<table>
<thead>
<tr>
<th>Title</th>
<th>Interannual growth differences and growth-selective survival in larvae and juveniles of marbled sole Pseudopleuronectes yokohamae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Joh, Mikimasa; Nakaya, Mitsuhiro; Yoshida, Naoto; Takatsu, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>Marine Ecology Progress Series, 494: 267-279</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-12-04</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/55151</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 Inter-Research</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>20130808_manuscript_joh.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Interannual growth differences and growth-selective survival in larvae and juveniles of marbled sole (*Pseudopleuronectes yokohamae*)

Running head: Growth-selective survival in marbled sole larvae and juveniles

Mikimasa Joh1,*, Nakaya Mitsuhiro2, Naoto Yoshida3, Tetsuya Takatsu4

1Abashiri Fisheries Research Institute, Hokkaido Research Organization, 1-1-1 Masu-ura, Abashiri, Hokkaido, 099-3119, Japan

2Faculty of Fisheries, Hokkaido University, 3-1-1 Minatocho, Hakodate, Hokkaido, 041-8611, Japan

3Nippon Suisan Kaisha Ltd, Ohtemachi, Chiyoda, Tokyo 100-8686, Japan

4Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minatocho, Hakodate, Hokkaido, 041-8611, Japan

*Email: joh-mikimasa@hro.or.jp

ABSTRACT: Flatfishes drastically change their habitat, body form, and feeding during metamorphosis, thus the early juvenile stage is viewed as being critical for early survival (as is the larval stage). However, to the best of our knowledge, no studies have tested the growth-mortality hypothesis for both larval and juvenile stages of flatfishes. Thus, we
investigated the relationship between growth rate and environmental factors and test the hypothesis for both larval and juvenile stages of marbled sole (*Pseudopleuronectes yokohamae*) in Hakodate Bay, Japan in 2001–2003. For both larval and juvenile stages, otolith growth correlated with water temperature. Eye-migrating larvae were defined as survivors of planktonic life (*SV* _pelagic_). Large juveniles captured in late June and July were defined as survivors of shrimp predation (*SV* _juvenile_). To test the growth–mortality hypothesis, otolith growth was compared between the SV and the original population (OP). During the pelagic larval stage, growth-selective survival was not detected in any of the three years. During the early juvenile stage, fast growing individuals survived selectively in 2002 but not in 2003. In 2002, population growth of juveniles was slow because the temperature experienced by juveniles was low. Thus, juveniles in 2002 required time to exceed the size spectrum that is vulnerable to shrimp predation, and consequently, the individuals that grew more rapidly were able to survive selectively. The present study showed the importance of the early juvenile stage for the survival of flatfishes.

INTRODUCTION

Fluctuations in the recruitment level of marine fishes are mainly determined by variations in survival during the early life stages (Houde 1987). Anderson (1988) summarized the theory of recruitment in fishes and hypotheses pertaining to causes of recruitment fluctuation and
suggested that the growth-mortality hypothesis was a rational concept for recruitment research and a solid basis for future study. This hypothesis states that fast growing individuals can pass the spectrum of somatic size that is vulnerable to predation and thus increase their chance of survival. Therefore, understanding the growth pattern during early life and the relationship between growth and environmental factors is fundamental to understanding recruitment and survival. Moreover, we can assess the growth-mortality hypothesis by comparing growth between survivors and their OP.

The relationships between growth and survival of larvae have been investigated for numerous species (Campana 1996, Meekan & Fortier 1996, Bergenius et al. 2002, Takahashi & Watanabe 2004, Takasuka et al. 2004a, b), and the mortality of that stage is many times greater than that of later stages. Larvae of flatfish species are planktonic, thus their habitat is the three-dimensional water column. After metamorphosis, flatfish larvae become juveniles and their habitat shifts to the two-dimensional sea floor. When this shift occurs, the morphology and feeding habits of flatfishes change dramatically. In addition, there are many benthic organisms on the sea floor, and predation of flatfish juveniles by small decapods such as crangonid shrimp has been reported for many flatfish species (van der Veer et al. 1991, Witting & Able 1995, Oh et al. 2001, Taylor & Collie 2003). Thus, mortality during the early juvenile stage likely is high, just as it is during the planktonic larval stage for flatfishes (van der Veer et al. 2000). Hovenkamp (1992) investigated the relationship between growth and
mortality during the planktonic larval stage of plaice (*Pleuronectes platessa*), and Fox et al. (2007) studied birth-date selectivity in the survival of the species. However, to the best of our knowledge no studies have tested the growth-mortality hypothesis for both larval and juvenile stages of flatfishes.

Marbled sole (*Pseudopleuronectes yokohamae*) is a temperate flatfish species distributed in coastal areas ranging from Japan to the Yellow and Bohai Seas, with latitudinal expansion from the southern part of Hokkaido Island to Kyushu Island. Marbled sole is an important species in bottom-trawl and gill net fisheries. Hakodate Bay, which lies at the southern end of Hokkaido Island, is the northernmost habitat of marbled sole. The spawning season of marbled sole is early spring (February–April) in this area. Environmental factors in this area are variable in spring, and this may affect survival of marbled sole larvae and juveniles.

