Examining the relationships between land cover and greenhouse gas concentrations using remote sensing data in East Asia

MENG GUO†*, XIUFENG WANG‡, JING LI§, HONGMEI WANG¶, AND HIROSHI TANI‡

† Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
‡ Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
§ Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
¶ Institute of Public Administration, South China Agricultural University, Guangzhou 510642, China

Measurements of land cover changes have suggested that such shifts may alter the concentrations of greenhouse gases (GHGs) in the atmosphere. However, due to the lack of large-scale GHG data, a quantitative description of the relationships between land cover changes and GHG concentrations does not exist on a regional scale. The Greenhouse Gases Observing SATellite (GOSAT) launched by Japan on January 23, 2009 can be used to investigate this issue. In this study, we first calculated the monthly average GHG concentrations in East Asia from April 2009 to October 2011 and found that the CO₂ concentration displays a seasonal cycle, but the CH₄ seasonal trend is unclear. To understand the relationship between land cover and GHG concentrations, we used the GHG data from GOSAT, the Normalized Difference Vegetation Index (NDVI) from the MODerate resolution Imaging Spectroradiometer (MODIS) and the land cover data from EAS-GlobCover (2009) to analyze the correlation coefficients between land cover and GHG concentrations. We observed that vegetation may generally be considered as a source but not a sink of CO₂ and CH₄, either on a yearly scale or during the growing season. With respect to the relationships between land cover types and GHG concentrations, we conclude that on a yearly scale, land cover types are not closely correlated with GHG concentrations. During the

* Corresponding author. Email: guomeng1981@gmail.com
growing season, croplands and scrublands are negatively correlated with XCO₂, and forest, grasslands and bare areas are positively correlated with XCO₂. Forest and croplands can be viewed as CH₄ sources, while scrublands and grasslands can be thought of as CH₄ sinks.

1. **Introduction**

Climate change is one of the greatest challenges of the 21st century (IPCC 2011). According to the statistics from IPCC (2007), the average global surface temperature has increased by 0.74°C over the past 100 years (1906–2005). It has long been recognized that the Earth’s atmosphere (as a component of the climate system) behaves as a colloidal medium containing suspended particles and clouds subject to greenhouse warming at a level of 1.7°C W⁻¹ m⁻², which means that the greenhouse effect of the atmosphere is 1.7°C for every unit of radiative force (Varotsos 2005; Varotsos et al. 2006). The increasing concentrations of greenhouse gases (GHGs) in the atmosphere have been verified as the most important cause of global warming and have resulted in extreme weather changes that can affect crop yields, productivity, food supplies and food prices (Ichii **et al.** 2002; Varotsos **et al.** 2007; FAO 2008; Wu and Shi 2011).

Climate change caused by GHG emissions is also expected to have an impact on animal metabolism, health, reproduction and productivity (Zervas and Tsiplakou 2012). To mitigate the effects of undesirable climate change, it is necessary to reduce the emission of GHG into the atmosphere (Kondratyev and Varotsos 1995, 1996).

The atmospheric trace gases of carbon dioxide (CO₂) and methane (CH₄), the two most important GHGs in addition to water vapor, play a key role in the radiative balance of the earth’s atmosphere (Wu **et al.** 2010), and the concentrations of these GHGs are increasing each year. According to statistics from the World Data Centre for Greenhouse Gases (WDCGG), the average global CO₂ concentration in 2010 was 389.0 ppm, which is 11.9 ppm more than in 2004, and this figure has increased by 39% from
the pre-industrial global level of 280.0 ppm. The average CH$_4$ concentration was 1808.0 ppb in 2010, which represents an increase of 158% from approximately 700.0 ppb in the pre-industrial era (WMO 2004–2010). As is known, CO$_2$ is removed from the atmosphere primarily through absorption by green plants. Climate parameters can also affect the concentration of CO$_2$ in the atmosphere (Oechel et al. 1995; Sun 2001). Under elevated temperatures, much of the soil carbon (C) stored in the active layer and entombed in permafrost could be released to the atmosphere, resulting in higher CO$_2$ emissions (Oechel et al. 1995; Schuur et al. 2008).

Certain researchers agree that GHG concentrations in the atmosphere and the associated radiative forcing effects have continued to increase as a result of human activities (IPCC 2001; Ichii et al. 2002; IPCC 2007; Turner et al. 2007; Abdalla et al. 2011; Oguma et al. 2011). These human activities include deforestation, agricultural activities, land clearing and biomass burning (Randall et al. 2002; IPCC 2007). Pielke (2005) recognized that anthropogenic changes in land use and the resulting alterations in surface features are among the major yet poorly recognized drivers of long-term global climate change patterns. He also emphasized that LUCC (land use and land cover change) shifts in regional surface temperature, precipitation and other climate metrics can be equal to or greater than those due to the anthropogenic increase of well-mixed GHGs. Bril et al. (2012) proposed that the reduction of GHG emissions arising from land cover changes is an issue of crucial significance for the future. Certain researchers have recognized that land degradation caused by non-viable agricultural practices is a major cause of increased GHG emissions (Hulme and Kelly 1993; Zhang et al. 2008; Dutt and Gonzalez 2012). Feddema et al. (2005) suggested that the choices humans make for future land use could have a significant impact on regional and seasonal climates. Biomass burning and decomposition as well as the release of soil C from
forest conversion, cultivation shifts and secondary vegetation currently emit substantial amounts of GHGs and thus can also affect climate change (Fearnside 2000). A subset of these effects is the result of the direct impacts of LUCC on local moisture and energy balances. However, it is difficult to objectively compare the effects of different local land surface changes with the effects of a changing atmospheric composition because different bio-geophysical effects offset each other in terms of climate impacts. Additionally, regional impacts often act opposite to each other on the global and annual scales and are therefore not well represented in annual global average statistical areas (Pielke et al. 2002; Feddema et al. 2005).

