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ABSTRACT 

Many materials which are widely used in industries such as building, aircraft, aerospace, marine 
and biological technology can undergo large nonlinear elastic deformations and have inherent 
anisotropic characteristics. To be able to utilize these materials efficiently and economically, better 
analytical methods and designs are needed. Hyperelastic constitutive modeling has appeared as an 
effective tool in continuum mechanics for characterizing large deformation materials. In this paper a 
hyperelastic model proposed for anisotropic materials is applied for example to soft tissues at large 
strains. The model is an extension of a model successfully used for the analysis of isotropic 
hyperelastic materials. The formulation is based on the invariant theory and polyconvexity. The 
model is decomposed into an isotropic part and an anisotropic part. The numerical results show a 
very good agreement with the experimental results.  

Keywords: soft tissues, anisotropy, hyperelasticity, finite strain. 

1. INTRODUCTION 

It is well known that soft biological tissues can undergo large nonlinear elastic deformations and 
have inherent anisotropic characteristics (Fung 1993). Modeling of these materials has received 
increasing interest from research community due to an increase in the use of virtual human 
modeling.Hyperelastic constitutive modeling has appeared as an effective tool for characterizing 
complex behavior of soft tissue (Spencer 1980). Behavior of hyperelastic materials are generally 
described by a strain energy function. The constitutive stress-strain relations and elastic moduli can 
be derived directly from a strain energy function. A strain energy function can be derived by using 
phenomenological or microstructural approaches. Although the parameters in microstructural 
models have a physical meaning, identification of these parameters might be a problem. In general, 
the macroscopic behavior of soft tissues can be satisfactorily described by phenomenological 
models (Ehret and Itskov 2007). Phenomenological models have thus widely been adopted. 
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In this paper a hyperelastic model proposed for anisotropic materials is presented. The model is an 
extension of a model proposed by Attard (2003) which has been successfully used for the analysis 
of isotropic hyperelastic materials (Attard and Hunt 2004). The model is formulated within the 
framework of the invariant theory by representing the anisotropy using an isotropic tensor function 
through the so-called structural tensors and is based on polyconvexity and coercivity conditions so 
as to guarantee the existence of solutions. In order to include the isotropic model, the model is 
decomposed into an isotropic and anisotropic component. For example, the model is fitted to 
uniaxial tension tests of soft tissues. The model can be classified as a phenomenological model.     

2. HYPERELASTICITY 

A hyperelastic material is a material with elastic behavior that can be described by a strain energy 
function with respect to the initial volume in terms of the deformation gradient ( )= FW W . 
According to the objectivity condition the strain energy function has to be independent of 
superposed rigid body motions. This condition can automatically be met by representing the strain 
energy function in terms of the right Cauchy-Green deformation tensor =C F FT  so that (see e.g. 
Truesdell and Noll 1965) 

( ) ( )= =F CW W W . (1) 

The condition of material symmetry requires that the strain energy function be invariant under 
transformations with elements of the material symmetry group that describe the anisotropic class of 
the material. According to Rychlewski’s theorem (see e.g. Zhang and Rychlewski 1990), this 
condition is satisfied if and only if the strain energy can be represented as an isotropic tensor-valued 
function of arguments containing the so-called structural tensors which reflect the symmetry group 
of the material. The strain energy function has thus to satisfy 

( , ) ( , )= =C G QCQ QG QT T
i iW W W , (2) 

where , 1, 2,...,G =i i n  are the structural tensors and Q  is an element of the material symmetry 
group and is a proper orthogonal tensor. The anisotropy can be characterized by certain directions, 
lines or planes associated with some unit vectors defined in the undeformed state (Zheng and 
Boehler 1994). This leads to a definition for iG  of the form 

,= ⊗G m mi i i  (3) 

where each im  is a unit vector. The iG  have the property 

[ ]tr 1=Gi . (4) 

