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PATCH LOADING —STABILITY ANALYSISWITH EXACT IN-PLANE
STRESS FUNCTIONS

0. MIJUSKOVIC!, B. SCEPANOVIC'", and B. CORIC?

! Faculty of Civil Engineering, University of Montenegro
2 Faculty of Civil Engineering, University of Belgrade, Serbia

ABSTRACT

Past studies on the stability of rectangular plates under the influence of variable loads were based on
assumptions of simplified stress distributions, which put the question of the accuracy of the results
thus obtained.

The procedure of applying the exact stress functions on the problem of elastic stability of the plate

with different boundary conditions under effects of patch loading is presented in this paper.

Mathieu (1890) obtained the exact solution for the plane-strain state for a rectangular element for
certain types of variable stresses on the boundaries. Baker and Pavlovic (1993), following
Mathieu’s results, analyzed the general problem of a rectangular plate loaded by completely
arbitrary distributions of (normal and/or shear) stresses along the edges of the plate. Their method
was based on splitting the solution into eight fundamental problems. Superposition of these basic

cases, enables the definition of internal stress distributions for any type of external load.

The problem of the elastic stability of rectangular plates with different boundary conditions under
patch loading is investigated using the Ritz energy technique. The strain energy due to bending of
the plate is defined in the traditional way. On the other hand, the exact stress distribution of
Mathieu’s theory of elasticity is introduced through the potential energy of the plate associated with
the work done by external loads. By adopting the exact stresses within a plate under any type of
external loads and using the double Fourier series to represent any possible buckled profile, the

buckling loads can be obtained in a very accurate way.

Results for the critical load obtained by presented analytical approach are reaffirmed by numerical
finite-element (FE) runs.

Keywords:. clastic stability of plates, exact stress function, mixed boundary conditions, patch
loading
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1. INTRODUCTION

In steel structures, buckling problem of the high steel girders under variable external loads is still
very interesting topic. Presently available literature abounds with data regarding this problem, but
mostly obtained by numerical or experimental methods. Analytical approach has been avoided

mostly because of unknown stress distribution.

In the series of papers based on Mathieu’s method from 1890, Pavlovic, Baker and Tahan (1993)
and later Liu (2006) and Mijuskovic (2008) developed very precise approach for exact stress
function determination for main case of rectangular plate under arbitrary external load. Existence of
such solutions created the basis for the analysis of very complex stability problems in real steel

structures.

Analytical approach to critical load determination based on exact stress functions implementation,
is verified for relatively simple case of plate under (DEA) compression (Liu 2006, Mijuskovic
2008, Mijuskovic et al. 2012). In this paper the next step is introduced through a significantly
complicated problem of the plate under locally distributed stress (patch loading) applied on the
upper flange of the steel girder. That way, the applicability and accuracy of introduced analytical

approach can be proven on a more demanding and near to real life engineering problems.
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Figurel.l: Basic model for patch-loading analysis

The case of patch loading can be analyzed by using different mathematical models which are
describing the mentioned problem with different levels of accuracy. Considering models with
different levels of complexity, it is possible to compare the results and analyze contribution of
individual parameters to the value of the critical load.

In this paper, the first, basic mathematical model is chosen to represent buckling problems of plates
under locally distributed compression (Figure 1.1). As shown in Figures 2.1 and 2.2, superposition
of two fundamental load types (DEA and DEB) is used to describe initial model for the case of
patch loading.

The next step would be raising model to a more complex level through introduction of the shear
stresses along vertical stiffeners with task to equilibrate external loads (the third fundamental load

SEB).The final goal would be defining and analyzing model with effects of shear stress at the



flange-web junction (load SOA) whose distribution depends on the rigidity of the flange. Until now,

such effect has never been discussed.

Comparative analysis of the three models defining stability problem of rectangular plates with
different boundary conditions under patch loading, can point to interesting conclusions about the

relevance of various parameters and their influence on the value of the critical load.

2. BASIC OUTLINE

2.1. Introduction

Analytical approach to stability problems of the plates due to the patch-loading begins with

determination of exact stress functions for selected model.