Due to the lack of GHG concentration data, quantified relationships between land cover and GHG concentrations have not yet been examined. Although ground-based measurements of CO₂ and CH₄ are highly accurate, they are sparse. These data do not always adequately represent an entire region, and the collection of data points is inefficient. Global measurements of CO₂ and CH₄ using instruments on satellite platforms are required for study of the local and regional surface fluctuations (Ganter et al. 2008; Bovensmann et al. 2010). The Greenhouse Gases Observing SATellite (GOSAT) was launched on January 23, 2009 by the Japanese Space Agency and is the world’s first spacecraft designed to measure the concentrations of CO₂ and CH₄, the two major GHGs, using short wave infrared (SWIR) bands with global coverage at intervals of every three days (Frankenberg et al. 2011; Parker et al. 2011; Guo et al. 2012). The GOSAT is a joint project of the Japan Aerospace Exploration Agency (JAXA), the Ministry of the Environment (MOE) and the National Institute for Environmental Studies (NIES) (Sakuma et al. 2010).

The objective of the present study is to quantify the relationships between GHG (CO₂ and CH₄) concentrations and the NDVI on a regional scale. To understand the
relationships between land cover types and GHG concentrations, we also examined the correlation between land cover types (croplands, forest, scrub land, grasslands and bare areas) and GHG concentrations in East Asia. This study will provide a better understanding of the sources and sinks of GHGs on a regional scale.

2. Materials and Methods

2.1. Site description

The study area is located in East Asia and includes China, Mongolia, North Korea and South Korea (situated between 18° N–53° N and 73° E–135° E, the covered area is approximately 1.08×10^7 km²) (see Figure 1). The land cover of northwestern China and Mongolia is dominated by rangelands, including grasslands, steppes and desert systems. Recently, however, the increases in population pressure, political change, and economic trends have modified the land use characteristics, resulting in changes to the C dynamics within the region (Chuluun and Ojima 2002). During the past 300 years, the major characteristics of land cover and land use change in China have been a shrinkage of forests (decreased by 22%) and an expansion of croplands (increased by 42%) and urban areas (including urban and rural settlements, factories, quarries, mining and other build-up of land) (Liu and Tian 2010). In Mongolia, drought occurs on an average of once every two or three years (Byambakhhuu et al. 2010). The average mean air temperature in the warmest month is 15–20°C in the north and 20–25°C in the south. The total annual precipitation averages approximately 400 mm in the mountainous regions, 150–250 mm in the steppes and less than 100 mm in the desert steppes (Bayarjargal et al. 2000).

According to the GlobCover data of 2009 (see section 2.2.3), croplands cover 22.88% of the study area’s surface and are mainly distributed in the southeast and
northeast of China. Forest and shrub land are mainly distributed in the south and
northeast of China, North Korea and South Korea, and the percentages of these two land
cover types are 13.90% and 10.23% of the study area surface, respectively. Grasslands
are mainly distributed in the southwest of China. Bare areas are mainly distributed in
Mongolia and the north and west of China and make up the largest percentage (35.42%).
Researchers have made great efforts in recent years to measure the GHG emissions
from forests and agricultural systems (Xiao et al. 2010; Tang et al. 2011, 2012). These
researchers have found that different land cover types produce different GHG emissions.
Thus, a study of the GHG emissions of this region will have great significance in
understanding global climate change.

2.2. Remote sensing data used in this study

2.2.1. GOSAT FST L2 Data

The primary purpose of the GOSAT project is to accurately estimate the emissions and
absorptions of greenhouse gases on a sub-continental scale to assist environmental
administrations in evaluating the C balance of land-based ecosystems and to provide
assessments of regional emissions and absorptions (GOSAT Project homepage:

Molecules of CO$_2$ and CH$_4$ in the atmosphere absorb light at particular
wavelengths. Therefore, the quantities of CO$_2$ and CH$_4$ in an optical path can be
calculated by measuring the amount of light that is absorbed by these molecules. The
GOSAT uses this principle to measure the concentrations of GHG in the atmosphere.
The spectral radiance data obtained from the Thermal And Near-infrared Sensor for
carbon-Fourier Transform Spectrometer (TANSO-FTS) are nominally processed into
FTS SWIR L2 CO$_2$ and CH$_4$ column abundance products (denoted XCO$_2$ and XCH$_4$, in
ppm), which contain column-averaged mixed volume ratios of CO₂ and CH₄ (Bril et al. 2012). The XCO₂ represents the ratio of the total number of CO₂ molecules against that of dry air molecules, not only in the neighborhood of the Earth’s surface but in the total vertical column extending to the top of the atmosphere. The same definition will be applied for XCH₄.

The algorithms for the TANSO-obtained GHG concentrations consist of three steps: First, cloud-free observational scenes are selected using several cloud-detection methods. Next, the column abundances of CO₂ and CH₄ are retrieved based on the optimal estimation method. Finally, the retrieval quality is examined to exclude low-quality and/or aerosol-contaminated results. In most cases, the evaluated precisions of the retrieved column abundances for single observations are less than 1% (Yoshida et al. 2011).

