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Yohei Fukayama1  Prof. & Dr. Koji Nakatogawa2  Dr. Hisashi Kitamura3 

Department of Philosophy, Hokkaido University, Japan 

SOCREAL 2013, October 25th 2013.  

 
 
1. Introduction  

Kitamura, Nakatogawa and Fukayama (2007) chose a certain substructural logic, 

as an initial and basic tool to analyze the two wise girls puzzle discussed in Yasugi and 

Oda (2002)4.  This substructural logic is named as CFLeKD42 by Fukayama, and is 

based on the two systems, CFLeKD and CFLeKT4, which are introduced in Watari, 

Nakatogawa and Ueno (1999).  CFLeKD42 is a Classical Full Lambek with exchange 

rules and the axioms K, D and 4 about two modal operators.  The 2007 paper contains 

a detailed logical analysis, due to the effort of Fukayama, of the possibility for a solu-

tion of that puzzle, by replacing the connectives in the ordinary sentential logic with the 

ones in a substructural logic.  In this study, we will offer an overview of several se-

mantics relevant to that study, before we spell out possible world semantics to the sys-

tem in question.  In particular, we will focus on a development of the semantics speci-

fied on the basis of the notion of a presheaf.   

 

2. Previous studies  

By the term “substructural logics” we mean logics which are conscious of the 

1 fukayama@let.hokudai.ac.jp 
2 koji@logic.let.hokudai.ac.jp 
3 h.kitamura@airedale-xing.com 
4 Kaneko and Nagashima (1997) proved the cut elimination theorem and its lemmas for 
their epistemic logics formulated as sequent calculi.  Their systems contain infinitary 
formulae and deal with the notion of common knowledge.  Yasugi and Oda (1999) used 
the results of Kaneko and Nagashima omitting those features, and proved the cut 
elimination theorem and its lemmas for the system of their own.  Yasugi and Oda 
(2002) used the theorem and the lemmas to analyze the two wise girls puzzle.   
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number and/or the order of resources used in the inference.  As the corresponding for-

mal system, we investigate an extension of the sequent calculus CFL.  This system 

contains a set of inference rules for resource-conscious connectives, and the so-called 

structural inference rules, in addition to the inference rules for the familiar logical con-

nectives.   

We shall note some of the inference rules of CFLeKD42 which are characteristic 

of the system and illustrate resource-consciousness.  (For the full set of the axioms and 

the inference rules of CFLeKD42, see Kitamura et al. (2007).)  Hereafter, Γ's and Δ's 

denote (possibly empty) lists of sentences, and σ and τ denote sentences.  First, the in-

ference rules for the multiplicative conjunction * and the multiplicative disjunction + are 

as follows:  

 

 

 

 

Below are the inference rules for the familiar, additive, conjunction ∧ and dis-

junction ∨:  

 

 

 

 

 

 

 

 

To observe difference between the rules for multiplicative connectives and addi-

tive connectives, let us take the rules (* left) and (∧ left), for example.  Each of the 
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rules yields the conjunctive sentence of σ and τ on the left side of the lower sequent. 

They differ in that (* left) requires both σ and τ on the left side of the upper sequent and 

that (∧ left) requires σ or τ (and not both).  So according to the first (second) rule of 

(∧ left), one can infer the lower sequent containing τ (σ) although the upper sequent 

does not contain it.  If we regard the sentences appearing in the inference as the re-

sources produced or consumed in it, we can say that (∧ left) produces a part of a con-

junctive sentence without any relevant resources.  In contrast, (* left) can be said to 

produce a conjunctive sentence by use of resources fully relevant to it.  This is a typi-

cal example of what we mean by "resource-consciousness" of a connective.  The con-

nective + is also resource-conscious because, according to the rules (+ right), one can 

infer a sequent containing the disjunctive sentence σ + τ only if the upper sequent con-

tains both resources σ and τ of the sentence.   

CFLeKD42 has three structural inference rules.  One is the cut rule that is also 

seen in other sequent calculi.  The others are the following exchange rules.  (The suf-

fix "e" comes from this.) 

 

 

This rule allows us to exchange the order of adjacent two sentences.   

CFLeKD42 has three inference rules for the two modal operators Bi (i = 1, 2).  

