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Preface

A hyperplane arrangement is a finite set of hyperplanes in a finite di-
mensional vector space. For a Weyl group W , The Weyl arrangement is the
set of all reflecting hyperplanes of reflections in W . In particular, the Weyl
arrangement with respect to the Weyl group of the type Aℓ is called the braid
arrangement. The Shi arrangement is originally defined as an affine arrange-
ment of hyperplanes consisting of the hyperplanes of the braid arrangement
and their parallel translations. The Shi arrangement was introduced by J. Y.
Shi in [11] in the study of the Kazhdan-Lusztig representation theory of the
affine Weyl groups. One of the remarkable properties of the Shi arrangement
is the fact that its number of chambers is equal to (ℓ+ 2)ℓ. A good number
of articles, including [5, 6, 8, 13, 21], study this intriguing property. Because
of Zaslavsky’s chamber counting formula [22], the property follows from the
formula

π(S(Aℓ), t) = (1 + t)(1 + (ℓ+ 1)t)ℓ

for the Poincaré polynomial [9] of the cone over the Shi arrangement S(Aℓ).
Ch. Athanasiadis proved that D(S(Aℓ)) is a free Sz-module with exponents
(0, 1, ℓ+1, . . . , ℓ+1) in [5]. He consequently proved the formula above thanks
to the factorization theorem in [18] which asserts that if the logarithmic
derivation module D(A) is a free S-module with a basis θ1, . . . , θℓ then the
Poincaré polynomial of A is equal to

∏ℓ
i=1(1 + (deg θi)t). His proof of the

freeness in [5] uses the addition-deletion theorem [16, 17]. Later M. Yoshinaga
extended this result in [21] to the extended Shi and Catalan arrangements
and affirmatively settled the Edelman-Reiner conjecture [6] by using algebro-
geometric method. However, even in the case of Shi arrangements, no basis
was constructed until [14].

This doctoral thesis is based on [1, 14, 15]. In this thesis we construct
bases for the logarithmic derivation modules of the cones over the Shi ar-
rangements of the types Aℓ, Bℓ, Cℓ, and the extended Shi and Catalan ar-
rangements of the type A2. For the type Dℓ, an explicit basis formula for
the Shi arrangement was constructed by R. Gao, D. Pei and H. Terao in
[7]. In the construction for the Shi arrangements of the types Aℓ, Bℓ, Cℓ, the
most important ingredients of our recipe are the Bernoulli polynomial Bk(x)
and their relatives Bp,q(x). In the construction for the Shi and Catalan ar-
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rangements of the type A2, the simple-root basis [3] which is a special basis
of the extended Shi arrangement and the multiarrangement theory play the
important role. In particular, as for the multiarrangement theory, explicit
bases for the restriction of the Shi and Catalan arrangements onto the infi-
nite hyperplane are constructed by T. Abe, L. Solomon, H. Terao, and M.
Yoshinaga [2, 12, 20].

The organization of this thesis is as follows: In chapter 1, we recall def-
initions of arrangement theory and define the extended Shi and Catalan
arrangement. In chapter 2, we give an explicit construction of bases for the
Shi arrangement of the type Aℓ. In chapter 3, we give an explicit construc-
tion of bases for the Shi arrangement of the type Bℓ. In chapter 4, we give
an explicit construction of bases for the Shi arrangement of the type Cℓ. In
chapter 5, we give an explicit construction of bases for the extended Shi and
Catalan arrangement of the type A2.
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Chapter 1

Preliminaries

1.1 Arrangements

In this section we give some basic definitions of the theory of hyperplane
arrangements.

Let K be a field and V an ℓ-dimensional vector space over K.

Definition 1.1.1. A hyperplane H in V is an (ℓ − 1)-dimensional affine
subspace of V . A hyperplane arrangement A is a finite set of hyperplanes
in V . We call A an ℓ-arrangement when we would like to emphasize the
dimension of V . If each hyperplane H in A passes through the origin OV ,
that is OV ∈ ∩H∈AH, we call A central.

Let S = S(V ∗) be the symmetric algebra of the dual space V ∗ and
{x1, . . . , xℓ} ⊂ V ∗ a basis for V ∗. S can be identified with a polynomial
ring K[x1, . . . , xℓ]. Each hyperplane H ∈ A is the kernel of a polynomial αH

of degree 1 defined up to constant multiple.