The GOSAT project has recently released the global FST L3 data generated by interpolating and extrapolating the FST L2 data and estimating the distribution of XCO₂ and XCH₄ for each month on a global scale. Because of the coarse spatial resolution (2.5° latitude × 2.5° longitude), this data omit a great deal of information, and the GOSAT FST L3 global products cannot provide the accuracy required for regional GHG studies. The GOSAT FTS L2 data (stored column abundances of CO₂ and CH₄ retrieved from the radiance spectra in bands 1 through 3 of the FTS) are point data that can be used to calculate the monthly average values conveniently. The FST L2 data were used in the present study to calculate the correlation between the GHG concentrations and land cover types.

2.2.2. *Terra MODIS 16-Day Composite NDVI Data*

Vegetation differs from other land surface cover because it tends to strongly absorb red wavelengths (0.620–0.670 µm) of sunlight and reflect the near-infrared wavelengths
(0.841–0.876 μm) (Huete et al. 2002; Boelman et al. 2003). Thus, the Normalized Difference Vegetation Index (NDVI) provides a measure of the vegetative cover on a land surface over wide areas. The NDVI has proven to be a valuable tool in research related to large-scale changes in vegetation or ecosystem processes that are often associated with global change (Braswell et al. 1997; Fensholt et al. 2012). However, the actual range of the NDVI varies depending on the instrument used, the background reflectance and the canopy structure (Muukkonen and Heiskanen 2007). Areas of dense and sparse vegetation can be clearly identified by the NDVI. A higher NDVI value indicates an increase in green vegetation cover, and a lower NDVI value indicates decreased green vegetation cover.

The NDVI is calculated from satellite imagery in which the satellite’s spectrometer or radiometric sensor measures and stores reflectance values for both the red and NIR bands on two separate channels or images (Crippen 1990; Huete et al. 2002) according to Equation (1):

\[
NDVI = \frac{(\text{NIR} - \text{R})}{(\text{NIR} + \text{R})}
\]

where NIR is the reflectance in the near infrared region and R is the red waveband reflectance.

The NDVI is successful as a vegetation measure in that it is sufficiently stable to permit meaningful comparisons of seasonal and inter-annual changes in vegetation growth and activity (Huete et al. 2002). The NDVI is expressed from -1 to +1. The NVDI lies between -0.2 and 0.05 for snow, inland water bodies, deserts and exposed soils, and it increases from approximately 0.05 to 0.7 for progressively increasing amounts of green vegetation (Myneni et al. 1997).

The MODIS NDVI can be used as the continuity of the existing 20-year NOAA-AVHRR (National Oceanic and Atmospheric Administration (NOAA) Advanced Very
High Resolution Radiometer (AVHRR)-derived NDVI time series data, which provides a longer-term data record for use in operational monitoring studies (Huete et al. 2002). The NDVI data used in this study were the MODIS products of MOD13A1 (16-day grid data with a horizontal resolution of 500 m). The study area is located at high latitudes with snowy winters, and the NDVI values are quite low in spring and winter; therefore, we aggregated the NDVI in the growing season (Julian calendar days 161 to 257 in 2010, 7 periods of NDVI data) by employing the maximum value composite (MVC) approach to represent the NDVI value of 2010 because the MVC is able to minimize the atmospheric effects, scan angle effects, cloud contamination and solar zenith angle effects (Fensholt and Proud 2012). Leveraging the strength of the ENVI software in multispectral image processing, we used ENVI 5.0 (ITT Visual Information Solutions Corporation, Boulder, CO, USA) to process the NDVI data.

2.2.3. GlobCover data 2009

In 2008, the European Space Agency (ESA) GlobCover 2005 project delivered to the international community the first 300-m global land cover map for 2005 as well as bimonthly and annual Medium Resolution Imaging Spectrometer Instrument (MERIS) Fine Resolution (FR) surface reflectance mosaics. In 2010, the GlobCover chain was operated by the ESA and the Université Catholique de Louvain (UCL) to produce bimonthly and annual MERIS FR mosaics for the year 2009 and to derive a new global land cover map from the time series of the MERIS FR 2009 mosaics. In the current study, we selected a GlobCover image from 2009 downloaded from the homepage of the ESA (http://ionia1.esrin.esa.int/) as the basic data used to calculate the relationships between the GHG concentrations and the land cover types (Figure 1).

The GlobCover 2009 map contains 22 land cover classes as defined by the United Nations (UN) Land Cover Classification System (LCCS). Such classes are too
detailed for use in the current study. Thus, we grouped these 22 land cover classes into 8 classes according to the class descriptions (in Table 1, we list only the 5 classes that were used); we considered only the relationships between the GHG concentrations and croplands, forests, shrub lands, grasslands and bare areas because the other land cover classes make up a small proportion and as a consequence, cannot ensure accurate correlation results.

