Strategic Reasoning in Extensive Games with Short Sight

Author(s)
Liu, Chanjuan

Citation

Issue Date
2013-10-25

Doc URL
http://hdl.handle.net/2115/54937

Type
proceedings

Note

File Information
15Chanjuan_SOCREAL2013.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Introduction
Games with Short sight
Logic
Characterizing solutions concepts for games with short sight
References

Strategic Reasoning in Extensive Games with Short Sight

Chanjuan Liu
Peking University

Joint work with Fenrong Liu and Kaile Su
SOCREAL 2013
Hokkaido University, Sapporo, Japan
October 27th, 2013

Outline

1 Introduction
2 Games with Short sight
3 Logic
 • Syntax and Semantics
 • Axiomatization
4 Characterizing solutions concepts for games with short sight
5 References

A calculation

In a game like Chess, game tree’s size grows exponentially with both its depth and its branching factor.
Time complexity: \(O(b^d) \) (\(b \) for branching factor, \(d \) for depth)

\[
\begin{align*}
 b &= 3 \\
 d &= 4
\end{align*}
\]

Branching factor: \(b \approx 35 \), depth: \(d \approx 100 \).
Number of paths in the game tree: \(35^{100} \approx 10^{135} \). Much too big for a normal game tree search.

Comparison: Number of particles in the universe \(\approx 10^{87} \)

Strong assumption:
Entire structure of a game is common knowledge to all players.

Solution:
Grossi and Turrini proposed the concept of games with short sight (Grossi and Turrini, 2012), in which players can only see part of the game tree.

Figure: Short-sighted people

Contribution:
A modal Logic system for reasoning about games with short sight.
Extensive game: an example

Figure: Tic-Tac-Toe game

Rule: Two players take turns to mark the spaces in a 3 × 3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game.

- Σ_i is a non-empty set of strategies. $\Sigma_i = \{\sigma_i\}$.
- σ_i is a strategy of player i, which is a function $\{v \in V \setminus Z | t(v) = i\} \rightarrow V|v$, assigning a successor v' of v to each non-terminal node v when it is i's turn to move. (where $V|v$ is the set of nodes extending v.)
- $\sigma = (\sigma_i)_{i \in N}$ represents a strategy profile which is a combination of strategies from all players and Σ represents the set of all strategy profiles.
- σ_{-i} denotes the collection of strategies in σ excluding those for player i.
- $O(\sigma)$ is the outcome if the strategy profile σ is followed by all players.
- $O(\sigma', \sigma_{-i})$ is the outcome if player i use strategy σ' while all other players employ σ.
- \succeq_i is a preference relation over V^2 for each player i.

Extensive game (Con’d)

Definition

An extensive game is a tuple $G=(N, V, A, t, \Sigma_i, \succeq_i)$, where
- N is a non-empty set of the players,
- V a set of nodes or vertices including a root v_0
- $A \subseteq V^2$ a set of arcs. If $(v, v') \in A$, we call v' a successor of v.

Leaves are the nodes that have no successors, denoted by Z.
- t is turn function assigning a member of N to each non-terminal node. $t(v) = i$;

Example

Two players: player 1(×) and player 2(○). Solid arrows: the moves of player 1, dotted arrows: moves of player 2. The initial state is v_0.

v_1, v_2, v_3 are all successors of v_0.
v_{10}, v_{11}, v_{12} are the terminal nodes (leaves).
Example
Formally, $G = (N, V, A, t, \Sigma, \geq)$
- $N = \{1, 2\}$;
- $V = \{v_0, v_1, v_2, \ldots\}$;
- $(v_0, v_1), (v_0, v_2), (v_0, v_3) \in A$;
- $V_{10}, V_{11}, V_{12} \in \mathbb{Z}$;
- $t(v_0) = 1, t(v_2) = 2, j \cdots$.

Let s_1 such that $s_1(v_0) = v_2, s_1(v_5) = v_8, \cdots$.
Let s_2 such that $s_2(v_2) = v_5, \cdots$.

Thus, a strategy profile $\sigma = (s_1, s_2)$ such that $O(\sigma) = v_{11}$.

- $V_{12} \geq 1, V_{11} \geq 1, V_{10}$. (since player 1 wins the game in v_{12}, loses it in v_{10}, and gains a draw in v_{11}).

Sight function

Definition
(sight function). Let $G = (N, V, A, t, \Sigma, \geq)$ be an extensive game. A short sight function for G is a function $s : V \setminus \mathbb{Z} \to 2^V \setminus \emptyset$, associating to each non-terminal node v a finite subset of all the available nodes at v.

Definition
(Extensive game with short sight). An extensive game with short sight (E_{gss}) is a tuple $S = (G, s)$ where G is a finite extensive game and s a sight function.