The ecology of the early life stages of marbled sole have been studied previously in Hakodate Bay. For example, Nakaya et al. (2004a, b, 2007) studied predation on marbled sole larvae and juveniles by the sand shrimp *Crangon uritai*, and Joh et al. (2005) described daily periodicity of otolith ring formation. In late March 2003, the Oyashio Coastal Water, which is characterized by low temperature (< 3°C) and low salinity (≤ 33.0), flowed into Hakodate Bay, and water temperature in late March became extremely low. Joh et al. (2009) suggested that almost all larvae hatched earlier in the season may have died due to the extremely low water temperature. To date, however, the growth patterns of wild *P. yokohamae* larvae and juveniles...
have not been studied, nor has the importance of growth for survival been investigated. In the present study, we investigated the growth patterns of marbled sole larvae and juveniles, the relationship between environmental factors and their growth, and the relationship between pelagic larval growth and planktonic larval duration (PLD). Additionally, we investigated the growth selectivity in survival during both the pelagic larval and early juvenile stages.

MATERIALS AND METHODS

Study area, sampling, and treatment of specimens

Hakodate Bay is a small bay (ca. 66.9 km²) located at the southern end of Hokkaido Island (Fig. 1). Adult marbled sole females spawn demersal adhesive eggs on the bottom along the 30 m isobath in the eastern part of the bay mouth near Mt. Hakodate (Fig. 1). Pelagic larvae are abundant in the eastern part of Hakodate Bay but are scarce in the western part and outside of the bay (Nakagami et al. 2001). Settled juveniles are abundant off Nanaehama in the inner part of Hakodate Bay. Therefore, larvae and juveniles were collected along a transect consisting of five stations beginning at Nanaehama and heading in the direction of the spawning ground (Joh et al. 2009). These sampling stations were at depths of 3, 5, 10, 15, and 20 m, respectively.

In 2001, 2002, and 2003, sampling for marbled sole larvae and small juveniles was
conducted from March to May (Table 1). Pelagic larvae were collected in triplicate oblique
tows of a plankton net (net opening diameter: 80 cm; mesh aperture: 0.33 mm; a flow meter
was installed at the mouth) at each station. Larvae and juveniles distributed near and on the
sea floor were collected by simultaneous tows with two Hirota's sledge nets (mouth opening:
60 × 40 cm; mesh aperture: 0.50 mm; Hirota et al. 1989). Sampling for larger juveniles was
carried out in June and July. Simultaneous tows with two sledge nets were conducted two or
three times at each station. Larvae and juveniles were preserved in a 90% ethanol solution.
The densities of larvae collected by plankton net were converted to number per square meter
based on the rotations of the flow meter, the mouth opening of the net (0.50 m²), and the
length of warp. The density of juveniles collected by sledge net was converted to the number
per 100 m². The catch efficiency of the sledge net was assumed to be 1 (Joh et al. 2009).
Notochord length was measured for larvae and standard length (SL) was measured for
juveniles using digital calipers. We used the lapilli for otolith microstructure analysis.
Throughout the larval and juvenile stages, the lapilli of marbled sole can be observed without
being sectioned (Joh et al. 2005). The shapes of lapillar otoliths from both sides are similar
during the larval stage, but the lapilli of large juveniles are bilaterally asymmetrical (Joh et al.
2005). Therefore, we used ocular side lapilli for otolith measurements for the juveniles. The
number of otolith increments was counted and the increment widths were measured using an
otolith measurement system (ARP Ver. 5.00, Ratoc System Engineering Co., Tokyo, Japan).
See Joh et al. (2005, 2009) for details about otolith preparation and analysis for marbled sole.

Water temperature and prey density

On each sampling day, water temperature was measured using a Seabird CTD system (SBE-19, Sea Bird Electronics Inc., Bellevue, Washington, USA) in every 3 or 5 m depth layer from the sea surface to the sea floor (i.e., 0 and 3 m at Stn 3; 0 and 5 m at Stn 5; 0, 5, and 10 m at Stn 10; 0, 5, 10, and 15 m at Stn 15; 0, 5, 10, 15, and 20 m at Stn 20). In Hakodate Bay, pelagic larvae of marbled sole are scarce in the 0 m depth layer (Nakagami et al. 2001). Thus, for each sampling date, the mean water temperature for pelagic larvae was calculated for all layers except for the 0 m depth layer. Because juvenile marbled sole inhabit the sea floor, the mean water temperature for juveniles was calculated from temperatures measured on the sea floor at the five stations on each sampling date. Unfortunately, we could not measure water temperature daily; therefore, the estimation of water temperature between two sampling dates was required. We assumed that the change in temperature between two sampling days was linear, and we interpolated the water temperature on each day between two sampling dates based on each line. In this way we obtained the daily sequence of water temperature for each year and generated a "temperature calendar."

Using these data, we estimated the temperature that individual larvae and juveniles experienced. For each larva, the date on which otolith ring formation began was estimated
based on otolith microstructure analysis, and the trajectory of temperatures that each larva experienced from that date to the sampling date was extracted from the temperature calendar. For juveniles, the date on which each individual reached the juvenile stage was estimated from otolith microstructure analysis (see below: "Definition of larval and juvenile ages"), and the trajectory of temperatures that each juvenile experienced from that date to the sampling date was extracted from the temperature calendar. Individual data then were pooled by year and mean experienced water temperature was calculated for each age (see Fig. 2).