2.3. Statistical Analysis

The correlation coefficient (also known as the Pearson Correlation Coefficient) is the dominant index of measurement instrument quality (Wang and Zhao 2011) and provides an index of the degree of correlation between two datasets (Cantrell 2008). The correlation coefficient is obtained by dividing the covariance of the two variables by the product of their standard deviations (Rodgers and Nicewander 1988). We quantify the degree of correlation by specifying the correlation coefficient via Equation (2) (Cantrell 2008).

\[
R_{xy} = \frac{n\sum_{i=1}^{n}xy_i - \sum_{i=1}^{n}x_i\sum_{i=1}^{n}y_i}{\sqrt{(n\sum_{i=1}^{n}x_i^2 - (\sum_{i=1}^{n}x_i)^2)(n\sum_{i=1}^{n}y_i^2 - (\sum_{i=1}^{n}y_i)^2)}}
\]

(2)

The correlation coefficient is +1 in the case of a perfect positive (increasing) linear relationship (correlation), -1 in the case of a perfect decreasing (negative) linear relationship (anti-correlation) and a value between -1 and 1 in all other cases, indicating the degree of linear dependence between the variables (Francis et al. 1999). Finally, the statistical significance for all t-tests was evaluated at the 0.01 significance level.

2.4. Remote sensing data processes

We used the GHG data from GOSAT FTS SWIR L2, which are point data. Because the
GOSAT returns to the same location every three days, numerous data points exist for any given location in a single year (although the GOSAT does not capture the column value when clouds are present). To understand the concentration changes of GHGs on a month-to-month basis, we measured the monthly average XCO₂ and XCH₄ from April 2009 to October 2011 (Figure 2). To quantify the correlation between the GHG concentrations and the land cover types, we calculated the average GHG concentration value in each stationary region (a series of squares shown in Figure 1). The “Data Management Tools” in ArcGIS (ESRI Corporation, Redlands, CA, USA) can address this issue efficiently. We created a series of rectangles in ArcGIS that covered the study area with squares measuring 0.5° latitude by 0.5° longitude (see Figure 1). We subsequently calculated the average GHG concentrations, the NDVI values and the area percentages of land cover types in each square using the ArcGIS 10.0 business software. Finally, we quantified the correlation coefficients among the GHG concentrations, the NDVI and the land cover types.

Correlation analyses between the NDVI and GHG concentrations (XCO₂ and XCH₄) are presented in Section 3.2 to identify the extent to which the GHG concentrations are influenced by different vegetation cover densities. In Section 3.3, the relationships that connect the land cover type derived from GlobCover 2009 and the GHGs are identified using linear regression analysis.

3. Results and Discussion

3.1. Change over time of GHG concentrations calculated from the GOSAT data

The seasonal cycles of the atmospheric GHG concentrations have been shown to be associated with surface air temperatures, which is consistent with the hypothesis that
warmer temperatures have promoted increases in biosphere activity outside of the tropics (Myneni et al. 1997). Figure 2 shows that the CO₂ concentration varied significantly between months, with the highest concentration of CO₂ occurring in March and the lowest concentration in June or July. The difference between the maximum and minimum concentrations is 8.27 and 10.20 ppm in 2010 and 2011, respectively. From March onward, the temperature increased gradually and the rate of photosynthesis also increased, absorbing CO₂ during this period and leading to decreases in the XCO₂ levels between March and July. Although soil respiration emits CO₂ into the atmosphere when the temperature increases (Oechel et al. 1995), this effect is weaker than the absorption from plant photosynthesis in the summer. From July to October, as plant photosynthesis decreased and CO₂ was emitted from the soil, the concentration of CO₂ in the atmosphere increased. Starting in October, plant photosynthesis halted, causing a peak in the CO₂ concentration.

After CO₂, CH₄ is the most important anthropogenic GHG (Kort et al. 2008). More than 50% of the present-day global CH₄ emissions are anthropogenic, with the largest contributions from fossil fuel production, ruminant animals (e.g., cows or sheep), rice cultivation, and waste handling (Frankenberg et al. 2005). Figure 2 shows that the highest CH₄ concentrations appear in August and the lowest appear across different months. We can also observe that the seasonal fluctuation trend of CH₄ concentrations in 2010 is not obvious, perhaps due to the drought in southern China (Ci and Yang 2010). Wetlands are among the primary sources of atmospheric CH₄, while flooded rice fields and peat lands are also substantial sources (Jackel et al. 2001; Takeuchi et al. 2003; Ojanen et al. 2010). The CH₄ concentration increased due to rice cultivation in May, and after the rice harvest in September, the concentrations decreased. Keppler et al. (2006) found that the emission of CH₄ was temperature-sensitive. Therefore, the
increasing temperature between May and September is another reason for the increased concentration of CH$_4$. When landscapes are flooded to create any type of reservoir, terrestrial plants die and no longer assimilate CO$_2$ via photosynthesis. Bacteria decompose the organic C stored in the plants and soil and convert it to CH$_4$, which is subsequently released into the atmosphere (Louis et al. 2000). The rainfall in East Asia mainly occurs in June, July and August, and thus the CH$_4$ concentrations are high during these months.

3.2. How does the NDVI affect GHG concentrations?

The C storage changes often have significant impacts on the global C cycle (McGuire et al. 2000), and the NDVI can be used to estimate the aboveground biomass (Boelman et al. 2003), an important index for measuring C storage at the continental level (Muukkonen and Heiskanen 2007; Xiao et al. 2010). The NDVI can also provide a potential means to infer changes in the CO$_2$ flux (Cihlar et al. 1992; Stow et al. 1998); however, because a given NDVI value corresponds to different CO$_2$ flux rates on different dates (La Puma et al. 2007), it is uncertain whether the relationships developed between the NDVI and GHG concentrations can be generalized across all years or only for a certain growing season. In this study, we employed the GOSAT data from East Asia to determine the relationships between the vegetation cover and the GHG concentrations.

