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ABSTRACT

This article presents a solution for the linear response of a 2½-layer ventilated thermocline to large-scale

periodic wind forcing, with a fixed outcrop latitude. At the eastern boundary, a Rossby wave whose vertical

structure is similar to the first baroclinic mode is generated and propagates westward in the shadow zone.

Meanwhile, the wave is unstable and amplified westward in the southern region. In the ventilated zone, in

addition to the first-mode Rossby wave generated at the eastern boundary, two waves with secondmode–like

vertical structures are generated. One wave is generated directly by the wind over the outcrop. This wave has

a zero zonal wavenumber and southwestward group velocity, such that the eastern edge of the wave migrates

westward as it propagates southward. The other wave is generated by interaction between the westward-

propagating, first-mode Rossby wave and the outcrop. The zonal wavenumber is the same as that of the first

mode at the outcrop, and the phase of the wave propagates southwestward. The crests and troughs of this

wave extend across the ventilated zone from the outcrop to the internal boundary between the shadow zone

and the ventilated zone.

1. Introduction

The oceanic response to wind forcing is an important

subject with a long history of investigation in various

situations (e.g., Pedlosky 1965; Anderson and Gill 1975;

Anderson and Killworth 1977). In classical theories, the

effects of mean flow advection are not considered. If we

do not consider the bottom topography and the mean

ocean circulation, the potential vorticity simply increases

northward, causing the Rossby waves to propagate west-

ward. However, in the real ocean, the potential vorticity in

the thermocline is distorted from zonal uniformity because

of the parcel-wise conservation of the potential vorticity

(PV), as demonstrated in modern ocean circulation

theories (Luyten et al. 1983; Young and Rhines 1982).

According their theories, ocean gyre can be divided into

three dynamically different zones: shadow, ventilated,

and homogenized PV pool.

Liu (1993) and Liu and Pedlosky (1994) studied the re-

sponse of a two-layer oceanic gyre consisting of these dy-

namically different regions to periodic forcings. However,

because the two-layer model permits only one propagating

mode, those studies could not represent variations of the

main thermocline. To discuss wave dynamics including

the variation of the main thermocline, Liu (1999a,b) used

a 2½-layer model and showed that the distorted PV dis-

tribution and the mean flow advection hardly affect the

first baroclinic mode so it propagates westward, while

the second mode tends to propagate along the mean

PV contours of the second layer. He referred to the first

baroclinic mode that is mostly unaffected by the mean

current as the non-Doppler- shift mode (Nmode) and to

the second mode, which is mostly advected by the mean

flow, as the advective mode (A mode).

Dewar and Huang (2001) investigated the adjustment

of the thermocline under varying wind and buoyancy

forcing over time scales from several years to decades,

using a 3½-layer modified Hendershot model, which is

a quasigeostrophic model that includes effects of venti-

lation from outcrops. They showed that perturbations

resulting from wind stress anomalies project strongly

onto the first mode, while perturbations generated by

buoyancy anomalies have strong projections onto the

second and third modes, propagating along pathways

very close to the mean circulation, and they compared

the results with results of numerical experiments based

on a planetary geostrophic ocean circulation model.

Kubokawa and Nagakura (2002) studied the detailed char-

acteristics of the wave modes in a 2½-layer ventilated
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thermocline model (Luyten et al. 1983). They discussed

dispersion relation, evolution of isolated initial distur-

bances, response to localized steady forcing, and stabil-

ity in each region of the shadow zone, the ventilated

zone, and the pool zone. Cerove�cki and de Szoeke (2007)

studied the oceanic response to periodic forcing using a

2½-layer model corresponding to the shadow zone of

the ventilated thermocline model. Although the shadow

zone is unstable with regard to longwave disturbances,

Cerove�cki and de Szoeke (2007) showed that the growth

of the unstable wave occurs only in the southern sub-

tropical gyre under large-scale periodic forcing.

