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AN EFFICIENT AND ACCURATE METHOD FOR GRADIENT 
COMPUTATION OF NONLINEAR SOIL-STRUCTURE INTERACTION 

(SSI) SYSTEMS 

Q. Gu1* 

1 Department of Civil Engineering, School of Architecture and Civil Engineering, Xiamen 
University, China 

ABSTRACT 

In the context of nonlinear finite element (FE) method, this paper presents a computational 
framework for ‘exact’ response sensitivity analysis of soil-structural interaction (SSI) systems based 
on the direct differentiation method (DDM). The DDM requires analytically differentiating the FE 
algorithm for the response computation with respect to material, geometry or loading parameters, 
involving the differentiation of various hierarchical layers of FE response, namely: (1) structure 
level, (2) element level, (3) section level, and (4) material level. To achieve this analysis framework, 
the DDM-based response sensitivity analysis algorithm is extended to various element and material 
models used in Reinforced Concrete (RC) frame, as well as a multi-yield surface J2 plasticity 
material model used to represent cohesive soil behavior under cyclic loading conditions. 
Furthermore, the DDM algorithm is extended to accommodate the multi-point constraints (MPC) 
conditions used in FE models (e.g., Transformation method, penalty method). The framework is 
implemented in general purpose FE software, OpenSees, an open system for earthquake engineering 
simulation. 

A three dimensional frame-soil interaction example is used to demonstrate the implementation and 
usage of the DDM-based response sensitivity analysis algorithm for SSI systems subjected to two 
orthogonal horizontal earthquake excitations. The frame is modeled with beam-column element, 
fiber section and nonlinear concrete and steel materials, while the soil by multi-yield surface J2 
plasticity material model. The sensitivity parameters are taken as the material parameters used to 
represent the elastoplastic behaviors of the various soil and structural materials. The response 
sensitivity results obtained by using DDM are verified by their counteparterners obtained by using 
forward finite difference (FFD) method. The asymptotic convergence of FFD results towards DDM 
results verifies the presented DDM framework. As the application, the sensitivity analysis results 
provide the relative importance of the various material parameters for selected global and/or local 
response parameters of the SSI systems.   

Keywords: soil-structure interaction, direct differentiation method, nonlinear finite element 
analysis, OpenSees, sensitivity analysis. 
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1. INTRODUCTION 

Finite element response sensitivities represent an essential ingredient for gradient-based 
optimization methods needed in various subfields of structural and geotechnical engineering such as 
structural reliability analysis, structural/geotechnical system identification, and FE model updating 
(e.g., Ditlevsen and Madsen 1996, Kleiber 1997). In addition, FE response sensitivities are 
invaluable for gaining insight into the effect and relative importance of system and loading 
parameters in regards to structural response behavior. 

Several methods are available for response sensitivity computation, such as the Finite Difference 
Method (FDM), the Adjoint Method (AM), the Perturbation Method (PM), and the Direct 
Differentiation Method (DDM). These methods are described by Zhang and Der Kiureghian (1993), 
Kleiber et al. (1997), Conte et al. (2003, 2004), and Gu et al (2009, 2013). The FDM is the simplest 
method for response sensitivity computation, but is computationally expensive and can be 
negatively affected by numerical noise (i.e., truncation and round-off errors). The AM is extremely 
efficient for linear and non-linear elastic systems, but is not a competitive method for 
path-dependent problems. The PM is computationally efficient, but generally not very accurate. The 
DDM, on the other hand, is very general, accurate and efficient and is applicable to any material 
constitutive model (both path-independent and path-dependent). The computation of FE response 
sensitivities to system and loading parameters based on the DDM requires extension of the FE 
algorithms for response-only computation (Conte et al. 2003). This paper focuses on finite element 
response sensitivity analysis of SSI systems based on the DDM.  

In the past decade, DDM framework has been implemented in a general purpose FE software, 
OpenSees (Open System for Earthquake Engineering Simulation, http://OpenSees.berkeley.edu). To 
extend the DDM framework to SSI system, the sensitivities of various elements, sections and 
materials are derived and implemented. Furthermore, the DDM algorithm is extended to 
accommodate the multi-point constraints (MPC) conditions used in FE models (e.g., 
Transformation method, penalty method, Gu et al. 2009). It is worth mentioning that among these 
materials, two kind of 3D soil material model has been re-derived to accommodate the DDM 
sensitivity algorithms, i.e., multi-yield surface soil model and bounding surface soil model. These 
are two of the most popular soil models and are widely used in geotechnical engineering for 
simulating elastoplastic nonlinear soil behaviors during the earthquake(Gu et al, 2009, 2013). In this 
paper, only multi-yield surface soil model is used for sensitivity of SSI systems.   

