<table>
<thead>
<tr>
<th>タイトル</th>
<th>Studies on the function of miR-124 during neurogenesis in the medaka, Oryzias latipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>加藤 裕美子</td>
</tr>
<tr>
<td>発行日</td>
<td>2013-12-25</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/doctoral.k11162</td>
</tr>
<tr>
<td>項目 URL</td>
<td>http://hdl.handle.net/2115/54644</td>
</tr>
<tr>
<td>タイプ</td>
<td>theses (doctoral)</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>Yumiko_Kato.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
Studies on the function of miR-124 during neurogenesis in the medaka, Oryzias latipes

(メダカ神経発生過程におけるmiR-124の機能に関する研究)

A DISSERTATION
submitted to the Graduate School of Science, Hokkaido University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY

By YUMIKO KATO

2013
Contents

General Introduction
Figure

Chapter 1 Genomic organization and expression of medaka miR-124
1.1. Introduction
1.2. Materials and Methods
1.3. Results
1.4. Discussion
1.5. Figures and Tables

Chapter 2 Sequences and expression of miR-124 target genes, *Polypyrimidine tract binding proteins*
2.1. Introduction
2.2. Materials and Methods
2.3. Results and Discussion
2.4. Figures and Tables

Chapter 3 Post-transcriptional regulation by miR-124 in medaka embryogenesis
3.1. Introduction
3.2. Materials and Methods
3.3. Results
3.4. Discussion
3.5. Figures and Tables

General Discussion
Figure

References

Acknowledgements
General Introduction

Vertebrate brains are extremely diverse and complex in their morphology, neural cells, and their neural networks. Nevertheless, they are composed of conserved structural elements (basically the forebrain, midbrain, and hindbrain) that were present in the common ancestor of vertebrates (Northcutt, 2002). Brain patterning is controlled by conserved developmental regulators, including transcription factors such as Hox, Otx, and Pax (Acampora et al., 2001; Lemons and McGinnis, 2006; Georgala et al., 2011). Noncoding regions of genomes are also now thought to contribute to brain diversity and complexity, because the ratio of noncoding regions to total genomic DNA correlates well with increasing biological complexity (Meisler, 2001; Taft et al., 2007).

MicroRNAs (miRNAs) are a group of small noncoding RNAs that are ~22 nucleotides (nt) in length. MiRNAs regulate gene expression at the post-transcriptional level by either repressing translation or promoting mRNA degradation (Bartel, 2009) (Fig. 0.1). Most miRNAs are located in intergenic and intragenic regions, and are transcribed as primary miRNA (pri-miRNA) including 5′cap and 3′poly (A)-tails by RNA polymerase II (Lee et al., 2003). The pri-miRNA is cropped as stem-loop precursor miRNA (pre-miRNA) of ~60–100 nt long by the nuclear RNaseIII enzyme, Drosha/DGCR8. The pre-miRNA is then exported by Exportin-5 from the nucleus to the cytoplasm after cropping, and cleaved near its terminal loop by RNA III enzyme, Dicer/TRBP, to form ~22 nt long mature miRNA (mat-miRNA). The mat-miRNA is incorporated into Argonanute (Ago), forming the RNA-induced silencing complex (miRISC), and negatively control the target mRNA expression by binding to the 3′ untranslated region (UTR). The seed sequences between the second and the seventh positions in 5′ end of mat-miRNA are perfectly complementary to the target mRNA, which is essential for the binding of the miRNA to the mRNA (Mishima, 2011).

Many mammalian miRNAs are highly or specifically expressed in neural tissues and approximately 70% of experimentally detectable miRNAs are expressed in the brain (Cao et al., 2006), suggesting that miRNAs are essential for the nervous system. Giraldez et al. (2005) found that maternal-zygotic dicer mutants in zebrafish, in which all miRNA formation was blocked, led to defects in brain morphogenesis. In addition, some studies have reported the relationship between miRNA disparity and vertebrate complexity, including brain morphology (Heimberg et al., 2008; Somel et al., 2011).

Medaka (Oryzias latipes) is an excellent vertebrate model for molecular
embryology, because it has a relatively small genome (about 800 Mb), and a draft genomic analysis has been completed (Kasahara et al., 2007). The medaka embryo is transparent and thus ideal for developmental genetic studies. The spatiotemporal expression and function of genes can, for example, be examined by reporter gene assay in developing embryos. Tani et al. (2009) found that miR-430 was expressed during early embryogenesis and could regulate expression of a reporter construct of the 3'UTR of TDRD7, a primordial germ-cell specific gene, in vivo. Some other miRNAs are also known to be expressed in medaka tissues, including the central nervous system (CNS) (Ason et al., 2006). However, it has not been demonstrated that miRNA functions in the CNS development of medaka.

To clarify the function of miRNA in medaka neural development, I studied on a neuron-specific miRNA, miR-124. MiR-124 is well conserved between invertebrates and vertebrates, and expressed abundantly in the CNS. In Chapter 1, I characterized medaka miR-124 and examined their expression during embryogenesis. In Chapter 2, I identified the nucleotide and amino acid sequences of medaka polypyrimidine tract binding proteins (PTBPs), which are the candidate target genes in post-transcriptional regulation by miR-124. In Chapter 3, I performed GFP reporter assay to clarify whether miR-124 directly targets the 3'UTR of the medaka Ptbp1a and Ptbp1b.

From these studies, I suggested that miRNA is involved in post-transcriptional regulation of target mRNA in medaka neural development and multiple copies of a miRNA have different roles. It is useful for comparative analysis of miRNA function among vertebrates and will help to understand how differences in brain development, morphology, and function have evolved.
Fig. 0.1. MiRNA pathway. MiRNA is transcribed as a primary miRNA (pri-miRNA) by polymerase II (Pol II) and processed by Drosha/DGCR8 to generate precursor miRNA (pre-miRNA). Pre-miRNA is further processed by Dicer/TRBP to form mature miRNA (mat-miRNA) ~22 nucleotide (nt) long. Mat-miRNA is incorporated into miRNA-Argonaute complex (miRISC), which induces the post-transcriptional regulation of target miRNAs (Mishima, 2011).
Chapter 1

Genomic organization and expression of the medaka miR-124
1.1. Introduction

MiR-124 (also known as miR-124a and miR-124-3p) is highly conserved and is the most abundant miRNA in the central nervous system (CNS) during embryogenesis and later development in vertebrate species (Lagos-Quintana et al., 2002, Miska et al., 2004; Chen et al., 2005; Kloosterman et al., 2006). Deo et al. (2006) have reported a precise analysis of miR-124a expression by section in-situ hybridization of mouse brain. MiR-124a is expressed in the region of differentiating and mature neurons of the CNS in mouse embryo. On the other hand, miR-124a is expressed throughout most parts of the brain, including the cerebral cortex and hippocampus in the adult. In chick embryo, miR-124a is also expressed strongly in the brain, especially in the hindbrain, midbrain, lateral regions of the spinal cord and the pituitary rudiment (Darnell et al., 2006; Sweetman et al., 2006). MiR-124a has also been shown to be expressed in eye; it is detected strongly in most cells in the neural retina but not in the pigmented epithelium (RPE) (Deo et al., 2006; Frederikse et al., 2006). In the embryo of *Xenopus laevis*, miR-124 expression is detectable after neurulation, and getting stronger in the entire CNS and the eyes (Qiu et al., 2009). Hence, miR-124 is assumed to play a pivotal role in the CNS and the in-vitro and in-vivo functions of miR-124 have been studied in multiple species (Cao et al., 2007; Visvanathan et al., 2007; Qiu et al., 2009; Sanuki et al., 2011). However, a precise role of teleost miR-124 is still unexplained.

In Chapter 1, I described the sequences and expression pattern of miR-124 in medaka. I identified the five candidate miR-124 precursor sequences in medaka genome database. I examined the expression of the medaka miR-124 by northern blotting and in-situ hybridization with locked nucleic acid (LNA)-modified oligonucleotide probes, which increase sensitivity for the detection of very small RNA molecules. I found out that the medaka mat-miR-124 was specifically expressed in the CNS and in the eyes during embryogenesis similarly to other vertebrate species. To examine the miR-124 expression in more detail, I performed in-situ hybridization of transverse sections of the embryo and larva. This result indicated that miR-124 expression of medaka is most likely restricted in differentiated neuron. By RT-PCR and whole mount in-situ hybridization, I showed the possibility that the five medaka pri-miR-124s were expressed at different levels. These results suggest that the medaka miR-124 is involved in the neural development and that each homolog from the medaka pri-miR-124s might have spatiotemporally different roles in the embryo and adult tissues.
1.2. Materials and Methods

Animals

Adult and embryonic Japanese medaka, *Oryzias latipes* (orange-red variety), were maintained in the laboratory tanks at 27°C, with a photoperiod of 10 h dark/14 h light (Iwamatsu, 1978). Naturally spawned and fertilized eggs were collected and cultured in distilled water containing 0.6% methylene blue in Petri dish. To let embryos develop normally, it is necessary to remove attachment filament and separate eggs. Attachment filaments were cut with scissors holding eggs with forceps or removed by gently rolling eggs on tissue papers. Developmental stages herein are expressed in terms of days post-fertilization (dpf), are as defined by Iwamatsu (2004).

Dechorionation of embryos

For *in-situ* hybridization, embryos were dechorionated using hatching enzyme (Yamagami, 1972) provided by the National Bio Resource Project (NBRP) Medaka (Okazaki, Japan). Embryos at each stage were washed in distilled water once and rolled on sand paper (#1200, waterproof) with the forefinger to damage the outer surface until the filaments became invisible. After washing in 1× Iwamatsu′s balanced salt solution (BSS) pH 7.4 three times, embryos were placed in 1× BSS with 20mg/ml pronase (Calbiochem) and incubated for 30 min at 27°C. After washing in 1× BSS three times, embryos were placed in 1/2–1/5 hatching enzyme diluted with 1× BSS and incubated at 27°C for 30–90 min (until the embryos were dechorionated). After washing in 1× BSS three times, the dechorionated embryos were maintained in 1× BSS at 27°C. Pronase and hatching enzyme were kept on ice or at 4°C and repeatedly used until activity is lost (approximately 1–2 weeks).

