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Abstract 19 

Endo-β-1,3-glucanases (laminarinase, EC 3.2.1.6) from marine molluscs 20 

specifically degraded laminarin from brown algae producing laminaribiose and glucose, 21 

but hardly degraded laminaribiose. For the complete depolymerization of laminarin, 22 

other enzymes that can hydrolyze laminaribiose appeared to be necessary. In the present 23 

study, we successfully isolated a laminaribiose-hydrolyzing enzyme from the digestive 24 

fluid of a marine gastropod Aplysia kurodai by ammonium sulfate fractionation 25 

followed by conventional column chromatographies. This enzyme, AkLab, named after 26 

the scientific name of this animal and substrate specificity toward laminaribiose, 27 

showed an approximate molecular mass of 110 kDa on SDS-PAGE, and optimum pH 28 

and temperature at around pH 5.5 and 50
o
C, respectively. AkLab rapidly hydrolyzed 29 

laminaribiose and p-nitrophenyl--D-glucoside, and slowly cellobiose, gentiobiose and 30 

lactose, but not sucrose and maltose. AkLab showed high transglycosylation activity 31 

and could produce a series of laminarioligosaccharides larger than laminaritetraose from 32 

laminaribiose (a donor substrate) and laminaritriose (an acceptor substrate). This 33 

enzyme was suggested to be a member of glycosyl hydrolase family 1 by the analysis 34 

for partial amino-acid sequences. 35 

 36 
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 38 

1. Introduction 39 

β-1,3-Glucanase (EC 3.2.1.6) is an enzyme that hydrolyzes β-1,3-glucosyl 40 

linkage of -glucans producing -1,3-glucooligosaccharides and glucose. This enzyme 41 

distributes over fungi, bacteria, higher plants, and marine mollusks (Sova et al., 1970; 42 

Erfle et al., 1988; Tangarone et al., 1989; Hrmova and Fincher, 1993; Mrsa et al., 1993; 43 

Miyanishi et al., 2003a; Ueda et al., 2011; Aires et al., 2012). Their physiological roles 44 

are diverse and vary depending on their origins. For example, this enzyme intimately 45 

relates to seed germination and antifungal activity in some plants (Emst et al., 1992; 46 

Leubner-Metzger et al., 1995). While it plays important roles for cell division and 47 

morphogenesis in fungi (Esteban et al., 2005; Gastebois et al., 2013). On the other hand, 48 

marine molluscan enzymes in digestive fluid play an important role for saccharification 49 

of laminarin and chrysolaminarin from their dietary algae (Sova et al., 1970; 50 

Lépagnol-Descamps et al., 1998). Accordingly, the molluscan enzymes are generally 51 

called laminarinase. Higher order structure of algal laminarin is known to vary 52 

depending on algal sources (Black et al., 1951; Størseth et al., 2005; Smelcerovic et al., 53 

2008). Concomitantly, properties of molluscan enzymes also seemed to vary depending 54 
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on the laminarin structures from dietary algae (Kovalchuk et al., 2006; Kumagai and 55 

Ojima, 2010). In this respect, molluscan laminarinases appears to be useful materials for 56 

comparative studies on -1,3-glucanases. 57 

Molluscan laminarinases have been studied using abalone, scallop, surf clam, 58 

and sea hare (Lépagnol-Descamps et al., 1998; Kozhemyako et al., 2004; Kovalchuk et 59 

al., 2006; Kumagai et al., 2008; Kumagai and Ojima, 2009; Kumagai and Ojima, 2010; 60 

Pesentseva et al., 2012; Zakharenko et al., 2012). These enzymes hydrolyzed laminarin 61 

by an endolytic process producing laminaribiose and glucose as major end products. 62 

Although these molluscan enzymes hardly hydrolyzed laminaribiose as a sole substrate, 63 

they could produce glucose from the mixture of laminaribiose and laminaritetraose via 64 

transglycosylation (Kumagai and Ojima 2009; Kumagai and Ojima 2010). In this 65 

reaction, laminaribiose and laminaritetraose were used as acceptor substrate and donor 66 

substrate, respectively. However, this reaction seemed to be an in vitro one since the 67 

transglycosylation reaction required much higher concentration of donor and acceptor 68 

substrates (10 – 50 mM) than those in the digestive fluid (less than 1 mM). Therefore, 69 

laminaribiose in the digestive fluid of mollusks should be degraded by some other 70 

