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1, 2Department of Civil and Environmental Engineering, National University of Singapore, 

Singapore 
3Department of Civil Engineering, Ho Chi Minh City University of Technology, Vietnam National 

University - Ho Chi Minh, Vietnam  

ABSTRACT 

In this paper, a computational study using the moving element method (MEM) was carried out to 

investigate the dynamic response of a high-speed rail (HSR). A new formulation for calculating the 

general mass, damping and stiffness matrices of the moving element is proposed. Resonance in the 

vibration response of the rail track is found to occur during both the accelerating and decelerating 

phases of the HSR. As to be expected, track vibration peaks when the HSR travels at a speed in the 

vicinity of the resonance velocity during the transition accelerating or decelerating phases rather 

than at the constant velocity phase. A parametric study is carried out to understand the effects of 

various factors on the response of the train-track system such as the train acceleration/deceleration 

magnitudes, the severity of railhead roughness and the magnitude of wheel load.  

Keywords: moving element method, wheel-rail interaction, track irregularity 

1. INTRODUCTION 

Railway transportation is one of the key modes of travel today. The advancement in train 

technology leading to faster and faster trains is without doubt a positive development, which makes 

HSR travel more attractive as a viable alternative to other modes of transportation for long distance 

travel. 

In dealing with moving load problems, such as that encountered in HSR, the finite element method 

(FEM) encounters difficulty when the moving load approaches the boundary of the finite domain 

and travels beyond the boundary. These difficulties can be overcome by employing a large enough 

domain size but at the expense of significant increase in computational time. To overcome the 

complication encountered by FEM, Krenk et al. (1999) proposed the use of FEM in convected 

coordinates to obtain the response of an elastic half-space subject to a moving load. The key 

advantage enjoyed by this approach is its ability to overcome the problem due to the moving load 
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travelling over a finite domain. Andersen et al. (2001) employed the same approach to solve the 

problem of a beam on a Kelvin foundation subject to a harmonic moving load. Koh et al. (2003) 

adopted the idea of convected coordinates for solving train-track problems, and named the 

numerical algorithm as the moving element method (MEM). The method was subsequently applied 

to the analysis of in-plane dynamic response of annular disk (Koh et al. 2006) and moving loads on 

a viscoelastic half space (Koh et al. 2007). Recently, Ang et al. (2012) applied the MEM to 

investigate the “jumping wheel” phenomenon in high-speed train motion at constant velocity over a 

transition region where there is a sudden change of foundation stiffness. 

Various researchers have investigated the problem of 

loads travelling at non-uniform velocities. Suzuki (1977) 

employed the energy method to derive the governing 

equation of a finite beam subject to traveling loads 

involving acceleration. By using analytical solutions, 

Yadav (1991) has investigated the vibration response of 

a train-track-foundation system resulting from a vehicle 

travelling at variable velocities. Anders Karlstrom (2006) 

also used an analytical approach to investigate ground 

vibrations due to accelerating and decelerating trains.  

Safety concerns during the accelerating and decelerating 

phases of a high-speed train journey have not been 

adequately addressed in the literature. One major 

concern is the possible occurrence of resonance of the 

system when the frequency of the external force, in this 

case the rail corrugation, coincides with the natural 

frequency of a significant vibration mode of the system. When this happens, the response of the 

system is dynamically amplified and becomes significant large. This paper is concerned with a 

computational study of the dynamic response of HSR systems involving accelerating/decelerating 

trains using the MEM. A new formulation for calculating the general structural matrices of the 

moving element is proposed. A parametric study is performed to understand the effects of various 

factors on the response of the train-track system, such as the magnitudes of train 

acceleration/deceleration, the severity of railhead roughness and the magnitude of wheel load.  

