Title	Why do we need to care about bruxism ?
Author(s)	Svensson, Peter
Citation	自分じゃ気づかない、寝ている間のいびきと歯ぎしり(Dangerous not to know the existence of your sleep bruxism and snoring). 北海道大学歯学部講堂. 2013年9月29日(日) 9:00-12:30.
Issue Date	2013-09-29
Doc URL	http://hdl.handle.net/2115/54668
Туре	lecture
File Information	Sapporo-bruxism-2013.pdf

Why do we need to care about bruxism?

Peter Svensson
Professor, DDS, PhD, Dr.Odont.

peter.svensson@odontologi.au.dk

Section of Clinical Oral Physiology Aarhus University, Denmark

Sapporo, September 29, 2013

Agenda today

- 1. What is bruxism?
- 2. Why do we brux?
- 3. How can we assess bruxism?
- 4. What can bruxism cause?
- 5. How can we manage bruxism?

Disclosure

 Chairman Clinical Advisory Board for Medotech A/S 2008-2012

1. What is bruxism?

- "Like profane mockers at a feast, they gnash at me with their teeth" (Psalm 35:16)
- "The sinner shall see and be angry, he shall gnash his teeth and consume away" (Psalm 112:10)
- "He grinds his teeth at me" (Job 16:9)
- "But the children of the kingdom shall be cast out into outer darkness: there shall be weeping and *gnashing* of teeth" (Matthew 8:12)

Tooth grinding - clenching

Old classical concept

"A gnashing and grinding of

the teeth for non-functional

purposes"

Glossary of Prosthodontic Terms

• The parafunctional grinding of the teeth, and as an *oral habit* consisting of *involuntary* rhythmic or spasmodic nonfunctional gnashing, grinding, or clenching of the teeth, in other than chewing movements of the mandible, which may lead to occlusal trauma.

International Classification of Sleep Disorders

Sleep-related movement disorder - oral
 activity characterized by grinding or clenching
 of the teeth during sleep, usually associated
 with sleep arousals.

Orofacial Pain Guidelines

• Diurnal or nocturnal parafunctional activity including clenching, bracing, gnashing, and grinding of the teeth.

All definitions have some limitations....

Time for something new!

Proposed new definition

- Bruxism is a repetitive jaw-muscle activity that is characterized by clenching or grinding of the teeth and / or by bracing or thrusting of the mandible
- Bruxism has two distinct circardian manifestations: it can occur during sleep (sleep bruxism) or during wakefulness (awake bruxism)

Diagnostic grading of bruxism

- Possible
 - History / questionnaire
- Probable
 - History / questionnaire +
 - Clinical examination
- Definite
 - History / questionnaire +
 - Clinical examinatin +
 - Polysomnographic / EMG examination

Primary bruxism

- Two conditions
 - Awake
 - Sleep

- Three types
 - Tooth-grinding
 - Tooth-clenching
 - Bracing / thrusting

Multiple forms of bruxism?

- Conditions
 - Awake
 - Sleep
- Type
 - Grinding
 - Clenching
 - Bracing / thrusting
- Contraction
 - Concentric
 - Eccentric

- EMG intensity / force
 - Low
 - Medium
 - High
- EMG frequency
 - Episodic
 - Frequent
 - Constant

> 2 x 3 x 2 x 3 x 3 = 108 different types of bruxism

e.g. Awake - clenching - concentric - medium force - frequent

Prevalence

- Awake bruxism
 - Approx. 20%
- Sleep bruxism
 - Approx. 5-8%
 - 14% of children
 - 8% of adults
 - 3% of > 60 years
 - No gender differences

Based on self-reports

Likely under-estimates

Lavigne et al. 2008 Manfredini et al. 2013ab

Self-reports of sleep bruxism

1. Summary

- Bruxism is a prevalent condition
- Awake bruxism is often associated with emotional tension or physical efforts
- Sleep bruxism is a movement disorder with increased rhytmic masticatory muscle activity related to sleep arousals

2. Why do we brux?

CNS factors

Rhythmic Masticatory Muscle Activity

Lavigne et al. 2003 Lavigne et al. 2008

Pathophysiology of sleep bruxism

Increased sympathetic activation of heart

- 4 min
- Decreased parasympathetic activation of heart
- Increased EEG activity (arousal)