‘laminaribiose-hydrolyzing’ enzymes which have been unidentified yet. One candidate 71 

for this enzyme is β-glucosidase (Perez-Pons et al., 1994; Opassiri et al., 2004; Sanchez 72 
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C., 2009) and another is laminaribiose-specific hydrolase (laminaribiase, EC 3.2.1.21). 73 

To date, only one β-D-glucosidase that can degrade laminaribiose has been isolated 74 

from Littorina kurila (Pesentseva et al., 2012). To enrich information on degradation of 75 

laminaribiose in mollusks, it seems necessary to investigate laminaribiose-hydrolyzing 76 

enzymes using as many mollusks as possible. In addition, such enzymes are attractive 77 

from the viewpoint of practical applications since they possibly catalyze 78 

transglycosylation reaction that is available for the synthesis of artificial 79 

heterooligosaccharides with beneficial functions (Mackenzie et al., 1998).  80 

To date, the authors have been studying on the polysaccharide-degrading 81 

enzymes from marine mollusks to understand the assimilation processes for algal 82 

polysaccharides as carbon and energy sources in mollusks (Suzuki et al., 2003; Shimizu 83 

et al., 2003; Ootsuka et al., 2006; Kumagai et al., 2008, 2009, 2010 and 2013; Rahman 84 

et al., 2010; Zahura et al., 2010). In the present study, we focused on a 85 

laminaribiose-hydrolyzing enzyme from the common sea hare Aplysia kurodai. This 86 

enzyme showed significantly high laminaribiose-hydrolyzing activity and also 87 

transglycosylation activity. Analysis for partial amino-acid sequences indicated that this 88 

enzyme belongs to glycosyl hydrolase family 1. 89 

 90 
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2. Materials and methods 91 

 92 

2.1. Materials 93 

 94 

The common sea hare A. kurodai (body length, approximately 12 cm) was 95 

collected on the shore of Hakodate, Hokkaido Prefecture, Japan, in July 2011. Digestive 96 

fluid was harvested from the gastric lumen of 20 specimens. The digestive fluid 97 

(approximately 100 mL) was dialyzed against 10 mM sodium phosphate buffer (pH 7.0) 98 

and centrifuged at 10,000×g for 10 min to remove insoluble materials. The clear 99 

supernatant with brownish color (crude enzyme) was used for the isolation of 100 

laminaribiose-hydrolyzing enzyme(s). Laminarin (from Laminaria digitata) and 101 

gentiobiose were purchased from Sigma-Aldrich (St. Louis, MO, USA). 102 

Laminarioligosaccharides (laminaribiose – laminariheptaose, abbreviated to L2 – L7), 103 

cellobiose, p-Nitrophenyl -D-glucopyranoside (-pNPG) and other -pNP derivatives 104 

(D-galactoside, D-mannoside, D-fucoside, D-N-acetyl glucosaminide and D-xyloside) 105 

were purchased from Seikagaku Kogyo (Tokyo, Japan). Sucrose and maltose were 106 

purchased from Kanto Kagaku (Tokyo, Japan). Lactose was purchased from Wako Pure 107 

Chemical Industries (Osaka, Japan). TOYOPEARL Phenyl-650M, TOYOPEARL 108 
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DEAE-650M and TOYOPEARL HW50F were from Toyo Soda Mfg. Co. (Tokyo, 109 

Japan). Other reagents were purchased from Wako Pure Chemical Industries. Superdex 110 

200 10/300 GL was purchased from GE Healthcare Life Sciences (Uppsala, Sweden). 111 

 112 

2.2. Purification of laminaribiose-hydrolyzing enzyme 113 

 114 

Laminaribiose-hydrolyzing enzyme was purified as follows. The crude enzyme 115 

(approximately 100 mL from 20 animals) from A. kurodai was subjected to ammonium 116 

sulfate fractionation and the precipitates formed between 40 – 60% saturation of 117 

ammonium sulfate were collected by centrifugation at 10,000×g for 10 min. The 118 

precipitates were dissolved in and dialyzed against 10 mM sodium phosphate buffer (pH 119 