For pelagic larvae, the densities of copepod nauplii (the principle prey item for pelagic larvae) were estimated for each sampling day (Joh et al. 2009). Using the same method as that used to generate the temperature calendar, we assumed that the change in prey densities between two sampling days was linear, and we obtained the daily sequence of prey density for each year. Based on this daily sequence of prey density, the trajectory of prey density that each pelagic larva experienced was estimated individually.

Definition of larval and juvenile ages

For marbled sole, the onset of daily otolith increment formation occurs at the time of transition from endogenous to exogenous nutritional sources (Joh et al. 2005). In the present study, the age of larva was defined as the number of days after the onset of otolith ring formation (larval age: LA), not as the days after hatching.
Settlement of marbled sole larvae occurs before the completion of eye migration (Fukuhara 1988). On the lapillus, the outer check is formed at the onset of eye migration, thus the rings formed inside and outside of the outer check are thought to be formed during the pelagic and demersal phases, respectively (Joh et al. 2005). For eye-migrating larvae, we measured the distance from the outer check to the otolith edge of the ocular side lapillus, and we pooled those measurements for the 2001–2003 year classes. Mean distance for the largest 10% of individuals was 17.1 µm. Therefore, we assumed that the first otolith ring in the juvenile stage formed 17.1 µm outside of the outer check. We defined the number of otolith rings formed outside that first ring as juvenile age (JA), not as the age after hatching.

Interannual growth differences and planktonic larval duration (PLD)

The otolith radii and body lengths were positively correlated for pelagic larvae, eye-migrating larvae, and juveniles of marbled sole. However, we did not express that relationship as a single formula throughout the larval and juvenile stages (Fig. 3). Therefore, we did not estimate somatic growth trajectories using back-calculation techniques. Instead, we treated the width of the otolith increment for each age (WA: width at age) as an alternative measure of somatic growth, as in Searcy and Sponaugle (2000) and Robert et al. (2007, 2010).

In late March 2003, low temperature and low salinity Oyashio Coastal Water flowed into the study area, thus water temperature in this area declined considerably. Joh et al. (2009)
reported that pelagic larvae that hatched before 17 March 2003 (i.e., the early hatched cohort) did not appear in the nutritional transition date distribution (NTDD) after April. They suggested that almost all of the early hatched cohort may have died because of the critical decline in temperature. Therefore, we did not include the early hatched cohort collected in March 2003 in the analysis of present study.

The growth patterns of pelagic larvae in the three year classes were compared using repeated measures MANOVA, which is suitable for analysis of longitudinal data such as successive increment width data from fish otoliths (Chambers & Miller 1995). Repeated measures MANOVA allows for differences in the number of fish individuals among year classes, but it requires that the length of repeated measurements in each individual be equal. In the present study, we used ≥10 days LA larvae and compared WAs during 0–10 days LA. Similarly, we used ≥30 days JA juveniles and compared otolith growth during 0–30 days JA (Table 2).

To investigate the effect of water temperature and prey density on the growth of pelagic larvae, we used the generalized linear model (GLM). Individual mean WA, mean experienced temperature, and mean prey density during 0–10 days LA in 2001–2003 were pooled. Mean WA was used as the response variable, and mean experienced temperature, prey density, and the interaction term were used as explanatory variables. The response variable was assumed to follow the normal distribution. To minimize the number of parameters, model selection was
conducted by maximizing the goodness of fit given by Akaike’s information criterion (AIC; Akaike 1974). Analyses were carried out using the statistical software R, version 2.15.1 (http://cran.r-project.org/). To investigate the relationship between the experienced water temperature and juvenile growth, individual mean WA and mean experienced temperature during 0–30 days JA in 2001–2003 were pooled, and the correlation between temperature and growth was analyzed.

On the otoliths of eye-migrating larvae and juveniles, the number of rings formed from the start of ring formation to the end of pelagic life was defined as the PLD, and the relationship between growth during the pelagic larval phase and PLD was investigated.

Growth-selective survival

Marbled sole larvae settle on the sea floor during the eye-migrating stage (Fukuhara 1988), thus those eye-migrating larvae are assumed to have survived pelagic larval life. We defined the eye-migrating larvae captured in late April–May as survivors (SV\textsubscript{pelagic}), and their growth trajectories during the early pelagic larval stage (0–10 days LA) were compared with those of their original population (OP\textsubscript{pelagic}). OP\textsubscript{pelagic} refers to the planktonic larval population that satisfied the following conditions: 1) larvae were collected from March to early April; 2) the nutritional transition date (NTD) of larvae was included in the range of the NTDD of SV\textsubscript{pelagic}; and 3) larvae were older than 10 days LA.
The sand shrimp *C. uritai* preys on metamorphosing larvae and juveniles (Nakaya et al. 2004a, b, 2007); to date other demersal predators of marbled sole larvae and juveniles have not been found in Hakodate Bay (Nakaya 2004). Marbled sole juveniles larger than 15.4 mm SL were not vulnerable to predation by *C. uritai* (Joh et al. 2009). Thus, we defined large juveniles (20.2–59.7 mm SL) collected in late June and July as survivors of predation (*SV*$_{juvenile}$), and we compared their otolith growth during 0–20 days JA with that of their original population (*OP*$_{juvenile}$). *OP*$_{juvenile}$ refers to small juveniles that satisfied the following conditions: 1) juveniles were collected from April to early June; 2) the date on which each juvenile started its juvenile life was included in the range of distribution of dates on which *SV*$_{juvenile}$ started their juvenile life; and 3) juveniles were older than 20 days JA and smaller than 15.4 mm SL. We did not compare growth trajectories between *SV*$_{juveniles}$ and *OP*$_{juveniles}$ in 2001 because we did not collect sufficient numbers of small juveniles that satisfied the conditions for the original population.