Let Γ be a list σ1, σ2, ..., σn of sentences.  Then we abbreviate the list of modal sen-

tences Biσ1, Biσ2, ..., Biσn as BiΓ.  Using that notation, we can describe the three rules as 

follows:  

 

 

Let us focus on the interpretations of a modal substructural logic by some alge-

braic structures.  Watari, Ueno and Nakatogawa (1999) supply some algebraic seman-

tics to various substructural modal logics, and they contain the semantics to the sequent 
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calculi CFLeKD and CFLeKT4 close to our system5.  The algebraic structure they use 

for such an interpretation is a lattice with the multiplication of monoid, and two func-

tions are defined on the lattice.  The additive logical connectives are interpreted as the 

lattice operations.  The multiplicative logical connectives are interpreted by use of the 

multiplication of monoid.  In addition, the necessity operator and the possibility oper-

ator are interpreted as the two functions mentioned above.   

As an attempt to develop some possible world semantics for the sequent calculus 

in substructural logics, Ono and Komori (1985) define the so-called Kripke model via 

some algebraic semantics.  The basic device is a monoid.  In particular, their appa-

ratus is a monoid with a partial order compatible with its multiplication, that is, a par-

tially ordered monoid, abbreviated as PO-monoid.  This PO-monoid is called 

“SO-monoid” if it is a meet-semilattice in the sense that the operation of meet compati-

ble with the multiplication of monoid is defined on it.  A frame is defined to be a pair 

of SO-monoid and its subset satisfying several properties.   

In contrast to this, Restall (2000, pp.239-248) employs a ternary relation as an 

accessibility relation in addition to binary ones, and gives a kind of possible world se-

mantics.  He distinguishes between the accessibility relations when the logical connec-

tives vary.  He interprets the modal operators □ and ◇ of the alethic modality using 

the accessibility relation S.  In addition, he interprets two kinds of negation using the 

accessibility relation C.  Moreover, he interprets multiplicative connectives using the 

ternary relation R.  Here each of the relations S, C and R is dominated by mutually dif-

ferent semantic principles.  Although his semantics is more or less complicated, it is 

possible to apply it to various modal substructural logics.  We would rather like to seek 

a more natural extension of the semantic notions specified on the basis of the Kripke 

structure.   

Let us turn to modal logics.  Shehtman and Skvortsov (1990) and Awodey and 

5 The modal logic KT4 accords with the one S4.  
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Kishida (2008) describe a Kripke structure using the notion of a sheaf over a topological 

Boolean algebra.  The topological Boolean algebra has the function I satisfying several 

properties on the underlying set.  If I is an operation on the power set P(X) of a set X, I 

typically assigns to each subset of X its interior.  In addition, using the operation I, we 

can define a topology on X.  In this sense, we can say that the Boolean algebra with the 

operation I has a topological structure.  If an element a of the Boolean algebra is an 

interpretation of the sentenceσ, then I(a) is an interpretation of the modal sentence □

σ.  Thus one can use a topological Boolean algebra for the interpretation of modal 

sentential logic.   

A notion of a sheaf over a topological space X is defined in terms of the notion of 

presheaf.  Consider an open set U of X.  A presheaf F over X assigns to an open set U 

the set F(U).  Consider a pair of open sets under the inclusion relation V⊆U.  Then F 

assigns to the pair a function from F(U) to F(V).  It is required that F(U, U) be the 

identity function on F(U), and when W⊆V⊆U, the composite function F(W, V)∘F(V, 

U) must be equal to F(W, U).  For example, let F(U) be the set of continuous functions 

from U to the set R of real numbers.  Then F(V, U) : F(U) → F(V) assign to an ele-

ment f its restriction f|V to V.  Thus a presheaf on a space X gives local information on 

open subsets of X.  A sheaf is a presheaf which enables us to obtain the total infor-

mation by gluing local information.  Let F be a presheaf on X. F is called a sheaf if the 

following condition holds. Let U be an open subset of X, {Ui}i the open covering of U, 

and {fi}i the family of their elements.  Suppose that an element fi of F(Ui) and an ele-

ment fj of F(Uj) are equal within the intersection of Ui and Uj, that is, fi|Ui∩Uj = fj|Ui∩Uj.  

Then there uniquely exists an element f of F(U) such that its restriction to Ui is fi.  That 

is the condition for sheaf.  To understand it more clearly, imagine a graph paper whose 

X-axis is the space X and whose Y-axis is the set R of real numbers.  U is an open sub-

set of X, which is covered by open sets Ui's.  Then the conditions states that if contin-

uous functions fi's defined on any two of Ui's have the same value on their intersection, 
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there is exactly one function defined on U and its restriction to Ui is fi.  In a word, a 

total function on U is uniquely obtainable by gluing local functions defined on its open 

covers Ui's.  A sheaf F is essentially a choice of open subsets of X which makes the 

above situation true.   