6.0) and centrifuged at 10,000×g for 10 min to remove insoluble materials. The 120 

supernatant was then applied to a TOYOPEARL Phenyl-650M column (2×30 cm) 121 

pre-equilibrated with 10 mM sodium phosphate buffer (pH 6.0) containing 40% 122 

saturated ammonium sulfate. Un-adsorbed proteins were washed out with the same 123 

buffer, and then proteins adsorbed to the column were eluted stepwisely with the buffer 124 

containing 40%, 30%, 20%, 10%, and 0% saturated ammonium sulfate. By this 125 

chromatography, laminaribiose-hydrolyzing enzyme was eluted in the 10%-saturated 126 
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ammonium sulfate fractions. These fractions were pooled, and dialyzed against 10 mM 127 

sodium phosphate buffer (pH 7.0), and then subjected to a TOYOPEARL DEAE-650M 128 

column (2×45 cm) pre-equilibrated with 10 mM sodium phosphate buffer (pH 7.0). 129 

The adsorbed proteins were eluted with a linear gradient of NaCl from 0 to 300 mM 130 

(Fig. 1A). Laminaribiose-hydrolyzing enzyme was eluted at around 100 mM NaCl. The 131 

fractions were pooled and concentrated with VIVASPIN 20 (Sartorius AG, Goettingen, 132 

Germany) and subjected to AKTA FPLC (GE Healthcare Life Science) equipped with a 133 

Superdex 200 10/300GL column, and the proteins were eluted with 300 mM NaCl – 10 134 

mM sodium phosphate (pH 6.0) (Fig. 1B). The active fraction in this chromatography 135 

showed a single band with a molecular mass of approximately 110 kDa on SDS-PAGE 136 

(Fig. 1C). 137 

 138 

2.3. Assay for hydrolyzing activity of enzyme 139 

 140 

The laminaribiose-hydrolyzing activity was assayed at 30
o
C in a reaction mixture 141 

containing 5 mg/mL of laminaribiose (L2), 0.5 – 1.0 m unit (U)/mL of enzyme and 10 142 

mM sodium phosphate buffer (pH 5.5). The amount of glucose released from L2 was 143 

determined by the glucose CII-test kit Wako (Wako Pure Chemical Industries). One unit 144 
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of laminaribiose-hydrolyzing activity was defined as the amount of enzyme that 145 

liberates 2.0 μmol glucoses per min since two moles of glucose are produced from one 146 

mole of laminaribiose. If laminaritriose or larger substrates were used as substrates, one 147 

unit of activity was defined as the amount enzyme that liberates 1.0 μmol glucoses per 148 

min. Hydrolyzing activity for the -pNP-derivatives was assayed in a reaction mixture 149 

containing 2.5 mM pNP-derivatives and 10 mM sodium phosphate (pH 5.5) and 0.5 – 150 

1.0 mU/mL of enzyme at 30
o
C. p-Nitrophenol (pNP) released by the degradation of 151 

-pNP derivatives was determined with the molar extinction coefficient 1.81×10
5
 M

-1･152 

cm
-1

 at 410 nm. One unit of -pNP derivative-degrading activity was defined as the 153 

amount of enzyme that released 1.0 mol pNP per min. pH dependence of the enzyme 154 

was measured at 30
o
C in reaction mixtures containing 5 mg/ml laminaribiose, 50 mM 155 

sodium citrate buffer (pH 3.5 – 6.0) and 50 mM sodium phosphate buffer (pH 5.5 – 8.1). 156 

Temperature dependence was measured at 4 – 70
o
C in a reaction mixture containing 10 157 

mM sodium phosphate buffer (pH 5.5). Thermal stability of the enzyme was assessed by 158 

measuring the activity remaining after the heat-treatment at 4 – 70
o
C for 15 min. All 159 

assays were triplicated and the data were indicated as average values with standard 160 

deviations. 161 

 162 
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2.4. Assay for transglycosylation activity of enzyme 163 

 164 

Transglycosylation activity of laminaribiose-hydrolyzing enzyme was assayed at 165 

30
o
C in a reaction mixture containing 36.5 mM L2 (a donor substrate), 12 mM L3 (an 166 

acceptor substrate), 10 mU of enzyme and 10 mM sodium phosphate buffer (pH 5.5). 167 

The transglycosylation reaction was terminated by the addition of an equal volume of 168 