If the ranges of the NTDD for *SV*$_{pelagic}$ and the date when they became juveniles for *SV*$_{juveniles}$ are very wide, the environmental factors experienced by the early and the late cohorts of SV might differ. In this case, dividing the SVs into seasonal sub-groups may be a more appropriate way of conducting the analysis. However, we did not conduct the sub-grouping. One of the reasons that we did not conduct sub-grouping was small numbers of specimens (see Discussion).
Comparison of early pelagic larvae and large juvenile densities

To evaluate interannual differences in survivorship from the nutritional transition (NT) stage to the end of shrimp predation, we compared the density of larvae that were at the NT stage and large juveniles collected in July. In each year, the density of large juveniles collected in July was plotted vs. the density of larvae at the NT stage, and the slope was calculated. If the density of large juveniles is low and the density of larvae is high (low survivorship), the slope is low. Then, the slope was defined as the survival index, and the index values were compared among years.

RESULTS

Water temperatures and prey densities experienced by larvae and juveniles

The water temperatures experienced by pelagic larvae from 0 to 10 days LA differed among the three years (repeated measures MANOVA: F value: 225.7, p < 0.001). Mean temperature at 0 day LA was 7.1 °C in 2001, 8.0 °C in 2002, and 5.6 °C in 2003, and the temperatures increased with time. The mean temperatures for the 0 to 10 day LA interval were high in 2002 (8.4 °C; Fig. 2), medium in 2001 (7.5 °C), and low in 2003 (6.1 °C).

The prey densities experienced by pelagic larvae from 0 to 10 days LA also differed among the three years (Fig. 2; repeated measures MANOVA: F value: 574.6, p < 0.001). The mean
prey densities experienced by pelagic larvae were high in 2001 (61.6 inds/L), medium in 2003 (50.8 inds/L), and low in 2002 (19.7 inds/L).

The water temperatures experienced by juveniles from 0 to 30 days JA differed among the three years (repeated measures MANOVA: F value: 16.37, p < 0.001). The mean temperatures that juveniles experienced from 0 to 12 days JA were 9.7 °C in 2002 and 2003 and 9.3 °C in 2001 (Fig. 2). After 13 days JA, the increase in temperature in 2002 was slower than in the other years, and the mean temperatures experienced by juveniles from 13 to 30 days JA were low in 2002 (10.4 °C), medium in 2001 (11.1 °C), and high in 2003 (11.6 °C).

Comparison of otolith growth among year classes

In all year classes, the WAs were roughly constant during 0–10 days LA. The mean WAs (± SD) during 0–10 days LA (2001: 0.56 ± 0.12 µm; 2002: 0.60 ± 0.12 µm; 2003: 0.56 ± 0.12 µm) differed among year classes (repeated measures MANOVA: F value: 6.88, p = 0.001). The mean WA in 2002 was significantly higher than those in 2001 and 2003 (Fig. 4), but the WAs in 2001 and 2003 did not differ significantly during 0–10 days LA (Scheffe post hoc comparison: range of p values: 0.36–0.99).

The effect of water temperature and prey density on the growth of pelagic larvae was analyzed using the GLM (Table 3), and the AIC of the model in which only water temperature was included as the explanatory variable was smallest among the models tested.
The mean WAs (± SD) during 0‒30 days JA (2001: 1.56 ± 0.35 µm; 2002: 1.58 ± 0.41 µm; 2003: 1.77 ± 0.40 µm) differed among year classes (Fig. 4; repeated measures MANOVA: F value: 19.47, p < 0.001). For most ages, the WAs in 2003 were higher than those in other years. From 2 to 13 days JA, the WAs in 2002 were medium and those in 2001 were low. However, from 14 to 18 days JA, the WAs in 2001 were similar to those in 2002, and the former then became higher than the latter after 19 days JA. In the 2002 and 2003 year classes, the WAs of older juveniles decreased gradually. The WAs in 2001, however, decreased during 0‒10 days JA, increased during 11‒25 JA, and then decreased slightly after 26 days JA. The mean WA during 0‒30 days JA and experienced water temperature were significantly positively correlated (r = 0.39, p < 0.001; Fig. 5).

The mean (± SE) PLDs of eye-migrating larvae and juveniles were 23 (± 0.56) in 2001, 20 (± 0.21), and 22 (± 0.30) in 2003. The PLD and the mean WA during pelagic life were significantly negatively correlated (r = −0.46, p < 0.001).

Growth-selective survival

In 2001–2003, the WAs in 0–10 days LA did not differ between SV$_{pelagic}$ and OP$_{pelagic}$ (repeated measures MANOVA: 2001, 2002, and 2003: p = 0.91, 0.34, and 0.08, respectively; Fig. 6).

For the 2002 year class, the WAs of SV$_{juvenile}$ were significantly higher than those of
OP_{juvenile} (repeated measures MANOVA: F value: 6.58, p = 0.01, Fig. 6). For the 2003 year class, the WAs of SV_{juvenile} were similar to those of OP_{juvenile} (repeated measures MANOVA: F value: 0.52, p = 0.47). In 2002 and 2003, the WAs of both groups decreased with age.