2. FORMULATION AND METHODOLOGY 

The HSR system, as shown in Figure 1, comprises of a train modeled as a moving sprung-mass 

traversing over a rail beam in the positive x -direction. The origin of the fixed x -axis is arbitrarily 

located along the beam. However, for convenience, its origin is taken such that the train is at 0x   

when 0t  . The velocity and acceleration of the train at any instant are v and a, respectively. The 

railhead is assumed to have some imperfections resulting in the so-called “track irregularity”. In the 

Figure 1: The HSR model 
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moving sprung-mass model, the topmost mass 1m  represents the car body where the passengers 

are. The car body is supported by a bogie of mass 2m  through a secondary suspension system 

modeled by the spring 1k  and dashpot 1c . The bogie is in turn supported by a wheel-axle system 

of mass 3m  through a primary suspension system modeled by the spring 2k  and dashpot 2c . The 

contact between the wheel and rail beam is modeled by the spring 3k  and dashpot 3c . The contact 

force between the wheel and rail beam is denoted by cF . The rail beam rests on a viscoelastic 

foundation comprising of vertical springs k  and dashpots c . The vertical displacement of the rail 
beam is denoted by y , while the vertical displacements of the car body, bogie and wheel-axle are 

denoted by u
1
, u

2
 and u

3
, respectively. 

The governing equation of motion of the rail beam, which is modeled as an Euler-Bernoulli beam 

resting on a viscoelastic foundation subject to a moving load, is given by 

4 2

4 2
( )c

y y y
EI m c ky F x s

x t t
  

    
  

  (1) 

where E , I  and m  are the Young’s modulus, second moment of inertia and mass per unit 

length of the rail beam, respectively; s  the distance traveled by the train at any instant time t ; and 

  the Dirac-delta function. 

The moving element method adopts the idea in which the origin of the spatial coordinates system is 

attached to the applied point of the moving load. Figure 1 shows a travelling r-axis moving at the 

same speed as the moving load. The relationship between the moving coordinate r  and the fixed 

coordinate x  is given by 

r x s    (2) 

In view of equation (3), the governing equation in equation (1) may be rewritten as 

4 2 2 2
2

4 2 2
2 ( )c

y y y y y y y
EI m v v a c v ky F r
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
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 (3) 

By adopting Galerkin’s approach and procedure of writing the weak form in term of the 

displacement field, the formulation for general mass eM , damping eC  and stiffness eK  matrices 

of the moving element can be determined as follows 
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where the subscript r  denotes partial derivative with respect to r . For beam elements, it is 

common to use the shape function N based on Hermitian cubic polynomials.  

Considering the special case in which the train traverses at a constant velocity V , i.e. a  0, v V , 

equation (4) reduces to 

T
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T T
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d d d d
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 (5) 

which are noted to be identical to the matrices derived by Koh et al. (2003).  

In general, the wheel contact force cF  may be written as  

F
c
 c

3
y  k

3
y   (6) 

where the overdot operator denotes differentiation with respect to time and y , the indentation at 

the contact surface, can be expressed as 

3r ty y y u      (7) 

in which ry  and 3u  denote the displacements of the rail and wheel, respectively, and ty  the 

magnitude of the track irregularity at the contact point. Note that track irregularity is a major source 

of the dynamic excitation. According to the recommendation by Nielsen and Abrahamsson (1992), 

the track irregularity profile can be written in terms of a sinusoidal function as follows 

2
sint t

t

x
y a




    (8) 

where ta  and t  denote the amplitude and wavelength of the track irregularity, respectively. 

As the dynamic response of the train-track system depends significantly on the accuracy in 

modeling the contact between the wheel and track, Hertz contact theory (Esveld 2001) is employed 

to account for the nonlinear contact force cF  between the wheel and rail as follows 

3

2   0

    0      0
H

c
K y for yF

for y

    
  

  (9) 
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in which HK  denotes the Hertzian spring constant; wheelR  and railprofR  the radii of the wheel and 

railhead, respectively, and   the Poisson’s ratio of the material. 

The governing equations for the vehicle model are 
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 (11) 

where g  denotes gravitational acceleration. Upon combining equation (11) with the governing 

equations for the rail beam given in equation (3), the equation of motion for the train-track system 

may be written as 

MzCzKz  P   (12) 

where z , z , z  denote the global acceleration, velocity and displacement vectors of the 

train-track system, respectively; M , C  and K  the global mass, damping and stiffness matrices, 

respectively; and P  the global load vector. The above dynamic equation can be solved by any 

direct integration methods such as Newmark- method (Bathe 1996).  