Definition 1.1.2. For a hyperplane A, we define the defining polynomial
Q(A) of A by

Q(A) =
∏
H∈A

αH .

We agree that if A is the empty arrangement, then the defining polynomial
is Q(A) = 1.

Definition 1.1.3. Let U be an (ℓ+1)-dimensional vector space containing V
as an affine subspace {z = 1} of U , where z is an element of the dual space
U∗. Then we may regard U∗ = V ∗ ⊕ ⟨z⟩ = ⟨x1, . . . , xℓ, z⟩, and let Sz denote
the symmetric algebra S(U∗) = K[x1, . . . , xℓ, z] of the dual space U∗. Let H
be a hyperplane in V . The cone cH over H is the hyperplane in U which

1
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passes through the origin OU of U and H. Let A be an affine arrangement
in V . Then the cone cA over A is defined by

cA = {{z = 0}} ∪ {cH | H ∈ A}.

Since the cone cH is the kernel of homogenization zαH(x1/z, . . . , xℓ/z)
of αH(x1, . . . , xℓ), the defining polynomial of the cone cA is

Q(cA) = z · zdegQ(A)Q(A)(
x1
z
, . . . ,

xℓ
z
).

Note that the cone cA is a central arrangement for any affine arrangement
A.

Definition 1.1.4. The S-module

Der(S) = {θ : S → S | θ is K-linear,

θ(fg) = θ(f)g + fθ(g) for any f, g ∈ S}

is called the derivation module of S over K. We call an element of Der(S)
a derivation. It is well known that

Der(S) =

⟨
∂

∂x1
, . . . ,

∂

∂xℓ

⟩
S

.

Definition 1.1.5. Let A be a central arrangement in V . Then the loga-
rithmic derivation module D(A) of A is defined by

D(A) = {θ ∈ Der(S) | θ(Q(A)) ∈ Q(A)S}
= {θ ∈ Der(S) | θ(αH) ∈ αHS for any H ∈ A}.

We call an element of D(A) a logarithmic derivation.

Definition 1.1.6. The Euler derivation θE ∈ Der(S) is defined by

θE =
ℓ∑

i=1

xi
∂

∂xi
.

It is easy to see that θE ∈ D(A) for any arrangement A.

Definition 1.1.7. A central arrangement A is called a free arrangement
if the logarithmic derivation module D(A) is a free S-module.
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If A is a free arrangement, then there exists a homogeneous basis
{θ1, . . . , θℓ} of D(A), and the multiset of degrees of {θ1, . . . , θℓ} is uniquely
determined independent of the choice of a homogeneous basis. We call the
multiset the exponents of A and write expA = (deg θ1, . . . , deg θℓ).

Let θ1, . . . , θℓ ∈ D(A). There is a very useful criterion for checking
whether θ1, . . . , θℓ form a basis for D(A).

Theorem 1.1.8. (Saito’s criterion [10]) Let θ1, . . . , θℓ be homogeneous log-
arithmic derivations of A. Then the following two conditions are equivalent:

(1) detM(θ1, . . . , θℓ)
.
= Q(A),

(2) θ1, . . . , θℓ form a basis for D(A),

(3) θ1, . . . , θℓ are linearly independent over S and
∑ℓ

i=1 deg θi = |A|,
where M(θ1, . . . , θℓ) is the coefficient matrix

M(θ1, . . . , θℓ) =

θ1(x1) · · · θℓ(x1)
...

. . .
...

θ1(xℓ) · · · θℓ(xℓ)

 ,
and the notation f

.
= g (f, g ∈ S) expresses that f = cg for some c ∈ K∗.

Let A be an affine arrangement. For the cone cA over A, we define the
Sz-module D0(cA) by

D0(cA) = {θ ∈ D(cA) | θ(z) = 0}.
Proposition 1.1.9. The logarithmic derivation module D(cA) can be de-
composed as a direct sum of Sz-modules as follows:

D(cA) = SzθE ⊕D0(cA),

where

θE = z
∂

∂z
+

ℓ∑
i=1

xi
∂

∂xi

is the Euler derivation.