- 4 s

- Increased heart rate (tachycardia)
- Increased suprahyoid EMG tonus

- 1 s

- Increased inspiration (nasal flow)
- RMMA

Importance of autonomic system

- Over 90% of sleep bruxism events can be predicted by an increasing heart rate (tachycardia > 110%) with high sensitivty (92%) and specificity (99%)
- Jaw muscle activity seems to be strongly related to changes in autonomic regulation during sleep

Macro sleep in sleep bruxers

	SB (n=6)	CTR (n=6)	
Total sleep time (min)	430 ± 55	454 ± 40	ns
Sleep latency (min)	19 ± 11	18 ± 16	ns
Wake after sleep onset	26 ± 20	9 ± 12	ns
Stage 1 (min)	29 ± 16	14 ± 10	ns
Stage 2 (min)	226 ± 36	237 ± 45	ns
Stage 3 + 4 (min)	98 ± 16	91 ± 16	ns
Non-REM (min)	353 ± 34	342 ± 44	ns
REM sleep (min)	76 ± 26	112 ± 19	ns
REM latency (min)	90 ± 13	79 ± 20	ns

Cyclic Alternating Pattern (CAP)

CAP A phases (1-3) transient EEG events > background = B phases A-B phases recur periodically (20-40 s)

nCAP Interval between A phases > 60 s

Mild arousal
Unstable, but maintained

Moderate arousal Transition

High arousal

Muscle tone increase

EKG-respiration increase

Micro sleep in sleep bruxers

	SB (n=6)	CTR (n=6	
CAP time (min)	117 ± 27	107 ± 24	ns
CAP rate (%)	34 ± 6	31 ± 5	ns
CAP cycles (number)	259 ± 76	246 ± 78	ns
CAP cycles (s)	28 ± 3	27 ± 6	ns
Phase A (s)	11 ± 1	10 ± 1	ns
Phase B (s)	16 ± 2	17 ± 5	ns

CAP analysis and bruxism

	SB	CTR
	n=6	n=6
A1 (%)	46	69
A2 (%)	29	24
A3 (%)	25	7*

* P < 0.0001 (Chi-square)

Risk factors for self-reported SB

Factor	OR
Moderate "sleepiness" during day Light snoring Heavy snoring Sleep apnea Daily alcohol 1-2 glasses Daily alcohol > 3 glasses Daily caffeine-intake > 6 cups Daily tobacco ~ 20 cigarettes High stress	1.3 1.2 1.4 1.8 1.5 1.8 1.4 1.3
DSM-IV anxiety disorders	1.3

Bruxism and sleep-disordered breathing

But what about occlusion

and bruxism?

Occlusion and bruxism

"Occlusal grinding procedures (i.e.,removal

of discrepancies between RCP & ICP)

always lead to a disappearance of bruxism"

Old dogma but still believed to be true by many!

Human experimental study

Influence of occlusal interferences

Craniofacial anatomy and bruxism

- Case control study
 - 26 occlusal & 25 cephalometric variables
 - Bruxers versus non-bruxers (PSG-confirmed)
 - No differences between both groups
- Craniofacial anatomy seems unrelated to the etiology of bruxism

Importance of occlusion for bruxism

There is a lack of evidence to support any

strong relationships between occlusal

variables / craniofacial morphology and

bruxism

2. Summary

- Bruxism is mainly regulated and influenced by CNS factors
- Occlusion (e.g. occlusal interferences) is not critically involved

3. Assessment of bruxism

- History
 - Interview
 - Questionnaires
- Clinical examination
 - Extra-oral
 - Intra-oral
- Additional tests
 - Polysomnography (PSG) in sleep labs
 - Portable EMG (electromyography)

Clinical diagnosis

History

- "Are you aware of clenching or grinding your teeth during day time"
- "Are you aware of clenching or grinding your teeth during sleep"
- "Do you wake up with tender or painful jaw muscles"
- "Do you wake up with sore teeth"

Problems with self-reports

18% of subjects that report sleep bruxism
 meet PSG criteria for sleep bruxism
 BUT

 19% of subjects that do NOT report sleep bruxism also meet PSG criteria

Self-reports of bruxism

Clinical examination

- Intraoral
 - Hyperkeratosis
 - Tongue scalloping

Cheek biting

Findings:

- + present
- absent

Clinical examination

Tooth / implant fractures

- Occlusion / articulation
 - Change in morphology
 - Functional facets / attrition