3. NUMERICAL RESULTS  

To verify the accuracy of the proposed MEM approach in obtaining the dynamic response of a HSR 

considering variable train speed, the present solutions are compared against solutions obtained by 

Koh et al. (2003) using the so-called ‘cut-and-paste’ FEM. The latter involves updating the force 

and displacement vectors in accordance with the position of the vehicle while keeping the structure 

mass, damping and stiffness matrices constant.  

For the purpose of comparison only, the same train speed profile adopted by Koh et al. (2003) is 

employed. This speed profile is shown in Figure 2 where it can be seen that there are 3 phases of 

travel. The speed profile parameters for this case are presented in Table 2 under Case 1. The initial 

phase considers the train to be moving at a constant acceleration of travel and reaching a maximum 

speed of 20 m/s after 2 s. During the second phase of travel, the train moves at the maximum 

constant speed for another 2 s. In the final phase, the train decelerates at a constant magnitude to 

come to a complete halt after another 2 s of travel. Results obtained using the proposed method are 

found to be in excellent agreement with those obtained by the ‘cut-and-paste’ FEM. 

In the following sections, the effects of amplitudes of train acceleration/deceleration, track 

irregularity and wheel load on dynamic response of the train-track system during the accelerating or 

decelerating phases using the proposed MEM approach are presented. The parameters for various 

train speed profiles considered are presented in Table 2 under cases 2 to 4. The proposed MEM 

model adopted in the study comprises of a truncated railway track of 50 m length uniformly 
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discretized into 250 moving finite elements. Values of parameters related to the properties of track 

and foundation are summarized in Table 1 (Koh et al. 2003). The equations of motion are solved 

using Newmark’s constant acceleration method employing a time step of 0.0005s. This small time 

step size is necessary in view of the inherent high natural frequency of the train-track system. In 

analyses involving the Hertz nonlinear contact model, Newton-Raphson’s method (Bathe 1996) is 

employed to solve the resulting nonlinear equations of motion. The radii of the wheel wheelR , 

railhead railprofR  and the Poisson’s ratio of the wheel/rail material   used in determining the 

nonlinear Hertz spring constant are taken to be 460 mm, 300 mm and 0.3, respectively.  

 

Figure 2: Profile of train speed 

Table 1: Parameters for track-foundation model 

Parameter Value 
Flexural stiffness 6.12×106 N m2 
Track section UIC 60 (60 E1) 
Stiffness of foundation 1×107 N/m2  
Damping ratio 0.1 

 

Table 2: Profiles of train velocities 

Case 
Maximum velocity  

maxV  (m/s) 

Amplitude of  
acceleration/deceleration  

a  (m/s2) 

Time parameters 

1t (s) 2t (s) 3t (s) 

1 20 10 2.0 4.0 6.0 
2 70 0.600 117.0 119.0 236.0 
3 70 0.720 98.0 100.0 198.0 
4 70 2.222 31.5 33.5 65.0 

3.1. Effect of amplitudes of train acceleration/acceleration  

As the stiffness matrix of the moving element and the track irregularity depend on the train 

acceleration or deceleration amplitudes, it is necessary to investigate the effect of the amplitudes on 

the dynamic amplification factor (DAF) in wheel-rail contact force. Note that three amplitudes of 

train acceleration/deceleration (Cases 2, 3 and 4), as shown in Table 2, and three track irregularities 

such as smooth (0.01 mm), moderate (0.5 mm) and severe (2 mm) are considered. Note that the 

wavelength of all track irregularities is chosen to be 1 m. Figure 3 shows the effect of train 

acceleration/deceleration amplitudes on the DAF. The results obtained show that the magnitude of 

acceleration/deceleration has negligible effect on the DAF for all cases considered. In view of this 

finding, all other results to be subsequently presented shall pertain to case 3, considered to be the 

typical speed profile of today’s HSR travels. 