In this brief article, we will present a linear solution

for a perturbed thermocline forced by large-scale peri-

odic wind stress using a 2½-layer ventilated thermocline,

consisting of the shadow, the ventilated, and the pool

zones. The purpose is to clarify what occurs in an ide-

alized thermocline model when the wind is oscillating,

with special attention on the role of the outcrop in

generating the A modes, as well as how the waves cross

the boundaries between the different zones. This study

is complementary to the studies mentioned above be-

cause the model used by Dewar and Huang (2001) was a

modified Hendershot model, Kubokawa and Nagakura

(2002) did not discuss responses to large-scale periodic

forcing, and Cerove�cki and de Szoeke (2007) only ad-

dressed the shadow zone.

2. Formulation

A spherical coordinate system is adopted in this study,

with a latitude of u, a longitude of l, and the earth’s

radius of a. The model ocean is represented by three

layers: the uppermost layer is layer 1, the middle layer is

layer 2, and the third layer is assumed to be infinitely

deep. We used a planetary geostrophic model consisting

of the hydrostatic and geostrophic balances and mass

conservation in each layer. The hydrostatic and geo-

strophic balances yield the following relationships among

the depth of the lower interface of the jth layer hj, pres-

sure pj, and horizontal velocity uj in the jth layer:

p2/r05 g2h2, p1/r05 g2h2 1g1h1, and

uj 5
1

r0 f
k3$pj , (1)

where f is the Coriolis frequency, rj is the density of the

jth layer, gj 5 g(rj11 2 rj)/r0 (where g is the acceleration

due to gravity and r0 is the mean density), k is the unit

vector directed upward, and $ is the horizontal differ-

ential operator. Substituting Eq. (1) into the mass con-

servation equation for each layer yields the equations

for the potential thickness (reciprocal of the potential

vorticity), q1 5 h1/f and q2 5 (h2 2 h1)/f:

›qj

›t
1

1

r0 f
J(pj, qj)52

1

f
d1jwe , (2)

where dij is theKronecker delta (1 for i5 j and 0 for i 6¼ j)

and J(*, *) is a Jacobian, defined as

J(A,B)5
1

a2 cosu

›A

›l

›B

›u
2

1

a2 cosu

›B

›l

›A

›u
. (3)

After minor manipulations, Eq. (2) can be rewritten as

›h2
›t

2
1

2a cosu

›

›l

�
b

f 2
(g1h

2
11 g2h

2
2)

�
52we and (4)

›

›t
(h22 h1)1 g2J(h2, q2)5 0. (5)

Because the present study investigates the linear re-

sponse of the ventilated thermocline to the periodic

wind forcing, we separate the variables into the basic

field and the perturbation:

we 5We1 ŵee
ist, hj5Hj 1hje

ist,

uj 5Uj 1 ûje
ist, qj 5Qj 1 q̂je

ist, and

pj 5Pj 1 p̂je
ist , (6)

where capital letters denote the steady basic state driven

by an Ekman pumping velocityWe and s is the frequency

of the periodic forcing.

a. Basic state

The basic state considered in this study is a 2½-layer

version of the ventilated thermocline model (Luyten

et al. 1983), in which the second layer is assumed to out-

crop along a latitude circle of u 5 u1 and to have a depth,

along the eastern boundary located at l5 lE, of a constant

H0. The steady solution of Eqs. (4) and (5) gives the basic

state. It is known that the solution is divided into three

different zones. H1 and H2 in the three zones are:

H25H0 and

H15

�
2

g1
F(l, u)

�1/2
for the shadow zone, (7)

H25

"
2F(l, u)1 g2H

2
0

g1(12 f /f1)
21 g2

#1/2
and

H15

�
12

f

f1

�
H2 for the ventilated zone, and (8)
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H25
1

g11 g2
fg1fQ2W 1 [(g11 g2)(g2H

2
0 1 2F)

2 g1g2f
2Q2

2W]1/2g and

H15H22 fQ2W for the PV homogenized pool zone,

(9)

where f1 5 f(u1) and F(l, u) is the Sverdrup function.

This function is defined as

F(l, u)5
f 2

b

ðl
l
E

Wea cosudl , (10)

where b 5 a21df/du and Q2W is the uniform potential

thickness in the potential vorticity homogenized pool

(Rhines and Young 1982), which is represented as

Q2W 5 f (u1)
21[H2

0 1 2F(lW , u1)/g2]
1/2 ,

where lW represents the longitude of the western bound-

ary. In this study, the northern and southern boundaries

of the subtropical gyre are 458 and 158N, and the zonal

extent is 808. We chose the functional form of We as

We(u)5
b(u)

f (u)

f (p/6)

b(p/6)
w0 sin

�
p
u2p/4

p/6

�
,

which yields the geostrophic Sverdrup transport having

a sinusoidal form, that is,

V5
1

fa cosu

›F

›l
5

f (p/6)

b(p/6)
w0 sin

�
p
u2p/4

p/6

�
.