Our current understanding of CO$_2$ and CH$_4$ sources and sinks is inadequate (HoÈgberg et al. 2001). Oechel et al. (1995) found that wet coastal tundra ecosystems represent a sink of soil C. Schuur et al. (2008) recognized that thawing of permafrost is one of the most significant potential C sources. Figure 3a shows a clear correlation between the NDVI and GHG concentrations on a yearly scale. The correlation between the NDVI and the XCH$_4$ (R = 0.50, P < 0.01) is stronger than that between the NDVI
and the XCO₂ (R = 0.46, P < 0.01). The GHG concentration data represent the average values from April 2009 to October 2011. From the analysis in Section 3.1, we have observed that the GHG concentrations change seasonally and can be affected by temperature and soil moisture. To eliminate the effects of other factors, we also calculated the correlation coefficient between the NDVI and the GHG concentrations during the growing season (from May to September). The results (Figure 3b) show the same trends as on a yearly scale. The correlation coefficient between the NDVI and XCO₂ is the same as on a yearly scale, but the correlation coefficient between the NDVI and XCH₄ (R = 0.56, P < 0.01) is larger than that on a yearly scale. However, it is possible that other factors, such as human activities or drought, affected the GHG concentrations (Turner et al. 2007; Ci and Yang 2010).

This result indicates that as the NDVI increases, the concentration of GHGs in the atmosphere also increases. It is known that CO₂ is removed from the atmosphere when absorbed by plants as a component of the biological C cycle, but it can be released from the soil as well. Duan et al. (2001) recognized that soil is a major source of CO₂ and that the amount of CO₂ released by soil varies according to the soil type. Fang et al. (1998) agreed that CO₂ emissions from the soil generally increase with the increase in the amount of fine root soil biomass, litter and humus on the forest floor, but the emission is inversely related to the amount of organic matter in the mineral soil. As the vegetation cover increases, the root respiration emissions increase the concentration of CO₂ in the atmosphere (Oechel et al. 1995; Sun 2001; Inubushi et al. 2003). With respect to the relationship between the NDVI and XCH₄, Zhang et al. (2005) demonstrated that a region’s NDVI exerts a strong influence on the XCH₄. The CH₄ is released from high-NDVI regions (especially in forests) mainly through microbial decomposition in leaf-rich soil. Keppler et al. (2006) found that the emission of CH₄ is
highly temperature-sensitive and that its concentration approximately doubled with every 10°C increase across the range of 30–70°C. In the growing season, the higher temperatures and soil moisture increase the concentration of CH₄ in the atmosphere. The release of CH₄ during the growing season is not only affected by temperature and soil moisture (Inubushi et al. 2003) but also by its release from rice fields and wetlands.

3.3. **How do land cover types affect GHG concentrations?**

The NDVI can reflect the overall vegetation cover condition, with high NDVI values indicating high vegetation cover and vice versa. In certain senses, the NDVI can reflect the land cover type. For example, the NDVI values of forest, croplands, scrublands, grasslands and bare areas show a decreasing trend. It has been reported that the global atmospheric C budget is significantly affected by anthropogenic activities such as land use and cover change (Wu et al. 2010). To better understand how the land cover types affect the GHG concentrations in the atmosphere, we must quantify the relationships between each land cover type and the GHG concentration. The land cover type information used in this project comes from the 2009 GlobCover data mentioned in Section 2.2.3. The GHG concentration data cover the period from April 2009 to October 2011. In this work, we assumed that the land cover types did not change during the years 2009–2011. Although anthropogenic CO₂ emissions and population have tracked together exceptionally well over the past century (Hofmann et al. 2009), the percentage of urban areas in each study unit (see the 0.5°×0.5° squares in Figure 1) is notably low, and thus we did not analyze the relationships between them.

3.3.1. **The relationships between forest area and GHG concentrations**

Forest biomes are an important component of the global C budget due to the large quantities of C stored in live biomass, detritus, and soil organic matter and because
forests sequester a substantial amount of the CO₂ released into the atmosphere by human activities (Beedlow et al. 2004; Fahey et al. 2010).

Figure 4a shows that, on a yearly scale, forests have no relationship with XCO₂ (R = -0.12, P = 0.12), but they have a positive relationship with XCH₄ (R = 0.23, P < 0.01). During the growing season (Figure 4b), forests are sources of CO₂ and CH₄. The correlation coefficient between forest areas and XCO₂ is 0.47 (P < 0.01), and the value between forest areas and XCH₄ is 0.36 (P < 0.01). Previous flux measurements have shown that boreal forests can either act as sources or sinks of atmospheric CO₂ and that there is considerable interannual variability in this respect. The forest C balance is the net result of CO₂ fixation via photosynthesis occurring above ground and the release of C as CO₂, notably from the below-ground compartment via the respiratory activities of plant roots, their symbiotic mycorrhizal fungi and the free-living microbial and faunal populations of the soil (HoÈgberg et al. 2001). The decomposition of litter and coarse woody debris on the forest floor and dead roots within the soil releases most of the C to the atmosphere as CO₂ (Beedlow et al. 2004). Forest fires, which mainly occur in spring and autumn, are another source of CO₂. The CO₂ emissions from these fires have a strong seasonal variability, which increases the seasonally averaged atmospheric CO₂ concentration (Wang et al. 2011). Although plant photosynthesis absorbs CO₂ from the atmosphere, according to the present study, the absorption must be weaker than the emission from the soil.