In the previous papers (Baker et al. 1993, Liu 2006) it has been already explained that any arbitrary
load (normal and/or shear) which acts along the edges of the plate, can be described by the chosen
functions (even and/or odd in relation to the coordinate axes), so the total solution is obtained by the

adequate combination of eight basic cases (Figure 2.1).
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Figure 2.1: Eight basic load cases

For the presented initial model, external load is obtained by combining symmetrical (DEA) and
anty-symmetrical (DEB) basic types (Figure 2.2). Since the results for stress functions for the DEA
and DEB cases can be found in literature (Liu 2006, Mijuskovic 2012, 2013) only Mathieu’s basic

approach will be presented in this paper.
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Figure2.2: Creation of model by combination of two basic load cases

In the Figure 2.2 the procedure for obtaining the exact stress distribution for the adopted model is
explained by superposition of the adequate DEA and DEB solutions. The possibility to achieve

exact stress functions for complex cases of plates under patch loading guarantees accurate analytical



approach to critical load determination. So far, in the literature, only in the researches of Pavlovic
and Liu (20006), it is possible to find analytical results for buckling loads, but exclusively for simply
supported plates. Up to now, for this load case and the plates with different boundary conditions,

there are no precise analytical solutions.

All the results in this paper are reaffirmed by numerical finite-element (ANSYS) runs.

2.2. Mathieu'ssolution

Although basic equations can be found in literature, before proceeding with solution it is
necessary to summarize the main governing expressions of two-dimensional elasticity, since

Mathieu’s notation and approach (XIX century work) depart from current conventions.

In his paper (1890), Mathieu expressed the known equilibrium equations, without the presence

of body forces, in terms of displacements:

d d 0
9% %% 0 and 24 %% o Mathieuw = Au=—93Y and av=-19Y (1)
oxX oy oxX  dy £ dx e dy

where:

A - Laplase's operator,
u, v - displacements along the X and y directions respectively,

V= a_u + @ - volumetric dilatation, (2)
oxX oy
E=u/ (/1 + ,u) - parameter related to Lamé's constants. 3)

With the quite simple mathematical operations system (1) can be transformed into the following

form:
Av=0 4)
Mathieu's approach to the 2D elasticity problem starts with the careful selection of two ordinary

Fourier series for v (4) with infinite unknown coefficients, taking into account the symmetry or

anti-symmetry of the stresses with respect to the X and y directions.
v=v+V, (5)

The following step presents the introduction of the function F (F1+F5), from the conditions that the
equation is fulfilled:

aF=-Ly = AF1=—1V1 and AF2=_1V2 ©)
£ £ £

Finally, when displacements U and Vv are determined

dF dF
u=—+ dx. and v=—+ d 7



(A+2u)
Y7,

where o = is constant expressed in terms of Lamé’s parameters,

normal stresses N and N are defined along the axes X and Y, as well as the in-plane shear stress Ts.

d’F

2
N, =Av+2uav, + 2u—:- o N, =Av+2uav, d '2: (8a)
d’F dv dv
T, = —Ldx+ 2d &b
! A{ dxdy dy o y} (8b)

As it is pointed above, solutions for the basic cases DEA and DEB has already been presented (Liu
2006, Mijuskovic et al. 2012 and 2013), and in this paper, special attention is paid to buckling
analysis of the plates under patch loading.

2.3. Analytical approach to plate buckling

The problem of the elastic stability of rectangular plates with different boundary conditions is
investigated using the Ritz energy technique. The strain energy due to bending of the plate is
defined in the traditional way. On the other hand, the exact stress distribution of Mathieu’s theory of
elasticity is introduced through the potential energy of the plate associated with the work done by
external loads. By adopting the exact stresses within a plate under patch loading and using the
double Fourier series to represent any possible buckled profile, the buckling loads can be obtained
in a very accurate way. Analytical approach to plate buckling under patch loading is presented in
the examples of the rectangular simply supported plates (SSSS) as well as in plates with two edges
simply supported and other two clamped (CSCS). In order to verify the results from analytical
method, the finite-element method (ANSYS) is used to produce buckling coefficients for the
considered problem. Presently available literature has no records on analytical solutions dealing
with the subject.

2.3.1. Theadopted deflection series

In order to guarantee the accuracy, the double Fourier series are used to represent buckled profiles
of the two chosen types of plates (9 - 10). These series satisfy all boundary conditions, term by
term, and, as it has been previously shown, are capable of representing any possible buckled
profiles for very wide range of aspect ratios and load cases.
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2.3.2. Strain energy dueto bending

During the evaluation of the total potential energy of the plate, the first step is defining the strain

energy due to plate bending in the traditional way:
1ol (ow 0w rwow (0w

U=-D + —2(l-v - dxd 11
2 LLK ox' oy’ J ( ){ ox’ oy’ (axayJ ﬂ Y (1

where D is flexural rigidity of the plate.