According to the invariant theory, the invariants of C and iG  are required. For the formulation of 
the strain energy function, only a set of invariants is determined (SchrÖder and Neff 2003). Due to 
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the property of the structural tensors in equation (4), the strain energy function can be expressed in 

terms of the invariants of the argument tensors ( ), iC G  as 

1 2 3 4 5( , , , , )= i iW W I I I J J , (5) 

where 1 2 3,  and I I I  are the principal invariants of C , 4iJ and 5iJ  are the mixed invariants for C  

and iG . They have the explicit expressions as, where piλ  are the principal stretches, 

[ ] ( ) ( ) ( )2 2 2

1 1 2 3tr= = + +C p p pI λ λ λ , (6) 

[ ] ( ) ( ) ( )2 2 2

2 1 2 2 3 3 1tr Cof⎡ ⎤= = + +⎣ ⎦C p p p p p pI λ λ λ λ λ λ , (7) 

[ ] ( )2

3 1 2 3det= =C p p pI λ λ λ  (8) 

[ ] 2
4 5tr ,    tr ⎡ ⎤= = ⎣ ⎦CG C Gi i i iJ J . (9) 

3. POLYCONVEX STRAIN ENERGY FUNCTIONS 

The polyconvexity condition in the sense of Ball (1997) has been proved to be able to serve for both 
sequentially weakly lower semicontinuous and coercivity conditions which guarantee the existence 
of solutions. Furthermore, ellipticity condition is also guaranteed (SchrÖder and Neff 2003). Hence, 
the proposed strain energy function is formulated on the basis of the polyconvexity. 

3.1. Polyconvexity 

A strain energy function is said to be polyconvex if and only if there exists a convex function with 

the arguments of [ ] [ ],  Cof  and detF F F  in such a way that the strain energy function ( )= FW W  

can satisfy 

[ ] [ ]( )( ) ,Cof ,det= =F F F FW W W . (10) 

A subclass of the polyconvexity in equation (10) is the additive polyconvex functions of the form 

[ ] [ ]( ) ( ) [ ]( ) [ ]( )1 2 2,Cof ,det Cof det= + +F F F F F FW W W W . (11) 

If each , 1, 2,3=iW i  is convex then the strain energy function is polyconvex (SchrÖder and Neff 
2003). That means the definition of the polyconvexity requires the convexity properties of the 
arguments of the strain energy function equation (5). Indeed it can be shown that the invariants 
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1 2 3 4, ,  and iI I I J  are convex with respect to F , [ ]Cof F , [ ]det F  and F , respectively, but the 

invariant 5iJ  is not convex with respect to F  (SchrÖder and Neff 2003) and a convex mixed 
invariant derived by use of the Cayley-Hamilton theorem has to be used instead. The convex mixed 
invariant can be expressed in terms of 5iJ  and other invariants as 

[ ] [ ]5 5 1 4 2tr Cof tr⎡ ⎤= = − +⎣ ⎦C G Gi i i i iK J I J I . (12) 

Therefore, to satisfy the polyconvexity condition, the expression for the strain energy function in 
equation (5) is replaced by 

1 2 3 4 5( , , , , )= i iW W I I I J K . (13) 

The additive representation of the polyconvexity, equation (11), is then utilized to additively 
decompose the strain energy function, equation (13), into an isotropic part isoW  and an anisotropic 
part anisoW . This decomposition of the strain energy function allows a variety of combinations of 
the two parts. In addition, the two parts are associated with scalar weight factors iw  representing a 
dispersion of components as experimentally observed (Gasser et al. 2006), i.e. 

( ) ( )0 iso 1 2 3 aniso 3 4 5 0
1 1 1 1

, , , , ,      1
= = = =

= ⋅ + ⋅ = −∑∑ ∑∑
m n m n

r r r
i i i i

r i r i
W w W I I I w W I J K w w  (14) 

( ) ( ) ( )inc com
iso 1 2 3 iso 1 2 3 iso 3, , , ,= +W I I I W I I I W I , (15) 

( ) ( ) ( ) ( )aniso 3 4 5 aniso 3 aniso 4 aniso 5
1 1

, ,
= =

⎡ ⎤= + +⎣ ⎦∑∑
m n

r Ir Jr Kr
i i i i

r i
W I J K D W I W J W K , (16) 

where inc
isoW  is an incompressible component associated with constrained volume change or 

volume constant distortion, com
isoW  is a compressible component associated with specific volume 

change and rD  are material constants.  