Identification of miR-124 in the medaka genome

To identify miR-124 genes in the medaka genome, I carried out a BLAST search of the Ensembl Medaka genomic database (http://www.ensembl.org/Oryzias_latipes/Info/Index), using the zebrafish pre-miR-124 obtained from miRBase (http://microrna.sanger.ac.uk/sequences/index.shtml) as the query sequence. In addition, I obtained sequences of miR-124 from various other animal species from the miRBase and Rfam (http://www.sanger.ac.uk/Software/Rfam/) databases and also used them to conduct BLAST searches for medaka genomic sequences in Ensembl Medaka. Candidate miR-124 genes identified were aligned by using CLUSTALW software (http://www.genome.jp/tools/clustalw/), and their secondary structures were predicted.
with CentroidFold software (http://www.ncrna.org/centroidfold/).

LNA northern blotting

Northern blotting was performed with LNA-modified oligonucleotide probes labeled with digoxigenin (DIG) at the 3′ end (Thermo Fisher Scientific, Germany), as previously described (Tani et al., 2009). The nucleotide sequences of the LNA probes were as follows: ola-miR-124, TCGCATTCACCGCGTGCCTTAA; *O. latipes* U6 snRNA, AAAATGAGGAACGCTTCACGA (Tani et al., 2009).

Total RNA was isolated using ISOGEN (Nippongene). For each developmental stage, 3 μg of RNA was separated on 12% denaturing polyacrylamide gels and blotted onto a nylon membrane (Hybond-N+, GE Healthcare Life Sciences). Blots were prehybridized in hybridization buffer (50% formamide, 5× SSC, 2% blocking solution, 0.1% N-lauroyl sarcosine, 0.1% SDS, 200 μg/ml yeast tRNA) for 1h at 60°C. Blots were washed twice with 2× SSC containing 0.1% SDS and once with 1× SSC containing 0.1% SDS at room temperature for 15 min each, and once with 0.2× SSC containing 0.1% SDS and 0.1× SSC containing 0.1% SDS at 65°C for 30 min each.

After a brief wash with maleic acid buffer (0.15 M NaCl, 0.1 M maleic acid, pH 7.5), the blots were incubated in 1% blocking reagent (Roche) in maleic acid buffer for 30 min, and then incubated in 1% blocking reagent containing anti-DIG-AP Fab fragment (Roche) at a concentration of 1/5000 for 30 min at room temperature. The blots were washed twice in maleic acid buffer containing 0.3% Tween20, followed by a brief wash in AP buffer (100 mM Tris–HCl, pH 9.5, 100 mM NaCl). Then, blots were incubated with CDP-star chemiluminescent (Roche) for 5 min at room temperature. Signals were captured on X-ray films or detected by LAS3000 (Fujifilm).

LNA in-situ hybridization

In-situ hybridization with the LNA probes was performed on medaka embryos as previously described (Tani et al., 2009). Dechorionated embryos at 5 dpf were fixed in 4% paraformaldehyde (PFA) in PBS and stored in 100% methanol. After rehydration, the embryos were bleached in 6% H2O2 in PBT (0.1% Tween20 in PBS) for 1h, and then treated with proteinase K (1 μg/ml for 0 dpf, 2 μg/ml for 1–2 dpf, and 2.5 μg/ml for 3 dpf embryos) in PBT at room temperature for 10 min. The embryos were refixed in 4% PFA, and transferred to hybridization buffer (50% formamide, 5× SSC, 0.1% Tween20, 50 μg/ml yeast tRNA, 50 μg/ml heparin). After pre-hybridization, the embryos were transferred to fresh hybridization buffer containing the same miR-124 LNA probe used for northern blotting, and were incubated at 45°C overnight.
Subsequently, the embryos were washed at 45°C three times in 50% formamide, 2× SSCT (SSC containing 0.1% Tween-20) for 30 min each and three times in 2× SSCT for 15 min each. After a brief wash with PBT, the embryos were blocked in 1% blocking reagent (Roche) in PBT at room temperature for 1 h. Antibody reaction was carried out in 1% blocking reagent containing anti-DIG-AP Fab fragment (Roche) at a concentration of 1/5000 at 4°C overnight. The embryos were washed in blocking reagent in PBT four times for 30 min each time, incubated in staining buffer (100 mM Tris-HCl, pH 9.5, 100 mM NaCl, 0.1% Tween20, 1 mM levamisole) for 10 min, and then stained in staining buffer containing 450 μg/ml NBT (Sigma) and 175 μg/ml BCIP (Sigma). Embryos were washed three times in PBT and prefixed in 4% PFA. To obtain transverse sections, samples were embedded in Tissue-tek (Sakura Finetek) and frozen at –80°C. The frozen samples were cryosectioned at a thickness of 10 μm at –25°C. The sections were fixed in 4% PFA, and acetylated for 10 min with 0.25% acetic anhydride in 0.1 M triethanolamine/HCl buffer (pH 8.0). Hybridization was conducted at 45°C for 16–18 h in hybridization buffer (50% formamide, 5× Denhardt’s solution, 0.5 mg/ml yeast tRNA, 6×SSPE).

Hematoxylin-eosin staining

Larvae were fixed in Bouin’s fluid (picric acid saturated aqueous solution: formalin: acetic acid = 15: 5: 1) at 45°C overnight. After dehydration with ethanol and xylene, the specimens were embedded in paraffin and sliced serially into 5 μm thick sections. The sections were stained with Delafield’s hematoxylin and eosin (HE).

Semi-quantitative RT-PCR

To investigate whether all five loci detected for medaka miR-124 actually produce mat-miR-124, I performed semi-quantitative RT-PCR using primers (Table 1.1) corresponding to pri-miR-124 homologs and total RNA extracted with Isogen (Nippongene, Tokyo) from whole, stage-34 embryos and from adult tissues. First-strand cDNA synthesis was performed with ReverTra Ace (Toyobo). *OICAI* (AB525196) was used as a positive control (Kusakabe et al., 1999). PCR was conducted with Ex taq DNA polymerase (TaKaRa) and normalized amounts of template. PCR conditions were 30 cycles of 98°C for 10 sec, 60°C for 30 sec, and 72°C for 1 min, followed by 7 min at 72°C. In control reactions using the *OICAI* primers, 20 PCR cycles were used. PCR products were electrophoresed on 1.5% agarose gel in TAE buffer, and then signals were detected after staining with ethidium bromide. Expression of *ola-miR-124* is
presented as expression relative to that of the internal control (relative expression), with values given as the mean ± SD of three independent experiments. Differences in expression among tissue sources were evaluated with Student’s t-test.

In-situ hybridization with RNA probes

Whole mount in-situ hybridization with RNA probes was performed according to the protocol described by Inohaya et al. (1995). DIG-labeled RNA probes were synthesized from cDNA fragments containing medaka pri-miR-124 sequences by PCR amplification with the primers (Table 1.1). The cDNA fragments were cloned into pBluescript II SK+ (Stratagene) and the plasmid DNA were linearized by cutting with XhoI or EcoRI, which were used for antisense or sense primers, respectively. RNA probes were transcribed using T3 or T7 RNA polymerase from using a DIG RNA labeling mix (Roche). The RNA probes were purified through ProbeQuant G-50 Micro Columns (GE Healthcare). Dechorionated embryos were fixed in 4% PFA in PBS and stored in MeOH. After rehydration, the embryos were bleached using 6% H2O2 in PBT for 1h, and were treated with proteinase K (1 μg/ml for 0 dpf, 2 μg/ml for 1–2 dpf, and 2.5 μg/ml for 3 dpf embryos) in PBT at room temperature for 10 min. The embryos were refixed in 4% PFA and transferred to hybridization buffer (50% formamide, 2× SSC, 0.1% Tween20, 50 μg/ml yeast tRNA, 50 μg/ml heparin) and incubated at 55 or 60°C for 1 h. The embryos were transferred to fresh hybridization buffer containing RNA probes and incubated at 55 or 60 °C overnight. Subsequently, the embryos were washed at 55 or 60 °C two times in 50% formamide, 2× SSCT for 30 min each, and at 37 °C two times in 2× SSCT for 15 min each. After a brief wash with PBT, the embryos were incubated at 37°C with 50 μg/ml RNaseA in PBT for 30 min to remove excess RNA probes. The embryos were washed once at 37°C in 2× SSCT for 10 min, once at 55 or 60 °C in 50% formamide, 2× SSCC for 1 h, and two times at 55 or 60°C in 0.2× SSCT for 15 min each. After a brief wash with PBT, the embryos were blocked in 1% blocking reagent (Roche) in PBT at room temperature for 1h. Antibody reaction was carried out in 1% blocking reagent containing anti-DIG-AP Fab fragment (Roche) at concentration of 1/5000 at 4°C overnight. The embryos were washed in blocking reagent in PBT four times for 30 min each time. The embryos were then incubated in staining buffer (100 mM Tris-HCl, pH 9.5, 100 mM NaCl, 0.1% Tween20, 1 mM levamisole) for 10 min, and then stained in staining buffer containing 450 μg/ml NBT (Sigma) and 175 μg/ml BCIP (Sigma). Embryos were washed three times in PBT and profixed in 4% PFA.
1.3. Results

Analysis of medaka miR-124 sequences

I detected five candidates for medaka miR-124 (ola-miR-124) precursor genes that contained mat-miR-124 (miR-124-3p) sequences of 21 nt long (Table 1.2). Two of the five candidate genes (ola-miR-124-1 and ola-miR-124-2) were distantly located on chromosome 7, and the others were located on different chromosomes. The genes were 59 to 104 nt long. Three of them had been registered in miRBase, as ola-miR-124-1 (MI0019450) on chromosome 7, ola-miR-124-2 (MI0019452) on chromosome 7, and ola-miR-124-3 (MI0019533) on chromosome 20 (Li et al., 2010). I named the remaining two, ola-miR-124-4 on chromosome 17 (ENSORLT00000026119) and ola-miR-124-5 on chromosome 24 (ENSORLT00000026119). In the Ensembl medaka genome, ola-miR-124-5 is located in the intron of a novel protein-coding gene; the other four candidate genes are located in intergenic regions. The pre-miR-124 sequences were all predicted to fold into a typical stem-loop structure, with the mature sequence on the 3′ side of the stem region (Fig. 1.1).