Proof. Let θ ∈ D(cA). By definition of the cone, we can write θ(z) = fz for
some f ∈ Sz. Here we express θ = fθE + (θ− fθE), then θ− fθE ∈ D0(cA).
Hence D(cA) = SzθE + D0(cA). Let θ ∈ SzθE ∩ D0(cA). If θ = gθE
for some g ∈ Sz, then 0 = θ(z) = gz, hence g = 0. Therefore D(cA) =
SzθE ⊕D0(cA).

Hence cA is free if and only if D0(cA) is a free Sz-module, and θ1, . . . , θℓ
form a basis for D0(cA) if and only if θE, θ1, . . . , θℓ form a basis for D(cA).
Thus in order to construct a basis for D(cA), it is sufficient to construct a
basis for D0(cA).
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1.2 The extended Shi and Catalan arrange-

ments

In this section we introducce the extended Shi and Catalan arrangements.
Then we recall a result of a freeness for the cones over the extended Shi and
Catalan arrangements obtained by Yoshinaga.

Let E be an ℓ-dimensional Euclidean space over R. Let Φ be a crystal-
lographic irreducible root system in the dual space E∗ and Φ+ a positive
system of Φ. For α ∈ Φ+ and i ∈ Z, define the affine hyperplane Hα,i by

Hα,i = {v ∈ V | α(v) = i}.

Definition 1.2.1. The arrangement A(Φ) = {Hα,0 | α ∈ Φ+} is called the
Weyl arrangement of the type Φ.

Definition 1.2.2. Let k ∈ Z≥0. Then the extended Shi arrangement
Shik of the type Φ and the extended Catalan arrangment Catk of the
type Φ are affine arrangements defined by

Shik = {Hα,i | α ∈ Φ+,−k + 1 ≤ i ≤ k},
Catk = {Hα,i | α ∈ Φ+,−k ≤ i ≤ k}.

In particular, the arrangement Shi1 is called Shi arrangement which
was introduced by J. Y. Shi in [11] in the study of the Kazhdan-Lusztig
representation theory of the affine Weyl groups. Yoshinaga [21] proved the
freeness of the cones over the extended Shi and Catalan arrangements and
affirmatively settled the Edelman-Reiner conjecture [6].

Theorem 1.2.3. (M. Yoshinaga [21]) Let k ∈ Z≥0. Then

(1) the cone over the extended Shi arrangement cShik is free with

exp(cShik) = (1, kh, kh, . . . , kh),

(2) the cone over the extended Catalan arrangement cCatk is free with

exp(cCatk) = (1, e1 + kh, e2 + kh, . . . , eℓ + kh),

where h is the Coxeter number of Φ and e1, . . . , eℓ are the exponents of Φ.



Chapter 2

The Shi arrangements of the
type Aℓ

In this chapter, we construct a basis for the logarithmic derivation module
of the cone over the Shi arrangement of the type Aℓ. This chapter is based
on [14].

2.1 Notations

Let E be an ℓ-dimensional Euclidean space and ΦA be the root system of
the type Aℓ. Let Φ+

A denote the set of positive roots. In this chapter we
explicitly choose E and ΦA as follows: let V = Rℓ+1 and x1, . . . , xℓ+1 be an
orthonormal basis for the dual space V ∗. Define

E :=

{
ℓ+1∑
i=1

cixi ∈ V ∗

∣∣∣∣∣
ℓ+1∑
i=1

ci = 0

}
,

ΦA := {xi − xj ∈ E | 1 ≤ i ≤ ℓ+ 1, 1 ≤ j ≤ ℓ+ 1, i ̸= j},
Φ+

A := {xi − xj ∈ Φ | i < j}.

Then A(ΦA) is called a braid arrangement, which is undoubtedly the
most-studied arrangement of hyperplanes in various contexts. The Shi ar-
rangement of the type Aℓ is given by

A(ΦA) ∪ {Hα,1 | α ∈ Φ+} =
∪

1≤i≤ℓ+1
1≤j≤ℓ+1

{{xi − xj = 0}, {xi − xj = 1}}.

5
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Let S(Aℓ) denote the cone over the Shi arrangement cShi1 of the type Aℓ. It
is a central arrangement defined by

Q(S(Aℓ)) = z
∏

1≤p<q≤ℓ+1

(xp − xq)
∏

1≤p<q≤ℓ+1

(xp − xq − z) = 0.