The adopted mean state is shown in Fig. 1, with H0 5
500m, g1 5 0.01m s22, g2 5 0.02m s22, and w0 5 1.33
1026 m s21.

b. Equations and boundary conditions for
perturbations

Substituting Eq. (6) into Eqs. (4) and (5), and linear-

izing them with respect to h1 and h2, we obtain the

equations for the perturbation:

ish22
1

a cosu

›

›l

�
b

f 2
(g1H1h11 g2H2h2)

�
52ŵe and

(11)

is(h22h1)1g2J[H2, (h22h1)/f ]1g2J(h2,Q2)5 0.

(12)

The assumed lateral boundary condition at the east-

ern boundary is h1 5 h2 5 0 and, because the outcrop

latitude is fixed in this study, h1 5 0 at u5 u1. There are

two internal boundaries where $Qj and Uj are discon-

tinuous. The first is the boundary between the shadow

zone and the ventilated zone, which is given by the curve

satisfyingQ2(l, u)5H0/f1, where the potential thickness

of the second layer is the minimum. The other internal

boundary is between the ventilated zone and the pool

zone, whereH2 5 f1Q2W. These internal boundaries are

free boundaries that are advected by the perturbation

FIG. 1. Solution of the 2½-layer ventilated thermocline model used as themean state in the present study: (a) upper

layer and (b) second layer. Solid contours denote layer depths H1 and H2 [contour interval (CI): 25m]. Dashed

contours denote upper-layer geostrophic pressure, which was converted to sea surface height in (a) (CI: 0.125m) and

potential thickness (H2 2 H1)/f in (b) (CI: 1.0 3 106m s). The shadow zone, pool zone, and the region north of the

outcrop are shaded.
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velocity perpendicular to the boundary curve. The move-

ment of the boundary in the direction perpendicular to

the boundary curve is governed by

isj1U2 � $j5 n � û252
g2
f
k � (n3$h2) , (13)

where j is the displacement of the boundary and n is

a horizontal unit vector perpendicular to the internal

boundary [j is defined positive when the boundary

moves eastward, so n 5 sgn(›Q2/›l)$Q2/j$Q2j]. Be-
cause the computation is carried out westward from the

eastern boundary, h2 on the eastern side of the internal

boundary is known. Therefore, we can calculate the dis-

placement j by using Eq. (13). Then, h2 on the western

side can be calculated by Eq. (13) using the obtained j

and this h2, and Eq. (12) yields h1 on the western side.

c. Method of solution

Because the internal boundaries are located along the

Q2 contours, a coordinate along the Q2 contour will be

appropriate to address the problem. Therefore, we in-

troduceQ2–y coordinates, where y5 au. Equations (11)

and (12) become

ish2

Q2x

2
›

›Q2

�
b

f 2
(g1H1h11 g2H2h2)

�
52

ŵe

Q2x

and

(14)

is(h22h1)

g2Q2x

1
›H2

›Q2

›

›y

�
h22h1

f

�
2

›

›y
h25 0, (15)

where the differentials ›/›Q2 and ›/›y are calculated by

fixing y andQ2, respectively, andQ2x 5 (a cosu)21›Q2/›l

is the eastward gradient of Q2. The ›H2/›Q2 5 0 in the

shadow zone and ›H2/›Q2 5 f1 in the ventilated zone.

These equations cannot be applied to the pool zone be-

cause Q2x 5 0 (we will provide the equation for the pool

zone at the end of this section).

The numerical method used to obtain the solution is

very simple. Here, h1 and h2 at a grid point (m, n), where

m and n are integers increasing westward and south-

ward, respectively, are obtained by integrating Eq. (14)

from point (m2 1, n) to point (m, n) and integrating Eq.

(15) from point (m, n 2 1) to point (m, n). We used the

trapezoidal formula to perform the integrations.