The part of the potential energy of the plate associated with the work done by external loads is
presented by the expression (12). In this expression, the stresses within the plate N;, N, and T3 are
given by equations (Mijuskovic et al. 2012 and 2013) that represent solutions of the Mathieu's exact
approach:

t 2 P2 owY’ ow)’ oW oW
V=—o N,| — N,| — 2T, —— |dxd 12
2 I .[ { {axj " Z(ayJ T ok oy “ (12)

-a/2-b/2

Introducing the exact stress functions makes the expression for the work done by external forces
more complex. It presents the basic difference in relation to the all previous analyses of the stability

of plates which are not simply supported along all edges

2.3.3. Formulation of eigenvalue problem

Finally, after the definition of the strain energy of the plate bending U, and of the value which
responds to the work done by external forces V, the total potential energy of the system can be

written in form:
[M=U+V (13)
From the minimum potential energy principle, the condition (13) is given by
oIl _ oU N oV
oW, oW, JdW,

mn

(14)

which basically represents linear system of m:n homogenous equations per unknown coeftficients

Wm. The existence of nontrivial solution, expressed through condition that the determinant of the



system is equal to zero, leads to the solution of the classical eigenvalue problem. In its scope, the
lowest value has the only practical importance, which presents the requested critical load. Surely,
the usage of the corresponding software (MATHEMATICA) was necessary in the solving process
because of the complexity of the analytical procedure. The complexity directly depends on the
adopted number of terms of the stress functions, as well as of number of terms of the deflection

functions.

3. RESULTSAND CONCLUSIONS

With the detailed analysis of the presented results for buckling coefficients (Tables 1 and 2), it is
very easy to notice very good behavior of analytical solution for both types of boundary conditions
in the complete considered ranges of the plate (¢p = 0.3 —1) and load (y = 0.1 — 1) aspect ratios.
Tables 1 and 2, which present values of buckling coefficients of two types of plates (SSSS, CSCS)
under patch loading refer to the maximal discrepancy of 0.95% (CSCS ¢ = 0.3 and y = 1) in relation
to the results evaluated by the application of the finite element method.

It is important to point out that for the problems regarding stability of the plates, buckling
coefficients obtained by finite element method are below exact values, as a result of limited number
of terms in interpolation functions. Knowing that, small existing discrepancy between presented

results confirms accuracy of the analytical approach.

Table 1 —Buckling coefficientsfor plate SSSS(¢ =0.3-1,y=0.1-1)

Plate SSSS — patch loading Example $ =0.51y=0.3

Kz:

=03 =0.5 =0.7 =0.9 =1.0 Results
K¢y [0 (0 o (0 [0}

Ansys K, = 1.3654

0.6838 | 12217 | 1.7687 | 2.4838 | 2.9493 A. Solution
y=0.1 | 0.6819 | 1.2202 | 1.7659 | 2.4780 | 2.9415 | MKE (Ansys)
(-0.274) | (-0.127) | (-0.162) | (-0.231) | (-0.263) Disc. (%)
0.8751 | 13668 | 1.8982 | 2.6271 | 3.1069 A. Solution
y=03 | 08732 | 1.3654 | 1.8951 | 2.6210 | 3.0987 | MKE (Ansys)
(-0.215) | (-0.101) | (-0.160) | (-0.233) | (-0.264) Disc. (%)
1.0082 | 14733 | 2.0022 | 2.7453 | 3.2367 A. Solution
y=04 | 1.0064 | 1.4720 | 1.9990 | 2.7387 | 3.2278 | MKE (Ansys)
(-0.179) | (-0.088) | (-0.161) | (-0.238) | (-0.273) Disc. (%)
1.1572 | 1.5970 | 2.1307 | 2.8919 | 3.3966 A. Solution
y=0.5 1.1556 1.5956 | 2.1272 | 2.8849 3.3872 | MKE (Ansys) Analytical solution K, = 1.3668
(-0.139) | (-0.085) | (-0.168) | (-0.242) | (-0.278) Disc. (%) - —
1.4804 | 1.8952 | 2.4626 | 3.2621 | 3.7912 A. Solution
¥=0.7 | 1.4797 | 1.8935 | 2.4583 | 3.2538 | 3.7802 | MKE (Ansys)
(-0.050) | (-0.089) | (-0.174) | (-0.254) | (-0.290) Disc. (%)
1.8073 | 22774 | 2.8881 | 3.6964 | 42275 A. Solution
y=09 | 1.8062 | 2.2750 | 2.8830 | 3.6868 | 4.2150 | MKE (Ansys)
(-0.060) | (-0.105) | (-0.177) | (-0.258) | (-0.296) Disc. (%)
1.9862 | 24990 | 3.1227 | 3.9122 | 4.4299 A. Solution 2 j i
y=1.0 | 1.9840 | 2.4962 | 3.1172 | 3.9022 | 4.4169 | MKE (Ansys) o010z 030408
(-0.113) | (-0.111) | (-0.176) | (-0.257) | (-0.293) Disc. (%)