It follows from Theorem 1.2.3 that S(Aℓ) is free with

exp(S(Aℓ)) = (0, 1, ℓ+ 1, . . . , ℓ+ 1).

Here there appears 0 in exp(S(Aℓ)) because the Weyl group W of the type
Aℓ is not essential for V = Rℓ+1.

The organization of this chapter is as follows: In Section 2.2, we will define
the polynomials Bp,q(x) which includes the Bernoulli polynomials. In Section
2.3, Theorem 2.3.5 proves that the derivations constructed in Definition 2.3.1
form a basis for the derivation module D(S(Aℓ)).

2.2 The Bernoulli polynomials and BA
p,q(x)

Let BA
k (x) denote the k-th Bernoulli polynomial. Let BA

k (0) = Bk denote
the k-th Bernoulli number. The most important property of the Bernoulli
polynomial in this paper is the following elementary formula (e.g., [4]):

Theorem 2.2.1.
BA

k (x+ 1)−BA
k (x) = kxk−1.

Definition 2.2.2. For (p, q) ∈ (Z≥0)
2, consider a polynomial BA

p,q(x) in x
satisfying the following two conditions:

(1) BA
p,q(x+ 1)− BA

p,q(x) = (x+ 1)pxq,

(2) BA
p,q(0) = 0.

It is easy to see that BA
p,q(x) is uniquely determined by these two conditions.

Example 2.2.3. (1) When (p, q) = (0, q), we have

BA
0,q(x) =

1

q + 1

{
BA

q+1(x)− BA
q+1

}
because of Theorem 2.2.1.

(2) When (p, q) = (p, 0), we obtain

BA
p,0(x) =

(−1)p+1

p+ 1

{
BA

p+1(−x)− BA
p+1

}
= (−1)p+1BA

0,p(−x)
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because

(−1)p+1BA
0,p(−x− 1)− (−1)p+1BA

0,p(−x)
= (−1)p

{
BA

0,p(−x)−BA
0,p(−x− 1)

}
= (−1)p(−x− 1)p = (x+ 1)p.

(3) For a general (p, q) ∈ (Z≥0)
2, it easily follows from Theorem 2.2.1

that the polynomial has an expression in terms of the Bernoulli polynomials
as

BA
p,q(x) =

p∑
i=0

1

q + i+ 1

(
p

i

){
BA

q+i+1(x)− BA
q+i+1

}
=

p∑
i=0

(
p

i

)
BA

0,q+i(x).

For example, BA
1,1(x) = BA

0,1(x) +BA
0,2(x) =

1
3
(x3 − x).

Note that the polynomial BA
p,q(x) is a polynomial of degree p+ q+1. The

homogenization B
A

p,q(x, z) of B
A
p,q(x) is defined by

B
A

p,q(x, z) := zp+q+1BA
p,q

(x
z

)
.

2.3 A basis construction

Let 1 ≤ j ≤ ℓ. Define

I1 = {x1, x2, . . . , xj−1}, I2 = {xj+2, xj+3, . . . , xℓ+1}.

Let σ
(s)
k denote the elementary symmetric function in the variables in Is of

degree k (s = 1, 2 , k ∈ Z≥0). Recall the homogeneous polynomials B
A

p,q(x, z)
of degree p+ q + 1 defined at the end of the previous section.

Definition 2.3.1. Let ∂i (1 ≤ i ≤ ℓ+1) denote ∂/∂xi. Define homogeneous
derivations

η :=
ℓ+1∑
i=1

∂i ∈ D0(S(Aℓ)),

and

φA
j := (xj − xj+1 − z)

ℓ+1∑
i=1

∑
0≤k1≤j−1
0≤k2≤ℓ−j

(−1)k1+k2σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2

B
A

k1,k2
(xi, z)∂i

for 1 ≤ j ≤ ℓ.
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We will prove that the derivations η, φA
1 , . . . , φ

A
ℓ form a basis for

D0(S(Aℓ)). First we will verify the following Proposition:

Proposition 2.3.2. The derivations φA
j (1 ≤ j ≤ ℓ) belong to the module

D0(S(Aℓ)).

Proof. We first have

φA
j (xp − xq) = (xj − xj+1 − z)∑

0≤k1≤j−1
0≤k2≤ℓ−j

(−1)k1+k2σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2

{
B

A

k1,k2
(xp, z)−B

A

k1,k2
(xq, z)

}
.

