Title
Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors

Author(s)
Mikami, Daisuke; Kurihara, Hideyuki; Kim, Sang Moo; Takahashi, Koretaro

Citation
Marine drugs, 11(10): 4050-4057

Issue Date
2013-10-22

Doc URL
http://hdl.handle.net/2115/54741

Rights(URL)
http://creativecommons.org/licenses/by/3.0/

Type
article

Additional Information
There are other files related to this item in HUSCAP. Check the above URL.

File Information
- marinedrugs-11-04050-s001.pdf (Supplementary File 1: Supplementary Materials)
Supplementary Materials

Figure S1. HPLC chromatogram of 1 .. 2
Figure S2. 1H-NMR spectrum of 1 in acetone-d_6 at 500 MHz .. 3
Figure S3. 13C-NMR spectrum of 1 in acetone-d_6 at 125 MHz .. 4
Figure S4. HPLC chromatogram of 2 .. 5
Figure S5. 1H-NMR spectrum of 2 in acetone-d_6 at 500 MHz .. 6
Figure S6. 13C-NMR spectrum of 2 in acetone-d_6 at 125 MHz .. 7
Figure S7. HPLC chromatogram of 3 .. 8
Figure S8. 1H-NMR spectrum of 3 in acetone-d_6 at 500 MHz .. 9
Figure S9. 13C-NMR spectrum of 3 in acetone-d_6 at 125 MHz .. 10
Figure S10. HPLC chromatogram of 4 ... 11
Figure S11. 1H-NMR spectrum of 4 in acetone-d_6 at 500 MHz .. 12
Figure S12. 13C-NMR spectrum of 4 in acetone-d_6 at 125 MHz .. 13
Figure S13. HPLC chromatogram of 5 ... 14
Figure S14. 1H-NMR spectrum of 5 in acetone-d_6 at 500 MHz .. 15
Figure S15. 13C-NMR spectrum of 5 in acetone-d_6 at 125 MHz .. 16
Figure S1. HPLC chromatogram of compound 1.

HPLC conditions: Column: ULTRON VX-SIL RP-18 (φ 4.6 x 250 mm); Mobile phase: n-Hexane/EtOH/AcOH = 10:1:0.05 (v/v/v); Flow rate: 0.8 mL/min; Detection: UV 210 nm.
Figure S2. 1H-NMR spectrum of compound 1 in acetone-d_6 at 500 MHz.
Figure S3. 13C-NMR spectrum of compound 1 in acetone-d_6 at 125 MHz.
Figure S4. HPLC chromatogram of compound 2.

HPLC conditions: Column: Mightysil RP-18 250–4.6 (5 μm); Mobile phase: 20% aqueous CH₃CN; Flow rate: 0.5 mL/min; Detection: UV 210 nm.
Figure S5. 1H-NMR spectrum of 2 in acetone-d_6 at 500 MHz.
Figure S6. 13C-NMR spectrum of 2 in acetone-d_6 at 125 MHz.
Figure S7. HPLC chromatogram of 3.

HPLC conditions: Column: Mightysil RP-18 250–4.6 (5 μm); Mobile phase: 40% aqueous MeOH; Flow rate: 0.8 mL/min; Detection: UV 210 nm.
Figure S8. 1H-NMR spectrum of 3 in acetone-d_6 at 500 MHz.
Figure S9. 13C-NMR spectrum of 3 in acetone-d_6 at 125 MHz.
Figure S10. HPLC chromatogram of 4.

HPLC conditions: Column: Mightysil RP-18 250–4.6 (5 μm); Mobile phase: 60% aqueous MeOH + 0.1% AcOH; Flow rate: 0.8 mL/min; Detection: UV 210 nm.
Figure S11. 1H-NMR spectrum of 4 in acetone-d_6 at 500 MHz.
Figure S12. 13C-NMR spectrum of 4 in acetone-d_6 at 125 MHz.
Figure S13. HPLC chromatogram of 5.

HPLC conditions: Column: Mightysil RP-18 250–4.6 (5 μm); Mobile phase: 50% aqueous CH$_3$CN + 0.1% AcOH; Flow rate: 0.5 mL/min; Detection: UV 210 nm.
Figure S14. 1H-NMR spectrum of 5 in acetone-d_6 at 500 MHz.
Figure S15. 13C-NMR spectrum of 5 in acetone-d_6 at 125 MHz.