10% trichloroacetic acid. The reaction products were analyzed by thin-layer 169 

chromatography (TLC). 170 

 171 

2.5. TLC 172 

 173 

Degradation products of laminarioligosaccharides (L2 – L7) were analyzed by 174 

TLC. Substrate laminarioligosaccharides (5 mg/mL) were degraded with 4.4 mU/mL of 175 

enzyme, and the degradation products were subjected to a TLC-60 plate (Merck, 176 

Darmstadt, Germany). The degradation products were developed with a solvent 177 

comprising ethyl acetate, acetic acid and water (2:2:1 (v:v:v:)) and visualized by heating 178 

the plate at 130
o
C for 10 min after spraying 10% (v/v) sulfuric acid in ethanol. 179 

 180 
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2.6. SDS-polyacrylamide gel electrophoresis 181 

 182 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 183 

carried out with 0.1% (w/v) SDS – 10 % (w/v) polyacryl-amide slab gel (1 mm thick, 184 

10 cm × 9 cm (width × length)) according to the method of Porzio and Pearson (1977). 185 

After the electrophoresis, the gel was stained with 0.1% (w/v) Coomassie Brilliant Blue 186 

R-250 in 50% (v/v) methanol – 10% (v/v) acetic acid, and the background of the gel 187 

was destained with 5% (v/v) methanol – 7% (v/v) acetic acid. Protein Marker, Broad 188 

Range (New England BioLabs, Ipswich, MA, USA) was used as a molecular mass 189 

marker. 190 

 191 

2.7. Determination of partial amino-acid sequences 192 

 193 

The N-terminal amino-acid sequence of laminaribiose-hydrolyzing enzyme was 194 

determined with an ABI Procise 492 sequencer (Applied Biosystems, Foster City, CA, 195 

USA). Internal amino-acid sequences of the enzyme were determined with the peptide 196 

fragments prepared by lysylendopeptidase digestion at 37°C for 2 h 197 

(lysylendopeptidase/protein = 1/200 (w/w)). The fragments were separated by 198 
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SDS-PAGE and blotted to a polyvinylidene difluoride membrane. The fragments well 199 

separated on the membrane were excised with a scissors and subjected to the sequencer. 200 

 201 

2.8. Determination of protein concentration 202 

 203 

Protein concentration for enzyme solution was determined by the method of Lowry 204 

et al. (1951) using bovine serum albumin fraction V as a standard protein.  205 

 206 

3. Results 207 

 208 

3.1. General properties of laminaribiose-hydrolyzing enzyme 209 

 210 

By the procedure described under the ‘Materials and methods’, a 211 

laminaribiose-degrading enzyme with the molecular mass of approximately 110 kDa 212 

was purified 110-fold at a yield of 5.1% and the specific activity 3.4 U/mg (Table 1). We 213 

named this enzyme AkLab after the scientific name of the animal and its 214 

laminaribiose-hydrolyzing activity. Optimum temperature and pH of AkLab were 50
o
C 215 

and pH 5.5, respectively (Fig. 2A and 2B). The temperature that caused a half 216 
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inactivation during 15-min incubation was at around 48
o
C (Fig. 2C). 217 

 218 

3. 2. Substrate specificity of AkLab 219 

 220 

Degradation products of L2 – L7 produced by AkLab were analyzed by TLC. As 221 

shown in Fig. 3, AkLab was capable of hydrolyzing all the laminarioligosaccharides 222 

tested and produced glucose (Transglycosylation products are also seen. This will be 223 

mentioned in the next section). Then, hydrolytic activities of AkLab for 224 

laminarioligosaccharides were determined by measuring glucose-releasing rates (Fig. 4 225 

and Table 2). The activity toward L2 was significantly high, i.e., it was approximately 226 

20-times higher than those toward other laminarioligosaccharides. AkLab slowly 227 

degraded cellobiose (β-1,4-glucoside), gentiobiose (β-1,6-glucoside) and lactose 228 

(β-1,4-galactoside), but not α-glycosides like maltose and sucrose (Table 3). The 229 

activities toward cellobiose and gentiobiose were 1/3 – 1/5 of the activity toward 230 

laminaribiose (Table 3). AkLab showed high activity toward pNP -D-glucoside and 231 

low activity toward pNP -D-galactoside, but practically no activity toward other -pNP 232 

derivatives tested (Table 4). AkLab could not degrade polymer substrate laminarin (data 233 

not shown). From these results, we concluded that AkLab is a -glucosidase-like 234 
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enzyme with high preference to laminaribiose. 235 