Since the right hand side equals zero if we set xp = xq, we may conclude that
φA
j (xp − xq) is divisible by xp − xq for all pairs (p, q) with 1 ≤ p < q ≤ ℓ+ 1.
The congruent notation ≡ in the following calculation is modulo the ideal

(xp − xq − z):

φA
j (xp − xq − z)

≡ (xj − xj+1 − z)∑
0≤k1≤j−1
0≤k2≤ℓ−j

(−1)k1+k2σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2

{
B

A

k1,k2
(xp, xp − xq)−B

A

k1,k2
(xq, xp − xq)

}
= (xj − xj+1 − z)

∑
0≤k1≤j−1
0≤k2≤ℓ−j

(−1)k1+k2σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2

(xp − xq)
k1+k2+1{BA

k1,k2
(

xp
xp − xq

)− BA
k1,k2

(
xq

xp − xq
)}

= (xj − xj+1 − z)∑
0≤k1≤j−1
0≤k2≤ℓ−j

(−1)k1+k2σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2

(xp − xq)
k1+k2+1(

xp
xp − xq

)k1(
xq

xp − xq
)k2

= (xj − xj+1 − z)(xp − xq)
∑

0≤k1≤j−1
0≤k2≤ℓ−j

(−1)k1+k2σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2

xk1p x
k2
q

= (xj − xj+1 − z)(xp − xq)

j−1∑
k1=0

σ
(1)
j−1−k1

(−xp)k1
ℓ−j∑
k2=0

σ
(2)
ℓ−j−k2

(−xq)k2

= (xj − xj+1 − z)(xp − xq)

j−1∏
s=1

(xs − xp)
ℓ+1∏

s=j+2

(xs − xq) ≡ 0

for all pairs (p, q) with 1 ≤ p < q ≤ ℓ+ 1.
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Lemma 2.3.3. Suppose ℓ ≥ 1. Let N be the ℓ× ℓ-matrix whose (i, j)-entry
is equal to the elementary symmetric function of degree ℓ− i in the variables
x1, . . . , xj−1, xj+2, . . . , xℓ+1. Then

detN = (−1)ℓ(ℓ−1)/2
∏

1≤p<q≤ℓ
q−p>1

(xp − xq).

Proof. Note that we have the equality[
1 − xp (−xp)2 . . . (−xp)ℓ−2 (−xp)ℓ−1

]
N

=

 ∏
1≤s≤ℓ+1
s̸∈{1,2}

(xs − xp)
∏

1≤s≤ℓ+1
s ̸∈{2,3}

(xs − xp) . . .
∏

1≤s≤ℓ+1
s ̸∈{ℓ,ℓ+1}

(xs − xp)


for any 1 ≤ p ≤ ℓ. Suppose that

1 ≤ p < q ≤ ℓ+ 1, q − p > 1.

Set xp = xq in N , and we get Npq. Then we may conclude that[
1 − xp (−xp)2 . . . (−xp)ℓ−2 (−xp)ℓ−1

]
Npq = 0.

This implies that detNpq = 0 and that detN is divisible by xp − xq. Since

deg(detN) = ℓ(ℓ− 1)/2 = deg
∏

1≤p<q≤ℓ+1
q−p>1

(xp − xq),

there exists a constant C such that

detN = C (−1)ℓ(ℓ−1)/2
∏

1≤p<q≤ℓ+1
q−p>1

(xp − xq) = C
∏

1≤p<q≤ℓ+1
q−p>1

(xq − xp).

By comparing the coefficients of x3x
2
4 . . . x

ℓ−2
ℓ xℓ−1

ℓ+1 on both sides, we obtain
C = 1.

Proposition 2.3.4. The derivations η, φA
1 , . . . , φ

A
ℓ are linearly independent

over Sz.
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Proof. Set z = 0 in φA
j and we get ϕj as follows:

ϕj := φA
j |z=0 = (xj − xj+1)

ℓ+1∑
i=1

∑
0≤k1≤j−1
0≤k2≤ℓ−j

(−1)k1+k2

k1 + k2 + 1
σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2

xk1+k2+1
i ∂i

= (xj − xj+1)
ℓ∑

k=1

(−1)k−1

k


∑

k1+k2+1=k
0≤k1≤j−1
0≤k2≤ℓ−j

σ
(1)
j−1−k1

σ
(2)
ℓ−j−k2


ℓ+1∑
i=1

xki ∂i

= (xj − xj+1)
ℓ∑

k=1

(−1)k−1

k
σℓ−k(x1, . . . , xj−1, xj+2, . . . , xℓ+1)

ℓ+1∑
i=1

xki ∂i.

