<table>
<thead>
<tr>
<th>Title</th>
<th>Strategic Reasoning in Extensive Games with Short Sight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, Chanjuan</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings of SOCREAL 2013 : 3rd International Workshop on Philosophy and Ethics of Social Reality 2013, 132-138</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-10-25</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/54937</td>
</tr>
<tr>
<td>Type</td>
<td>proceedings</td>
</tr>
<tr>
<td>File Information</td>
<td>15Chanjuan_SOCREAL2013.pdf</td>
</tr>
</tbody>
</table>
Introduction
Games with Short sight
Logic
Characterizing solutions concepts for games with short sight
References

A calculation

In a game like Chess, game tree’s size grows exponentially with both its depth and its branching factor.
Time complexity: $O(b^d)$ (b for branching factor, d for depth)

<table>
<thead>
<tr>
<th>b</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>4</td>
</tr>
</tbody>
</table>

Branching factor: $b \approx 35$, depth: $d \approx 100$.
Number of paths in the game tree: $35^{100} \approx 10^{135}$. Much too big for a normal game tree search.

Comparison: Number of particles in the universe $\approx 10^{87}$

• Strong assumption:
Entire structure of a game is common knowledge to all players.

• Solution:
Grossi and Turrini proposed the concept of games with short sight (Grossi and Turrini, 2012), in which players can only see part of the game tree.

• Contribution:
A modal Logic system for reasoning about games with short sight.
Extensive game: an example

Figure: Tic-Tac-Toe game

Rule: Two players take turns to mark the spaces in a 3×3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game.

- Σ_i is a non-empty set of strategies. $\Sigma_i = \{\sigma_i\}$.
- σ_i is a strategy of player i, which is a function: $\{v \in V \setminus Z \mid t(v) = i\} \rightarrow V|v$, assigning a successor v' of v to each non-terminal node v when it is i's turn to move. (where $V|v$ is the set of nodes extending v.)
- $\sigma = (\sigma_i)_{i \in N}$ represents a strategy profile which is a combination of strategies from all players and Σ represents the set of all strategy profiles.
- σ_{-i} denotes the collection of strategies in σ excluding those for player i.
- $O(\sigma)$ is the outcome if the strategy profile σ is followed by all players.
- $O(\sigma', \sigma_{-i})$ is the outcome if player i use strategy σ' while all other players employ σ.
- \succeq_i is a preference relation over V^2 for each player i.

Definition

An extensive game is a tuple $G = (N, V, A, t, \Sigma, \preceq)$, where

- N is a non-empty set of the players,
- V a set of nodes or vertices including a root v_0
- $A \subseteq V^2$ a set of arcs. If $(v, v') \in A$, we call v' a successor of v.
- Leaves are the nodes that have no successors, denoted by Z.
- t is turn function assigning a member of N to each non-terminal node. $t(v) = i$;

Example

Two players: player 1(\times) and player 2(\circ). Solid arrows: the moves of player 1, dotted arrows: moves of player 2. The initial state is v_0.

v_1, v_2, v_3 are all successors of v_0.
v_{10}, v_{11}, v_{12} are the terminal nodes (leaves).
Characterizing solutions concepts for games with short sight

Example

Formally, \(G = (N, V, A, t, \Sigma, \succeq) \)

- \(N = \{1, 2\} \)
- \(V = \{v_0, v_1, v_2, \ldots\} \)
- \((v_0, v_1), (v_0, v_2), (v_0, v_3) \in A \)
- \(v_{10}, v_{11}, v_{12} \in \mathbb{Z} \)
- \(t(v_0) = 1, t(v_2) = 2, j \ldots \)
- \(a \sigma_1 \) such that \(\sigma_1(v_0) = v_2, \sigma_1(v_5) = v_8, \ldots \)
- \(a \sigma_2 \) such that \(\sigma_2(v_2) = v_5, \ldots \)

Thus, a strategy profile \(\sigma = (\sigma_1, \sigma_2) \) such that \(O(\sigma) = v_{11} \).

- \(v_{12} \succeq v_{11} \succeq v_{10} \) (since player 1 wins the game in \(v_{12} \), loses it in \(v_{10} \), and gains a draw in \(v_{11} \)).