There is an alternative definition of sheaf over X.  Awodey and Kishida (2008) 

adopt this way.  Let F be a topological space andπ be a function from F to X.  Then 

(F,π) is called a sheaf over X if the following conditions hold: for each element a of F, 

there is a neighborhood U such thatπ(U) is an open subset of X and the restrictionπ|U 

is a homeomorphism.  Hereπ is called a projection.  Consider an element p of X.  

The inverse image of {p} underπ is called a fiber of F over p.  In constructing 

denotational semantics of modal predicate logics, one can take the domain of interpreta-

tion as F.  If we interpret n-place predicates in sheaf semantics, it becomes necessary 

to use the projectionπn from Dn to X.  It involves the notion of the product of sheaves.  

Each sentence has the sum of fiberwise extensions as its extension.  For a sentenceσ, 

the extension of □σcan be provided as the interior of the extension ofσ.   

 

3. Category theory 

One can give a more general consideration to this concept, by restating the notion 

of a presheaf in terms of category theory.  We will briefly introduce several concepts of 

category theory and its related devices.  A category consists of objects and arrows 

among them.  The central notion is not an object but an arrow.  An arrow has objects 

as its source and its target.  The former is called the domain of the arrow and the latter 

the codomain.  If an arrow f has the domain A and the codomain B, we write f: A→ B.  

If f: A→B and g: B→C, their composition g∘f: A→C is defined.  The axioms of cate-

gory theory state the following two conditions on composition: first, the composition is 

associative, that is, h∘(g∘f)=(h∘g)∘f ; second, a unit of composition exists for each ob-

ject A.  It is called the identity arrow on A, written as idA.  So the unit laws require 
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that idB∘f = f and g∘idB = g for f: A→B and g: B→C.  A category has various examples 

due to its abstractness.  For example, all sets and the functions between them constitute 

Set, the category of sets.  All topological spaces and the continuous functions between 

them constitute Top, the category of topological spaces.  All groups and the 

homomorphisms between them constitute Grp, the category of groups.  They are cat-

egories consisting of some kind of mathematical objects and the structure-preserving 

functions between them.   

In addition to this, a single mathematical object is often regarded as a category.  

Let W be a set.  A binary relation on W is called a preorder if it is reflexive and transi-

tive.  We can regard W with a preorder R as a category.  The objects of the category 

are the elements of W, and the arrows are the pairs <a, b> of elements of W such that 

aRb holds.  The composition of arrows <a, b> and <b, c> is defined as <a, c>.  This 

definition is supported by the transitivity of R.  The existence of identity arrows is 

shown by the reflexivity of R.   

In the context of possible world semantics for modal logic, a preorder structure 

<W, R> is a KT4-frame in the sense that <W, R> satisfies the axioms of the system KT4 

for modal logic.  For a system S which is stronger than KT4, S-frame is a category.  

On the contrary, frames for systems weaker than KT4 are not always a category.  The 

system KD4 of our interest is weaker than KT4 because the axiom D □σ→◇σis 

provable in KT4 and one can easily construct a KT4-frame which is not a KD4-frame 

(Note that R in a KD4-frame is reflexive and serial, in the sense that for every w in W, 

there is an element v in W such that wRv (Garson, 2006, p.96).)  Consequently a 

KD4-frame is not always a category.  It means that category theory is applicable to 

possible world semantics for epistemic logic as long as its frame is transitive.   

As there are structure-preserving mappings between groups, there are assignments 

between categories, which are called functors.  A functor assigns an arrow in a catego-

ry to an arrow in another category.  A functor must preserve composition and the iden-
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tity arrows.  The notion of presheaf is generalized by the notion of functor.  Let C be 

a category.  A presheaf F on C is a functor from C to Set, which assigns to a C-arrow 

f: A→B a function F(f): F(B)→F(A).  The conditions to be obeyed by a presheaf are 

equivalent to the ones to be obeyed by a functor.  If C is the set O(X) of open subsets 

of a topological space X, the definition stated here is equivalent to the original one.  

We take for C a preorder structure <W, R> consisting of possible worlds and the acces-

sibility relation between them.  We have the following two reasons why R is a preor-

der: first, we can regard <W, R> as a category immediately; second, <W, R> constitutes 

a frame for the familiar modal logic KT4.  In what follows, we often abbreviate <W, 

R> as W.   