Here σℓ−i(x1, . . . , xj−1, xj+2, . . . , xℓ+1) stands for the elementary symmetric
function of degree ℓ − i in the variables x1, . . . , xj−1, xj+2, . . . , xℓ+1. This is
equal to the (i, j)-entry Nij of the matrix N in Lemma 2.3.3. Thus we have

ϕj(xi) = (xj − xj+1)
ℓ∑

k=1

(−1)k−1

k
xkiNkj. (2.1)

Define two (ℓ+ 1)× (ℓ+ 1)-diagonal matrices D1 and D2 by

D1 := [1]⊕ [1]⊕
[
(−1)1/2

]
⊕
[
(−1)2/3

]
⊕ · · · ⊕ [(−1)ℓ−1/ℓ],

D2 := [1]⊕ [x1 − x2]⊕ [x2 − x3]⊕ · · · ⊕ [xℓ − xℓ+1],

where ⊕ stands for the direct sum of matrices. Also define two (ℓ+1)×(ℓ+1)-
matrices Ñ and M by

Ñ := [1]⊕N, M :=
[
xj−1
i

]
1≤i≤ℓ+1,1≤j≤ℓ+1

.

From (2.1) we obtain

P :=


1 ϕ1(x1) . . . ϕℓ(x1)
1 ϕ1(x2) . . . ϕℓ(x2)
1 ϕ1(x3) . . . ϕℓ(x3)
. . . . . .
. . . . . .
1 ϕ1(xℓ+1) . . . ϕℓ(xℓ+1)

 =MD1ÑD2.

Thus, by applying the Vandermonde determinant formula and Lemma 2.3.3,
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we deduce

detP = (detM)(detD1)(det Ñ)(detD2)

=

( ∏
1≤p<q≤ℓ+1

(xq − xp)

)(
(−1)ℓ(ℓ−1)/2

ℓ!

)
(detN)

∏
1≤p≤ℓ

(xp − xp+1)

=

(
(−1)ℓ(ℓ+1)/2

ℓ!

) ∏
1≤p<q≤ℓ+1

(xp − xq)
2 ̸= 0.

Thus η, ϕ1, . . . , ϕℓ are linearly independent. This implies that η, φA
1 , . . . , φ

A
ℓ

are linearly independent.

Remark. The derivations ϕ1, . . . , ϕℓ are a basis for the derivation module of
the double Coxeter arrangement of the type Aℓ studied in [12] (cf. [19]).

Theorem 2.3.5. The derivations η, φA
1 , . . . , φ

A
ℓ form a basis for D0(S(Aℓ)).

Proof. We may apply Theorem 1.1.8 (Saito’s criterion) thanks to Proposi-
tions 2.3.2 and 2.3.4 because

deg η +
ℓ∑

j=1

degφA
j = ℓ(ℓ+ 1) = |S(Aℓ)| − 1.

Remark. The Bernoulli polynomials explicitly appear in the first derivation
φA
1 and the last one φA

ℓ because of Example 2.2.3 (1) and (2):

φA
1 = (x1 − x2 − z)

ℓ+1∑
i=1

ℓ−1∑
k2=0

(−1)k2σ
(2)
ℓ−1−k2

B
A

0,k2
(xi, z)∂i

= (x1 − x2 − z)
ℓ+1∑
i=1

ℓ∑
k=1

(−1)k−1

k
σ
(2)
ℓ−kz

k
(
BA

k (xi/z)−Bk

)
∂i,

and

φA
ℓ = (xℓ − xℓ+1 − z)

ℓ+1∑
i=1

ℓ−1∑
k1=0

(−1)k1σ
(1)
ℓ−1−k1

B
A

k1,0
(xi, z)∂i

= (xℓ − xℓ+1 − z)
ℓ+1∑
i=1

ℓ∑
k=1

(−1)k−1

k
σ
(1)
ℓ−k (−z)

k
(
BA

k (−xi/z)−Bk

)
∂i.