- Endowing an extensive game with a sight function.
Sight-filtrated extensive game

At each node v, players can see a subgame S^i_v of the whole game. This subgame is determined by their sight:

$$S^i_v = (N^i_v, V^i_v, A^i_v, t^i_v, \Sigma^i_v, \geq^i_v)$$

- $N^i_v = N$;
- $V^i_v = s(v)$, which is the set of nodes within the sight of $s(v)$.
- $A^i_v = A \cap (V^i_v)^2$;
- $t^i_v = V^i_v \setminus Z^i_v \rightarrow N$ so that $t^i_v(v') = t(v')$;
- Σ^i_v is the set of strategies for each player available at v and restricted to $s(v)$. It consists of elements σ^i_v such that $\sigma^i_v(v') = \sigma(v')$ for each $v' \in V^i_v$ with $t^i_v(v') = i$;
- $\geq^i_v = \geq \cap (V^i_v)^2$.

Example

- $N^i_v = N$;
- $V^i_v = \{v_0, v_1, v_2, v_3, v_5\}$;
- $Z^i_v = \{v_1, v_3, v_4, v_5\}$;
- $A^i_v = \{(v_0, v_1), (v_2, v_4), (v_2, v_4), \cdots\}$;
- $\sigma^i_v = (\sigma^i v_0, \sigma^i v_0)$ such that $O^i v_0 (\sigma^i v_0) = v_5$, with $\sigma^i v_0 (v_0) = v_2$ and $\sigma^i v_2 (v_2) = v_5$

Syntax and Semantics

$\varphi ::= p \mid \neg \varphi \mid \varphi_0 \land \varphi_1 \mid (\leq)_i \varphi \mid (\sigma)\varphi \mid (\sigma_i)\varphi \mid (\sigma_i^\leq)\varphi \mid (\sigma_i^\geq)\varphi$

- The label \leq_i denotes player i’s preference relation.
- The label σ_i stands for the outcomes of strategy profiles. $(v, v') \in R^i_{\sigma_i}$ if v' is the terminal node reached from v by following σ.
- $(v_0, v_1) \in R^i_{\sigma}$

Syntax and Semantics

$\varphi ::= p \mid \neg \varphi \mid \varphi_0 \land \varphi_1 \mid (\leq)_i \varphi \mid (\sigma)\varphi \mid (\sigma_i)\varphi \mid (\sigma_i^\leq)\varphi \mid (\sigma_i^\geq)\varphi$

- $(v, v') \in R^i_{\sigma_i}$ if v' is one of the leaf nodes extending v that player i can enforce provided that the other players strictly follow their strategies in σ.
- $O(\sigma_{-1}, \sigma'_1) = v_12$,
- $(v_0, v_12) \in R^i_{\sigma_i}$
Syntax and Semantics

\[\varphi ::= p \mid \neg \varphi \land \varphi_1 \mid \langle \leq \rangle \varphi \mid \langle \delta \rangle \varphi \mid \langle \delta_{\downarrow} \rangle \varphi \mid \langle \varepsilon \rangle \varphi \mid \langle \delta^2 \rangle \varphi \mid \langle \delta_{\uparrow} \rangle \varphi \]

- The label \(\langle \leq \rangle \) is the sight function for the current node, and
 \((v, v') \in R_v\) means "node \(v' \) is within the sight at the present node \(v \)."

Frame \(F \) (\((V, R_{\leq}, R_{\delta}, R_{\delta_{\downarrow}}, R_{\varepsilon}, R_{\delta^2}, R_{\delta_{\uparrow}}) \)), where

- \(vR_{\leq} v' \) iff \(v' \geq v \)
- \(vR_{\delta} v' \) iff \(v' = O_v(\sigma|_{v}) \)
- \(vR_{\delta_{\downarrow}} v' \) iff \(v' \in O_v(\sigma_{\downarrow}|_{v}) \)
- \(vR_{\varepsilon} v' \) iff \(v' \in s(v) \)
- \(vR_{\delta^2} v' \) iff \(v' = O_v(\sigma|_{v}) \)
- \(vR_{\delta_{\uparrow}} v' \) iff \(v' \in O_v(\sigma_{\uparrow}|_{v}) \)

Syntax and Semantics

Model: \(M = (V, R, I) \)