An alignment of miR-124 sequences from medaka and other, representative vertebrate species (Table 1.3) shows that mat-miR-124 is highly conserved in vertebrates (Fig. 1.2A). Teleosts have the three common types of pre-miR-124 found in mammals (miR-124a-1, miR-124a-2, and miR-124a-3) (Fig. 1.2B), and the primary region in miR-124a-1, which includes the loop region, is completely conserved among medaka, two other teleosts, and two mammals (human and mouse) (indicated by asterisks and heavy dashed lines in Fig. 1.2B). Medaka ola-miR-124-2 and -4 do not match the three mammalian pre-miR-124s because they lack the sequence corresponding to miR-124* (miR-124-5p) in the 5′ arm of the hairpin (underlined in the mammalian sequences in Fig. 1.2B).

MiR-124 expression during medaka embryogenesis

Northern blotting using LNA probes complementary to mature miR-124 revealed temporal changes in the expression of the 21-nt, single-stranded RNA, during medaka embryogenesis (Fig. 1.3A). No signal bands were detected from stage-8 or -18 embryos at 0 and 1 dpf, respectively, and only a weak signal band was detected from stage-25 embryos. The signals gradually intensified from stage-28 to -36 as embryogenesis proceeded. Pre-miR-124 (~80 nt) gave much weaker signals than
mat-miR-124 on the northern blot (Fig. 1.3A), indicating that pre-miR-124 is rapidly converted into mat-miR-124. Whole mount \textit{in-situ} hybridization using the same probe as for northern blotting showed putative miR-124 expression in the brain and the eyes (Fig. 1.3B, C). In a transverse section of the embryonic eye, signal was evident in retina but not detected in the proliferative ciliary marginal zone (CMZ) and the optic nerve (Fig. 1.3E, F). I also investigated miR-124 expression of transverse sections of medaka larval brain (Fig. 1.4). Compared to HE staining, miR-124 was markedly expressed in perikarya of telencephalon, optic tectum, and cerebellum (Fig. 1.4).

To investigate whether all five loci detected for medaka miR-124 actually produce mat-miR-124, I performed semi-quantitative RT-PCR using primers corresponding to pri-miR-124. The results indicate differential expression of medaka pri-miR-124s during embryogenesis and in adult tissues (Fig. 1.5A). No expression was detected for any of the pri-miR-124s in the adult liver. Pri-miR-124-3 was the most strongly expressed form, with moderate expression in stage-34 embryos and the adult brain, and significantly higher expression in the adult eye (Fig. 1.5B). In contrast, pri-miR-124-1, -2, and -5 were equivalently expressed in the embryo and adult eye and brain, within the limits of ability to detect differences. Pri-miR-124-1 showed slightly higher and more uniform expression in these tissue sources. Pri-miR-124-2 and -5 were expressed in all the three sources at levels ranging from low to very low but detectable. Pri-miR-124-4 was expressed at very low levels in the adult brain and eye, and no expression was detected in the embryo. Furthermore, I prepared antisense and sense RNA probes against pri-miR-124 for whole mount \textit{in-situ} hybridization. Although by no means clear signals, the brains of 5-dpf embryos were stained with the antisense probes against pri-miR-124-1, -2, -3, and -5 (left in Fig. 1.6A–D). No signals were observed by using the sense probes (right in Fig. 1.6A–D). In Fig. 1.6B, the frontal zone of the cerebellum seemed to be specifically stained with antisense probe against pri-miR-124-2.
1.4. Discussion

I found that medaka, like other vertebrates studied to date, has multiple copies of genes transcribing pre-miR-124 (Table 1.2). The five copies of medaka miR-124 genes are separately located on different chromosomes, differing in nucleotide length, and can potentially generate functional miRNAs through conventional miRNA pathway by folding into stem-loop structures (Fig. 1.1). In contrast to medaka, zebrafish has six copies of miR-124 genes, according to miRBase. Although pre-miR-124 sequences are nearly identical between mammals and fishes, the multiple copies of genes transcribing pre-miRNAs in each vertebrate genome can be expected to have different but perhaps overlapping functions. Semi-quantitative RT-PCR results suggest that the five forms of medaka pri-miR-124s have different functions between the stage-34 embryo and the adult brain and eyes (Fig. 1.5). For example, ola-pri-miR-124-3 transcription is markedly elevated in the adult eye, whereas ola-pri-miR-124-1, -2, and -5 appear to be equivalently transcribed in the embryo and adult eye and brain. Whole mount in-situ hybridization for pri-miR-124s also showed the possibility of functional diversity of the medaka miR-124 (Fig. 1.6). The three miR-9 genes in humans, on chromosomes 1, 5, and 15, are separately transcribed from different promoters and regulate the expression of different genes (Bazzoni et al., 2009; Laneve et al., 2010; Hsu et al., 2009). Genomic organization and the number of gene copies are related to expression levels (Olena and Patton, 2009). In medaka and zebrafish, the miR-430 family has 16 and 72 copies, respectively, clustered on chromosome 4. The copies are expressed abundantly early in embryogenesis and function for a short period (Thatcher et al., 2008; Tani et al., 2009).

By in-situ hybridization, I showed that medaka mat-miR-124 is strongly expressed in the CNS and the eyes during embryogenesis and later development (Fig. 1.3B, C, E, and F), as has been reported for other vertebrates, including zebrafish, Xenopus laevis, chick, and mouse (Wienholds et al., 2005; Cao et al., 2007; Makeyev et al., 2007; Qiu et al., 2009). In the eyes, mat-miR-124 is expressed in the retina, whereas, unexpressed in the proliferative CMZ containing multipotent retinal progenitors (Fig. 1.3 E, F), suggesting that miR-124 is absent from proliferative cells and widely expressed in differentiated neural cells. These results were consistent with mouse and zebrafish miR-124 expression (Darnell et al., 2006; Kapsimali et al., 2007). MiR-124 is still abundantly expressed in the brain and eye of larva and adult (Fig. 1.4 and 1.5). In medaka, cell proliferation and differentiation continue in the brain after hatching (Alunni et al., 2010). MiR-124 is thought to regulate adult neurogenesis in medaka.

Additionally, the northern blot analysis showed that medaka pre-miR-124 is
expeditiously processed into mat-miR-124, and that the amounts of the latter steadily and drastically increase as the embryogenesis progresses (Fig. 1.3A). The period (stages 25-36) over which I observed the increase in mat-miR-124 levels coincides with the development of the CNS in medaka, suggesting that the former may be involved in the latter. In stage 25 (the neural-tube stage), the five brain vesicles (telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon) are still developing (Ishikawa, 1997); in this stage, the mesencephalon expands dorsolaterally, forming a well-developed optic tectum covering the rostral half of the cerebellum (Kage et al., 2004). Starting in stage 26, cells proliferate extensively in the optic tectum and begin to migrate to the outer layer; cell differentiation begins at stage 30 (Nguyen et al., 1999). The basic structure of the medaka brain, including neural pathways, has completely formed by late embryonic stage 34. Considering the time course of medaka neurogenesis, the temporal expression pattern of medaka miR-124 suggests that it is essential for neural development.
1.5. Figures and Tables

Fig. 1.1 Predicted secondary structures of medaka miR-124 precursors using CentroidFold. Five pre-miR-124 candidates are folded into typical stem-loop structure. Mat-miR-124 sequences are indicated in magenta shading.
Fig. 1.2. Multiple alignments of vertebrate miR-124. (A) MiR-124 sequences of medaka (ola-) (Accession: MIMAT0022573, currently registered as miR-124-3p), zebrafish (dre-) (MIMAT0001819), takifugu (fru-) (MIMAT0002896), Xenopus (xtr-) (MIMAT0003683) mouse (mmu-) (MIMAT0000134, currently registered as miR-124-3p), and human (hsa-) (MIMAT0004591, currently registered as miR-124-3p) aligned by CLUSTALW algorithm. Seed regions are indicated in box. (B) Three types
of pre-miR-124 which are homologous to mammals existed in teleosts. Mature regions of pre-miR-124s are indicated in magenta letters. Mammalian pre-miR-124 included star sequences, mat-miR-124*, are indicated in black lines. Dashed black lines indicate loop regions in the secondary structures. Asterisks indicate nucleotides conserved in all the listed genes (A, B).
Fig. 1.3. Spatiotemporal expression of medaka miR-124. (A) Northern blotting of total RNA extracted from different developmental stage embryos. Each lane is loaded with 3 μg of total RNAs. The membrane was hybridized with LNA probes complementary to either ola-miR-124 or U6 snRNA. dpf, days post-fertilization. (B, C) Whole mount *in-situ* hybridization of 5- and 3-dpf embryo. The embryos were bleached using 6% H₂O₂. White asterisk indicates yolk sac. Scale bar = 500 μm. (D) Schematic illustration of medaka CNS in late-stage embryonic development (5 dpf). (E, F) Transversal section *in-situ* hybridization of embryonic eyes at 5-dpf. Scale bar = 100 μm. Red asterisks indicate CMZ. (G) Schematic illustration of medaka eye in late-stage embryonic development (5dpf). B, C, E, and F were hybridized with the miR-124 LNA probe used for northern blotting.
Fig. 1.4. (A) Schematic illustration of medaka CNS at larval stage. The numbers and arrows indicate the locus of sections in 1–8. (B–I, 1–8) HE staining and in-situ hybridization of transverseal sections of medaka brain at larval stage. The figures of the eyes are showed in (i) and (ii). Abbreviations of the eyes are described in Fig. 1.3.1–8 and (ii) were hybridized with the miR-124 LNA probe used for northern blotting. Scale bar = 100 μm.
Fig. 1.5. Semi-quantitative RT-PCR using total RNA isolated from St. 34 embryos, adult brain, eye, and liver, for analyzing pri-miR-124 expression. Relative strength of pri-miR-124 expressions are compared with those of OlCA1 as an internal control. In all experiments, values represent the means ± SD of three independent experiments. Asterisk indicates significant difference (P<0.05).
Fig. 1.6. Whole mount *in-situ* hybridization for the medaka pri-miR-124s. (A–D) Whole mount *in-situ* hybridization using digoxigenin-labeled antisense probe (left) and sense probe (right). Scale bar = 500 μm.
Table 1.1. Primers used in RT-PCR. Underlines indicate the restriction enzyme sites.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Nucleotide sequences</th>
<th>Size of amplified products (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ola-pri-miR-124-1 Forw</td>
<td>TTTCTCGAGGCGGTGTCTATGTACCCATGT</td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>TGGGAATTCTAAGAAGACCTGCGATTGCT</td>
</tr>
<tr>
<td>ola-pri-miR-124-2 Forw</td>
<td>GAGCTCGAGAAGCGTACAGAGATCTGGA</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>CTGGAATTCTGAGTGTCCGCTAGGATGT</td>
</tr>
<tr>
<td>ola-pri-miR-124-3 Forw</td>
<td>CTACTCGAGAACCAGATGGAAACCTGTC</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>TTGGAATTCTGAGGCGATGAGGATCAT</td>
</tr>
<tr>
<td>ola-pri-miR-124-4 Forw</td>
<td>CTGCTCGAGGTGTCTCCTTGACATGTC</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>TGGAATTCTGAGGCGATGAGGATCAT</td>
</tr>
<tr>
<td>ola-pri-miR-124-5 Forw</td>
<td>GGTCTCGAGAAGATGGGAGAGAAGCA</td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>GTGGAATTCTGAGGCGATGAGGATCAT</td>
</tr>
<tr>
<td>OLCA1</td>
<td>Forw</td>
<td>CAGACACGTATTTGCTCTG</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>CAAGTCGGAACACATGTGCA</td>
</tr>
</tbody>
</table>