Comparison of early pelagic larvae and large juvenile densities

The densities of larvae in the NT stage in March and April 2001, 2002, and 2003 were 2.1, 12.5, and 3.6 inds/m², respectively. The densities of large juveniles collected in July 2001, 2002, and 2003 were 0.77, 2.25, and 1.57 inds/100 m² respectively (Fig. 7). Thus, the survival indices in 2001, 2002, and 2003 were 0.36, 0.18, and 0.46, respectively. In 2002, larvae and large juveniles were abundant, but the survival index was the lowest among the three years studied.

DISCUSSION

The effects of environmental factors on growth

Among the three years studied, the growth of pelagic larvae was highest in 2002 when water temperature was highest. For other flatfish species, positive relationships between water temperature and larval growth rate have been reported from rearing experiments (Japanese flounder *Paralichthys olivaceus*: Seikai et al. 1986; summer flounder *Paralichthys dentatus*: Burke et al. 1999; sole *Solea solea*: Lagardere 1989) and in the field (plaice larvae:}
Hovenkamp 1989, 1990). Generally, prey abundance is an important factor affecting larval growth. Copepod nauplii are major prey items for marbled sole larvae (Nakagami 2001). However, in the present study the density of copepod nauplii was not an explanatory variable for the growth of pelagic larvae. Thus, our results suggest that water temperature may be a key factor affecting the growth of marbled sole pelagic larvae and that larvae may grow fast in the high water temperature range observed in 2001–2003. In contrast, the prey densities observed in 2001–2003 may not affect the growth of marbled sole larvae.

Pelagic larvae experienced distinctly different water temperatures in 2001 and 2003 (the mean values were 7.5 and 6.0 °C, respectively). However, the mean WAs of pelagic larvae did not differ significantly between these two years (the mean value was 0.56 µm in both years). Nakagami (2001) investigated the effect of water temperature and prey density on feeding by marbled sole pelagic larvae in Hakodate Bay in 1997–2000. He found that marbled sole larvae could not feed on prey organisms satisfactorily in < 7.5 °C water even if prey density was abundant. Moreover, he proposed that almost all larvae in 1999 might have starved and died due to feeding failure caused by the low water temperature. Feeding condition data for pelagic larvae in 2001–2003 were not available; however, water temperatures were 7.5 °C in 2001 and < 7.5 °C in 2003. Therefore, the growth rate of pelagic larvae in 2001 and 2003 may have been low due to feeding failure caused by low water temperatures.

The PLD of eye-migrating larvae and juveniles negatively correlated with growth during
pelagic life. The present study showed that high water temperature may have enhanced the
growth of pelagic larvae and that fast growth quickened larval development and shortened the
PLD. In a rearing experiment, Mutsutani (1988) found that a positive relationship between
high water temperature and larval growth, and that a negative relationship between larval
growth and the length of PLD for marbled sole (range: 10–18 °C). In the field, larval growth
of North Sea plaice was high and the number of days until the completion of metamorphosis
was small in a warm year (Hovenkamp and Witte, 1991).

The investigation of the effects of larval growth and the length of PLD on the body size of
newly-settled juveniles allowed us to examine whether such larval features affect
size-selective mortality during the early juvenile phase. However, the relationship between
otolith radii and body length was non-linear during the pelagic and eye-migrating stages (Joh
et al. 2005). Similar non-linearity has been reported for many flatfish species. This non-linear
relationship precludes the back calculation of body length by the biological intercept method
(Campana 1990). Thus, we could not examine the effects of larval growth and the length of
PLD on the body size of newly-settled juveniles.

Juvenile growth and water temperature correlated positively. Moreover, the patterns of
seasonal and interannual change in otolith growth in the 2001 and 2002 year classes were
similar to seasonal and interannual changes in water temperature. These results suggest that
water temperature strongly affected the growth of juveniles, as it did for larvae. The positive
relationships between water temperature and the growth of juveniles have been reported for other flatfish species (sole and plaice: Amara 2003). Conversely, May and Jenkins (1992) reported that the relationships between water temperature and the growth of juvenile flounder *Rhombosolea tapirina* were positive for the early cohort that hatched in winter but negative for the late cohort that hatched in spring. The relationship between water temperature and the growth of larvae and juveniles is usually dome shaped (Boehlert 1981), and growth rate increases with the rise of temperature below the most appropriate temperature but decreases beyond the optimum. In the present study, the growth rate of juvenile marbled sole was high during the warmer year. Thus, in Hakodate Bay, the highest water temperature observed might be below the optimum, and growth stagnation caused by unsuitable high water temperature might not have occurred for marbled sole juveniles in 2001–2003.