With regard to the matching condition at the bound-

ary between the shadow zone and the ventilated zone,

using Eq. (13), we obtain

j5
ig2Q

(s)
2x

sf j$Q(s)
2 j

›h
(s)
2

›y
and (16)

›h
(y)
2

›y
5 j$Q(y)

2 j
"

ifsj

g2Q
(y)
2x

1 f1
›j

›y

#
, (17)

where the superscripts (s) and (y) denote the variables

defined on the shadow zone side and the ventilated zone

side, respectively, and $Q2 is the gradient of Q2 in the

l–u coordinates as in the previous sections. Equation

(16) yields j on the shadow zone side, and integrating

Eq. (17) from y5 y1, where h2 5 0, yields h
(y)
2 . Here, h1

on the ventilated zone side is calculated by Eq. (15) with

h1 5 0 at y 5 y1.

The longitudinal displacement of the boundary be-

tween the ventilated and the pool zones at the outcrop

latitude Dleist satisfies Q2(lW1Dleist, u1)1q̂2e
ist5Q2W .

This yields ›Q2/›ljl5lW
Dl1 q̂2(lW , y1) 5 0 at y 5 y1.

Therefore, j at y 5 y1 becomes j 5 jQ(y)
2x /$Q

(y)
2 j

Dla cosu1 5 q̂
(y)
2 /j$Q(y)

2 j, where the superscript (y) de-

notes the variables on the ventilated zone side of the

boundary.1 We can then calculate the displacement of

the internal boundary j by integrating

›j

›y
1

ifsj

g2f1Q
(y)
2x

5
1

f1j$Q(y)
2 j

›h
(y)
2

›y
, (18)

from the outcrop (y5 y1). BecauseQ2 is uniform in the

pool zone, it is appropriate to introduce H2–y coor-

dinates for the pool zone, with y-differentials calculated

by fixing H2. Then, the equation for h2 along the pool

zone side of the boundary becomes

›h
(p)
2

›y
5 j$H(p)

2 j
"

ifsj

g2H
(p)
2x

1
›j

›y

#
, (19)

where the superscript (p) denotes the variables on the

pool zone side and H2x 5 (a cosu)21›H2/›l. Integrating

Eq. (19) from the outcrop where h
(p)
2 5h

(y)
2 , we obtain

h
(p)
2 . Using this h

(p)
2 , we can calculate the disturbances in

the pool zone by

ish2

H2x

2
b

f 2
›

›H2

[(g1H11 g2H2)h2]52
ŵe

H2x

. (20)

Although this equation can be solved analytically, we

solved it numerically.

1 The longitudinal oscillation of the boundary, which is defined

by q2 5 Q2W, at the outcrop latitude would cause ventilation of

fluid with slightly different potential thickness into the pool zone,

because the second-layer depth at (lW, u1) also oscillates.However,

because the second-layer potential thickness anomalies are only

advected by the mean flow in the pool zone and this is a linear

theory, we do not need to consider this small anomaly confined to

a very narrow band along the boundary.
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3. Results

The real parts of the interface displacements h1 and

h2, aswell as the second-layer potential thickness anomaly

q̂2, are shown in Fig. 2 for the case of a 2-yr forcing period

(730 days) and spatially uniform ŵe. The patterns of the

imaginary parts are nearly the same, with the exception

that the phase shifts byp/2 in the opposite direction of the

wave propagations and the spatially uniform deepening

of the interfaces directly caused by ŵe. The results are

qualitatively independent of the period and differences

occur in the amplitude and wavelength, which are pro-

portional to the period. Although the forcing amplitude

in the real ocean is largest for a 1-yr period, we show a

2-yr-period solution because the wavelengths of the so-

lutions for the 1-yr-period forcing are too short to pro-

duce clear figures.

In the shadow zone, the wave is unstable in the south-

ern part and is amplified westward where the phase dif-

ference between h2 and h1 is optimal for baroclinic

instability, while it is neutral in the northern part. Because

this is a longwave theory, the smaller the wavelength is,

the larger the growth rate is. However, the large-scale

wind forcing generates the large-scale disturbance, and,

therefore, the growth of the wave is modest, as discussed

by Cerove�cki and de Szoeke (2007).