Table 1.2. Chromosomal locations and nucleotide sequences of miR-124 precursor genes in medaka. Mature regions of miR-124 are indicated in upper case. *, transcription products registered in miRBase (Accession numbers: MI0019450, MI0019452, MI0019533).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Position</th>
<th>Strand</th>
<th>Size</th>
<th>Precursor sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>ola-miR-124a-1</td>
<td>7</td>
<td>-1</td>
<td>104</td>
<td>cacuccaaggungucucucucgugugucucgacgcggaccuugguauguccaauaU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AAGGCACGCGGUGAUGCCAAAGAAGGAAuccuaacagcagug'</td>
</tr>
<tr>
<td>ola-miR-124a-2</td>
<td>7</td>
<td>-1</td>
<td>104</td>
<td>gcacacagguuggaaguccucucucgugugccgcggacuugguaugucgcaauaU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AAGGCACGCGGUGAUGCCAAagagagagauccucgacgcgca'</td>
</tr>
<tr>
<td>ola-miR-124a-3</td>
<td>20</td>
<td>-1</td>
<td>91</td>
<td>agcgcggugugucucucucugugucucgacgcggaccuugguaugucgcaauaUAAG</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GCACGCUGGAAUGCCAAagagagagauccucgacgcg'</td>
</tr>
<tr>
<td>ola-miR-124a-4</td>
<td>17</td>
<td>1</td>
<td>87</td>
<td>cuccucagacagcagacgcggaccuugguaugacuugguauguccaauaUAAGCCACGCCGUGAU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GAAUGCCAagagagagauccucgacgcu</td>
</tr>
<tr>
<td>ola-miR-124a-5</td>
<td>24</td>
<td>1</td>
<td>59</td>
<td>gugucacacagcagacgcggaccuugguaugacuugguauguccaauaUAAGGCACGGUGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUGCCA</td>
</tr>
</tbody>
</table>
Table 1.3. Chromosomal locations and nucleotide sequences of miR-124 precursor genes in human (hsa-), mouse (mmu-), and zebrafish (dre-). All the sequences are registered in miRBase. Accession numbers: human (MI0000443, MI0000444, MI0000445); mouse (MI0000716, MI0000717, MI0000150); zebrafish (MI0001966, MI0001968, MI0001969, MI0001970, MI0001971). Mature regions of miR-124 are indicated in upper case.

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Chr</th>
<th>Position</th>
<th>Strand</th>
<th>Size</th>
<th>Precursor sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa-miR-124a-1</td>
<td>8</td>
<td>9760898</td>
<td>-1</td>
<td>85</td>
<td>aggcuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>hsa-miR-124a-2</td>
<td>8</td>
<td>65291706</td>
<td>1</td>
<td>109</td>
<td>aucaagauuagaggcucugcucuccguguucacagcggaccuugauuuaaugucauacaau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>hsa-miR-124a-3</td>
<td>20</td>
<td>61809852</td>
<td>1</td>
<td>87</td>
<td>aggcuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>mmu-miR-124a-1</td>
<td>14</td>
<td>65209494</td>
<td>1</td>
<td>85</td>
<td>aggcuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>mmu-miR-124a-2</td>
<td>3</td>
<td>17695562</td>
<td>1</td>
<td>109</td>
<td>aucaagauuagaggcucugcucuccguguucacagcggaccuugauuuaaugucauacaau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>mmu-miR-124a-3</td>
<td>2</td>
<td>180628745</td>
<td>1</td>
<td>68</td>
<td>aucaagauuagaggcucugcucuccguguucacagcggaccuugauuuaaugucauacaau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>dre-miR-124a-1</td>
<td>2</td>
<td>26793487</td>
<td>-1</td>
<td>82</td>
<td>ggucuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>dre-miR-124a-2</td>
<td>20</td>
<td>38930240</td>
<td>-1</td>
<td>83</td>
<td>ggucuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>dre-miR-124a-3</td>
<td>24</td>
<td>25063580</td>
<td>1</td>
<td>117</td>
<td>ggucuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>dre-miR-124a-4</td>
<td>17</td>
<td>27261182</td>
<td>1</td>
<td>83</td>
<td>ggucuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>dre-miR-124a-5</td>
<td>23</td>
<td>17954131</td>
<td>1</td>
<td>129</td>
<td>ggucuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
<tr>
<td>dre-miR-124a-6</td>
<td>8</td>
<td>23975705</td>
<td>-1</td>
<td>113</td>
<td>ggucuccuccucguccagucaacggaccguacauucuau ucucgucaacggaccguacauucuau UAAGGCACGCGGUAGGGCCACCACGCGGUAGGG</td>
</tr>
</tbody>
</table>
Chapter 2

Sequences and expression of miR-124 target genes,

Polypyrimidine tract binding proteins
2.1. Introduction

The polypyrimidine tract binding protein 1 (PTBP1, also known as PTB or hnRNP I) is an RNA binding protein of 58 kDa. PTBP1 was first identified in HeLa cell nuclear extracts (Garcia-Blanco et al., 1989; Patton et al., 1991). As its name indicates, PTBP1 binds preferentially to polypyrimidine-rich (CU-rich) motifs. Previous studies showed that PTBP1 functions in multiple aspects of mRNA metabolism such as splicing regulation, polyadenylation, 3′-end formation, internal ribosomal entry site-mediated translation, and RNA localization and stability (Auweter and Allain, 2008; Keppetipola et al., 2012).

PTBP1 contains four RNA recognition motifs (RRMs) separated by three linkers. Each RRM has a common βαβαβ fold and is defined by two conserved RNA-protein complex (RNP) motifs (Oh et al., 1998). In alternative splicing regulation, PTBP1 binds to CU-rich motifs in precursor mRNA through RRMs (Oberstrass et al., 2005). PTBP1 is ubiquitously expressed at high levels in non-neuronal cells but is down-regulated in neuronal cells, thus allowing the inclusion of neuron-specific exons in mature mRNAs (Ashiya and Grabowski, 1997; Lillevälia et al., 2001). The reduced expression of PTBP1 coincides with an increased expression of its neuron-enriched homolog, PTBP2 (also known as nPTB or PTBLP) structurally and functionally similar to PTBP1 (Kikuchi, et al. 2000; Lillevälia et al., 2001). The mechanism called ‘PTBP1/PTBP2 switch’ controls neural differentiation through the post-transcriptional regulation by miR-124 (Coutinho-Mansfield et al., 2007; Makeyev et al., 2007) (Fig. 2.1). In non-neuronal cells, PTBP1 inhibits the neuron-specific alternative splicing of Ptbp2 mRNA. In neuronal cells, miR-124 is expressed abundantly and binds to the 3′UTR of Ptbp1 to suppress PTBP1 expression. As a result, PTBP2 is expressed and regulates neuron-specific alternative splicing.

In Chapter 2, I described the results of an analysis of the medaka Ptbp as a possible target gene by miR-124. A molecular phylogeny in Ensembl shows that medaka have two Ptbp genes occurred by teleost-specific gene duplication. The nucleotides and amino acids sequences suggested that the medaka PTBPs function as a RNA binding protein and they are able to be bound by miR-124 in the 3’UTR. In addition, whole mount in-situ hybridization showed that two paralogous genes, Ptbp1a and Ptbp1b are differently expressed in 5-dpf medaka embryo. These results indicated that the medaka Ptbp1a and Ptbp1b play different roles in embryogenesis and their expression are possible to be regulated by miR-124.
2.2. Materials and Methods

Animals

I used the same animals as described in Chapter 1.

Identification of medaka PTBP

cDNA clones inserted into pGCAP10 (olte56k20, FS527928; oleb24g01, DK120951; olea22l09, DK052475) and homologous to zebrafish Ptbp1 or Ptbp2 were obtained from the NBRP Medaka EST database, and their sequences were analyzed. Olte56k20 did not contain the entire 3′UTR of PTBP1a, and thus 3′RACE was performed using the TaKaRa 3′-Full RACE Core Set according to the manufacturer’s protocol. Oleb24g01 encodes a Ptbp1b splicing isoform skipped an exon 34 nucleotide (nt) long, thus I cloned a cDNA coding for a complete protein by RT-PCR using total RNA isolated from stage 34 embryo as a template. PCR was conducted with Prime STAR DNA polymerase (TaKaRa). PCR conditions were 30 cycles of 98°C for 5 sec, 55°C for 5 sec, and 72°C for 2 min, followed by 7 min at 72°C. The primers were as follows: Ptbp1b (forward, CGTGAATTCATGGACGGCAGTGTCCAC; reverse, GTACTCGAGTTGGAATGATCGGAGTGTA). Underlines indicate the restriction enzyme sites of EcoRI or XhoI. The PCR products were ligated in-frame to the EcoRI and XhoI site of pBluescript II SK (+) vector after digestion with EcoRI and XhoI.