Plant physiology influences CH₄ cycling by modifying the availability of electron donors and acceptors in the forest soils. Plants are the ultimate source of organic C (electron donor), which is processed by microbes into CH₄. The availability of oxygen (electron acceptor) is sensitive to changes in the soil water content and therefore to transpiration rates (Andersen and White 2006; Megonigal and Guenther
Keppler et al. (2006) observed the non-enzymatic production of methyl halides from senescent plants and leaf litter and found the possibility of CH$_4$ formation by the plant material. Certain scholars recognize that forests can emit additional CH$_4$ (Zhang et al. 2005; Jiang et al. 2009; Schneider et al. 2009), but the emission rate of different forest soil types varies (Ullah et al. 2008). Soil has a higher temperature and moisture content during the growing season, which can increase the root respiration and microbial activity, subsequently causing increases in CO$_2$ and CH$_4$ emissions.

3.3.2. The relationships between croplands and GHG concentrations

With the rising global demand for food production, the area of land under cultivation and the amount of chemical fertilizers used in agricultural ecosystems are expected to further increase. As a result, the emission of GHGs from agriculture can intensify and exacerbate global warming (Hepp et al. 2010). With respect to CO$_2$ and CH$_4$, C is of the most concern, as it can be released from agricultural soils by conventional agricultural management practices (IPCC 1994). Rice paddies and wetlands are among the primary sources of atmospheric CH$_4$. Prior studies of the relationships between croplands and GHGs have primarily focused on the CH$_4$ emissions from rice paddies (Sass 1994; Dou 2004; Schneider et al. 2009).

Changes in farmland area inevitably result in the emission of GHGs (IPCC 1994). In the current study, we calculated the correlation between the changes in cropland area and the GHG concentrations for every 0.5° × 0.5° square. From the correlation coefficients on a yearly scale (Figure 5a), we found that the change in croplands has virtually no correlation with XCO$_2$ (R = 0.08, P = 0.16) but has a relatively close correlation with XCH$_4$ (R = 0.31, P < 0.01). In Mongolia and Northern China, the croplands contain practically no vegetation from November to April, which
results in virtually no CO₂ absorption and little CO₂ release from cropland soil. Rice paddies are the primary source of CH₄. Southern China (especially the coastal and river areas) is an important center of rice production, accounting for more than 83% of the total area under rice cultivation in China (Dou 2004). Two rice crops per year or three rice crops every two years are the primary modifiers of the XCH₄ in these regions.

During the growing season, the area changes in the croplands have a negative correlation with XCO₂ (R = -0.25, P < 0.01) (Figure 5b). This negative correlation indicates that, in the growing season, croplands can absorb CO₂ from the atmosphere and that the soil respiration is weaker than the absorption of CO₂ because the organic matter in the cropland soil is lower than that of the forest soil. The correlation between cropland area and XCH₄ during the growing season (R = 0.40, P < 0.01) is higher than that on the yearly scale. Andersen and White (2006) agreed that organic agricultural soils are CH₄ sinks, and Keppler et al. (2006) recognized that CH₄ emissions are highly temperature-sensitive and that the concentrations approximately double with every 10°C increase across the range of 30–70°C. This result explains the large correlation coefficient between the cropland area and XCH₄ during the growing season compared with that of the yearly scale. The emission of CH₄ in rice paddies and wetlands during the growing season is another reason for this higher correlation coefficient.

3.3.3. The relationships between shrub land and GHG concentrations

Shrub lands are similar to forests but contain little organic matter in the soil. On a yearly scale, there is no correlation between shrub lands and GHG concentrations (Figure 6a). In the growing season, however, the correlations are negative (Figure 6b). The correlation coefficient between shrub land and XCO₂ in the growing season is -0.28 (P < 0.01), which indicates that shrub land can absorb atmospheric CO₂. Although the soils in shrub land release CO₂, the amount released is less than that absorbed by green
vegetation. Bradford et al. (2000) measured the CH$_4$ flux rates for temperate forest soils and concluded that thinning forests actually increase the rate of net soil CH$_4$ consumption. Our results show that the correlation coefficient between shrub land and XCH$_4$ is -0.32 (P < 0.01). Therefore, we can conclude that shrub lands act as a GHG sink during the growing season.

3.3.4. The relationships between grasslands and GHG concentrations

As with shrub lands, grasslands have no correlation with the GHG concentration on the yearly scale (Figure 7a). Giltrap et al. (2010) noted that grassland soils can act as a CO$_2$ and CH$_4$ source or sink. The rate of anaerobic respiration by soil microbes that produce CO$_2$ and CH$_4$ depends on many factors, including water and nutrient availability, pH, temperature, oxidation-reduction potential, and soil organic matter quality (Andersen and White 2006). Our results indicate that during the growing season, grasslands act as a source of CO$_2$ and a sink for CH$_4$. The correlation coefficient between grasslands and XCO$_2$ is 0.37 (P < 0.01) (Figure 7b), which indicates that the CO$_2$ amount released from grasslands soil is greater than the amount absorbed. The XCH$_4$ decreases (R = -0.30, P < 0.05) with an increase in the grassland area, although the correlation is not notably significant. Grassland ecosystems are known to capture 3–4 times more C in the soil than forest ecosystems when calculated per unit of C input (Merbold et al. 2011). With increased temperature and soil moisture, C can be released as CO$_2$. In grasslands, CH$_4$ emissions are dominated by enteric fermentation in domesticated ruminants and from manure. Soil may also act as a CH$_4$ sink. Under aerobic conditions, CH$_4$ can be oxidized to CO$_2$ by methanotrophic bacteria (Levy et al. 2007; Hepp et al. 2010), which is one reason for the simultaneous CO$_2$ increase and CH$_4$ decrease.
The relationships between bare areas and GHG concentrations