The internal boundary between the shadow zone and

the ventilated zone does not affect the wave structure in

FIG. 2. Real parts of the wave solution forced by a large-scale oscillating wind over a 2-yr period: (a) h1(l, u),

(b) h2(l, u), (c) potential thickness of the second layer q̂2(l, u), and (d) q̂2 on the Q2–y plane for the ventilated

zone q̂2(Q2, u). The dotted contours denote the negative values. The CI is 53 ŵe/w0 m for h1 and h2, and is

83 104 3 ŵe/w0 m s for q̂2. The shading denotes negative values and regions where the absolute value is too large

(.20 3 CI) are not contoured.
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h2 significantly, and the wave propagates into the ven-

tilated zone beyond it. However, the large-scale struc-

ture seen in q̂2 in the shadow zone seems to be blocked

by the internal boundary. Because jQ2xj in the ventilated
zone is much smaller than that in the shadow zone, the

oscillation of j does not cause significant changes in q̂2 in

the ventilated zone; therefore, the large-scale q̂2 pattern

seen in the shadow zone hardly crosses this internal

boundary.

In the ventilated zone, the patterns seen in h1 and

q̂2 are complicated. It seems that zonal structures

dominate in the northern half of the ventilated zone,

while shortwave signals whose wavenumbers are di-

rected southeastward in the x–y plane (southwestward

in theQ2–y plane) dominate in the southern half. Here,

we separate the disturbances into the waves excited

at the eastern boundary and those excited by Ekman

pumping in the interior ocean. The results are shown in

Figs. 3 and 4.

Figure 3 shows the wave field when the effect of the

eastern boundary is eliminated. To eliminate the effect

of the eastern boundary, we set h1 5h2 5 iŵe/s at the

eastern boundary. Under this condition, the zonal gra-

dients in h1 and h2 are kept vanishing at the eastern

boundary under the periodic wind forcing. This figure

shows that the outcrop is a wave source of the zonal A

mode. As it propagates southward, the eastern edge of

the A mode migrates westward, and the wavenumber

vector rotates slightly clockwise. A theoretical inter-

pretation of thisAmodewill be given in the next section.

The unstable growth of the wave in the southern region

of the shadow zone can also be seen. Because the strat-

ification andmean flow depend on the location, spatially

uniform perturbed Ekman pumping can generate waves

FIG. 3. As in Fig. 2, but for wave components generated by open ocean wind. In this solution, the effect of the eastern

boundary is eliminated.
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in the interior region, although they are not significant

except for the A mode excited at the outcrop and the

unstable wave in the shadow zone.

Figure 4 shows waves generated at the eastern

boundary, where h1 5h2 52iŵe/s and the perturbed

Ekman pumping is set to zero. The distribution of h2

in this case is very similar to that in Fig. 2, while h1 and

q̂2 in the ventilated zone are dominated by a short

wave whose wavenumber is directed southwestward

in the Q2–y plane (Fig. 4d). This A-mode signal is

generated at the outcrop associated with westward

propagation of theNmode and will be discussed in the

next section.

Although there is no A mode in the pool zone, Fig. 3

shows that the zonal A mode generated at the outcrop

by wind generates an N mode in the pool zone, which

complicates the distribution of h2 in the pool zone. This

can be interpreted as follows: the oscillating we causes

spatially uniform change in h2, which oscillates the

boundary between the ventilated and the pool zones

(i.e., j) at the outcrop latitude. This oscillation in j does

not accompany any wavy h2 on the ventilated zone side

and propagates southward satisfying

isj1U2 � $j5 0.

On the pool zone side, however, the wavy j will yield

n � û2 in Eq. (13), because the advection velocity U2 is

different between the ventilated and pool zones. Be-

cause the southward component ofU2 on the ventilated

zone side is the same as the southward phase speed of

the zonal A mode as will be shown in the next section,

the zonal A mode in the ventilated zone appears to

generate the N mode in the pool zone.