Identified medaka Ptbp sequences were translated using ApE and BioEit software. Transcription and protein sequences of various animal species were obtained from Ensembl genome (http://uswest.ensembl.org/index.html). Those sequences were aligned using CLUSTALW software (http://www.genome.jp/tools/clustalw/). MiR-124 binding motifs (target sites) in the Ptbp1 3′UTR were predicted with RNAhybrid software (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html). To detect homology between medaka and other vertebrates, the target sites in the human, mouse, and zebrafish PTBP1 were predicted by using the two software, RNAhybrid and TargetScan (http://www.targetscan.org/vert_61/).

RT-PCR

The medaka Ptbp primers used for RT-PCR are described in Table 2.1. PCR was conducted using Ex taq DNA polymerase (TaKaRa) and normalized amounts of template. The PCR conditions were as follows: 25 cycles of 98°C for 30 sec, 55°C for 30 sec, and 72°C for 1 min, followed by 7 min at 72°C. PCR products were electrophoresed in 1.5% agarose gel in TAE buffer, and then signals were detected after
staining with ethidium bromide.

Detection of alternative splicing

The medaka \textit{Ptbp} primers were designed across the skipped exon (Fig. 2.2B; Table. 2.2). PCR was conducted using Ex taq DNA polymerase (TaKaRa) and normalized amounts of template. The PCR conditions were as follows: 30 cycles of 98°C for 30 sec, 55°C for 30 sec, and 72°C for 30 sec, followed by 7 min at 72°C. PCR products were electrophoresed in 10% polyacrylamide gel (acrylamide:bisacrylamide = 29:1) in TBE buffer, and then signals were detected after staining with ethidium bromide.

Whole mount in-situ hybridization with RNA probe

cDNA fragments containing medaka PTBP1 sequences were amplified by PCR using the primers shown in Table 2.1. The cDNA fragments were cloned into pBluescript II SK+ (Stratagene) and the plasmid DNA were linearized by cutting with XhoI or EcoRI, which were used for antisense or sense primers, respectively. RNA probes were transcribed using T3 or T7 RNA polymerase by using a digoxigenin (DIG) RNA labeling mix (Roche). The RNA probes were purified through ProbeQuant G-50 Micro Columns (GE Healthcare). Whole mount \textit{in-situ} hybridization was performed according to the protocol described by Inohaya (1995). Dechorionated embryos were fixed with 4% PFA in PBS and stored in MeOH. After rehydration, the embryos were bleached using 6% H$_2$O$_2$ in PBT (PBS containing 0.1% Tween20) for 1 h, and were treated with proteinase K (10 μg/ml for 5-dpf embryos) in PBT at room temperature for 10 min. The embryos were refixed in 4% PFA and transferred to hybridization buffer (50% formamide, 2× SSC, 0.1% Tween20, 50 μg/ml yeast tRNA, 50 μg/ml heparin) and incubated at 55 or 60°C for 1 h. The embryos were transferred to fresh hybridization buffer containing RNA probes and incubated at 55 or 60 °C overnight. Subsequently, the embryos were washed at 55 or 60 °C two times in 50% formamide, 2× SSCT for 30 min each and at 37 °C two times in 2× SSCT for 15 min each. After a brief wash with PBT, the embryos were incubated at 37°C with 50 μg/ml RNaseA in PBT for 30 min to remove excess RNA probes. The embryos were washed once at 37°C in 2× SSCT for 10 min, once at 55 or 60 °C in 50% formamide, 2× SSC for 1 h, and two times at 55 or 60°C in 0.2× SSCT for 15 min each. After a brief wash with PBT, the embryos were blocked in 1% blocking reagent (Roche) in PBT at room temperature for 1 h. Antibody reaction was carried out in 1% blocking reagent containing anti-DIG-AP Fab fragment (Roche) at a concentration of 1/5000 at 4°C overnight. The embryos were washed in
blocking reagent in PBT four times for 30 min each time. The embryos were then incubated in staining buffer (100 mM Tris-HCl, pH 9.5, 100 mM NaCl, 0.1% Tween20, 1 mM levamisole) for 10 min, and then stained in staining buffer containing 450 μg/ml NBT (Sigma) and 175 μg/ml BCIP (Sigma). Embryos were washed three times in PBT and profixed in 4% PFA.
2.3. Results and Discussion

Analysis of medaka PTBP1 and PTBP2

According to Ensembl genome database, tetrapod genomes include one each Ptbp1 and Ptbp2. On the other hand, two each paralogs are detected in the teleost genomes (Fig. 2.2A). In medaka genome, two Ptbp1 (1 of 2, ENSORLG0000011430; 2 of 2, ENSORLG0000014019) are located on chromosome 22 and 4, respectively. One of Ptbp2 (2 of 2, ENSORLG0000013357) is located on chromosome 17, but the other (1 of 2, ENSORLG000019191) is detected in ultracontig236. The Ensembl database discloses incomplete cDNA sequences deduced from genomic data. I sequenced two paralogs, Ptbp1a (AB819423) and Ptbp1b (AB819425), using cDNA clones obtained from NBRP Medaka and isolated the 3'UTR of Ptbp1a (AB819424) by 3'RACE. These Ptbp1a cDNA sequences (AB819423, AB19424) are created by a third party annotation (BR001025). Ptbp1b (AB819425) encodes a splicing isoform skipping an exon, thus we cloned a cDNA coding for a complete protein (AB819426). Transcription product of another Ptbp2 on ultracontig236 was not detected by RT-PCR although I tried to obtain the cDNA from stage-34 embryos (Fig. 2.2B). Ptbp2 on ultracontig236 might be a pseudogene.

The identified medaka Ptbp cDNAs included an initiation codon, terminator codon, and polyadenylation signals (Figs. 2.3–2.5). The medaka Ptbp1a cDNA consisted of a 90-bp 5'UTR, a 1734-bp open reading frame (ORF), and a 2080-bp 3'UTR (Fig. 2.3). Oleb24g01cDNA coding medaka PTBP1b contains a 1083-bp coding DNA sequence (CDS), that is deleted a 34-nt sequence (red in Fig. 2.4) unlike the Ensembl sequence (ENSORLT0000014313). On the other hand, I obtained a 1620-bp coding DNA sequence (CDS) by RT-PCR using a cDNA from stage 34 embryo as a template, which includes the 34-nt sequence. Based on these sequences, the medaka Ptbp1b consisted of a 14-bp 5'UTR, a 1620-bp ORF, and a 3183-bp 3'UTR (Fig. 2.4). Ptbp2 cDNA consisted of a 42-bp 5'UTR, a 1572-bp ORF and a 1060-bp 3'UTR (Fig. 2.5).

Oleb24g01cDNA coding the medaka PTBP1b seems to be an alternative spliced isoform. PTBPs produce several alternative spliced isoforms. Human PTBP1 has three main isoforms, PTB-1, 2, and 4, which differ by the insertion of 19 or 26 amino acids, respectively, between the second and third RNA recognition motif domains (Wollerton et al., 2001). In addition, Human Ptbp1 and Ptbp2 mRNA are skipped exon 11 and exon 10, respectively, that induce NMD (Wollerton et al., 2004; Rahman et al., 2004). The medaka Ptbp1b deleted the 34-nt sequence is possible to introduce a frame
shift and a PTC (yellow in Fig. 2.4; Fig. 2.8A). The 34-nt sequence is probably located in exon 11 although the Ensembl sequence is incomplete. The equivalent 34-nt sequences were also detected in medaka Ptbp1a and Ptbp2 (red in Figs. 2.3; Fig. 2.5). Both of the sequences correspond to exon 12 in comparison to the Ensembl sequences. They could introduce a frame shift and a PTC (yellow in Fig. 2.3 and Fig. 2.5) if a predicted alternative splicing exon were skipped. I detected the alternative splicing by RT-PCR using primers designed across the putative skipped exon (underlined in Figs. 2.3–2.5). RT-PCR showed two bands: a weak signal band below a strong one (Fig. 2.8B). The weak bands were thought to be produced by alternative splicing. These results suggested that medaka PTBPs have alternative splicing isoforms.

Next, I predicted protein sequences from the identified medaka Ptbp cDNA and compared to mammalian and zebrafish PTBPs (Figs. 2.6–2.7). Medaka PTBP1a, PTBP1b (including deleted 34-nt sequence), and PTBP2 consisted of 577, 539, and 523 amino acids (aa), respectively. Medaka PTBP1a and PTBP1b included bipartite NLSs, Gly-Thr-Lys-Arg and Lys-Lys-Phe-Lys. These sequences are contained in mammalian and zebrafish PTBP1. Medaka PTBP2 also included bipartite NLSs, Gly-Val-Lys-Arg and Lys-Lys-Gln-Arg. Lys-Lys-Gln-Arg is a canonical NLS contained in such as E6 oncoprotein (Le Roux and Moroianu, 2003). Medaka PTBP1a, PTBP1b and PTBP2 could have four RRMs including RNP1 and RNP2 as well as mammalian and zebrafish PTBPs (Figs. 2.6–2.7). Functional domains of PTBP proteins, such as NLSs and RRMs, were highly conserved in medaka PTBP, suggesting that medaka PTBP1 and PTBP2 might both function as a RNA binding protein similarly to that in mammals (Tables 2.3–2.4).

A computational analysis with RNAhybrid predicted potential miR-124 binding sites in the 3′UTR of both Ptbp1a and Ptbp1b (Fig. 2.9A). The binding sites are positioned at +546 to +572 and +1086 to +1115 in the Ptbp1a 3′UTR, +471 to +500 in the Ptbp1b 3′UTR, and +72 to +94 in the Ptbp2 3′UTR, respectively, counting the nucleotide following the stop codon as +1. Seed sequences from the second to the seventh positions at the 5′ end of miR-124 are perfectly complementary to the target mRNA (gray shading in Fig. 2.9A), which is essential for the miRNA to bind to the mRNA (Lewis et al., 2005). The seed sequence in Ptbp2 is not perfectly matched and contains GU wobble, however, medaka Ptbp1 and Ptbp2 may possibly be bound by miR-124 in the 3′UTR. The miR-124 target sites of PTBP1 among human, mouse, zebrafish, and medaka are not seemingly conserved outside the seed sequences (Fig. 2.9B). The miR-124 target sites in Lhx2 or SCP1 3′UTR are well conserved among at least mammals compared to Ptbp1 (Visvanathan et al., 2007; Qiu et al., 2009). The
target sites in PTBP1 might have diverged, or been acquired in different way during vertebrate evolution, in sharp contrast to that the perfect complementarity to the seed sequences is necessary for the post-transcriptional regulation. By the RNAhybrid prediction, medaka PTBP1a has two target sites in the 3′UTR. In reference to Grimson et al. (2007), I used the forward site in the following assay in Chapter 3.