2. DDM BASED FE RESPONSE SENSITIVITY ANALYSIS FRAMEWORK 

In the context of nonlinear FE analysis, the consistent FE response sensitivities based on DDM are 
computed at each time step, after convergence is achieved for the response computation. This 
requires differentiation of the FE algorithm for the response computation with respect to each 
sensitivity parameter q. Consequently, the response sensitivity computation algorithm involves the 
various hierarchical layers of FE response analysis, namely: (1) structure level, (2) element level, (3) 
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Gauss point level (or section level), and (4) material level. Details on the derivation of the 
DDM-based sensitivity equations for classical displacement-based, force-based and mixed finite 
elements can be found in a number of references (Zhang and Der Kiureghian 1993, Kleiber et al. 
1997, Conte et al. 2003, Gu et al. 2013).  

2.1. General Response Sensitivity Analysis Based on DDM 

After spatial discretization using the FEM, and integrate numerically the equation of motion in time 

using the Newmark-β method of structural dynamics, the dynamic residual ( )1n+Ψ u  expressed at 

discrete time t = tn+1 is given by 
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Where t = time, θ = sensitivity parameter, u(t) = vector of nodal displacements, M = mass matrix, C 

= damping matrix, R(u, t) = history dependent internal (inelastic) resisting force vector, 1n+F = 

equivalent applied dynamic load vector.  Differentiating Eq. (2) with respect to θ, recognizing that 
R = R (u(t, θ), θ),  
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Where 1n

θ
+∂

∂
F  can be computed easily based on the external loading and variables in the previous 

time step. In Eq. (2), the term ( )( )
1

1 , /
n

n θ θ θ
+
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R u  represents the partial derivative of the internal 

resisting force vector R(un+1) with respect to sensitivity parameter θ under the condition that the 
displacement vector un+1 remains fixed. This conditional derivative term is expressed as an 
assembly of contributions from all elements, and thus from all integration/material points. 

In Eq. (2), the term
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. The attribute 

‘consistent’ emphasizes that the tangent operator is obtained through consistent linearization of the 
the constitutive law integration scheme, which guarantees the quadratic rate of asymptotic 
convergence of iterative solution strategies based on Newton’s method (Simo and Taylor 1985). 
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For material sensitivity parameters, the term ( )( )
1
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R u  in Eq. (2) simplifies to 
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where B is the strain-displacement transformation matrix. The conditional stress sensitivity 
1

( )

n
θ

+

∂
∂ ε

σ x  

is computed by following the same elastic predictor multi-plastic corrector stress computation 
scheme as mentioned above. 

2.2. Response Sensitivity Algorithm for Elements, sections and Materials used to Model RC 
Frame 

RC frame can be modeled by displacement based Euler-Bernoulli frame beam column elements 
with distributed plasticity. Section stress resultants at the integration points may be computed by 
using fiber sections with concrete and reinforcing steel material layers. Currently the concrete 
material may be modeled using Kent-Scott-Park model with no tension stiffening, or smoothed 
Popovics-Saenz model (Gu 2008); while the reinforced steel may be modeled by using uniaxial J2 
plasticity model with kinematic and isotropic hardening, or Menegotto-Pinto model. The 
DDM-based response sensitivity analysis is extended to the elements, sections, materials mentioned 
above in order to perform the sensitivity computation.  

2.3. Extension of the DDM to accomodate the Multi-Point Constrain (MPC) method 

The DDM for FE response sensitivity analysis is extended to linear and nonlinear FE models with 
multi-point constraints (MPCs). The analytical developments are provided for three different 
constraint handling methods, namely: the transformation equation method, the Lagrange multipliers 
method and the penalty function method. This extension allows user to apply MPCs including: (1) 
“equal DOF”, which enforces equal displacements/rotations at different DOFs of the FE model. 
This may be used to model the simple shear condition of soil by tieing the corresponding bounday 
nodes ( usually at the same depth) together along some directions. (2) “rigid link”, which imposes a 
rigid connection between different DOFs, and (3) “rigid diaphragm”, which imposes a rigid 
behavior for the in-plane motion of nodes belonging to the same plane (Gu et al. 2009). 