FIG. 4. As in Fig. 2, but for wave components generated at the eastern boundary.
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4. Wave generation and propagation in the
ventilated zone

If we assume that the wavelength is much shorter than

the basin scale, Eqs. (14) and (15) can be rewritten as

ish22
bQ2x

f 2

�
g1H1

›h1

›Q2

1g2H2

›h2

›Q2

�
52ŵe and

(21)

is(h22h1)1g2Q2x

�
f1
f

›

›y
(h22h1)2

›h2

›y

�
5 0. (22)

Substituting (h1,h2)5 (a1, a2)e
2i(kQ21ly) into Eqs. (21)

and (22) and setting ŵe 5 0 gives the dispersion relation:

���������

bg1H1

f 2
Q2xk s1

bg2H2

f 2
Q2xk

2s1
f1g2Q2x

f
l s1

g2Q2x( f 2 f1)

f
l

���������
5 0. (23)

From this equation, we can easily obtain l 5 l(k, s),

group velocity in theQ2–y plane, (›s/›k, ›s/›l), and the

vertical structure (a1, a2), which is obtained by sub-

stituting l 5 l(k, s) into Eqs. (21) or (22). These wave

properties are depicted in Fig. 5 for the 2-yr period at

308N and 608E. These wave properties in theQ2–y plane

are qualitatively independent of the latitude. The wave

with a first mode–like vertical structure (i.e.,Nmode) has

the eastward component of wavenumber around kQ2x ’
20.4 3 1022 km21, and this wave dominates the varia-

tion in h2 in Figs. 2 and 4. When l5 0, q̂2 5 (h2 2h1)/f is

zero, while q̂2 6¼ 0 for l 6¼ 0 as seen in Fig. 5b.North of the

outcrop latitude (y. y1), there is only one vertical mode

propagating westward at the speed of bf22g2H2 that

is independent of l and k 5 2sf 2(bg2H2Q2x)
21. The

eastward component of the wavenumber k of this mode

at the eastern boundary of the outcrop latitude multi-

plied by Q2x at 308N and 608E is 21.2 3 1022 km21 and

is denoted by thin, vertical dotted lines in Fig. 5. At the

outcrop latitude, the N mode generates an A mode with

this zonal wavenumber. The wave with the southwest-

ward wavenumber vector seen in h1 and q̂2 in Fig. 4 is

this A mode. Conversely, the wave with a nearly zero

zonal wavenumber dominates the variation in h1 and q̂2
in Fig. 3.

Here, we discuss the generation mechanisms of these

A-mode structure waves. First, we consider the gener-

ation of the zonal mode at the outcrop resulting from

the wind variation. If there is noNmode, Eq. (21) yields

h2 5 iŵe/s. Substituting h2 5 iŵe/s into Eq. (22) yields

›h1

›y
1 ilA1

0
@h12

iŵe

s

1
A5 0, (24)

where lA1 5 fs/f1g2Q2x, and the solution becomes

h15
iŵe

s

 
12 e

2i
Ð y

y1
l
A1
dy

!
, (25)

where the boundary condition h1(y1) 5 0 is used. The

meridional wavenumber lA1 is l at k5 0. In the east lA1 is

FIG. 5. Properties of a wave based on a 2-yr period at (308N, 608E) in the ventilated zone: (a) dispersion relation (k–l relation), (b) group
velocity (solid and dashed curves denote the zonal and meridional components, respectively), and (c) vertical structure (solid and dashed

curves denote the amplitudes of h1 and h2, respectively, and are normalized as jh1j2 1 jh2j2 5 1). The wavenumber vector on the Q2–y

plane is (k, l). Here, k has the same dimension asQ21
2 , so we used kQ2x to change the dimension to be per length. The group velocity is also

defined on theQ2–y plane, and cgQ2
5 ›s/›kQ21

2x . The thin, vertical dotted line around kQ2x521.23 1022 km21 denotes thewavenumber

of the N mode generated at the eastern boundary of the outcrop latitude.
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smaller because Q2x is larger in the east. This result

explains why the wavenumber vector rotates slightly

clockwise to the south. It should also be noted that the

phase speed, s/lA1 5 f21g2H2x, is the same as the ad-

vection velocity. The direction of the group velocity of

this mode is southwestward, as shown in Fig. 5b, such

that the eastern edge of this mode migrates westward

and exits from the ventilated zone around the central

latitude of the subtropical gyre.

