127) (-0.162) (-0.231) (-0.263) Disc. (%) 

0.8751 1.3668 1.8982 2.6271 3.1069 A. Solution 

0.8732 1.3654 1.8951 2.6210 3.0987 MKE (Ansys) γ = 0.3 

(-0.215) (-0.101) (-0.160) (-0.233) (-0.264) Disc. (%) 

1.0082 1.4733 2.0022 2.7453 3.2367 A. Solution 

1.0064 1.4720 1.9990 2.7387 3.2278 MKE (Ansys) γ = 0.4 

(-0.179) (-0.088) (-0.161) (-0.238) (-0.273) Disc. (%) 

 

1.1572 1.5970 2.1307 2.8919 3.3966 A. Solution 
1.1556 1.5956 2.1272 2.8849 3.3872 MKE (Ansys) γ = 0.5 

(-0.139) (-0.085) (-0.168) (-0.242) (-0.278) Disc. (%) 

1.4804 1.8952 2.4626 3.2621 3.7912 A. Solution 
1.4797 1.8935 2.4583 3.2538 3.7802 MKE (Ansys) γ = 0.7 

(-0.050) (-0.089) (-0.174) (-0.254) (-0.290) Disc. (%) 

1.8073 2.2774 2.8881 3.6964 4.2275 A. Solution 
1.8062 2.2750 2.8830 3.6868 4.2150 MKE (Ansys) γ = 0.9 

(-0.060) (-0.105) (-0.177) (-0.258) (-0.296) Disc. (%) 

1.9862 2.4990 3.1227 3.9122 4.4299 A. Solution 
1.9840 2.4962 3.1172 3.9022 4.4169 MKE (Ansys) γ = 1.0 

(-0.113) (-0.111) (-0.176) (-0.257) (-0.293) Disc. (%) 
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Table 2 – Buckling coefficients for plate CSCS (φ = 0.3 - 1, γ = 0.1 – 1) 

Plate CSCS – patch loading  Example φ = 0.5 i γ = 0.3 

K2 = 
Kφ2γ 

φ = 0.3 φ =0.5 φ =0.7 φ =0.9 φ =1.0 Results 

1.7457 3.2504 4.3787 5.2158 5.7355 A. Solution 

1.7416 3.2476 4.3782 5.2111 5.7277 MKE (Ansys) γ = 0.1 

(-0.238) (-0.081) (-0.012) (-0.092) (-0.136) Disc. (%) 

2.3899 3.7775 4.7011 5.4687 5.9707 A. Solution 

2.3837 3.7764 4.7004 5.4643 5.9634 MKE (Ansys) γ = 0.3 

(-0.262) (-0.031) (-0.016) (-0.079) (-0.122) Disc. (%) 

2.7009 4.1655 4.9395 5.6664 6.1541 A. Solution 

2.6881 4.1648 4.9386 5.6622 6.1388 MKE (Ansys) γ = 0.4 

(-0.475) (-0.017) (-0.018) (-0.074) (-0.248) Disc. (%) 

 

2.9147 4.5962 5.2230 5.9072 6.3744 A. Solution 
2.8993 4.5921 5.2209 5.9029 6.3665 MKE (Ansys) γ = 0.5 

(-0.528) (-0.090) (-0.041) (-0.073) (-0.123) Disc. (%) 

3.3238 5.2103 5.9119 6.4977 6.8948 A. Solution 
3.3013 5.2003 5.9082 6.4927 6.8865 MKE (Ansys) γ = 0.7 

(-0.676) (-0.193) (-0.063) (-0.077) (-0.121) Disc. (%) 

3.5465 5.6027 6.7277 7.1673 7.4418 A. Solution 
3.5160 5.5796 6.7230 7.1617 7.4328 MKE (Ansys) γ = 0.9 

(-0.861) (-0.413) (-0.069) (-0.078) (-0.121) Disc. (%) 

3.6470 5.7828 7.1434 7.5021 7.6974 A. Solution 
3.6124 5.7543 7.1368 7.4965 7.6884 MKE (Ansys) γ = 1.0 

(-0.948) (-0.493) (-0.092) (-0.076) (-0.117) Disc. (%) 

 

At the end, the main conclusion can be that obtained exact stress functions, as well as adopted 
deflection functions, for initial mathematical model, are capable to describe the behavior of the 
plates under patch loading and produce very accurate solutions. Now it is possible to go a step 
further and build new, more advanced models, by introducing shear stresses along the shorter plate 
edges and/or shear effects on the flange-web junction. Until now, such effect has never been 
discussed analytically. 
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