3.2. Natural state conditions 

In this section, the isotropic and anisotropic stain energy functions are analyzed with respect to the 
natural state conditions, i.e. the stress and energy have to be zero in the undeformed configuration. 

3.2.1. Isotropic strain energy function 

For isoW of equation (15), the second Piola-Kirchhoff stress tensor are given by 
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inc inc inc inc com
1 1iso iso iso iso iso iso

iso 1 3 3
1 2 2 3 3

2 2 − −⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= = + − + +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

π I C C C
C

W W W W W WI I I
I I I I I

, (17) 

with 1
1 2 1 3 3,   and C I C I C C C−∂ ∂ = ∂ ∂ = − ∂ ∂ =I I I I I . In order to consider the stress condition for 

the natural state, =C I  is set and iso C I
π 0

=
=  is required. Thus, the stress-free conditions are 

inc inc inc com
iso iso iso iso

1 2 3 3

2∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
W W W W

I I I I
. (18) 

For the energy condition at undeformed configuration, =C I  is set and iso C I
0

=
=W  is required. 

Thus, the energy-free conditions are 

( )inc com
iso iso3,3,1 (1) 0= =W W  (19) 

3.2.2. Anisotropic strain energy function 

For anisoW of equation (16), the second Piola-Kirchhoff stress tensor are given by    

1 1 1aniso aniso aniso aniso aniso
aniso 3 5 3

1 1 3 5 4 5

2 2 − − −

= =

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂
= = + + −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

∑∑π C G C G C
C

Ir Kr Jr Krm n
r

i i i
r i i i i

W W W W WD I K I
I K J K

 (20) 

with 1 1 1 1
3 3 4 5 5 3,   and C C C G C C C G C− − − −∂ ∂ = ∂ ∂ = ∂ ∂ = −i i i i iI I J K K I . For the stress condition 

at the natural state =C I  is set and aniso C I
π 0

=
=  is required. Thus, the stress-free conditions are 

( ) ( ) ( )aniso aniso aniso

5 4 3

1 1 1
1,     1, 2,..., ,     1, 2,...,

∂ ∂ ∂
= = − = = =

∂ ∂ ∂

Kr Jr Ir

i i

W W W
r m i n

K J I
 (21) 

For the energy-free reference configuration condition, =C I  is set and aniso C I
0

=
=W  is required. 

Thus, the energy-free conditions are 

( ) ( ) ( )aniso aniso aniso1 1 1 0= = =Ir Jr KrW W W  (22) 
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4. NUMERICAL EXAMPLES 

The proposed model equation (14) is specified and applied to a set of experimental data on human 
arterial tissue performed by Holzapfel et al. (2005). Arteries were split into the adventitial, medial 
and intimal layer and tested in cyclic uniaxial quasi-static tension. The load was applied such that 
the principal axes of deformation coincided with the circumferential, axial and radial direction of 
the vessel. The stress response for loading in circumferential and axial direction was recorded.  

In order to describe the mechanical behavior of the tissue samples, an incompressible 
fiber-reinforced composite is often assumed for each layer with two mechanically equivalent 
families of collagen fibers that form symmetrical helices tilted by an angle ±ϕ against the 
circumferential direction (Ehret and Itskov 2007, Holzapfel et al. 2005). This assumption is also 
adopted in this study. The orientations of the two fiber families can be given by the vectors 

1 2cos sin ,    cos sin , = + = −m e e m e ez zθ θϕ ϕ ϕ ϕ  (23) 

where θe  and ze  are unit vectors in the circumferential and axial direction of the artery, 
respectively. For the isotropic term, the function proposed by Attard (2003) is adopted herein. The 
function and their derivatives which satisfies equations (18) and (19) are in the form 