2.4.  Response Sensitivity Algorithm for Multi-Yield Surface J2 Plasticity Model and 
bounding surface soil model 

The multi-yield surface J2 plasticity model was first developed by Iwan and Mroz (1967), then 
further developed and applied to soil mechanics by Prevost (1977), and recently implemented in 
OpenSees by Elgamal et al. (2003). In contrast to the classical J2 plasticity model with a single yield 
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surface, the multi-yield surface J2 plasticity model employs the concept of a field of plastic moduli 
to achieve a more realistic representation of the material plastic behavior under cyclic loading 
conditions. This field is defined by a collection of nested yield surfaces each of constant size (i.e., 
no isotropic hardening) in the stress space, which define the regions of constant plastic shear moduli. 
At each time step, it is not possible to know a priori which and how many yield surfaces will be 
reached until global equilibrium is achieved at the end of the step. Hence, the expressions for the 
response sensitivities at the current stress point (converged time step) depends on those yield 
surfaces that have contributed to the change of stress state from the last converged time step. The 
DDM based sensitivity algorithm has been extended to this soil model recently (Gu 2009).  
The bounding surface model was developed for simulating the pressure-dependent behaviors of 
sandy soils under complex loading conditions (Gu 2013).  Compared with the classical plastic 
theory using yield surfaces, flow rules and hardening laws to characterize the plastic behavior of a 
material, this model generalizes the yield-surface-based plasticity theory by defining a bounding 
surface or a failure surface. The plastic deformation within the bounding surface is determined by a 
varying plastic modulus, which is defined as a continuous function of the distance from the current 
stress to a properly defined ‘image’ stress on the bounding surface. The model was further 
improved to incorporate the basic premises of critical-state soil mechanisms to allow for the 
realistic modeling of the shear-induced volumetric changes (i.e., contraction or dilation) in either a 
loose or a dense state, and the phase transition from one state to another, which is the basis for 
modeling the liquefaction behavior of sandy soils. The DDM sensitivity algorithm was recently 
developed for this model (Gu 2013).  

3. APPLICATION EXAMPLES 

In this section, a soil-foundation-structure-interaction system subjected to earthquake excitation is 
studied. The application example considered herein consists of a three-dimensional reinforced 
concrete (RC) frame with concrete slabs at each floor as shown in Figure 1. The frame consists of 
three stories each of height h = 3.66m (12ft) and one bay of span L = 6.10m (20ft) in each direction. 
Beam and column cross-sections are also shown in Figure 2. Beams and columns are modeled using 
displacement-based Euler-Bernoulli frame elements, each with four Gauss-Legendre integration 
points. Each column and beam is discretized into two and three finite elements, respectively. Beam 
and column cross-sections are discretized into fibers of confined concrete, unconfined concrete and 
steel reinforcement. The reinforcement steel is modeled through a bilinear hysteretic model, while 
the concrete is represented by the Kent-Scott-Park model with zero tension stiffening (Scott et al., 
1982) as shown in Figure 1. Different material parameters are used for the confined (core) and 
unconfined (cover) concrete in the columns and beams. The concrete slabs are modeled through a 
diaphragm constraint at each floor to enforce rigid in-plane behavior. In the foundation, the 4m long 
RC piles are modeled in the same manner as the columns in the upper structure. The same 
beam\column elements, fiber sections, and material properties are used for the piles and columns. 
The material properties of the piles and columns have the same nominal values, but are treated as 
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different sensitivity parameters for the response sensitivity analysis. The foundation soil is 
discretized into four layers and the soil in each layer is modeled using the multi-yield surface J2 
plasticity model (Elgamal et al. 2003) with material parameters varying across layers. The 
connection between the piles and the soil is achieved by tying the three translational DOFs of the 
corresponding pile nodes (6-DOFs) and soil nodes (3-DOFs). A simple shear condition in the soil is 
modeled by tying together (in the x or y directions) the corresponding horizontal DOFs of the 
boundary nodes at the same depth. 

 

Figure 1. Geometry and column section properties of a 3D SFSI system 

Twenty three model parameters are modeled as random variables, taken from the material 
parameters of the soil, foundation and frame. Their relative importance in terms of specific system 
response parameters will be presented and discussed later. The parameters used to model the frame 
and soil materials are listed in Table 1. Poisson’s ratio is approximately 0.35 for all four soil layers. 

Table 1: Material properties 

 