 236 

3. 3. Transglycosylation activity of AkLab  237 

As shown in Fig. 3A, substantial amounts of oligosaccharides larger than 238 

original substrate L2 were found to be produced during hydrolysis of L2. This strongly 239 

suggested that AkLab catalyzed transglycosylation among L2 molecules and produced 240 

such larger oligosaccharides. We then examined how large oligosaccharides can be 241 

produced by the transglycosylation activity of AkLab using L2 and L3 as a donor and an 242 

acceptor substrate since L2 is preferable substrates of AkLab and L2 and L3 are 243 

distinguishable in TLC. As shown in Fig. 5, L4 was readily produced in the early stage 244 

of reaction (0.3 – 1.0 h). Upon extension of reaction time to 4 – 24 h, oligosaccharides 245 

L4 – L7 appeared. During the reaction, glucose was produced concomitantly with the 246 

rapid decrease in L2 and moderate decrease in L3. These results strongly suggested that 247 

AkLab transferred glucose unit of L2 to L3 by the transglycosylation activity and 248 

produced glucose and oligosaccharides larger than L3. Interestingly, the 249 

oligosaccharides thus produced were considerably stable, i.e., they accumulated in the 250 

latter phase of reaction. This result can be interpreted by the substrate specificity of 251 

AkLab that hydrolyzes laminaribiose in much higher rate than any other 252 
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oligosaccharides (Fig. 4 and Table 2). It is also possible to consider that the 253 

transglycosylation products were not -1,3-linked oligosaccharides but other isomers 254 

with different glycosyl linkages which AkLab hardly hydrolyzes although their 255 

structures were not analyzed in the present study.  256 

 257 

3. 4. Partial amino-acid sequence of AkLab 258 

 259 

Partial amino-acid sequence of AkLab was analyzed by the protein sequencer. 260 

The N-terminal sequence of 17 residues for AkLab was determined as 261 

ADLLTDKFPACFTFGVS. This sequence showed 69% identity to the 3rd – 17th 262 

residues of β-galactosidase from alpha proteobacterium HIMB100 (GenBank accession 263 

no. AFS48747), 56% identity to the 34th – 48th residues of a cellobiase from 264 

Cellulomonas biazotea (GenBank accession no. AEM45802) (Chan et al., 2012) and 265 

53% identity to the 478th – 494th residues of a β-glucosidase from Corbicula japonica 266 

(GenBank accession no. BAG71912) (Sakamoto et al., 2009). These enzymes have been 267 

classified under glycosyl hydrolase family 1 (GHF1). The amino-acid sequence of a 268 

lysylendopeptidyl fragment of AkLab was determined as GPSIWDTFTSDSSHVTGG 269 

(18 residues). This sequence showed 66% identity to the 68th – 87th residues of 270 



16 

 

Strictosidine-O-β-D-glucosidase from Rauvolfia serpentina (GenBank accession no. 271 

CAC83098) (Xia et al., 2012) and the 50% identity to the 510th – 527th residues of a 272 

β-glucosidase from Corbicula japonica (Sakamoto et al., 2009). These results indicated 273 

that AkLab is also a member of GHF1. 274 

 275 

4. Discussion 276 

 277 

4.1. Physiological roles of AkLab in A. kurodai 278 

 279 

We have been investigating the enzymatic properties of 280 

polysaccharide-degrading enzymes from algae-feeding mollusks to understand how the 281 

mollusks efficiently assimilate algal polysaccharides as carbon and energy sources 282 

(Shimizu et al., 2003; Suzuki et al., 2003; Ootsuka et al., 2006; Suzuki et al., 2006; 283 

Kumagai et al., 2008; Rahman et al., 2010; Zahura et al., 2010; Kumagai et al., 2013). 284 

Among algal polysaccharides, laminarin, a major storage polysaccharide of brown algae 285 

is known as an important glucose source for the algae feeders. Previously, we purified 286 

an endo-type and an exo-type β-1,3-glucanase (AkLam36 and AkLam33, respectively) 287 

from the digestive fluid of sea hare A. kurodai (Kumagai and Ojima, 2010). Although 288 
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these enzymes efficiently degraded laminarin and laminarioligosaccharides larger than 289 

disaccharide, they could not hydrolyze laminaribiose. Therefore, another 290 

laminaribiose-hydrolyzing enzyme like laminaribiase (EC 3.2.1.21) was considered to 291 

participate in the complete depolymerization of laminarin in A. kurodai. The 292 

information about laminaribiase from marine mollusks is extremely limited, i.e., only 293 

one literature on Littorina kurila enzyme is currently available (Pesentseva et al., 2012). 294 