Expression of medaka Ptbp1a and Ptbp1b

To gain further information, I also examined the expression of medaka Ptbp1a and Ptbp1b by whole mount in-situ hybridization. Medaka Ptbp1a is expressed ubiquitously in 5-dpf embryo using antisense probe (Fig. 2.10A) similarly to mammals. On the other hand, Ptbp1b is specifically expressed in the otic vesicles in 5-dpf embryo using antisense probe (Fig. 2.10B). No signals were observed when the sense probes were used. In addition, RT-PCR showed the different expression patterns among stage-34 embryo, adult brain, and eye (Fig. 2.2B). Interestingly, Ptbp1b is higher expressed in brain and eye than Ptbp2. Two PTBP1 paralogs occurred by teleost-specific gene duplication could have different functions and contribute to teleost characteristic structures. Further analysis of the expression of medaka PTBPs will reveal whether they have any specific function during embryogenesis.
2.4. Figures and Tables

![Diagram of non-neuronal and neuronal cells with PTBP1 and PTBP2 interactions]

Fig. 2.1. In non-neuronal cells, PTBP1 suppresses the alternative inclusion of exon 10 in *Ptbp2* mRNA. The exon 10 skipping introduces a frame shift and a premature termination codon (PTC), and PTBP2 is targeted to the nonsense-mediated mRNA decay (NMD) pathway at last. In neuronal cells, miR-124 inhibits the translation of PTBP1 by binding the 3′UTR of *Ptbp1*. Therefore, *Ptbp2* mRNA is translated to PTBP2, which leads to neural differentiation by regulating neuron-specific alternative splicing (Coutinho-Mansfield et al., 2007; Makeyev et al., 2007).
Fig. 2.2. Teleosts have two Pthp genes. (A) A molecular phylogeny of Pthps in Ensembl (ENSGT00550000074508), using maximum likelihood phylogenetic gene trees. (B) RT-PCR using total RNA isolated from stage 34 embryos at 5dpf, adult brain, eye, and liver, for analyzing the medaka Pthp1 and Pthp2 expression.
Fig. 2.3. Nucleotide sequences of *Ptbp1a* and the deduced amino acid sequences of the putative encode protein. Open boxes indicate nucleotides corresponding to the translation initiation codon AUG and termination codon UGA. The premature terminator codon in alternative splicing is indicated in yellow shading. The putative target sites by miR-124 are indicated in green. The polyadenylation signals are indicated by orange letters. The primers used in the analysis of alternative splicing are underlined.
Fig. 2.4. Nucleotide sequences of *Pthp1b* and the deduced amino acid sequences of the putative encode protein. Open boxes indicate nucleotides corresponding to the translation initiation codon AUG and termination codon UGA. The premature terminator codon in alternative splicing is indicated in yellow shading. The putative target sites by miR-124 are indicated by green letters. The polyadenylation signals are indicated by orange letters. The primers used in the analysis of alternative splicing are underlined.
Fig. 2.5. Nucleotide sequences of Ptbp2 and the deduced amino acid sequences of the putative encode protein. Open boxes indicate the nucleotides corresponding to the translation initiation codon AUG and termination codon UAA. The premature terminator codon in alternative splicing is indicated in yellow shading. The putative target sites by miR-124 are indicated in green. The polyadenylation signals are indicated by orange letters. The primers used in the analysis of alternative splicing are underlined.
Fig. 2.6. Alignment of PTBP1 amino-acid sequences among human (hsa-PTBP1; NP_002810), mouse (mmu-PTBP1; NP_001070831), zebrafish (dre-PTBP1a and 1b; NP_001018313 and NP_001116126), and medaka (ola-PTBP1a and 1b). The regions of identical amino acid residues are outlined. The positions of bipartite nuclear localization signals (NLSs) at the N terminus are indicated by light yellow shading. Light blue shading indicates the four RNA recognition motifs (RRMs). Solid lines and dash lines with arrows indicate RNP1 and RNP2, respectively. Arrowheads indicate RNA interacting residues.
Fig. 2.7. Alignment of PTBP2 amino-acid sequences among human (hsa-PTBP2; NP_067013), mouse (mmu-PTBP2; NP_062423), zebrafish (dre-PTBP2; NP_001093477), and medaka (ola-PTBP2). The regions of identical amino acid residues are outlined. The positions of bipartite nuclear localization signals (NLSs) at the N terminus indicated light yellow shading. Light blue shading indicates the four RNA recognition motifs (RRMs). Solid lines and dash lines with arrows indicate RNP1 and RNP2, respectively. Arrowheads indicate RNA interacting residues.
Fig. 2.8. Alternative splicing of Ptbp mRNAs. (A) Schematic illustration of alternative splicing of medaka Ptbp1b mRNA. Skipping exon 11 (the number of exon is uncertain) introduces PTC (premature terminator codon) and occurs NMD (nonsense-mediated mRNA decay). (B) Schematic illustration of the positions and size of putative skipped exons (34 nt) and PCR products. Black arrows indicate sense (SS) and antisense (AS) primers used in (C). (C) Detection of alternative splicing product by RT-PCR. Red arrows indicate the size of marker.
Fig. 2.9. Schematic illustration of medaka *Ptbp1* mRNA (at top). The open reading frame (ORF) is indicated by a shaded bar, and the 5′ and 3′ UTR at both ends by black lines. The regions of the four RNA recognition motifs (RRM1–4) are indicated by darker shading. The MiR-124 target site (ts) in the 3′ UTR is indicated in white. In the dashed box below, the miR-124 target sites in the *Ptbp1a* and *Ptbp1b* 3′UTRs (*PTBP1a-ts, PTBP1b-ts*) are aligned in complementary fashion with the mature ola-miR-124 sequence, with imperfect base pairing indicated by offset nucleotides. The
seed sequence in ola-miR-124 and the complementary portion of each Ptbp1 3'UTR are boxed and shaded. Bases substituted in the mutated miR-124 ts (PTBP1a-mtts, PTBP1b-mtts) are underlined (Fig. 3.2 in Chapter 3).

Fig. 2.10. Medaka Ptbp1a and Ptbp1b are differently expressed in 5-dpf embryos. (A, B) Whole mount in-situ hybridization using digoxigenin-labeled Ptbp1a (A) or PTBP1b (B) RNA probes. The embryos were bleached using 6% H₂O₂. Scale bar = 100 μm. AA, antisense probe; SS, sense probe. Black arrowheads indicate otic vesicles.
Table 2.1. Primers used in RT-PCR. Underlines indicate the restriction enzyme sites.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Nucleotide sequences</th>
<th>Size of amplified products (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ptbp1a</td>
<td>Forward: CAACCTCGAGTCAGGTCTGTCTGTACGTACG</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCAGAATTCACACACCCGAAAGAATA</td>
<td></td>
</tr>
<tr>
<td>Ptbp1b</td>
<td>Forward: TGACTCGAGTCTCAACCTAGTATCCCAGC</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>Reverse: CAAGAATTCTGCCTACCCTATTCTGGAG</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2. Primers used for detection of alternative splicing.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Nucleotide sequences</th>
<th>Size of amplified products (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ptbp1a</td>
<td>Forward: AGCAAGCAGGTCTGTCTATG</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Reverse: ATCACATCGCCGTACACAC</td>
<td>(192)</td>
</tr>
<tr>
<td>Ptbp1b</td>
<td>Forward: TATGCAGGCCTGACGATGT</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Reverse: ATCTTCAGTCATCACGTACGTC</td>
<td>(163)</td>
</tr>
<tr>
<td>Ptbp2</td>
<td>Forward: CTACTCCAGTGAGGAAGTT</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Reverse: TAGAGGATCCTCACCTCTCG</td>
<td>(203)</td>
</tr>
</tbody>
</table>

Table 2.3. Amino acid sequence identity to ola-PTBP1a (top row) and ola-PTBP1b (bottom row).

<table>
<thead>
<tr>
<th>Animal</th>
<th>length (aa)</th>
<th>Amino acid sequence identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Full</td>
</tr>
<tr>
<td>Human</td>
<td>557</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>556</td>
<td>69</td>
</tr>
<tr>
<td>Mouse</td>
<td>574</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>564</td>
<td>69</td>
</tr>
<tr>
<td>Zebrafish</td>
<td>577</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>539</td>
<td>73</td>
</tr>
</tbody>
</table>
Table 2.4. Amino acid sequence identity to ola-PTBP2.

<table>
<thead>
<tr>
<th>Animal</th>
<th>Length (aa)</th>
<th>Full</th>
<th>RRM1</th>
<th>RRM2</th>
<th>RRM3</th>
<th>RRM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>531</td>
<td>74</td>
<td>89</td>
<td>92</td>
<td>86</td>
<td>78</td>
</tr>
<tr>
<td>Mouse</td>
<td>532</td>
<td>73</td>
<td>89</td>
<td>92</td>
<td>86</td>
<td>77</td>
</tr>
<tr>
<td>Zebrafish</td>
<td>538</td>
<td>82</td>
<td>95</td>
<td>100</td>
<td>89</td>
<td>81</td>
</tr>
</tbody>
</table>
Chapter 3

Post-transcriptional regulation by miR-124

in medaka embryogenesis
3.1. Introduction

In Chapter 2, I showed that medaka has the homologous genes of *polypyrimidine tract binding protein1 (Ptbp1)* reported as a target gene in post-transcriptional regulation by mouse miR-124 (Makeyev et al., 2007). The 3'UTR of medaka *Ptbp1* contains predicted binding motifs (target sites) for miR-124. MiR-124 target sequence is also conserved in a chordate *Ciona intestinalis* ortholog of PTBP1. Chen et al. (2011) demonstrated that miR-124 can regulate a number of non-neuronal genes in *Ciona intestinalis*. They carried out *in-vivo* sensor assay using the RFP-expressing transgenes containing the 3'UTR target genes, which were driven by an epidermis-specific enhancer of the *Ciona* EpiB gene. They showed that *Ciona* PTBP1 is down-regulated in the ectopic miR-124-expressing embryo. They also indicated that the endogenous miR-124 down-regulates the *Ciona* muscle specifier *Macho-1*.