Bare areas account for 27.3% and 41.0% of all terrestrial land in China and Mongolia, respectively (Ci and Yang 2010). Certain researchers have recognized that land degradation caused by non-viable agricultural practices is another source of increased GHG emissions (Zhang et al. 2008; Dutt and Gonzalez 2012). In short, examining how bare areas affect GHG concentrations can broaden our understanding of climate change. A few studies have examined GHGs in desert lands and drawn meaningful conclusions: Duan et al. (2001) calculated the content variation of organic C in the desert lands of China and agreed that the amount of CO$_2$ captured by desert soil is less than that captured by other soils; Mielnick et al. (2005) measured the CO$_2$ fluxes above a Chihuahuan desert grasslands from 1996 through 2001 and found that precipitation is an important factor that affects CO$_2$ emissions in arid and semi-arid regions.

According to our research, on the yearly scale, XCO$_2$ increases as the amount of bare area increases, but the correlation (Figure 8a) is weak ($R = 0.15$, $R < 0.01$). During the growing season, the CO$_2$ concentration increases as the bare area increases ($R = 0.54$, $P < 0.01$) (Figure 8b). The increase in bare area caused by degradation of vegetation cover is a direct cause of increases in the CO$_2$ concentration.

The correlation between bare areas and XCH$_4$ is negative ($R = -0.21$, $P < 0.01$) on the yearly scale, but it is not significant during the growing season (Fig. 8a and b). The CH$_4$ emissions are related to the soil moisture, temperature and soil organic matter quality (Andersen and White 2006). If the soil is not vegetated or if the plant aerenchyma is not well developed, CH$_4$ emissions will decrease (Li 2000). The lack of a significant CH$_4$ source in these regions and the weaker CH$_4$ release by dry soil (Jing et al. 2007) are also causes of the decreased XCH$_4$. Certain researchers have found that CH$_4$ can be offset by oxidation, which largely takes place in the atmosphere through
reactions with the free radical OH (Crutzen and Gidel 1983; Cicerone and Oremland 1988; WMO 2010). The OH in the atmosphere is generated photochemically through short-wavelength radiation, such as the reaction of electronically excited O atoms with H₂O and organic molecules. The drought and high temperatures that result from desertification can decrease H₂O in the atmosphere, which subsequently weakens the formation of OH, thus increasing the CH₄ concentration. There is no correlation between the CH₄ concentration and bare areas during the growing season.

4. Conclusion and Outlook

In the current study, we used the GOSAT data to calculate the monthly changes in the XCO₂ and the XCH₄ from April 2009 to October 2011 in East Asia and found that the XCO₂ and the XCH₄ display seasonal changes due to the photosynthetic activities of vegetation and paddy land growth. However, the CH₄ concentration shows little seasonal change in 2010.

We also used the NDVI data from 2010, the land cover data from 2009 and the GOSAT data from 2009 to 2011 to quantify the correlation coefficients among the NDVI, the land cover and the GHG concentrations. The main findings are listed below.

First, as the NDVI increased, the GHG concentrations in the atmosphere also increased. During the growing season, the correlation coefficient of the NDVI and XH₄ concentration was stronger, indicating that vegetation can be thought of as a GHG source but not as a GHG sink, which was surprising.

Second, on the yearly scale, land cover types are not closely correlated with GHG concentrations due to interference from human activities in winter or drought in spring and summer. The largest correlation coefficient occurs between croplands and the CH₄ concentration (R = 0.31, P < 0.01), while the value between forests and the CH₄
concentration is 0.23 ($P < 0.01$). A negative correlation is found between bare land and the CH$_4$ concentration ($R = -0.21$, $P < 0.01$).

Third, during the growing season, croplands and scrublands are negatively correlated with the XCO$_2$. Forests, grasslands and bare areas are positively correlated with the XCO$_2$. Forests and croplands can be thought as CH$_4$ sources, while scrublands and grasslands can be thought of as CH$_4$ sinks.

Due to the rainy weather in southern China, a limited number of GOSAT data points exist for this area, and the GHG concentrations may offset the true values.

Previous studies mainly focused on rather small areas and employed the GHG concentration point data. Because of the different data sources and different area scales used, our conclusions cannot confirm their results at times. In future work, measurements of ground values or other GHG data should be used for increased accuracy. Moreover, human activities should be quantified to increase the accuracy of the relationships between land covers and GHG.

Acknowledgements

This study was supported by Scientific Research (B), 23405005 (PI: Associate Prof. Xiufeng Wang, Hokkaido University, Japan) and National Natural Science Foundation of China (41201159, Study on the effect mechanism of commercial centre pattern on traffic carbon emissions in Shenyang city. PI: Assistant Researcher Jing Li, Chinese Academy of Sciences, China). We also thank the GOSAT Project of Japan, NASA and ESA for providing data that were used in this study.

References

ISHIDA, H., NAKJIMA, T.Y., YOKOTA, T., KIKUCHI, N. and WATANABE, H., 2011, Investigation of GOSAT TANSO-CAI Cloud Screening Ability through an

Table 1. Classes group and the classes of the GlobCover legend. Here we list only 5 classes that we used in present study.