- \(M, v \models \langle \leq \rangle \varphi \) iff \(M, u \models \varphi \) for some \(u \in V \) with \(vR_{\leq} u \).
- \(M, v \models \langle \delta \rangle \varphi \) iff \(M, u \models \varphi \) for some \(u \in V \) with \(vR_{\delta} u \).
- \(M, v \models \langle \delta_{\downarrow} \rangle \varphi \) iff \(M, u \models \varphi \) for some \(u \in V \) with \(vR_{\delta_{\downarrow}} u \).
- \(M, v \models \langle \varepsilon \rangle \varphi \) iff \(M, u \models \varphi \) for some \(u \in V \) with \(vR_{\varepsilon} u \).
- \(M, v \models \langle \delta^2 \rangle \varphi \) iff \(M, u \models \varphi \) for some \(u \in V \) with \(vR_{\delta^2} u \).
- \(M, v \models \langle \delta_{\uparrow} \rangle \varphi \) iff \(M, u \models \varphi \) for some \(u \in V \) with \(vR_{\delta_{\uparrow}} u \).
Games with Short Sight

Logic

Characterizing solutions concepts for games with short sight

References

Syntax and Semantics

Axiomatization

Validities

<table>
<thead>
<tr>
<th>N</th>
<th>Modality</th>
<th>Schema</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>[≤]</td>
<td>[≤]φ → φ</td>
<td>reflexivity</td>
</tr>
<tr>
<td></td>
<td>[<]</td>
<td>[<]φ → φ</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>[≤]</td>
<td>[≤]φ → [≤]φ</td>
<td>transitivity</td>
</tr>
<tr>
<td>D</td>
<td>[≥]</td>
<td>[≥]φ ↔ (≥)φ</td>
<td>determinism</td>
</tr>
<tr>
<td></td>
<td>[≥]</td>
<td>[≥]φ ↔ (.)φ</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>([≥], [≥])</td>
<td>[≥]φ → [≥]φ</td>
<td>inclusiveness</td>
</tr>
<tr>
<td></td>
<td>([≥], [≥])</td>
<td>[.φ] → (.φ)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>[≥]</td>
<td>[≥]([≥]φ ↔ φ)</td>
<td>terminating</td>
</tr>
<tr>
<td></td>
<td>[≥]</td>
<td>[≥]([≥]φ ↔ φ)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>([≥], [≥])</td>
<td>[≥]φ → [≥]φ</td>
<td>visibility</td>
</tr>
<tr>
<td></td>
<td>([≥], [≥])</td>
<td>[≥]φ → [≥]φ</td>
<td></td>
</tr>
</tbody>
</table>

Solution concepts for traditional extensive games

Definition

(Best response and Nash equilibrium)
A best response for player i of an extensive game is a strategy profile $σ^*$ such that $O(σ^*_i, σ^*_{-i}) ≥_i O(σ_i, σ^*_{-i})$ for every strategy $σ_i$ of player i. A strategy profile $σ^*$ is a Nash equilibrium of an extensive game if it is a best response for every player i.

Soundness and Completeness

LEGs is sound and complete w.r.t. the class of all games with short sight.

Solution concepts for extensive games with short sight

Definition

(Sight-compatible best response and Nash equilibrium).
Let $S = (G, s)$ be an Egss and $S|_v$ be the sight-filtrated extensive game at v. A strategy profile $σ^*$ is a sight-compatible best response for i if for every nonterminal node v, it holds that $O|_v(σ^*_i|_v, σ^*_{-i}|_v) ≥_v O|_v(σ_i|_v, σ^*_{-i}|_v)$ for any strategy $σ_i|_v$ available to i. $σ^*$ is a sight-compatible Nash equilibrium (SCNE) of S if it is a sight-compatible best response for every player $i ∈ N$.
Theorem

Let S be an Egss given by $(N, V, A, t, \Sigma_i, \succeq_i, s)$. Then for any player i, any strategy profiles σ in S and any formulas φ of \mathcal{LS}:

(a) σ is a sight-compatible best response (SCBR) of S for i iff $F_S \models [\hat{\sigma}^s] \varphi \rightarrow [\hat{\sigma}^s_i] (\leq_i) \varphi$.

(b) σ is a sight-compatible Nash equilibrium (SCNE) of S iff $F_S \models \bigwedge_{i \in N} ([\hat{\sigma}^s] \varphi \rightarrow [\hat{\sigma}^s_i] (\leq_i) \varphi)$.

(c) σ is a subgame perfect equilibrium (SPE) of S iff for any $u \in V \setminus Z$, $F_{S|u} \models \bigwedge_{i \in N} ([\hat{\sigma}] \varphi \rightarrow [\hat{\sigma}^s_i] (\leq_i) \varphi)$.

(d) A strategy profile σ is a sight-compatible SPE of S iff for all $v \in V \setminus Z$, $F_{S|v} \models \bigwedge_{i \in N} ([\hat{\sigma}] \varphi \rightarrow [\hat{\sigma}^s_i] (\leq_i) \varphi))$.

Thank you!