Therefore, to understand the whole process for laminarin assimilation in mollusks, more 295 

detailed studies on laminarin-degrading enzymes seemed to be necessary. In the present 296 

study, we succeeded to purify the laminaribiose-hydrolyzing enzyme AkLab from the 297 

common sea hare A. kurodai. This enzyme showed significantly higher activity toward 298 

laminaribiose than other oligosaccharides. Thus, AkLab was considered to be the 299 

enzyme responsible for the hydrolysis of laminaribiose that had been produced by 300 

AkLam36 and AkLam33 in the digestive fluid of A. kurodai. 301 

 302 

4. 2. Similarity of AkLab to other enzymes 303 

 304 

The molecular mass of AkLab, i.e., 110 kDa estimated by SDS-PAGE, was 305 

similar to those of exo-β-1,3-glucanases from terrestrial snails Helix pomatia (82 kDa) 306 
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(Marshall and Grand, 1975) and Eulota maakii (100 kDa) (Elyakova and Shirokova, 307 

1997), and β-glucosidase from a marine mollusk Corbicula japonica (100 kDa) 308 

(Sakamoto et al., 2009). Optimum temperature and pH of AkLab, 50
o
C and pH 5.5, 309 

were also similar to those of H. pomatia (50
o
C and pH 5.5) and E. maakii (55

o
C and pH 310 

5.2) (Marshall and Grand, 1975; Elyakova and Shirokova, 1997). AkLab most rapidly 311 

hydrolyzed β-1,3-glucoside, e.g., laminaribiose, and slowly β-1,4-glucoside (cellobiose) 312 

and β-1,6-glucoside (gentiobiose) (Fig. 4, Table 2 and 3). -pNPG was also a preferable 313 

substrate for AkLab (Table 4); however, laminarin was not degraded (data not shown). 314 

The exo-β-1,3-glucanase from H. pomatia was reported to be capable of hydrolyzing 315 

laminarin, laminaribiose and gentiobiose, but not cellobiose (Marshall and Grand, 1975). 316 

While the exo-β-1,3-glucanase from E. maakii could hydrolyze laminarin and 317 

laminarioligosaccharides, but not cellobiose and gentiobiose (Elyakova and Shirokova, 318 

1997). Therefore, AkLab appeared to be different from such terrestrial molluscan 319 

enzymes with respect to substrate specificity. On the other hand, β-glucosidase is known 320 

to show broad substrate specificity and hydrolyze various -glucosides (Hrmova and 321 

Fincher, 2007; Pesentseva et al., 2008). For example, barley β-glucosidase degrades not 322 

only cellooligosaccharides but also laminarioligosaccharides. However, activity toward 323 

polymer substrate is modest (Hrmova et al., 1996). Taking these facts into consideration, 324 
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we concluded that AkLab is a -glucosidase-like laminarinase-hydrolyzing enzyme. 325 

 326 

4. 3. Transglycosylation activity of AkLab  327 

 328 

AkLab produced oligosaccharides larger than original substrates by its 329 

transglycosylation activity. Transglycosylation activity is known as a characteristic 330 

property of glycosyl hydrolases that split glycoside linkage with a retaining manner 331 

(Wang and Huang, 2009). Transglycosylation usually takes place in accordance with the 332 

specificity of the enzymes toward the configuration of glycosyl linkage. However, the 333 

glycosyl linkages formed by -glucosidase were not completely consistent with the 334 

hydrolytic specificity (Kato et al., 2002). Namely, not only -1,4-linked 335 

oligosaccharides but also -1,6-linked oligosaccharides were produced by the 336 

transglycosylation. Laminarinase hydrolyzes mainly β-1,3-glycosyl linkage; however, it 337 

can hydrolyze β-1,4- and β-1,6-linkages adjacent to -1,3-linkages in certain conditions. 338 