The generation mechanism of the A mode in the

boundary-forced case is more complicated than that of

the wind-forcedAmode. At the limit of y/ y1, because

H1/H2� 1 and f1/f2 1� 1 for y’ y1, Eqs. (21) and (22)

become

ikNh21
›h2

›Q2

5 0 and ilA2(h22h1)2
›h1

›y
5 0, (26)

where kN 52sf 21 /g2bH2Q2x and lA2 5s/g2Q2x. The

N-mode solution of these equations is solved with the

zonal wavenumber kN, whose vertical structure depends

on the meridional wavenumber l as a1/a2 5 lA2/(lA2 2 l).

The A mode in Eq. (26) has h2 5 0 and a meridional

wavenumber of lA2; the zonal wavenumber is arbi-

trary. The boundary condition h1 5h2 52iŵe/s atQ25
Q2E 5 H0/f1 (the eastern boundary of the ventilated

zone) generates the N mode with l 5 0 and h1 5h2 5
2iŵe/s. On the other hand, because h15 0 at y5 y1 must

be satisfied forQ2 . Q2E, an Amode with the amplitude

of iŵe/s is generated. Therefore, the solution becomes

h252
iŵe

s
e
2i
Ð Q2

Q2E
k
N
dQ

2 and (27)

h15
iŵe

s
e
2i
Ð Q2

Q2E
k
N
dQ

2[e2il
A2
(y2y

1
) 2 1] for Q2.Q2E .

(28)

The amplitude of theAmode abruptly changes from 0 at

the boundary between the shadow zone and ventilated

zone (Q2 5 Q2E) to ŵe/s for Q2 . Q2E. Because an A

mode with a short zonal wavelength propagates along

theQ2 contour (i.e., ›s/›k5 0; see Fig. 5b), theAmode

generated by the N mode at the outcrop line is trapped

at and propagates along the internal boundary of Q2 5
Q2E. As a result, the A mode of the zonal wavenumber

of kN(y1) seems to act as a bridge connecting the N

mode propagating westward along the outcrop to the

Amode propagating southward along the internal bound-

ary. A similar wave solution structure was reported

by Kubokawa and Nagakura (2002) for the initial value

problem. It should be noted that jlj of the N mode

increases westward because of the meridional gradient

of the westward phase speed. Because of the q̂2
anomaly associated with the Nmode when l 6¼ 0, the q̂2
anomaly in Figs. 4c and 4d exhibits a diamond-like

checkerboard pattern caused by the superposition of

the N and A modes in the northwestern ventilated

zone, where themeridional wavenumber of theNmode

is large.

5. Summary

In this article, a linear longwave solution in a 2½-layer

ventilated thermocline responding to periodic wind

forcing was obtained in the case that the density bound-

ary conditions (interface depths at the eastern boundary

and outcrop latitude) are fixed. In the shadow zone, there

are unstable waves whose amplitude increases westward,

as discussed by Cerove�cki and de Szoeke (2007). In

the ventilated zone, in addition to the N mode (the first

baroclinic mode) generated at the eastern boundary,

the A modes (higher baroclinic modes) are generated at

the outcrop. One Amode is generated by the interaction

between the westward-propagating N mode and the

outcrop, whose zonal wavenumber is the same as that of

the N mode at the outcrop. The other A mode is gener-

ated by the wind over the outcrop whose zonal wave-

number is zero. Because the group velocity of this mode

is southwestward, its eastern edge migrates westward,

and because the southward speed is higher in the east, the

wavenumber vector rotates slightly clockwise as it prop-

agates southward.

It has been thought that A modes are mainly excited

by thermal forcing. In addition to the thermal forcing,

the present study suggests that wind forcing around the

outcrop and westward propagation of the N mode can

also significantly excite A modes. If there is no outcrop,

the direct wind forcing tends tomove all the interfaces in

the same vertical direction, so that only N modes are

excited. However, in the present situation, because the

outcrop latitude is fixed independently of the wind,

the potential thickness in the second layer changes at

the outcrop if h2 changes, and this potential thickness

anomaly is advected and propagates southward as theA

mode. A similar mechanism works when the N mode

propagates along the outcrop. In the real ocean, surface

thermal forcing is important as well, which changes the

outcrop latitude. The oscillation of the outcrop latitude

generates Amode disturbances. Under realistic forcing,

both effects are important.
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