<table>
<thead>
<tr>
<th>New Classes</th>
<th>GlobCover global legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croplands</td>
<td>Post-flooding or irrigated croplands</td>
</tr>
<tr>
<td></td>
<td>Rainfed croplands</td>
</tr>
<tr>
<td></td>
<td>Mosaic Cropland (50-70%) / Vegetation (grassland, shrub land, and forest) (20-50%)</td>
</tr>
<tr>
<td>Forest</td>
<td>Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5 m)</td>
</tr>
<tr>
<td></td>
<td>Closed (>40%) broadleaved deciduous forest (>5 m)</td>
</tr>
<tr>
<td></td>
<td>Open (15-40%) broadleaved deciduous forest (>5 m)</td>
</tr>
<tr>
<td>Shrub land</td>
<td>Closed (>40%) needle leaved evergreen forest (>5 m)</td>
</tr>
<tr>
<td></td>
<td>Open (15-40%) needle leaved deciduous or evergreen forest (>5 m)</td>
</tr>
<tr>
<td></td>
<td>Closed to open (>15%) mixed broadleaved and needle leaved forest (>5 m)</td>
</tr>
<tr>
<td></td>
<td>Closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly flooded - Saline water</td>
</tr>
<tr>
<td>Grasslands</td>
<td>Mosaic Vegetation (grassland, shrub land, forest) (50-70%) / Cropland (20-50%)</td>
</tr>
<tr>
<td></td>
<td>Mosaic Forest/Shrub land (50-70%) / Grassland (20-50%)</td>
</tr>
<tr>
<td></td>
<td>Closed to open (>15%) shrub land (<5 m)</td>
</tr>
<tr>
<td>Bare areas</td>
<td>Mosaic Grassland (50-70%) / Forest/Shrub land (20-50%)</td>
</tr>
<tr>
<td></td>
<td>Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)</td>
</tr>
<tr>
<td></td>
<td>Bare areas</td>
</tr>
</tbody>
</table>
Figure 1. Land cover types in the study area and 0.5 degree rectangles
Figure 2. Monthly mean values of the GHG concentrations from Apr. 2009 to Oct. 2011
Figure 3. Relationships between the NDVI and GHG concentration on a yearly scale from 2009–2011 (a) and in the growing seasons (b). In this study, growing season refers to the period from May to September. Circles for XCO_2 and triangles for XCH_4. Solid and dashed lines indicate regression line of XCO_2 and XCH_4, respectively. In (a), XCO_2: $n=692$, $R=0.46$, $P<0.01$; XCH_4: $n=692$, $R=0.50$, $P<0.01$ and in (b), XCO_2: $n=303$, $R=0.46$, $P<0.01$; XCH_4: $n=303$, $R=0.56$, $P<0.01$.
Figure 4. Relationship between forest and GHG concentrations on a yearly scale (a) and in the growing seasons (b). Circles indicate XCO₂ and triangles indicate XCH₄. Solid and dashed lines indicate regression line of XCO₂ and XCH₄, respectively. In (a), XCO₂: n=163, R=-0.12, P=0.12; XCH₄: n=163, R=0.23, P<0.01 and in (b), XCO₂: n=69, R=0.47, P<0.01; XCH₄: n=69, R=0.36, P<0.01.
Figure 5. Relationship between croplands and GHG concentrations on a yearly scale (a) and in the growing season (b). Circles indicate XCO\(_2\) and triangles indicate XCH\(_4\). Solid and dashed lines indicate regression line of XCO\(_2\) and XCH\(_4\), respectively. In (a), XCO\(_2\): n=306, R=0.08, P=0.16; XCH\(_4\): n=306, R=0.31, P<0.01 and in (b), XCO\(_2\): n=113, R=-0.25, P<0.01; XCH\(_4\): n=113, R=0.40, P<0.01.
Figure 6. Relationship between shrub land and GHG concentrations on a yearly scale (a) and in the growing season (b). Circles indicate XCO₂ and triangles indicate XCH₄. Solid and dashed lines indicate regression line of XCO₂ and XCH₄, respectively. In (a), XCO₂: n=208, R=0.00, P=0.95; XCH₄: n=208, R=0.00, P=1.00 and in (b), XCO₂: n=157, R=-0.28, P<0.01; XCH₄: n=157, R=-0.32, P<0.01.
Figure 7. Relationship between grasslands and GHG concentrations on a yearly scale (a) and in the growing season (b). Circles indicate XCO$_2$ and triangles indicate XCH$_4$. Solid and dashed lines indicate regression line of XCO$_2$ and XCH$_4$, respectively. In (a), XCO$_2$: n=72, R=0.01, P=0.96; XCH$_4$: n=72, R=0.09, P=0.45 and in (b), XCO$_2$: n=68, R=0.37, P<0.01; XCH$_4$: n=68, R=-0.30, P<0.01.
Figure 8. Relationship between bare areas and GHG concentrations on a yearly scale (a) and in the growing season (b). Circles indicate XCO₂ and triangles indicate XCH₄. Solid and dashed lines indicate regression line of XCO₂ and XCH₄, respectively. In (a), XCO₂: n=320, R=0.15, P<0.01; XCH₄: n=320, R=0.21, P<0.01 and in (b), XCO₂: n=194, R=0.54, P<0.01; XCH₄: n=194, R=-0.01, P>0.01.