Therefore, AkLab may also produce oligosaccharides possessing different 339 

configurations of glycosyl linkages. Actually some spots with different mobility from 340 

marker sugars were observed between L2 and L3, and below L4 in TLC (Fig. 5). In 341 

addition, the oligosaccharides produced by the transglycosylation were considerably 342 
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resistant to AkLab (Fig. 5). These oligosaccharides may contain the glycosyl linkages 343 

distinct from -1,3-linkage. Although the structures of transglycosylation products have 344 

not been analyzed yet, these results suggested that AkLab was available for the 345 

synthesis of artificial glycosides and oligosaccharides with beneficial functions. Beside 346 

the transglycosylation products, hydrolytic products of laminarin are also known as 347 

functional materials. For example, enzymatically produced laminarioligosaccharides 348 

were found to promote TNF-α secretion from human monocytes (Miyanishi et al., 349 

2003b; Pang et al., 2005). The activities of laminarioligosaccharides are considered to 350 

be resulted from the specific higher order structures of laminarin and 351 

laminarioligosaccharides, e.g., β-1,3-linked glucose main chain with β-1,6-linked 352 

glucose branches (Willment et al., 2001; Adams et al., 2008). However, it is still obscure 353 

what kinds of structures are responsible for the activities of laminarin and 354 

laminarioligosaccharides. To reveal the functional structure of laminarin, studies using 355 

various laminarioligosaccharides with known structures are necessary. In this context, 356 

AkLab is a promising enzyme since it can produce laminarioligosaccharides with 357 

various sizes by its transglycosylation activity. 358 

AkLab was considered as a member of GHF1on the basis of partial amino-acid 359 

sequences. We are now analyzing the entire primary structure of AkLab by the cDNA 360 
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method, which will provide the bases for future protein-engineering study of this 361 

enzyme. 362 
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Figure Legends 539 

Fig. 1. Purification of AkLab from the digestive fluid of sea hare 540 
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(A) Fractions showing laminaribiose-hydrolyzing activity in TOYOPEARL 541 

Phenyl-650M chromatography were pooled and dialyzed against 10 mM sodium 542 

phosphate buffer (pH 7.0), then applied to a column of TOYOPEARL DEAE-650M (2 543 

×  45 cm) pre-equilibrated with the same buffer. (B) Fractions showing 544 

laminaribiose-hydrolyzing activity in TOYOPEARL DEAE-650M column 545 

chromatography were concentrated to less than 2 ml, then applied to Superdex 200 546 

10/300 GL column pre-equilibrated with 10 mM sodium phosphate buffer (pH 6.0) 547 

containing 300 mM NaCl. (C) Monitoring of purification of AkLab by SDS-PAGE. M, 548 

marker proteins; A, the sample after TOYOPEARL Phenyl-650M chromatography; B, 549 

the sample after TOYOPEARL DEAE-650M chromatography; C, the sample after 550 

Superdex 200 10/300 GL chromatography.  551 

 552 

Fig. 2. Optimum temperature and pH, and thermostability of AkLab. A, Optimum 553 

temperature of AkLab was measured at 4 – 70
o
C in a reaction mixture containing 5 554 

mg/mL of laminaribiose. B, Optimum pH of AkLab was measured at 30
o
C in the 555 

reaction mixtures adjusted to pH 3.5 – 6.0 with 50 mM sodium citrate buffer and pH 556 

6.0-8.1 with 50 mM sodium phosphate buffer. C, Thermostability of AkLab was 557 

assessed by measuring the activity remaining after the incubation of enzyme at 4-70
o
C 558 
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for 15 min in 10 mM sodium phosphate buffer (pH 5.5). Average values for the 559 

triplicated measurements are shown with standard deviations. 560 

  561 

Fig. 3. Thin-layer chromatography for the degradation products of 562 

laminarioligosaccharides produced by AkLab. Five mg/mL of laminarioligosaccharides 563 

(A – F, correspond to L2-L7) in 10 mM sodium phosphate buffer (pH 5.5) were 564 

degraded with 4.4 mU/mL of AkLab at 30
o
C. The reaction was terminated at 565 

appropriate time intervals by mixing with an equal volume of 10% (w/v) trichloroacetic 566 

acid and 2 μL of the mixture was applied to TLC. M, marker sugars (G1, glucose; L2 – 567 

L7, laminaribiose – laminariheptaose).  568 

 569 

Fig. 4. Degradation rates of laminarioligosaccharides by AkLab.  570 

Degradation of laminarioligosaccharides by AkLab was carried out in the same 571 

conditions as in Fig. 3 with the following substrates: L2 (○), L3 (●), L4 (△), L5 (▲), L6 572 