Generally, prey abundance is one of the important factors affecting the growth of fish juveniles (Malloy et al. 1996, Karakiri et al. 1989, 1991). However, van der Veer (1986) reported that prey abundance did not affect the growth of juvenile plaice. The principal prey item for small marbled sole juveniles in May–August in Hakodate Bay is demersal harpacticoid copepods (Nakagami et al. 2000). We did not investigate the effect of prey abundance on marbled sole juveniles in the present study because of the difficulty in sampling demersal harpacticoid copepods. The effects of prey abundance on the growth of marbled sole juveniles need to be evaluated with rearing experiments in the future.
Growth-selective survival

In the growth comparison between SV and OP, the larvae and juveniles included in OP were limited by their NTD or by the date when they became juveniles. If the ranges of the NTDD for SV\textsubscript{pelagic} and the date when they became juveniles for SV\textsubscript{juveniles} are very wide, the environmental factors experienced by the early and the late cohorts of SV might differ. In this case, dividing the SVs into seasonal sub-groups may be a more appropriate way of conducting the analysis. However, the numbers of days between the 25 and 75 percentiles of the NTD of SV\textsubscript{pelagic} were relatively narrow (9 days in 2001, 8 days in 2002 and 2003; Fig. 8). The numbers of days between the 25 and 75 percentiles of the day when they became juveniles of SV\textsubscript{juveniles} were also narrow (9 days in 2002, 7 days in 2003), and the changes in water temperature were relatively stationary. Thus, we did not conduct sub-grouping in the present study. Water temperature during the larval phase in 2003 was lower in the early phase than in the late phase (upper panel in Fig. 8), so the survival pattern might differ between the early and the late cohorts of SV\textsubscript{pelagic}. However, sub-grouping also could not be conducted for SV\textsubscript{pelagic} in 2003 because of small numbers of specimens.

During the early pelagic stage, growth-selective larval survival was not detected for any of the year classes. Although water temperature was low in 2003, growth-selective survival was not detected. The growth-mortality hypothesis is based on the concept that fast growing larvae
and juveniles have the advantage of high survival by growing large enough to avoid predation (Anderson 1988). However, predators of marbled sole pelagic larvae have not been identified to date, and predation risk has not been estimated in Hakodate Bay and its vicinity.

Starvation might be another source of larval and juvenile mortality. Almost all larvae that underwent NT before 17 March 2003 were thought to have died due to feeding failure caused by extremely low water temperature (Joh et al. 2009). However, larvae that underwent NT after 17 March 2003 could have survived to the juvenile stage, and growth-selective mortality was not detected for larvae in 2003.

Among flatfish species, the PLD of marbled sole is relatively short, and this may be another reason for the absence of growth-selective survival of pelagic larvae. Of the 120 flatfish species that inhabit the northern Pacific, only five (including marbled sole) spawn adhesive and demersal eggs. This characteristic probably avoids the risk of advection of eggs (i.e., passive transport) to inappropriate locations (Rijnsdorp & Witthames 2005). Moreover, eye-migrating larvae of marbled sole start their demersal life before the completion of metamorphosis (Fukuhara 1988). Therefore, the PLD of marbled sole larvae may be shorter than that of other flatfishes that spawn floating eggs and start their demersal life after the completion of eye migration.

In the early juvenile stage, growth-selective survival was detected in 2002 but not in 2003. Sand shrimps are known to be predators of demersal larvae and juveniles for some flatfish
In Hakodate Bay, predation on demersal larvae and juveniles of marbled sole by *C. uritai* has been reported (Nakaya et al. 2004a, b, 2007), but no other predator has been observed (Nakaya 2004). Therefore, we propose that growth-selective survival of the juvenile stage may occur in relation to predation by *C. uritai*. Population growth of juveniles was slow in 2002 because of low water temperature. Thus, juveniles required time to exceed the size spectrum that is vulnerable to shrimp predation; the individuals that grew more rapidly were able to survive, thereby exhibiting growth-selective survival. In contrast, survival in the juvenile stage was not growth related in 2003. In 2003, water temperature experienced by pelagic larvae was low, but it quickly increased during the early juvenile stage, thus allowing juveniles to grow quickly in the warmer environment. In 2003, juveniles likely passed more rapidly through the risky size spectrum preferred by shrimp, and consequently growth-selective survival was not detected in 2003.

Comparison of early pelagic larvae and large juvenile densities

The survival index in 2002 was 0.18 and was the lowest among the three year classes (2001 and 2003: 0.36 and 0.46, respectively). This means that survivorship between the completion of the NT and the end of the phase vulnerable to predation by sand shrimps likely was low in 2002. The growth rate of pelagic larvae and water temperature were high in 2002 but low in
2001 and 2003. Additionally, survival of the pelagic larval stage was not growth selective in any of the years studied. These results suggest that the difference in survivorship between 2002 and 2003 was not related to the pelagic larval stage.

Population growth rate of juveniles and water temperature were lowest in 2002, and survival of the early juvenile stage was growth selective in 2002 (but not in 2003). These findings suggest that for marbled sole in Hakodate Bay, interannual fluctuations in cumulative survivorship throughout the pelagic larval and early juvenile stages were more affected by growth and survival of the juvenile stage than those of the pelagic larval stage. Although we did not evaluate the occurrence of density-dependent mortality of early juveniles in 2002, predation on larval and juvenile marbled sole by *C. uritai* reportedly is density independent, size specific, and spatial-distribution-overlap dependent (Nakaya et al. 2004a, 2007).

Joh et al. (2009) suggested that almost all of the pelagic larvae hatched before 17 March 2003 may have died due to the critical decline of temperature caused by intrusion of cold Oyashio Coastal Water. Therefore, we propose that the pelagic larval stage also is an important period for survival of the population under extremely severe conditions. The Tsugaru Warm Current flows into the bay throughout the year. Hakodate Bay is the northernmost habitat of marbled sole. The spawning season of marbled sole in Hakodate Bay starts in late winter and ends in early spring (February–April) and water temperatures in this season were lowest of the years. We suggest that the large volume of thermal transport by the
Tsugaru Warm Current to the bay probably sustains the reproduction of marbled sole in Hakodate Bay.

