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Numerical Analysis of Quantum-Mechanical Non-Uniform
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We have numerically solved the two-dimensional time-dependent Schödinger equation for a magnetized
proton in the presence of a uniform electric field and a nonuniform magnetic field with a gradient scale length of
LB. It is shown that the particle mass and the electric field do not affect the time rate of variance change at which
variance increases with time, and their characteristic times are of the order of LB/v0 sec with v0 being the initial
particle speed.
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1. Introduction
We have shown in the previous papers [1–4] for the

cases of ∇B drift that the variance, or the uncertainty, in
position σ2

r grows with time. For typical fusion plasmas
with a temperature T ∼ 10 keV and a number density of
n = 1020 m−3, deviation σr (t) would reach the interparti-
cle separation n−1/3 in a time interval of the order of 10−4

sec. After this time the wavefunctions of neighboring par-
ticles would overlap, as a result the conventional classical
analysis may lose its validity: Plasmas may behave more-
or-less like extremely-low-density liquids, not gases, since
the size of each particle is of the same order of the inter-
particle separation.

We have also pointed out in Refs. [5–7] that (i) for dis-
tant encounters in typical fusion plasmas of a temperature
T = 10 keV and n = 1020 m−3, the average potential en-
ergy 〈U〉 ∼ 30 meV is as small as the uncertainty in energy
ΔE ∼ 40 meV, and (ii) for a magnetic field B ∼ 3 T, the
spatial size of the wavefunction in the plane perpendicu-
lar to the magnetic field is as large as the magnetic length
�B ∼ 10−8 m [8] which is much larger than the typical elec-
tron wavelength λe ∼ 10−11 m, and is around one-tenth of
the average interparticle separation Δ� ∼ 10−7 m.

In this paper, quantum mechanical effects of a uniform
electric field and a nonuniform magnetic field will be stud-
ied.

2. Schrödinger Equation
The unsteady Schrödinger equation for wavefunction

ψ (r, t), at a position r and a time t, is given by
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i�
∂ψ

∂t
=

[
1

2 m

(
−i�∇ − qA

)2
+ qV

]
ψ, (1)

where V = V(r) and A = A (r) stand for the scalar and
vector potentials, m and q the mass and electric charge of
the particle under consideration, and i ≡ √−1 the imagi-
nary unit. When the corresponding classical particle has a
momentum p0 = mu0, where u0 is the initial velocity, at a
position r = r0 at a time t = 0, the initial condition for the
wavefunction ψ (r, 0) can be given [9, 10] by

ψ(r, 0) =
1√
π�B

exp

⎡⎢⎢⎢⎢⎣− (r − r0)2

2�2
B

+ ik0 · r

⎤⎥⎥⎥⎥⎦ , (2)

where k0 = mu0/� is the initial wavenumber vector.
We will solve Eqs. (1) and (2) using the finite difference
method (FDM) in space with the Crank-Nicolson scheme
[2, 4, 9]. The numerical errors for the Crank-Nicolson
scheme with the central difference in space

{ψ}n+1 ≡ U {ψ}n , (3)

where

U ≡
(

I − Δt
2i�

H
)−1 (

I +
Δt
2i�

H
)
, (4)

are quadratic over both the time step Δt and the space step
Δx = Δy. Here the superscript n represents time-label, I
and H are unit matrix and numerical Hamiltonian matrix
[6, 9]. This time integrator is not only unconditionally sta-
ble but also norm-conserving scheme for discretized wave-
function {ψ}, the latter of which leads to the strict particle
conservation, irrespective of Δt, Δx and Δy, since the ma-
trix H in Eq. (4) is Hermitian so that the matrix U is unitary;
the norm ‖ {ψ} ‖ = const with time.

We will also adopt the successive over relaxation
(SOR) scheme for time integration in Eq. (3). The size
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of spatial discretization for the two-dimensional FDM in
(x, y) plane should be sufficiently small to satisfy

Δx ∼ Δy � 1
k0
=
λ0

2π
, (5)

where λ0 is the de Broglie wavelength. This restriction
Eq. (5) on Δx and Δy demands a lot of computer memory
for fast particles.

2.1 Exact solution for uniform electric and
magnetic fields

In the case of uniform electric and magnetic fields
with E = −∇V (y) = Eey and B = ∇ × A (y) = Bez,
the Hamiltonian operator Ĥ does not depend on x. Thus,
the momentum operator in x direction P̂x = −i�∂/∂x is
commutable with Ĥ, and can be replaced with its eigen-
value �kx, where the wavefunction ψ (x, y, t) has the form
of ei(kx x−Et/�)ϕ (y) with E ≡

〈
Ĥ

〉
being the energy eigen-

value. In this case, Schrödinger equation (1) becomes

(
η2 − ∂2

∂η2

)
ϕ =

2
�ω

[
E −

(
�kx − mE

2B

) E
B

]
ϕ, (6)

where ω ≡ qB/m is the cyclotron angular frequency, and

η ≡ qBy + �kx − mE/B√
�qB

. (7)

A function H (η) with ϕ (η) ≡ H (η) exp
(
−η2/2

)
satisfies

Hermite differential equation [11] so that ϕ (η) is given by

ϕN (η) =
HN (η)√
2N N!