In Chapter 3, in order to know the function of medaka miR-124 during development, I attempted a GFP reporter assay, in which binding of miR-124 to the target 3’UTR is directly tested in the developing medaka embryo. I synthesized reporter constructs of the miR-124 target sites and the entire 3’UTR of the medaka *Ptbp1a* and *Ptbp1b*. These constructs were injected into 1-cell stage embryos along with the miR-124 duplex and/or miR-124 morpholino oligonucleotides (MO). These results indicated that the miR-124 down-regulates PTBP1 expression at post-transcriptional level by binding to the target 3’UTR in developing medaka embryos.
3.2. Materials and Methods

Animals

I used the same animals as described in Chapter 1.

Preparation of miR-124 target reporter constructs

MiR-124 binding motifs (target sites) in the Ptbp1 3'UTR were predicted with RNAhybrid software (Fig. 2.9A in Chapter 2). Forward and reverse oligonucleotide fragments for the miR-124 target site (miR-124ts) and mutated miR-124ts (Fig. 2.9A in Chapter 2) connected a SalI site at the 5' end and XhoI-XbaI sites at the 3' end (Table 3.1). They were annealed by lowering the temperature from 75°C to 20°C and were ligated in-frame to the XhoI-XbaI sites of the pCS2+-GFP vector (Rupp et al., 1994). The cloned vector was cut with XhoI and XbaI, and then the annealed oligonucleotides were ligated into it. Repeating the same process, three miR-124 target sites in the pCS2+-GFP vector were obtained (Mishima et al., 2006). cDNA fragments of the medaka PTBP1 3'UTR were amplified by PCR with primers (Table 3.2). These fragments were ligated in-frame to the XhoI-XbaI sites or EcoRI-XboI sites of the pCS2+-GFP vector. The plasmid DNAs were linearized by cutting with ASP718 and were transcribed in vitro by using the mMessage mMACHINE SP6 Kit (Ambion). RNA constructs were purified through ProbeQuant G-50 Micro Columns (GE Healthcare).

Microinjection of miR-124 target reporter constructs

Microinjection into medaka embryos was carried out as described in Kusakabe et al. (1999). Fertilized eggs just after spawning were placed in 10 mM reduced glutathione in CAPS buffer and kept at 4°C to be arrested development. Attachment filaments of eggs were cut with scissors holding with forceps before injection. For coinjection, GFP and DsRed reporter RNA constructs were diluted at 0.1 μg/μl each containing 0.1% phenol red. The sequences of miRNA duplex (Sigma) and morpholino oligonucleotides (Genetools) are described in Table 3.1 and 3.3. In the reporter assay, at least 50 embryos (average 100 embryos) were injected with each set of reporter constructs. The experimentally assayed embryos were compared with each other in terms of the strength of the GFP signals observed at the same level of DsRed signals (positive control). To quantify the relative strength of GFP/DsRed signals, images under each fluorescence channel were captured with same exposure time and objective by using the software Leica AF6000. The mean ± SD were calculated for 16 DsRed-expressed embryos.
LNA northern blotting

Northern blotting with LNA probes was performed as described in Chapter 1. Total RNA samples isolated from 5-dpf embryos injected 1.6 mM miR-124 MO, Std control MO, or uninjected embryos. Expression of *ola-miR-124* is presented as relative strength to that of the internal control, U6 snRNA.
3.3. Results

I performed a GFP reporter assay to clarify whether miR-124 controls PTBP1 expression by binding to the target 3′UTR in developing medaka embryos. For this assay, I designed RNA constructs containing the GFP coding region fused to three copies of the miR-124 target site found in the 3′UTR (GFP:PTBP1a-ts and GFP:PTBP1b-ts) (Fig. 3.1A) and to the Pthp1a or Pthp1b 3′UTR (GFP:PTBP1a 3′UTR and PTBP1b 3′UTR) (Fig. 3.3A). I synthesized these reporter mRNAs in vitro and injected them into 1-cell stage embryos along with the miR-124 duplex or mutated miR-124 duplex. I coinjected DsRed mRNA as a positive internal control. At 1 dpf, I compared GFP signals observed at the same level of DsRed signals (Table 3.4). The pattern of the GFP/DsRed expression was never changed in each group, while there was a little difference of the intensity, stronger or weaker, among embryos.

When GFP: PTBP1a-ts or PTBP1b-ts mRNA was coinjected with the miR-124 duplex, GFP expression was considerably lower (Fig. 3.1B, D, top row) than in embryos coinjected with the mutated miR-124 duplex (Fig. 3.1C, E, top row). Strong DsRed signals were observed in embryos coinjected with either the miR-124 or mutated miR-124 duplex (Fig. 3.1B–E, bottom row).

To verify the direct binding of miR-124 to the target site, I coinjected a morpholino oligonucleotide against mat-miR-124 (miR-124 MO) along with the three copies target sites reporter mRNAs (Fig. 3.1F, H). Northern blotting showed that the miR-124 MO lowered mat-miR-124 expression (Fig. 3.2D); mat-miR-124 expression in embryos injected with 1.6 mM miR-124 MO was lower than in embryos injected with 1.6 mM control MO or uninjected. Embryos coinjected with GFP:PTBP1-ts mRNA, the miR-124 duplex, and the miR-124 MO showed GFP expression at 1 dpf (Fig. 3.1F, H); the miR-124 MO rescued the inhibition of GFP expression by the miR-124 duplex. In contrast, embryos coinjected with the miR-124 duplex and control MO did not express GFP (Fig. 3.1G, I).

I also examined GFP reporter mRNA fused with the mutated miR-124 target sites (GFP:PTBP1a-mtts, GFP:PTBP1b-mtts) (Fig. 3.2A). Two nucleotides were changed in the mutated copies (underlined in Fig. 2.9A in Chapter 2), so that they lost perfect complementarity to the miR-124 seed sequences. In 1-dpf embryos coinjected with the miR-124 duplex and the GFP:PTBP1a-mtts or GFP:PTBP1b-mtts duplex, GFP expression did not decrease (Fig. 3.2B, C).

Furthermore, I coinjected with mRNA of GFP fused to the Pthp1a or Pthp1b
3'UTR (GFP:PTBP1a 3'UTR and PTBP1b 3'UTR) and miR-124 duplex (Fig. 3.3A). When GFP:PTBP1a 3'UTR or PTBP1b 3'UTR mRNA was coinjected with the miR-124 duplex, GFP expression was considerably lower (Fig. 3.3B, D, top row) than in embryos coinjected with the mutated miR-124 duplex (Fig. 3.3C, E, top row). These results were consistent with the GFP/DsRed expression in the assay with the three copies of the target sites (Fig. 3.1B–E). The quantification of the signals in PTBP1b reporter assay was shown in Fig. 3.4. Exogenous miR-124 decreased 60–70% GFP expression compared to coinjection with mutated duplex, and miR-124 MO almost completely rescued the expression.
3.4. Discussion

The GFP reporter assay clearly showed that exogenous miR-124 negatively regulates translation of the target gene in the medaka embryo (Figs. 3.1–3.4). I performed the reporter assay in reference to Giraldez et al. (2005) and Mishima et al (2006). Three copies of the target sites recapitulated the down-regulation of the reporter gene with the nanos1 3’UTR by miR-430 in zebrafish (Mishima et al., 2006). In the present study, three copies were again sufficient to observe the regulation of reporter gene expression. This result effectively confirmed that the reporter assay system is applicable to developing medaka embryos. Moreover, medaka PTBP1a mRNA actually has two putative target sites by the prediction with RNA hybrid. Although I did not test with the other target site and with one or two copies of each target site, the reporter assay with three target sites clearly suggested that the miR-124 target sites are needed in the post-transcriptional regulation of PTBP1. The assay with the PTBP1 3’UTR fused to GFP showed consistent results with the GFP/DsRed expression in the assay with the three copies of the target sites (Fig. 3.3).

When only GFP:PTBP1 3’UTR or GFP:PTBP1-ts mRNA was injected, GFP expression did not decrease (data not shown). However, injected GFP and DsRed were already expressed in the gastrula, whereas a marked increase in miR-124 was first observed in stage 28 (Fig. 1.3A in Chapter 1). In a similar case, Tani et al. (2009) found that endogenous miR-430 inhibits expression of a reporter construct of the 3’UTR of TDRD7 in medaka embryos, and medaka miR-430 is abundantly expressed around the late blastula stage. It is thus difficult to assess the influence of endogenous miR-124 in the GFP reporter assay.

From the reporter assays, I concluded that medaka miR-124 acts as a post-transcriptional regulator of PTBP1 expression during embryogenesis, and that the target sites in the medaka PTBP1 3’UTR are essential for this regulation.
3.5. Figures and Tables
Fig. 3.1. (A) Schematic illustration of the reporter RNA constructs used in reporter assay. Normal miR-124 target sites in the 3'UTR of Ptbp1a and Ptbp1b were fused to the GFP coding region (GFP:PTBP1a/1b-ts). (B–I) Fluorescence light micrographs of 1-dpf embryos injected with reporter RNA (upper row) or showing control DsRed expression (lower row). Scale bars, 100 µM. MiR-124 duplex, duplex of mature miR-124 sequences; mut-miR-124, duplex of mutated mature miR-124 sequences; miR-124 MO, a morpholino oligonucleotide against mat-miR-124; control MO, a standard control morpholino oligonucleotide.
Fig. 3.2. (A) Schematic illustration of the reporter RNA constructs used in reporter assay. Mutated miR-124 target sites in the 3’UTR of Ptbp1a and Ptbp1b were fused to the GFP coding region (GFP:PTBP1a/1b-mts). (B–C) Fluorescence light micrographs
of 1-dpf embryos injected with reporter RNA (upper row) or showing control DsRed expression (lower row). miR-124 duplex, a duplex of mature miR-124 sequences. Scale bar, 100 µm. (D) (Above) Northern blots of total RNA from embryos, with the membrane hybridized with the same LNA probes as in Fig. 3 to detect mat-miR-124 expression (top row), or with a probe to detect U6 snRNA (bottom row). Left lane (miR-124 MO), an miR-124 knockdown embryo injected with a morpholino oligonucleotide (1.6 mM) against mat-miR-124; center lane (Control MO), embryo injected with 1.6 mM control MO; right lane, uninjected embryo. (Below) Histogram showing the strength of mat-miR-124 expression relative to that of the internal control, U6 snRNA.
Fig. 3.3. (A) Schematic illustration of the reporter RNA constructs injected. The entire 3'UTR of *Ptbp1a* and *Ptbp1b* were fused to the GFP coding region (GFP:PTBP1a/1b 3’UTR). (B–E) Fluorescence light micrographs of 1-dpf embryos injected with reporter RNA (upper row) or showing control DsRed expression (lower row). Scale bars, 100 μM. MiR-124 duplex, duplex of mature miR-124 sequences; mut-miR-124, duplex of mutated mature miR-124 sequences.