Acknowledgements

We would like to express our gratitude to Prof. T. Takahashi, Prof. Y. Sakurai, and Assoc. Prof. T. Nakatani for their valuable advice during our study. We also thank H. Ishizaki, I. Oda, and the members of the Marine Bioresources Ecology Laboratory (Hokkaido University) for their support in field sampling and the editor and three anonymous reviewers for their critical suggestions. This work was supported by a Grant-in-Aid for Primary Study of Fisheries Encouragement to T. Takatsu from Hakodate City Hall and by the 21st century COE Program “Marine Bio-Manipulation Frontier for Food Production” of the Ministry of Education, Culture, Sports, Science and Technology of Japan. The language in this manuscript was reviewed and polished by International Science Editing, Ltd.

LITERATURE CITED

Amara R (2003) Seasonal ichthyodiversity and growth patterns of juvenile flatfish on a nursery ground in the Southern Bight of the North Sea (France). Env Biol Fish 67:

Nakagami M (2001) The spatial and temporal distributions and feeding habits of marbled sole *Pleuronectes yokohamae* larvae and juveniles in the coastal areas of Tsugaru Strait, Hokkaido. PhD Dissertation, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate

Nakaya M (2004) Spatial and temporal distribution, and feeding habits of a sand shrimp *Crangon uritai* as a predator for larval and juvenile marbled sole in Hakodate Bay.
Nakaya M, Takatsu T, Nakagami M, Joh M, Takahashi T (2004a) Spatial distribution and feeding habits of the shrimp *Crangon uritai* as a predator on larval and juvenile marbled sole *Pleuronectes yokohamae*. Fish Sci 70: 445–455

Taylor DL, Collie JS (2003) Effect of temperature on the functional response and foraging behavior of the sand shrimp *Crangon septemspinosa* preying on juvenile winter

Fig. 1. The location of sampling stations and isobaths in Hakodate Bay. Solid circles indicate sampling stations used in present study (each numeral shows the depth at each station).

Fig. 2. *Pseudopleuronectes yokohamae*. Mean water temperature that pelagic larvae (upper panel) and juveniles (lower panel) experienced. Vertical bars indicate standard errors. The ages of larvae and juveniles were defined as the number of the days after the onset of otolith ring formation (larval age: LA) and the number of otolith rings formed outside the first increment in juvenile stage as juvenile age (JA).

Fig. 3. *Pseudopleuronectes yokohamae*. Relationship between otolith radii and body lengths.

Fig. 4. *Pseudopleuronectes yokohamae*. Width of otolith rings at each age (WA: width at age) in pelagic larval stages (upper panel) and juvenile stage (lower panel). Vertical bars indicate standard errors.

Fig. 5. *Pseudopleuronectes yokohamae*. Relationship between mean water temperatures experienced and mean width of otolith rings (WAs) of juveniles in 0–30 days JA.

Fig. 6. *Pseudopleuronectes yokohamae*. Width of otolith rings (WA) of survivor (SV) and its original population (OP) in pelagic larval stages (left panels) and juvenile stage (right panels). Vertical bars indicate standard errors.

Fig. 7. *Pseudopleuronectes yokohamae*. Relationship between the densities of larvae at the nutritional transition stages (NT) and large juveniles collected in July.
Fig. 8. Seasonal changes in water temperature in water column exclusive of surface layer (upper panel) and on the sea floor (lower panel). Horizontal box plots in upper panel shows the ranges of NTD of SV\textsubscript{pelagic} and those in lower panel shows the range of the day that SV\textsubscript{juveniles} started its demersal life. Left and right ends of bars indicate the minimum and maximum values. Left and right ends of boxes indicate the 25 and 75 percentiles and the vertical bars in the boxes indicate the mean.
<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Number of casts</th>
<th>Density of larvae and juveniles</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plankton net</td>
<td>Sledge net</td>
<td>Plankton net (inds./m²)</td>
<td>Sledge net (inds./100m²)</td>
</tr>
<tr>
<td>2001</td>
<td>9 March</td>
<td>15 10</td>
<td>0.1 0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 March</td>
<td>15 10</td>
<td>8.9 0.5 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 April</td>
<td>15 14</td>
<td>0.7 0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 April</td>
<td>15 14</td>
<td>0.0 0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 April</td>
<td>15 14</td>
<td>1.1 0.8 (0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 May</td>
<td>10 16</td>
<td>0.0 0.9 (1.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 May</td>
<td>4 19</td>
<td>0 0.0 (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 July</td>
<td>0 18</td>
<td>- 0 (0.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>13 March</td>
<td>15 5</td>
<td>18.5 3.7 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 March</td>
<td>15 10</td>
<td>16.9 10.1 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 April</td>
<td>15 14</td>
<td>61.3 73.7 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 April</td>
<td>13 8</td>
<td>2.2 10.3 (2.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 April</td>
<td>15 18</td>
<td>0.1 4.1 (2.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 May</td>
<td>12 16</td>
<td>0 0.3 (2.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 May</td>
<td>0 18</td>
<td>- 0 (0.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 June</td>
<td>0 12</td>
<td>- 0 (1.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 June</td>
<td>0 12</td>
<td>- 0 (1.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 July</td>
<td>0 12</td>
<td>- 0 (2.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>6 March</td>
<td>15 10</td>
<td>13.6 0.3 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 March</td>
<td>15 12</td>
<td>59.8 9.9 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 March</td>
<td>15 10</td>
<td>6.4 3.8 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 April</td>
<td>15 12</td>
<td>5.7 0.0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 April</td>
<td>15 12</td>
<td>4.5 1.8 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 April</td>
<td>15 12</td>
<td>0.2 3.2 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 May</td>
<td>15 16</td>
<td>0.1 1.3 (0.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 May</td>
<td>0 14</td>
<td>- 0.1 (0.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 June</td>
<td>0 8</td>
<td>- 0 (2.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 June</td>
<td>0 10</td>
<td>- 0 (2.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 July</td>
<td>0 13</td>
<td>- 0 (1.6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers in parentheses represent the density of juveniles.
Table 2 The numbers of larvae and juveniles collected, used for growth comparison among years, and used for the comparison between survivor (SV) and original population (OP)