Definition

(sight function). Let \(G = (N, V, A, t, \Sigma, \succeq) \) be an extensive game. A short sight function for \(G \) is a function \(s : V \setminus Z \rightarrow 2^{V \setminus \emptyset} \), associating to each non-terminal node \(v \) a finite subset of all the available nodes at \(v \).

Definition

(Extensive game with short sight). An extensive game with short sight (Egss) is a tuple \(S = (G, s) \) where \(G \) is a finite extensive game and \(s \) a sight function.

- Endowing an extensive game with a sight function.
Syntax and Semantics

$$\varphi := p | \neg \varphi_0 \wedge \varphi_1 | (\leq) \varphi | (\hat{\sigma}) \varphi$$

- The label \leq_i denotes player i's preference relation.
- The label $\hat{\sigma}$ stands for the outcomes of strategy profiles. $(v, v') \in R_{\sigma}$ if v' is the terminal node reached from v by following σ.

(v₀, v₁₁) ∈ R_{v₀}

Example

- $N_{v₀} = N$;
- $V_{v₀} = \{v₀, v₁, v₂, v₃, v₅\}$;
- $Z_{v₀} = \{v₁, v₃, v₄, v₅\}$;
- $A_{v₀} = \{(v₀, v₁), (v₂, v₄), (v₂, v₄), \cdots\}$;
- $σ_{v₀} = (σ₁_{v₀}, σ₂_{v₀})$ such that $O_{v₀}(σ_{v₀}) = v₅$, with $σ₁_{v₀}(v₀) = v₂$ and $σ₂_{v₀}(v₂) = v₅$

Figure: Sight-filtarated extensive game $S_{v₀}$
Characterizing solutions concepts for games with short sight

Syntax and Semantics

\[\varphi ::= p | \neg \varphi | \varphi_0 \land \varphi_1 | \langle \leq \rangle \varphi | (\langle \delta \rangle \varphi) | (\langle \delta^\# \rangle \varphi) | (\langle \delta_{\sigma} \rangle \varphi) \]

- The label \(< \) is sight function for the current node, and
- \((v, v') \in R_i\) means 'node \(v \)' is within the sight at the present node \(v \).

Frame \(F \): \((V, R_{\leq}, R_{\circ}, R_{\circ}, R_{\circ}, R_{\circ}, R_{\circ})\), where

- \(vR_{\leq}v' \iff v' \geq_i v \)
- \(vR_{\circ}v' \iff v' = O[v(\sigma|_V)] \)
- \(vR_{\circ}v' \iff v' \in O[V\sigma|_V] \)
- \(vR_{\circ}v' \iff v' \in s(v) \)
- \(vR_{\circ}v' \iff v' = O[v(\sigma|_V)] \)
- \(vR_{\circ}v' \iff v' \in O[V\sigma|_V] \)

Model: \(M = (V, R, I) \)

- \(M, v \models (\leq) \varphi \iff M, u \models \varphi \) for some \(u \in V \) with \(vR_{\leq}u \).
- \(M, v \models (\delta) \varphi \iff M, u \models \varphi \) for some \(u \in V \) with \(vR_{\circ}u \).
- \(M, v \models (\delta_{\sigma}) \varphi \iff M, u \models \varphi \) for some \(u \in V \) with \(vR_{\circ}u \).
- \(M, v \models (\delta^\#) \varphi \iff M, u \models \varphi \) for some \(u \in V \) with \(vR_{\circ}u \).
- \(M, v \models (\delta^\#) \varphi \iff M, u \models \varphi \) for some \(u \in V \) with \(vR_{\circ}u \).
Validities