√
π

exp

(
−η

2

2

)
,N = 0, 1, . . . , (8)

where HN (η) is the Hermite polynomials. Since the eigen-
value in Eq. (6) for ϕN is 2N + 1, the energy eigenvalue for
the corresponding wavefunction ψN is

EN = �ω

(
N +

1
2

)
+

(
�kx − mE

2B

) E
B
. (9)

The first term in Eq. (9) is the same as that of a harmonic
oscillator [10] with the frequency ω, and the second term
is due apparently to the E × B drift.

For the initial condition given in Eq. (2) with u0 =
(u0, 0), we have

ψ (η, t) =
e−i(Ωt+Θ(η,t))

π1/4
exp

[
− (η − 〈η〉)2

2

]
, (10)

Ω =
1
2

[
ω +

m
�

(
u0 − E

2B

) E
B

]
, (11)

Θ (η, t) = η0

(
η sinωt − η0

4
sin 2ωt

)
, (12)

where 〈η〉 is the expectation value of particle position. Us-
ing the definition of η in the Eq. (7)

〈y〉 ≡ y0 −
(
u0 − E

B

) 1 − cosωt
ω

, (13)

which comes from the fact that the total momentum in x
direction Px = mu − qBy is kept constant, i.e. the Pois-
son bracket of [P̂x, Ĥ] = 0. Although the exact solution
Eq. (10) does not include x, its expectation value 〈x〉 is
found as

〈x〉 ≡ x0 +

(
u0 − E

B

) sinωt
ω
+

E
B

t, (14)

since [P̂y + qBx − qEt, Ĥ] = 0, i.e.
〈
P̂y

〉
+ qB 〈x〉 − qEt =

const [8], which leads to the E × B drift. The expectation
value of position 〈r〉 = (〈x〉 , 〈y〉) is exactly the same as the
classical one r (t), so are other expectation values except
for uncertainty, such as energy of E = 〈i�∂/∂t〉 =

〈
Ĥ

〉
=

mu2
0/2 − qEy0 + �ω/2.

Thus, Eq. (10) has all the information on the particle
under consideration. It should be noted that the variance
in position σ2

r = �/qB does not change with time in the
presence of a uniform electric and a magnetic field.

3. Numerical Results
In what follows, velocity and time are normalized by

10 m/s and the cyclotron frequency for a proton in B =
10 T with a speed of 10 m/s, thus position is normalized by
the cyclotron radius of the proton. The magnetic length [8]
for a proton in B = 10 T, �B ≡ √

�/eB ∼ 10−8 m is a
measure for the spread of a wave function in the plane per-
pendicular to the magnetic field. With these normalization,
Planck constant � ∼ 0.6038, initial uncertainty in position
�2

B = �/eB ∼ 0.77712 and initial uncertainty in kinetic mo-
mentum 3/2(�eB) ∼ 0.9058 are of order of unity. It should
be noted that the kinetic energy of a classical proton speed
∼ 27 m/s in B = 10 T corresponds to the uncertainty of the
momentum.

In the numerical results to be presented in the follow-
ing subsections, the Schrödinger equation is solved for a
time duration of five cyclotron rotations by a proton in the
presence of an electrostatic potential of V = V (y) = −Ey
and a vector potential of A = A (y) = −By (1 − y/2LB) ex

with LB being the gradient scale length of the magnetic
field.

3.1 Numerical errors
The relative numerical errors in energy E, total mo-

mentum Px, and particle conservation are quite small,
as shown in Fig. 1 for initial mechanical momentum of
mu0 = (mu0 = 0,mv0 = 5) at r0 = (x0 = −5, y0 = 0), an
electric field E = 0, and a magnetic field B = 1 with
LB = ∞. Initial values of the conserved quantities in such
a case are energy E = 12.92, momentum 〈Px〉 = 〈−i�∂x〉 =
mu0 − qBy0 = 0 with |P| ∼ mv0 = 5, and the particle con-
servation of∫

Σ

ρ (r, t) d2r = 1. (15)

The relative error in energy is almost identical with that in
particle conservation because of the unitarity of the numer-
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Fig. 1 Time evolution of relative errors in energy, momentum
and particle conservation for E = 0, B = 1 and initial
mechanical momentum (mu0,mv0) = (0, 5).