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of larvae collected</th>
<th>Number of juveniles collected</th>
<th>inter annual comparison growth between OP and (SV)</th>
<th>Number of juveniles collected</th>
<th>inter annual comparison growth between OP and (SV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 March</td>
<td>6</td>
<td>0</td>
<td>0 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>26 March</td>
<td>403</td>
<td>78</td>
<td>0 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6 April</td>
<td>21</td>
<td>8</td>
<td>1 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>16 April</td>
<td>2</td>
<td>1</td>
<td>1 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>25 April</td>
<td>54</td>
<td>27</td>
<td>12 (5)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8 May</td>
<td>26</td>
<td>6</td>
<td>0 (5)</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>23 May</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>10 July</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 March</td>
<td>407</td>
<td>98</td>
<td>0 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>25 March</td>
<td>511</td>
<td>87</td>
<td>9 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5 April</td>
<td>2,922</td>
<td>88</td>
<td>18 (1)</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>15 April</td>
<td>207</td>
<td>32</td>
<td>8 (18)</td>
<td>66</td>
<td>44</td>
</tr>
<tr>
<td>24 April</td>
<td>127</td>
<td>53</td>
<td>0 (32)</td>
<td>65</td>
<td>39</td>
</tr>
<tr>
<td>6 May</td>
<td>8</td>
<td>6</td>
<td>0 (1)</td>
<td>65</td>
<td>39</td>
</tr>
<tr>
<td>20 May</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>17 June</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>28 June</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>37</td>
<td>23</td>
</tr>
<tr>
<td>26 July</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 March</td>
<td>350</td>
<td>112</td>
<td>0 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>14 March</td>
<td>1,604</td>
<td>115</td>
<td>0 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>25 March</td>
<td>231</td>
<td>64</td>
<td>0 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1 April</td>
<td>179</td>
<td>58</td>
<td>3 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>15 April</td>
<td>125</td>
<td>44</td>
<td>12 (0)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>25 April</td>
<td>68</td>
<td>44</td>
<td>12 (8)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6 May</td>
<td>48</td>
<td>17</td>
<td>0 (14)</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>23 May</td>
<td>2</td>
<td>1</td>
<td>0 (1)</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>9 June</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>30 June</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>30 July</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>34</td>
<td>33</td>
</tr>
</tbody>
</table>
Table 3 Results of the generalized linear model (GLM) analysis for the effect of water temperature and prey density experienced by pelagic larvae on the growth

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient</th>
<th>Standard error</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>6.610*10^{-2}</td>
<td>2.435*10^{-2}</td>
<td>0.007</td>
</tr>
<tr>
<td>Prey</td>
<td>7.311*10^{-3}</td>
<td>4.287*10^{-3}</td>
<td>0.09</td>
</tr>
<tr>
<td>Temp : prey</td>
<td>9.126*10^{-4}</td>
<td>5.362*10^{-4}</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Models AIC

<table>
<thead>
<tr>
<th></th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>-361.5</td>
</tr>
<tr>
<td>Temp + Prey</td>
<td>-360.6</td>
</tr>
<tr>
<td>Temp</td>
<td>-362.6</td>
</tr>
<tr>
<td>Prey</td>
<td>-344.1</td>
</tr>
</tbody>
</table>

"Temp" and “Prey” are mean water temperature and prey density that pelagic larvae experienced during 0–10 days LA. “temp : prey” means interaction term.
Mean water temperature that pelagic larvae experienced

Mean water temperature that juveniles experienced

Mean prey density that pelagic larvae experienced

Mean water temperature that juveniles experienced
Fig. 3: Joh et al.

- Otolith radius (µm)
- Body length (mm)

○: pelagic larvae
□: juveniles
n = 185
r = 0.39
p < 0.001

Mean experienced water temperature

Mean WA

Fig. 5 Joh et al.
Fig. 6

Joh et al
Density of larvae at NT in March–April (inds./m²)

Density of large juveniles collected in July (inds./100m²)

Fig. 7

Joh et al
Water temperature (ºC)

Calendar date

Fig. 8

Joh et al.

2001

2002

2003

2001

2002

2003

1-Mar 16-Mar 31-Mar 15-Apr 30-Apr

1-Apr 21-Apr 11-May 31-May 20-Jun

0 5 10 15 20 25

0 4 8 12

2001

2002

2003

2001

2002

2003

2001

2002

2003