After static application of the gravity loads, the structure is subjected to a bi-directional base 
excitation taken as the fault normal and fault parallel components of the 1978 Tabas earthquake. 
The maximum accelerations in both directions are approximately 1g as shown in Figure 2 (9.81 
m/s2). Both response and DDM-based response sensitivity analyses are performed using a constant 
integration time step of 0.01 sec. Part of the response of the frame and different soil layers are 
shown in Figure 2. The local moment-curvature response at point A in the frame and shear 
stress-strain response at point B in the soil are also plotted in Figure 2. From these simulation 
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results, it is clear that the system yields significantly under the earthquake excitation considered. 
Response sensitivity analysis is performed using the DDM. Response sensitivity results obtained 
using the DDM are verified by the Forward Finite Difference (FFD) method as shown in Figure 3. 
It is observed that the FFD results approach the DDM results as the perturbation is increased. This 
is due to the fact that the convergence threshold for the response is set to a relatively large value 
(1.0e-3 [m]) such that a too small parameter perturbation causes the FFD results to be inaccurate 
due to computational round off errors.The normalized sensitivity results for the first interstory drift 
are analyzed for all the material (structural and soil) parameters taken as sensitivity parameters. 
Some of these results are shown in Figure 3. Based on all the analysis results, it is found that the 
relative importance of the few most sensitive material parameters for the first interstory drift 
response in the x-direction are: max,4 max,3 , ,cov , 2 max,1 1 ,steel y steel c er c core foundation y foundationE f f G G Eτ τ σ τ σ> > > > > > > > > > .  
Similarly, for the first interstory drift in the y-direction, the relative importance of the first few most 
sensitive material parameters are: , max,4 max,3 , ,cov max,1 , 2 max,2 3y steel steel c core c er y foundationE f f G Gσ τ τ τ σ τ> > > > > > > > > > . 
The normalized sensitivity results are analyzed and the relative importance of the few most 
sensitive material parameters in determining the second floor drift in x direction are:  

max,4 max,3 , ,cov 2 1 3 max,1 , 4 ,steel y steel c er c core foundation y foundationE f G G G f G Eτ τ σ τ σ> > > > > > > > > > > > , and in y direction: 

max,3 , max,4 ,cov max,1 2 ,cov 3 4 , ,steel y steel c er c er foundation c core y foundationE f G G E G fτ σ τ τ ε σ> > > > > > > > > > > > . From these results, it is 
observed that the importance sequence for x and y direction are almost same. Parameters 

, max,3 max,4, , ,y steel steelEσ τ τ  are always most important parameters; while the other few parameters   

,cov , 2 1 max,1 ,, , , , , ,c er c core foundation y foundationf f G G Eτ σ  are sensitive as well. The relative importance to second floor 
drift is similar with that to the first drift and is not shown in this paper. 

The reason for the sensitivity ranking described herein is that the Tabas earthquake is strong enough 
( 1.0PGA g≈ ) such that the building and the soil in the third and forth layer (i.e., the bottom 2 layers, 
refer to Figure 1) yield significantly. Thus the parameters related to the strength , max,3 max,4, ,y steelσ τ τ   
become as important as or more important then the stiffness parameters ( e.g. steelE ),  which are 
observed to be most sensitive when system is subjected to small or moderate earthquake. 
Parameters ,cov , 2 1, , ,c er c coref f G G  are closely related to the stiffness of the system, and are very sensitive 
for small earthquakes, however become less sensitive for strong earthquake. Foundation is not yield 
so much and thus its parameters are not so sensitive. Same sensitivity analysis is performed for 
local strain at point B in soil ( see Figure 1). Part of the normalized sensitivity results are shown in 
Figure 4. From these analysis results, it is observed that, the relative importance to strain a point B 
is: max,1 max,4 max,2 , max,3 1 ,cov 4 2 ,coy steel c er steel c reG f G E G fτ τ τ σ τ> > > > > > > > > > , which is slightly different than the 
sensitivity ranking of parameters to the global responses ( first and second interstory drift), in the 
sense that the local soil parameters close to point B becomes remarkable( e.g.,  max,1 max,2,τ τ ), while 
those far from point B becomes less important ( e.g., steelE ). The sensitivity analysis is performed for 
the moment at point A in structure ( Figure 2) as well. Part of the results are shown in Figure 3.The 
normalized sensitivity shows the relative importance of the material parameters are: 

3 max,4 max,3 ,cov max,1 max,2 ,co ,co ,covsteel c er c re c re c erG E f fτ τ τ τ ε ε> > > > > > > > > . This ranking is slight different from the 
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ranking of parameter sensitive for global response, and the parameters closely related to the 
structure (e.g., ,cov ,co,c er c ref f ) becomes more important. 

 

Figure 2: Base excitation and local responses 

 

 

Figure 3: Verification and normalization of DDM based response sensitivitie 

 



9 

 

4. CONCLUSIONS 

This paper presents a framework for FE response sensitivity analysis of soil structure interaction 
(SSI) systems based on the direct differentiation method (DDM). A 3D frame-soil system is taken 
as application example, when subjected to dynamic earthquake base excitation and static push over 
loading conditions. The response sensitivity obtained by using DDM is verified by using Finite 
Difference method. The response sensitivities are also used to evaluate the relative importance of 
material parameters on the response quantities of interest. 
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