Fig. 3.4. Histogram showing the strength of GFP expression relative to that of the positive control, DsRed. Each bar and error line represents the mean ± SD of 16 DsRed-expressed embryos.
Table 3.1. Oligonucleotide fragments used for reporter assay. Underlines indicate the restriction enzyme sites.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Nucleotide sequences</th>
</tr>
</thead>
</table>
| PTBP1a ts | Forward: TCGACGTGCGCTCACGTTCCCGTGTGCCCTTTCTCGAGCCT
Reverse: CTAGAGGCTCGAGAAGGACACACGGGAAACGTGAGCAGCAGC |
| PTBP1b ts | Forward: TCGACGTGCGCTCACGTTCCCGTGTGCTTTACCTCGAGCCT
Reverse: CTAGAGGCTCGAGAAGGACACACGGGAAACGTGAGCAGCAGC |
| PTBP1a mtts| Forward: TCGACGTGCGCTCACGTTCCCGTGTGCGATTCTCGAGCCT
Reverse: CTAGAGGCTCGAGAATCGACACCGGAACGTGAGCAGCAGC |
| PTBP1b mtts| Forward: TCGACGTGCGCTCACGTTCCCGTGTGCGATTCTCGAGCCT
Reverse: CTAGAGGCTCGAGAATCGACACCGGAACGTGAGCAGCAGC |
| miR-124 duplex | Forward: UAAGGCACCGCGGUGAAUGCdCdA
Reverse: GUGUUCAAGUGGACCUCUUUGdTdT |
| mutated miR-124 | Forward: UAACCCACCGCGGUGAAUGCdCdA
Reverse: GCAUUCACCGCGUGGGUAdTdT |

Table 3.2. Primers used for reporter assay. Underlines indicate the restriction enzyme sites.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Nucleotide sequences</th>
<th>Size of amplified products (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pthp1a Forward</td>
<td>CCACTCGAGTCGAGTGTCCCTTCTCAAGT</td>
<td>2056</td>
</tr>
<tr>
<td>Reverse</td>
<td>GGCTCTAGAAGACACCTCTCTGTGTTCAA</td>
<td></td>
</tr>
</tbody>
</table>
| *Pthp1b* Forward | TCTGAATTCCCGCTTTCGACTCGCCGTCGA
Reverse: AGACTCGAGGTGATCGTTCAATGACACC |
| | 2473 |

Table 3.3. Morpholino oligonucleotides (MO) used in reporter assay.

<table>
<thead>
<tr>
<th>MO</th>
<th>Nucleotide sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-124 MO</td>
<td>CTGTTGCATTACCGCGTGCTTA</td>
</tr>
<tr>
<td>Std control MO</td>
<td>CCTTACCTCAGTTACATTATA</td>
</tr>
</tbody>
</table>
Table 3.4. The number of GFP expressed or not expressed embryos (GFP+ or GFP-) / total number of injected embryos in GFP reporter assay. PTBP1 ts, miR-124 target sites in 3’ UTR of Ptbp1a and Ptbp1b fused to the GFP coding region. miR-124 MO, a morpholino oligonucleotide against mat-miR-124. Control MO, a standard contpl morpholino oligonucleotide. miR-124 duplex, duplex of mature miR-124 sequences. Mut-miR-124, duplex of mutated mature miR-124 sequences.

<table>
<thead>
<tr>
<th>Construction injected</th>
<th>PTBP 1a</th>
<th>PTBP 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total</td>
<td>GFP+</td>
</tr>
<tr>
<td>i PTBP1 ts + miR-124 duplex</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>ii PTBP1 ts + mut-miR-124 duplex</td>
<td>75</td>
<td>41</td>
</tr>
<tr>
<td>iii PTBP1 ts + miR-124 duplex +miR-124 MO</td>
<td>126</td>
<td>86</td>
</tr>
<tr>
<td>iv PTBP1 ts + miR-124 duplex + Control MO</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>v PTBP1 ts + miR-124 MO</td>
<td>59</td>
<td>27</td>
</tr>
<tr>
<td>vi PTBP1 mtts + miR-124 duplex</td>
<td>116</td>
<td>69</td>
</tr>
<tr>
<td>vii PTBP1 3’UTR + miR-124 duplex</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>viii PTBP1 3’UTR + mut-miR-124 duplex</td>
<td>55</td>
<td>43</td>
</tr>
</tbody>
</table>
General Discussion

The present studies revealed that medaka miR-124 is specifically and abundantly expressed in the CNS, most likely restricted in differentiated neuron, and is involved in post-transcriptional regulation of target genes in neural development (Fig. 4.1), suggesting that miR-124 plays an important role in development of the CNS in medaka, as well as in other vertebrates.

Most miRNAs are well conserved between invertebrates and vertebrates. They are expressed in a tissue-specific manner, however, the timing and location of miRNA expression is not strictly conserved and the differences in expression are associated with changes in miRNA copy number, genomic context, or both, between species (Ason et al., 2006). To reveal whether the distinct spatio-temporal expression patterns of pri-miR-124 are strictly regulated and contribute to differences in vertebrate miR-124 function, I will examine the expression in detail by section in-situ hybridization. Additionally, the sequence analysis of full-length ola-pri-miR-124 genes is necessary for further analysis. Besides, promoter regions are typically located on 3000–5000 bp upstream sequences of coding sequences in medaka. Transgenic medaka lines using the promoter region fused to GFP coding sequence are possible to reproduce the expression of pri-miR-124.

In knockdown and overexpression experiments on miR-124 by using the morpholinos and duplex, I obtained exhibited malformations of the brain and eyes in some of the embryos, although most embryos did not show obvious and invariable phenotypic effects (data not shown). In Xenopus laevis, down-regulation of miR-124a has no obvious effect on neural morphogenesis, whereas overexpression of miR-124a causes malformations in the optic nerve and optic cup (Qiu et al., 2009; Liu et al., 2011). MiRNA has a general role in ‘fine-tuning’ neural gene expression (Schratt, 2009; Vreugdenhil and Berezikov, 2010), hence medaka miR-124 might control the translation at too fine a level to result in obviously abnormal phenotypes upon disruption.

On the other hand, a knockout mutant for pri-miR-124a-containing gene (Rncr3^+/^- mice) exhibited abnormalities in the CNS, including small brain size, aberrant growth of dentate granule cell axons, and retinal cone death (Sanuki et al., 2011). Rncr3^+/^- mice maintained 20–60% of miR-124a expression in some tissues, whereas, considerable loss of miR-124a expression was observed in the dentate gyrus. Ola-pri-miR-124-3 is a widely and strongly expressed form of medaka pre-miR-124s. The knockout mutant for ola-pri-miR-124-3 containing gene is possible to disclose the
medaka miR-124 function. Furthermore, many different types of brain-associated mutants are available in medaka.

Vertebrate miR-124s regulate multiple gene expression. In *Xenopus*, miR-124 targets *Lhx2* and *NeuroD1*, both of which are transcription factors for neural differentiation (Qiu *et al*., 2009; Liu *et al*., 2011). In chick, miR-124 suppresses the anti-neural factor *SCP1* (Visvanathan *et al*., 2007). In mouse, REST, Sox9, BAF53a, *Lhx2* and *Pthpl1* are reported as miR-124 targets (Conaco *et al*., 2006; Makeyev *et al*., 2007; Cheng *et al*., 2009; Yoo *et al*., 2009). These target genes are associated with neurogenesis in multiple aspects, and some homologous genes are conserved in medaka genome. I need comprehensive analysis of candidate target genes by medaka miR-124 to investigate the sameness and differences among various vertebrates. MiRNA/mRNA interaction may allow the CNS complexity and diversity. These studies will provide us with invaluable insights to understand the complex vertebrate neurogenesis.

It is argued that miRNA disparity contributes to vertebrate complexity (Heimberg *et al*., 2008; Somel *et al*., 2011), while a large number of studies have reported links between alterations of miRNA homeostasis and pathologic conditions such as cancer, heart diseases, and neurodegeneration (Martino *et al*., 2009). Disruption of miRNA expression induces many human diseases (Kumar *et al*., 2007). MiRNA research will provide new insight into the underlying mechanisms of neurogenesis and will be required for drug discovery and therapy of neurodegenerative disease.
Fig. 4.1. MiR-124 regulates the translation of different anti-neural factors in the embryo and adult tissues and promotes neural differentiation.
References

Chen JS, Pedro MS, Zeller RW (2011) miR-124 function during *Ciona intestinalis* neuronal development includes extensive interaction with the Notch signaling pathway. Development 138: 4943–53

Hsu PY, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng YI, Zuo T, Liu J,

miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14: 1125–1134

Traft RJ and Mattick JS (2003) Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genomic Biology 5: P1

leading to nonsense-mediated decay. Mol Cell 13: 91–100
Acknowledgments

I thank to Prof. Shin Tochinai (Hokkaido University), Dr. Rie Kusakabe (Kobe University), and Prof. Kunio Inoue (Kobe University) for guidance and discussion; Prof. Ryuichi Masuda (Hokkaido University) and Dr. Hiroshi Kajihara (Hokkaido University) for critically reading the manuscript; Dr. Saori Tani (Kobe University) and Prof. Takehiro Kusakabe (Konan University) for technical comments and support; Dr. Yuichiro Mishima (Kobe University) for experimental methods for the reporter assay; Prof. Matthew Dick for comments on the manuscript; NBRP Medaka for the hatching enzyme and Pthp cDNA; and members of Tochinai (Hokkaido University) and Inoue (Kobe University) laboratories for advice and encouragement; my family for support and encouragement.