(◇), and L7 (◆). The amount of glucose released by the reaction was determined with 573 

glucose CII-test kit Wako. Average values for the triplicated measurements are shown 574 

with standard deviations. 575 

 576 
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 577 

Fig. 5. Transglycosylation products produced by AkLab. Transglycosylation reaction 578 

was carried out at 30
o
C in the reaction mixture containing 10 mM sodium phosphate 579 

buffer (pH 5.5), 36.5 mM L2 (donor), 12 mM L3 (acceptor), and 10 mU of AkLab. 580 

Transglycosylation reaction was terminated by the addition of an equal volume of 10% 581 

(w/v) trichloroacetic acid. Two μL of the mixture was applied to TLC. The 582 

abbreviations used are the same as in Fig. 3. 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 
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 Table 1. Purification of AkLab. 595 

     Total Specific  Total  Purifi-  Yield  596 

    protein activity  activity  cation  597 

Samples    (mg)  (U/mg)  (U)  (fold)  (%) 598 

Crude      3493  0.031  107    1  100 599 

AS
*1 

    2631  0.065   172     2.1    161 600 

Phenyl
*2

      380  0.076    28.8    2.5   27  601 

DEAE
*3

       20  0.89   17.7   29   17  602 

Superdex
*4

 1.62  3.4    5.5  110    5.1 603 

*1
Fraction precipitated between 40 and 60% saturation of ammonium sulfate. 

*2
Active 604 

fraction obtained by TOYOPEARL Phenyl-650M chromatography. 
*3

Active fraction 605 

obtained by TOYOPEARL DEAE-650M chromatography. 
*4

AkLab purified by 606 

Superdex 200 gel-filtration. 607 

 608 

 609 

 610 

 611 

 612 
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Table 2. Relative activity of AkLab toward laminarioligosaccharides. 613 

Substrate       Specific activity (mU/mg)         Relative activity (%) 614 

laminaribiose         3400 ± 164
*
   100 615 

laminaritriose     105 ± 3      3.1 616 

laminaritetraose    190 ± 2     5.6 617 

laminaripentaose    160 ± 5      4.7 618 

laminarihexaose    150 ± 3     4.4 619 

laminariheptaose     65 ± 3     1.9 620 

*
One unit of laminaribiose-hydrolyzing activity was defined as the amount of enzyme 621 

that produces 2 μmol glucose per min since the degradation of 1 mol disaccharide 622 

releases 2 mol glucose. The activities were represented as average values for triplicate 623 

measurements with standard deviation. 624 

 625 

 626 

 627 

 628 

 629 

 630 
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Table 3. Relative activity of AkLab toward various disaccharides. 631 

Substrate (linkage) Specific activity (mU/mg)        Relative activity (%) 632 

laminaribiose (-1,3)        3400 ± 164
*
    100 633 

cellobiose (-1,4)  1054 ± 23
*
      31 634 

gentiobiose (-1,6)  1190 ± 58
*
     35 635 

lactose (-1,4)    510 ± 35     15 636 

maltose (-1,4)
 *

     0       0 637 

sucrose (-1,2)
 
     0       0 638 

*
One unit of activity was defined as the amount of enzyme that produces 2 μmol 639 

glucose per min since degradation of 1 mol disaccharide releases 2 mol glucose. 640 

Enzyme activity was assayed at 30
o
C and pH 5.5 in reaction mixtures containing 5 641 

mg/mL of substrates. The activities were represented as average values for triplicate 642 

measurements with standard deviation. 643 

 644 

 645 

 646 

 647 

 648 
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Table 4. Substrate specificity of AkLab  649 

Substrate  Specific activity (mU/mg) *    Relative activity (%) 650 

pNP -D-glucoside   1220 ± 37   100  651 

pNP -D-galactoside   268 ± 3     22  652 

pNP -D-mannoside   24 ± 0.3      2  653 

pNP -D-fucoside   8.2 ± 0.1     0.67 654 

pNP -D-N-acetyl glucosaminide     5.5 ± 0.1     0.45 655 

pNP -D-xyloside   2.3 ± 0.1     0.19 656 

*One unit of activity was defined as the amount of enzyme that released 1 mol pNP 657 

per min. The activities were represented as average values for triplicate measurements 658 

with standard deviation. 659 

 660 
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Fig. 4. 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 



42 
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