Here σ
(1)
d and σ

(2)
d are the elementary symmetric functions of degree d in the

variables x1, . . . , xℓ−1 and x3, . . . , xℓ+1 respectively.
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Example 2.3.6. For A3, we have

η = ∂1 + ∂2 + ∂3 + ∂4,

φA
1 = x1(x1 − x2 − z)

{
x3x4 −

1

2
(x3 + x4)(x1 − z) +

1

3

(
x21 −

3

2
x1z +

1

2
z2
)}

∂1

+ x2(x1 − x2 − z)

{
x3x4 −

1

2
(x3 + x4)(x2 − z) +

1

3

(
x22 −

3

2
x2z +

1

2
z2
)}

∂2

− 1

6
x3(x1 − x2 − z)(x3 + z)(x3 − 3x4 − z)∂3

− 1

6
x4(x1 − x2 − z)(x4 + z)(x4 − 3x3 − z)∂4,

φA
2 = −1

6
x1(x2 − x3 − z)(x1 − z)(x1 − 3x4 − 2z)∂1

+ x2(x2 − x3 − z)

{
x1x4 −

1

2
x1(x2 − z)− 1

2
x4(x2 + z) +

1

3
(x22 − z2)

}
∂2

+ x3(x2 − x3 − z)

{
x1x4 −

1

2
x1(x3 − z)− 1

2
x4(x3 + z) +

1

3
(x23 − z2)

}
∂3

+
1

6
x4(x2 − x3 − z)(x4 + z)(3x1 − x4 − 2z)∂4,

φA
3 = −1

6
x1(x3 − x4 − z)(x1 − z)(x1 − 3x2 + z)∂1

− 1

6
x2(x3 − x4 − z)(x2 − z)(x2 − 3x1 + z)∂2

+ x3(x3 − x4 − z)

{
x1x2 −

1

2
(x1 + x2)(x3 + z) +

1

3

(
x23 +

3

2
x3z +

1

2
z2
)}

∂3

+ x4(x3 − x4 − z)

{
x1x2 −

1

2
(x1 + x2)(x4 + z) +

1

3

(
x24 +

3

2
x4z +

1

2
z2
)}

∂4.



Chapter 3

The Shi arrangements of the
type Bℓ

In this chapter, we construct a basis for the logarithmic derivation module
of the cone over the Shi arrangement of the type Bℓ. This chapter is based
on [15].

3.1 Notations

Let E be an ℓ-dimensional Euclidean space. Let x1, . . . , xℓ be an orthonormal
basis for the dual space E∗. In this chapter we explicitly choose root systems
ΦB and positive root system Φ+

B of the type Bℓ as follows:

ΦB := {±xi,±xp ± xq ∈ E∗ | 1 ≤ i ≤ ℓ, 1 ≤ p < q ≤ ℓ},
Φ+

B := {xi, xp ± xq ∈ ΦB | 1 ≤ i ≤ ℓ, 1 ≤ p < q ≤ ℓ}.

We express the cones over the Shi arrangements Shi1 of the type Bℓ by S(Bℓ).
Then the defining polynomial of S(Bℓ) is

Q(S(Bℓ)) = z
ℓ∏

i=1

xi(xi − z)
∏

1≤p<q≤ℓ

{(xp + xq)(xp − xq)

(xp + xq − z)(xp − xq − z)}

It follows from Yoshinaga’s Theorem 1.2.3 that S(Bℓ) is free with

exp(S(Bℓ)) = (1, 2ℓ, 2ℓ, . . . , 2ℓ).

The organization of this chapter is as follows: In Section 3.2, we will
construct ℓ derivations φB

1 , . . . , φ
B
ℓ belonging to D0(S(Bℓ)). In Section 3.3,

we will prove that they form a basis of D0(S(Bℓ)).

13
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3.2 A basis construction for the type Bℓ

Definition 3.2.1. For (r, s) ∈ Z>0 × Z≥0, define a polynomial BB
r,s(x) in x

satisfying the following two conditions:

(i) BB
r,s(x+ 1)−BB

r,s(x) =
(x+ 1)r − (−x)r

(x+ 1)− (−x)
(x+ 1)s(−x)s,

(ii) BB
r,s(0) = 0.