Fig. 2 Time evolution of the expectation of position 〈r〉 for
r0 = (−5, 0), mu0 = (0, 5), B = 1 and E = 0.1.
Since normalized period of gyration is 2π, the drift speed
(〈x (2π)〉 − 〈x (0)〉) /2π is close to E/B = 0.1.

ical time-shift operator U, and of the Hermitian nature of
numerical Hamiltonian operator H given in Eq. (3).

Note that the normalized initial speed of v0 = 5, i.e.
50 m/s, which is much slower than the thermal speed of
fusion plasmas, is assumed here due to a numerical reason:
required numerical grid sizes Δx and Δy in Eq. (5) need
to be much smaller than the de Broglie wavelength that is
inversely proportional to the particle speed.

3.2 E × B drift
Figure 2 shows the time evolution of the expectation

of position 〈r〉 for r0 = (−5, 0), u0 = (0, 5), uniform mag-
netic field of B = 1ez with LB = ∞, and E = 0.1ey. The
classical E × B drift velocity in this case is 0.1ex. on the
other hand, the numerical drift speeds in x-direction of

d 〈x〉
dt

≡ 〈x (2π)〉 − 〈x (0)〉
2π

, (16)

are in the range of 0.10001–0.10008, and are close to clas-
sical E × B drift speed of E/B = 0.1, in which the normal-

Fig. 3 Time evolution of variance in position σ2
r =

〈
r2

〉
− 〈r〉2

for initial speed of v0 = 5, E = 10−4, and B = 1 with
LB = ∞ or LB = 104.

Fig. 4 Time evolution of variance σ2
p =

〈
p2

〉
− 〈p〉2 in mechani-

cal momentum p̂ = −i�∇− qA for initial speed of v0 = 5,
E = 10−4, and B = 1 with LB = ∞ or LB = 104.

ized period of gyration is 2π.

3.3 Time evolution of variances
Figures 3 and 4 show the time evolution of variances

in position σ2
r =

〈
r2

〉
− 〈r〉2 and mechanical momentum

σ2
p =

〈
p2

〉
− 〈p〉2 in mechanical momentum p̂ = −i�∇ −

qA, respectively for B = 1 and initial speed is v0 = 5.
Red points in both figures show the variance for the case
of uniform magnetic field, and blue lines for nonuniform
magnetic field with the gradient scale length of LB = 104.
It is seen that the peaks of variances grow with time.

Although the variances for uniform magnetic field
case should not change with time from Eq. (10), they
slightly grows with time due to numerical errors, especially
due to finite difference approximation. Let us define the
difference of σ2

peak (t) between the nonuniform, i.e. finite
LB, and uniform, LB = ∞, magnetic field cases,

Δσ2
peak ≡ σ2

peak,nonuniform − σ2
peak,uniform, (17)

which would gives us the physical time rate of variance
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Fig. 5 Expansion rate of variance in position vs. �v0/qBLB.
Each point shape, such as � and �, corresponds to the
same electric field E.

Fig. 6 Expansion rate of variance in mechanical momentum vs.
�v0/qBLB. Each point shape, such as � and �, corre-
sponds to the same electric field E.

change [1, 2] as

dσ2

dt
≡
Δσ2

peak (2π) − Δσ2
peak (0)

2π
, (18)

where 2π is the normalized period of the cyclotron motion.

3.4 Rate of changes in variances
For various combinations of physical parameters, such

as m, q, v0, E, B, and LB, similar analyses as in the preced-
ing section give us the relationship between the expansion
rate of variances in position σ2

r as a function of �v0/qBLB,
as shown in Fig. 5, and in mechanical momentum σ2

p as a
function of �v0qB/LB in Fig. 6. Also depicted are the fitting
lines in blue. Note that the variances clearly on the respec-
tive fitting lines. The expansion rates both for position and
mechanical momentum have the following expressions

dσ2
r

dt
= 4.014 × �v0

qBLB
, (19)

dσ2
p

dt
= 0.995 × �qBv0

LB
, (20)

both of which do not depend on the particle mass m nor the
electric field E. It should be noted that the initial variance
in position is σ2

r (0) = �/qB which is the magnetic length
squared, and that in momentum is σ2

p (0) = �qB, thus the
characteristic times τ are τr ∼ LB/4v0 for position and τp ∼
LB/v0 sec for momentum, respectively.

4. Summary
We have solved the two-dimensional time-dependent

Schödinger equation for a magnetized proton in the pres-
ence of a uniform electric field and a nonuniform magnetic
field with a gradient scale length of LB. It is shown that the
particle mass and the electric field do not affect the time
rate of variance expansion at which variances increase with
time, and their characteristic times are of the order of LB/v0

sec.
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