( ) ( )
inc inc inc

inc iso iso iso1 1 2 1 1 1 2
iso 1 2 3 1 2

3 1 2 3 3 3
, , 3 3 ,  ,  ,  

2 2 2 2 2

⎛ ⎞ ∂ ∂ ∂
= − + − = = = −⎜ ⎟ ∂ ∂ ∂⎝ ⎠

W W WA B I A B B IW I I I I
I I I I I I

,  (24) 

where 1 1 1,  and A B C  are material constants. For the anisotropic term, with the incompressibility 
constraint 3 1I = , the anisoW in equation (16) becomes 

( ) ( ) ( )inc inc inc
aniso 4 5 aniso 4 aniso 5

1 1
,

= =

⎡ ⎤= +⎢ ⎥⎣ ⎦∑∑
m n

r Jr Kr
i i i i

r i
W J K D W J W K , (25) 

inc 1
5 tr −⎡ ⎤= ⎣ ⎦C Gi iK  (26) 

where the invariants inc
5iK  result from 5iK   under the constraint 3 1I = . And the exponential 

functions are utilized herein. The function and their derivatives which satisfies equations (21) and 
(22) are in the form 

( ) ( )

( ) ( )

4 4

inc inc
5 5

1 1aniso
aniso 4

4

1 1inc aniso
aniso 5 inc

5

1( ) 1 ,     ,

1( ) 1 ,     .

− −

− −

∂⎡ ⎤= − =⎣ ⎦ ∂

∂⎡ ⎤= − =⎢ ⎥⎣ ⎦ ∂

r i r i

r i r i

Jr
A J A JJr

i
r i

Kr
B K B KKr

i
r i

WW J e e
A J

WW K e e
B K

 (27) 

Applying equations (3), (9) and (26), the two generalized invariants can be expressed in terms of the 
principal stretches under the incompressibility constraint 3 1z rI = =θλ λ λ  as 
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2 2 2 2
4
inc 2 2 2 2
5

cos sin ,

cos sin ,− −

= +

= +

i z

i z

J

K
θ

θ

λ ϕ λ ϕ

λ ϕ λ ϕ
 (28) 

where θλ , zλ  and rλ  are the principal stretches in circumferential, axial and radial direction, 
respectively. Considering one single term m = 1 and n = 2 with taking into account the mechanical 

equivalence of the fiber families, so that 1 1 inc inc
2 1 42 41 52 51,   and = = =w w J J K K , the strain energy 

function is then given by 

( ) ( ) ( )( ) ( )inc
1 511 41 111 1 11 1 2

1 1 1
3 1 1

1 11 2 3 3 2 1 1
2 2

−−⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞= − − + − + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

B KA JA B IW w I w D e e
I A B

. (29) 

For uniaxial tension test, the lateral directions are stress free and the Cauchy stresses in 
circumferential and axial direction can be calculated, respectively, by 

,      .∂ ∂
= =

∂ ∂z z
z

W W
θ θ

θ
σ λ σ λ

λ λ
 (30) 

The model was fitted and compared with the experimental results. The five model parameters (A1, 

B1, D1, 1
1w and ϕ) for each layer were determined by using a least squares regression analysis of the 

experimental data implemented using the commercial package MATLAB. The comparisons of the 
results as Cauchy stress versus stretch diagrams are shown in Figure 1. The values of the model 
parameters as well as the sum squared error (SSE) and R-square (R2) obtained from the fittings are 
also presented in Figure 1. For all three layers, i.e. intimal, medial and adventitial layer, the 
comparisons are in good agreement with the experiemental results with R2 = 0.9978, 0.9995 and 
0.9981, respectively. 



8 

 

 

 

Figure 1: Comparison of the propose model with the experimental data. 

5. CONCLUSIONS 

In this paper a hyperelastic model for anisotropic materials has been formulated and proposed. The 
proposed strain energy function is decomposed into an isotropic part and an anisotropic part which 
allows for a variety of combinations of isotropic and anisotropic functions. The model is based on 
the framework of the invariant theory and polyconvexity which guarantee the existence of solutions. 
For example, the model was able to describe the hyperelastic behavior in soft tissues under uniaxial 
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tension tests. With a few model parameters, the numerical results showed a good agreement with 
the experimental results. 
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