The presheaves on a category themselves constitute a category by defining the 

appropriate concept of arrows between them.  It is the concept of a natural transfor-

mation.  Let C and D be a category.  Let F and G be a functor from C to D.  A nat-

ural transformationνfrom F to G is a family of arrowsνC : F(C)→G(C) for each ob-

ject C in the category C.  νC's must satisfy the following condition: for each arrow f 

from C to C' in the category C, the composed arrows G(f)∘νC andνC'∘ F(f) coincide.   

 

 

 

 

4. Topos-theoretic approach 

Here we will observe how the category of presheaves over W gives semantics for 

a sentential modal logic.  We write W^ to denote the category.  Those who construct 

the semantics mentioned above intend to give semantics for a predicate modal logic us-

ing their approach.  One can obtain semantics of a sentential modal logic by partially 

simplifying their semantics.  Moerdijk and van Oosten (2007, p.15) describes this way.   

W^ satisfies the axioms of elementary topos.  An elementary topos is a category 
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which can be seen as a generalization of the category of sets.  A topos has special ob-

jects such as the terminal object, the pullback of two arrows, the exponential BA and the 

subobject classifier.  In the category of sets, they are a singleton, the fibered product, 

the set of functions from A to B, and the set of truth values, respectively.  The axioms 

of an elementary topos are stated by using the first-order language, that is, the elemen-

tary language on arrows in the category.   

Above all, the existence of the subobject classifier is characteristic of a topos.  

The subobject classifier consists of the truth-value object Ω and the truth arrow t from 

the terminal object 1 toΩ.   

 

 

 

This is a diagram which explains what the subject classifier is.  The axiom for 

the subobject classifier states that for any X, A and i, there is an unique arrowχ:X → 

Ωsuch that this diagram is a pullback diagram.  It implies that the left side arrow i, 

which is in a sense "part of X," corresponds to the downside arrowχ in a unique way.  

Note that the codomain of the downside arrow is the truth-value objectΩ, so we can see 

that in the category of sets it is a characteristic function for some set, actually, A in this 

diagram.  In this way,χclassifies A in X.  Soχ is called the classifying arrow for A.  

Conversely, we can see that in some cases A is the set of the elements x of X such thatχ

is true of x.  In this sense, A works as the extension ofχ.   

One can see that a logical connective is a classifying arrow.  For example, a 

conjunction takes two truth values and gives one back.  So a conjunction is a function 

from Ω×Ω to Ω.  It is a classifying arrow which classifies the part <t, t> of Ω×

Ω.  (The product of objects exists because it is a special case of pullback.)  The other 

connectives also follow the pattern of the relevant classifying arrow.   

If there are arrowsσandτboth from an object X toΩ, each of them has its exten-
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sion S and T, respectively.   

 

 

 

 

By composing the arrow pair <σ,τ> and the conjunction arrow∧, we have the 

arrowσ∧τfrom X toΩ.   

 

 

 

 

This is again a classifying arrow.  We can show that it classifies the intersection 

of S and T.  Under the abbreviationσ∘i asσ* and t∘! as "true", it follows that (σ∧

τ)* = true if and only ifσ* = true andτ* = true.  This is the familiar truth condition 

of a conjunctive sentence.  Thus the concept of a topos is closely related to logic.  

Many studies, including Mac Lane and Moerdijk (1992), Goldblatt (1984/2006) and 

Bell (1988/2008), deal with the relation between topos and logic.   

For any category C, including our W, there is a common way to construct the 

subobject classifier in C^.  Let C be an object in C.  A cosieve on C is a set of arrows 

whose codomain is C with the property that if f belongs to the set and g is an arrow 

composable with f, f∘g also belongs to the same set.  In a word, a cosieve is closed un-

der composition from the right.  The set of all arrows whose codomain is C is called 

the maximal cosieve on C and written as max(C).  The truth-value objectΩis defined 

as a presheaf on C which assigns to each object C in C the set of all cosieves on C.  

Furthermore, the truth arrow t from 1 toΩis defined as a family {tC}C∈C of functions tC 

from 1(C) toΩ(C).  The terminal object 1 in C^ constantly assigns the singleton {*} to 

each object C.  tC assigns to * the maximal cosieve on C.  We do not go into the proof 
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thatΩand t thus defined constitute the subobject classifier in C^.  Rather, we should 

work out the interpretation of sentences.   