<table>
<thead>
<tr>
<th>N</th>
<th>Modality</th>
<th>Schema</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>$[\leq]_i$</td>
<td>$[\leq]_i \varphi \rightarrow \varphi$</td>
<td>reflexivity</td>
</tr>
<tr>
<td></td>
<td>$[\cdot]_i$</td>
<td>$[\cdot]_i \varphi \rightarrow \varphi$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$[\leq]_i$</td>
<td>$[\leq]_i \varphi \rightarrow [\leq]_i [\leq]_i \varphi$</td>
<td>transitivity</td>
</tr>
<tr>
<td>D</td>
<td>$[\bar{v}]$</td>
<td>$[\bar{v}] \varphi \leftrightarrow (\bar{v}) \varphi$</td>
<td>determinism</td>
</tr>
<tr>
<td>I</td>
<td>$(\bar{v}_1, [\bar{v}_2 \ldots])$</td>
<td>$([\bar{v}_1] [\bar{v}_2 \ldots]) \varphi \rightarrow ([\bar{v}_1]) \varphi$</td>
<td>inclusions</td>
</tr>
<tr>
<td></td>
<td>$(\bar{v}_1), [\bar{v}_2 \ldots]$</td>
<td>$([\bar{v}_1][\bar{v}_2 \ldots]) \varphi \leftrightarrow (\bar{v}_1) \varphi$</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>$[\bar{v}]$</td>
<td>$([\bar{v}] \varphi \leftrightarrow \varphi)$</td>
<td>terminating</td>
</tr>
<tr>
<td></td>
<td>$[\bar{v}_1 \ldots]$</td>
<td>$([\bar{v}_1]) ([\bar{v}_2 \ldots]) \varphi \leftrightarrow (\bar{v}_1) \varphi$</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>$(\bar{v}_1, [\bar{v}_2 \ldots])$</td>
<td>$[\cdot]_i \varphi \rightarrow [\bar{v}_1 \ldots] \varphi$</td>
<td>visibility</td>
</tr>
<tr>
<td></td>
<td>$(\bar{v}_1), [\bar{v}_2 \ldots]$</td>
<td>$[\bar{v}_1 \ldots] \varphi \rightarrow [\bar{v}_1 \ldots] \varphi$</td>
<td></td>
</tr>
</tbody>
</table>

Soundness and Completeness

LEGS is sound and complete w.r.t. the class of all games with short sight.

Solution concepts for traditional extensive games

Definition

(Best response and Nash equilibrium)
A best response for player i of an extensive game is a strategy profile σ^* such that $O(\sigma^*_i, \sigma^*_{-i}) \succeq_i O(\sigma_i, \sigma^*_{-i})$ for every strategy σ_i of player i. A strategy profile σ^* is a Nash equilibrium of an extensive game if it is a best response for every player i.

Solution concepts for extensive games with short sight

Definition

(Sight-compatible best response and Nash equilibrium).
Let $S = (G, s)$ be an Egs and $S|_v$ be the sight-filtrated extensive game at v. A strategy profile σ^* is a sight-compatible best response for i if for every nonterminal node v, it holds that $O|_v(\sigma^*_i|_v, \sigma^*_{-i}|_v) \succeq_i O|_v(\sigma_i|_v, \sigma^*_{-i}|_v)$ for any strategy $\sigma_i|_v$ available to i. σ^* is a sight-compatible Nash equilibrium(SCNE) of S if it is a sight-compatible best response for every player $i \in N$.
Characterize solution concepts

Theorem

Let S be an EgsS given by $(N, V, A, t, \Sigma, \succeq, s)$. Then for any player i, any strategy profiles σ in S and any formulas φ of LS:

(a) σ is a sight-compatible best response (SCBR) of S for i iff $F_S \models [\hat{\sigma}^S]_i \varphi \rightarrow [\hat{\sigma}^S]_{-i}(\leq_i)\varphi$.

(b) σ is a sight-compatible Nash equilibrium (SCNE) of S iff $F_S \models \bigwedge_{i \in N}([\hat{\sigma}]_i \varphi \rightarrow [\hat{\sigma}]_{-i}(\leq_i)\varphi)$.

(c) σ is a subgame perfect equilibrium (SPE) of S iff for any $u \in V \setminus Z$, $F_{S | v} \models [\hat{\sigma}]_{-i} \varphi \rightarrow [\hat{\sigma}]_{-i}(\leq_i)\varphi$.

(d) A strategy profile σ is a sight-compatible SPE of S iff for all $v \in V \setminus Z$, $F_{S | v} \models [\hat{\sigma}]_{-i} \varphi \rightarrow [\hat{\sigma}]_{-i}(\leq_i)\varphi)$.

Thank you!