Table 2 —Buckling coefficientsfor plate CSCS(¢ =0.3-1,y=0.1-1)

Plate CSCS — patch loading Example $ =0.51y=0.3

Kz=

=03 =0.5 =0.7 =0.9 =1.0 Results
Koy o o ¢ o ¢

Ansys K.=3.7764

1.7457 | 32504 | 43787 | 52158 | 5.7355 | A. Solution
y=0.1 | 1.7416 | 3.2476 | 43782 | 52111 | 57277 | MKE (Ansys)
(-0.238) | (-0.081) | (-0.012) | (-0.092) | (-0.136) Disc. (%)
23899 | 3.7775 | 4.7011 | 5.4687 | 5.9707 | A. Solution
y=03 | 23837 | 3.7764 | 4.7004 | 5.4643 | 59634 | MKE (Ansys)
(-0.262) | (-0.031) | (-0.016) | (-0.079) | (-0.122) Disc. (%)
27009 | 4.1655 | 4.9395 | 5.6664 | 6.1541 A. Solution
y=04 | 26881 | 4.1648 | 4.9386 | 5.6622 | 6.1388 | MKE (Ansys)
(-0.475) | (-0.017) | (-0.018) | (-0.074) | (-0.248) Disc. (%)
29147 | 45962 | 52230 | 59072 | 63744 | A. Solution
¥=05 | 2.8993 | 45921 | 52209 | 59029 | 63665 | MKE (Ansys) Analytical solution K, =3.7775
(-0.528) | (-0.090) | (-0.041) | (-0.073) | (-0.123) Disc. (%) BRBNENRgRy
33238 | 52103 | 59119 | 6.4977 | 6.8948 | A. Solution
y=0.7 | 33013 | 52003 | 59082 | 6.4927 | 6.8865 | MKE (Ansys)
(-0.676) | (-0.193) | (-0.063) | (-0.077) | (-0.121) Disc. (%)
3.5465 | 5.6027 | 6.7277 | 7.1673 | 7.4418 | A. Solution
¥=0.9 | 35160 | 55796 | 6.7230 | 7.1617 | 7.4328 | MKE (Ansys)
(-0.861) | (-0.413) | (-0.069) | (-0.078) | (-0.121) Disc. (%)
3.6470 | 5.7828 | 7.1434 | 7.5021 | 7.6974 | A. Solution ] 1
y=10 | 3.6124 | 57543 | 7.1368 | 7.4965 | 7.6884 | MKE (Ansys) boer ez osed e
(-0.948) | (-0.493) | (-0.092) | (-0.076) | (-0.117) Disc. (%)

At the end, the main conclusion can be that obtained exact stress functions, as well as adopted
deflection functions, for initial mathematical model, are capable to describe the behavior of the
plates under patch loading and produce very accurate solutions. Now it is possible to go a step
further and build new, more advanced models, by introducing shear stresses along the shorter plate
edges and/or shear effects on the flange-web junction. Until now, such effect has never been

discussed analytically.

Literature

Mathieu E. (1890). Theorie de I'elasticite des corps solides. Seconde partie. GauthierVillars, Paris.

Baker G, Pavlovic M N & Tahan N (1993). An exact solution to the two-dimensional elasticity problem with
rectangular boundaries under arbitrary edge forces, Phil. Trans. R. Soc. London, A 393, pp. 307-336.

Liu Y G (2006). Buckling of Plates under Non-Uniform Stresses, with Particular Emphasis on Shear. Ph. D Thesis,
Imperial College, London.

Mijuskovi¢ O (2008). Analiza stabilnosti pravougaonih ploc¢a koriS¢enjem tacne funkcije napona. Doktorska disertacija,
Gradevinski fakultet, Beograd.

Mijuskovi¢ O, Cori¢ B (2012). Analytical Procesure for Determining Critical Load of Plates with Variable Boundary
Conditions. Original scientific paper, Gradevinar. Journal of the Croatian Association of Civil Engineers, Vol. 64
(3), pp. 185-194, Zagreb.

Mijuskovi¢ O, Cori¢ B (2013). Patch Loading — Analytical Approach to Critical Load Determination. Original scientific
paper, Gradevinar. Journal of the Croatian Association of Civil Engineers, Vol. 65 (1), pp. 1-10, Zagreb.