Grading attrition

Problems with attrition

- Not specific indicator of ongoing bruxism
 - No differences in attrition scores between light /
 mild and moderate / strong sleep bruxers
 - 100% of sleep bruxers have attrition BUT 40% of non-sleep bruxers also have attrition

Assessment of wear

Baseline

After 1 week

Case 1

No correlation between EMG activity and wear (r = -0.063; P=0.834, n = 12)

Clinical examination

Extra-oral

Form - hypertrophy
Consistency
Pain sensitivity

3. Summary

- A careful history + clinical examination can provide strong indications of awake and sleep bruxism ("possible" – "probable")
- However, diagnosis is mainly based on potential consequences of bruxism, i.e., indirect assessment
- Additional measures needed for a direct assessment ("definite")

Additional tests

- Sleep laboratory
 - Full polysomnography (PSG)
 - Video
 - Audio
- Ambulatory recordings
 - Portable PSG
 - Single channel EMG

Polysomnography

Example

Arima et al. 2001

Single channel EMG devices

Single channel EMG vs PSG

Single channel EMG vs PSG

Single channel EMG device

Correlation between "gold standard" and new GC algorithm

(n=20)

Haugland et al. – in progress - 2013

3. Summary

 Single channel EMG recordings from the anterior temporalis muscle can provide reliable estimates of jaw muscle activity related to bruxism but may contain "falsepositive" events

4. What can bruxism cause?

- Attrition / tooth destruction
- Disturbance of bed partner's sleep
- Muscle hypertrophia
- Headache / jaw pain / TMD pain ?

Damage to implants?

- Biological problems (implant failure / mobility, bone loss
 - Seems rare (6 / 14 studies; 8 / 14 inconclusive)
- Mechanical problems (complications / failures of suprastructures)
 - Seems frequent (4 / 7 studies)

Bruxism and TMD pain

Multiple types of TMD pain

- Type
 - Nociceptive
 - Inflammatory
 - Neuropathic
 - Functional
- Duration
 - Acute
 - Chronic

- Intensity
 - Low
 - Moderate
 - High
- Frequency
 - Episodic
 - Frequent
 - Constant

 $>> 4 \times 2 \times 3 \times 3 = 72$ different types of pain

e.g. Inflammatory - acute - low - frequent

Very complex relationships

Bruxism (>108)

Pain (>72)

Complex TMD pain model

EMG activity in TMD patients

4. Summary

Bruxism causes pain

Some types of bruxism may cause some types of pain

Relationships

5. Management of bruxism

- Occlusal splints
- Information / counceling
- Physiotherapy
- Pharmacology
- Feedback-systems

Occlusal splint

RCT study on sleep bruxism

RCT study on sleep bruxism

RCT study on long-term effects

No long-term effects of splints!

Fits clinical observation of wear on splints Bruxism continues!

Different types of splints

Restrict Maxillary and Mandibulary Occlusal Appliance

Free Maxillary and Mandibulary Occlusal Appliance

Free Maxillary
Occlusal Appliance

Immediate effects

Mandibular advancement device

Decrease in EMG activity by ~ 40%
OBS: Frequent adverse effects with pain in TMJ / muscles

Effect of MAD on EMG activity

Portable EMG device + stimulation

Inhibition of EMG activity

Exteroceptive Suppression Reflex (ES)

Svensson et al. 1998, 1999, 2000; Lund et al. 2008 Wang et al. 2001, 2002, 2005; Toriso et al. 2008

Use of EMG feedback

Randomized controlled trial

Case-series study

Raphael et al. J Orofac Pain 2012

Occlusal splints + CES

Summary

- Single channel EMG devices offer the possibility to assess jaw muscle activity during sleep (multiple nights) at low costs
- Contingent stimulation may be used to inhibit muscle activity and manage bruxism

Take home message (1)

- Take history
- Do intra- and extraoral examination
- Consider if a more "definite" diagnosis is essential for management
 - -PSG?
 - Ambulatory EMG ?

Take home message (2)

- Bruxism can be managed not cured!
 - Councelling and information always
 - Consider sleep-related problems (apnea)
 - Splints for tooth-protection if needed
 - Physiotherapy for muscle symptoms
 - Pharmacology rarely needed
 - Contingent electrical stimulation ?

Books

Dental Management of Sleep Disorders

<u>Acknowledgement</u>

- Taro Arima
- Wataru Yachida
- Faramarz Jadidi
- Eduardo Castrillon
- Lene Baad-Hansen