3.2. Effect of track irregularity amplitude  

The effect of track irregularity amplitude on the DAF is next investigated. Note that the wavelength 

t  of all track irregularities is chosen to be 1 m. In order to compare the DAF obtained at resonant 
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speed during accelerating/decelerating phases, it is necessary to determine the DAF when the train 

travels at the constant resonant speed computed as t T , where T  is the period of the system. 

Figure 4 shows how track irregularity amplitude affects the DAF. For a near smooth track 

( 0.01ta   mm), the DAF is found to be approximately 1, as to be expected. When the amplitude of 

track irregularity increases, the DAF is noted to increase gradually and then significantly. It is 

interesting to note that the DAF is found to be higher during both the accelerating and decelerating 

phases as compared to the case in which the train travels at a constant speed equal to the resonant 

speed. The DAF is also noted to be slightly larger during the decelerating phase as compared to the 

accelerating phase. 

Figure 3: Effect of amplitudes of train 

acceleration/deceleration on the DAF. 

Figure 4: Effect of track irregularity 

amplitude on the DAF. 

3.3. Effect of track irregularity wavelength  

As the period of HSR system is fixed, the 

magnitude of track irregularity wavelength is a 

significant factor on controlling the occurrence 

of the resonant phenomenon during the 

accelerating and decelerating phases. 

Resonance occurs briefly during 

accelerating/decelerating phases when the train 

speed reaches the magnitude of the resonant 

speed. This occurs when the maximum train 

speed is higher than the resonant speed.  

Figure 5 shows the effect of track irregularity 

wavelength on the DAF. Note that all 

irregularity amplitudes considered are 2 mm. It is expected that shorter irregularity wavelength 

would lead to larger vibrations as can be observed when the wavelength is small at 0.5 m. When the 

Figure 5: Effect of track irregularity 

wavelength on the DAF. 
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wavelength of track irregularity increases, the DAF is found to decrease. It is interesting to note that 

the DAF is higher during both the accelerating and decelerating phases as compared to the case in 

which the train travels at a constant speed equal to the resonant speed.  

3.4. Effect of wheel load  

The effect of wheel load on dynamic response of the system is next investigated. Two wheel loads 

of 41 kN and 81 kN are considered. The smaller load corresponds to the case of a very lightly 

loaded vehicle (Koh et al. 2003), and the higher load corresponds to a typical passenger vehicle. 

Figure 6 shows the effect of wheel load on the DAF for various values of track irregularity 

amplitude. Note that the wavelength of all track irregularities is chosen to be 1 m. It is expected that 

the lighter wheel load is, the larger DAF is, especially for the larger track irregularity amplitude. 

Using various values of track irregularity wavelength, Figure 7 shows the effect of wheel load on 

the DAF. In this case, the amplitude of all track irregularities is chosen to be 2 mm. It is also 

expected that the DAF is larger when the wheel load is lighter, especially for the smaller track 

irregularity wavelength. 

Figure 6: Effect of wheel load and track 

irregularity amplitude on the DAF. 

Figure 7: Effect of wheel load and track 

irregularity wavelength on the DAF. 

4. CONCLUSIONS 

In this paper, a numerical study on the dynamic response of HSR system using the moving element 

method was carried out. A new and general formulation for calculating the structural matrices of the 

moving element was proposed. The effects of magnitudes of train acceleration/deceleration, track 

irregularity and wheel load to response of HSR system during a train journey are investigated. 

The results obtained using the proposed MEM is found to agree well with results found in the 

literature using the ‘cut-and-paste’ FEM. It is found that the magnitude of acceleration/deceleration 

has negligible effect on the DAF. The DAF is more increasing when the irregularity 

amplitude/wavelength is more increasing/decreasing. As to be expected, the DAF are larger when 

the HSR travels at a resonant speed during the accelerating/decelerating phases rather than the case 
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in which the train travels at a constant speed equal to the resonant speed. When the wheel load is 

lighter, the DAF is larger, especially for the severe track irregularity. 
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