An atomic sentence is interpreted as a subobject of 1 in C^.  If you want to in-

terpret some atomic sentence as true, its interpretation is the identity arrow on 1.  It is a 

special subobject of 1 that is classified by the truth arrow.  In fact, a subobject of 1 in 

W^ corresponds to a downward-closed subset of W.  For an atomic sentence p, we 

write [p] to denote a downward-closed subset of W.  Then for a world w in W, that p is 

true in w, in symbols w |= p, is naturally defined as w∈[p].  The conditions for com-

pound sentences, such as w |=σ∧τif and only if w |=σand w |=τ, follow from the 

general framework of topos.   

Where is modality to be located?  In the previous studies mentioned, we have 

seen that modality in syntax is related to topology in semantics.  In topos theory, to-

pology appears as an arrow J fromΩtoΩsatisfying the following conditions:  
 
i) J∘t = t,  
ii) J∘J = J  
iii) J( _∧_ ) = J( _ )∧J( _ ) 
 

These conditions are parallel to the axioms for modal logics and one of their 

consequences.  i) corresponds to the axiom T □σ→σ, or dually,σ→◇σ.  ii) 

corresponds to the axiom 4 □σ→□□σ, or dually, ◇◇σ→◇σ.  In the system 

KT4, both □□σ≡□σ and ◇◇σ≡◇σ are provable.  iii) may correspond to 

□(σ∧τ)≡(□σ∧□τ) or ◇(σ∧τ)≡(◇σ∧◇τ).  The former is provable 

in the basic modal logic K.  The left to right direction of the latter is also provable in K.  

The opposite direction will require a strong axiom, such as ◇σ→□σ, though Bell 

(1988/2008:163) gives this modality the name "a possibility operator."  The topology 

we are focusing on has some equivalent notions, one of which is a Grothendieck topol-

ogy or a covering sieve.  Recall that a sieve on some object C is the set of arrows with 
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codomain C, and it is closed under composition from the right.  The set Cov(C) must 

satisfy the following conditions:   
 

i) max(C)∈Cov(C),  

ii) If R∈Cov(C) then for every f: C'→C, the inverse image f*(R)∈Cov(C'),   

iii) If R is a sieve on C and S is a covering sieve on C, such that for every arrow 

(∈S) f: C'→C we have f*(R)∈Cov(C'), then R∈Cov(C).   

 

The way the conditions are presented varies from textbook to textbook.  We 

follow Moerdijk and Oosten (2007, p.22).  i) states that the maximal cosieve on C is an 

element of Cov(C).  ii) states that if R is a covering sieve, then so is its inverse image.  

iii) states that if R is a sieve and S is a covering sieve on C, such that the inverse image 

of R is a covering sieve of an object below C, then R is a covering sieve of C.  The 

point is that Cov specifies how dense an object C is "covered" with arrows.  The ele-

ments different from max(C) may not exist in Cov(C).  Then it is the smallest con-

structions of Cov(C).  On the contrary, under the largest construction, Cov(C) is equal 

to the setΩ(C) of all cosieves on C.  It is known that Cov and a topology uniquely de-

fines each other, so the difference involved in the construction of Cov(C) is related to 

the logical meaning of a topology.  Recall that our W is preordered.  It has a topology 

called a tree topology (Levy, 1979, p.201).  In these arguments we are still working out 

the understanding about the tree topology on KT4-frame.   

We saw a topos-theoretic approach for semantics for modal sentential logic 

above.  However, it is not clear how to construct semantics for substructural logics on 

the same approach.  One reason for that situation is that a topos-theoretic approach 

strongly takes effects from the properties of the category of sets.  The conjunction de-

fined above has familiar properties likeσ∧σ≡σandσ∧τ≡τ∧σ.  This implies 

that the conjunction is not resource-conscious.  The character comes from the proper-
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ties of set-intersection.  A formal system defined in terms of arrows in a given topos is 

called topos logic (McLarty, p. 128).  So the following proposition holds:  

 

Proposition.  Topos logic contains connectives which are not resource-conscious.   

 

In fact, when topos logic is formalized as a sequent calculus, neither the infer-

ence rule for conjunction nor the one for disjunction is resource-conscious.  In short, a 

topos has good potential to give semantics of modal logics based on the concept of a 

Kripke frame, but cannot be suitable for modeling substructural logics.   

To get resource-conscious connectives, we may need to use a presheaf of some 

kind of algebra, not of sets as we have seen in this paper.  Actually the notion of 

(pre-)sheaf has been widely used in algebraic geometry, and a sheaf of modules or of 

rings rather than a sheaf of sets is employed in order to obtain from algebraic structures 

a topological space relevant to it.  We would like to examine that line on another 

occasion.   
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