Note that (x+1)r−(−x)r

(x+1)−(−x)
is a polynomial either of degree r − 1 (when r is

odd) or of degree r − 2 (when r is even). It is thus easy to see that BB
r,s(x)

uniquely exists and

degBB
r,s(x) =

{
r + 2s if r is odd,

r + 2s− 1 if r is even.

Lemma 3.2.2. BB
r,s(x) is an odd function.

Proof. Replacing x with −x− 1 in 3.2.1 (i), we have

BB
r,s(−x)−BB

r,s(−x− 1) =
(−x)r − (x+ 1)r

(−x)− (x+ 1)
(−x)s(x+ 1)s

= BB
r,s(x+ 1)−BB

r,s(x).

Then we get F (x) = F (x + 1) where F (x) := BB
r,s(x) + BB

r,s(−x). Thus we
obtain

F (n) = F (n− 1) = · · · = F (0) = 0 (n ∈ Z≥0)

and
BB

r,s(x) +BB
r,s(−x) = F (x) = 0.

Definition 3.2.3. The homogenization B
B

r,s(x, z) of B
B
r,s(x) is defined by

B
B

r,s(x, z) := zr+2sBB
r,s(x/z).

Let 1 ≤ j ≤ ℓ. Define

I
(j)
1 = {x1, . . . , xj−1}, I(j)2 = {xj}, I(j)3 = {xj+1, . . . , xℓ}

Let σk(y1, y2, . . . ) (k ∈ Z≥0) denote the elementary symmetric polynomials
in y1, y2, . . . of degree k. Then define

σ
(2,j)
k := σk(xj), τ

(3,j)
k := σk(x

2
j+1, . . . , x

2
ℓ).

The following construction of φB
j is inspired by the basis of the type Aℓ in

Chapter 2. The definition of φB
j is a suitable variation of φA

j which is defined
in Chapter 2 for the type Aℓ.
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Definition 3.2.4. Let ∂i (1 ≤ i ≤ ℓ) and ∂z denote ∂/∂xi and ∂/∂z respec-
tively. Define the following homogeneous derivations

φB
j := (−1)j

ℓ∑
i=1

{ ∑
N1,N2⊂I

(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xtz)
)

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

B
B

r,s(xi, z)

}
∂i,

where

r := 2ℓ−2j−k2−2k3+2 ≥ 1, s := |I(j)1 \(N1∪N2)| = (j−1)−|N1|−|N2| ≥ 0

for 1 ≤ j ≤ ℓ.

It is easy to see that each φB
j is a homogeneous derivation of degree

2ℓ which is equal to the Coxeter number for Bℓ. We will prove that the
derivations θE and φB

1 , . . . , φ
B
ℓ form a basis for D(S(Bℓ)). First we will

verify the following

Proposition 3.2.5. Let ε ∈ {−1, 0, 1}. Then we have the following congru-
ence relations:

B
B

r,s(xp, z) + εB
B

r,s(xq, z) ≡ 0 mod (xp + εxq),

B
B

r,s(xp, z)+εB
B

r,s(xq, z) ≡ (xp+εxq)
xrp − (εxq)

r

xp − εxq
(xp·εxq)s mod (xp+εxq−z).

Proof. The first congruence follows from Definition 3.2.1 (ii) and Lemma
3.2.2. Let the congruent notation ≡ in the following calculation be modulo
the ideal (xp + εxq − z). By Definition 3.2.1 and Lemma 3.2.2, we have

B
B

r,s(xp, z) + εB
B

r,s(xq, z) = B
B

r,s(xp, z) +B
B

r,s(εxq, z)

= zr+2s{BB
r,s

(xp
z

)
+BB

r,s

(εxq
z

)
}

≡ (xp + εxq)
r+2s

{
BB

r,s

(
xp

xp + εxq

)
+BB

r,s

(
εxq

xp + εxq

)}
= (xp + εxq)

r+2s

{
BB

r,s

(
xp

xp + εxq

)
−BB

r,s

(
− εxq
xp + εxq

)}



16 CHAPTER 3. SHI ARRANGEMENTS OF TYPE Bℓ

= (xp + εxq)
r+2s

(
xp

xp+εxq

)r
−
(

εxq

xp+εxq

)r
xp

xp+εxq
− εxq

xp+εxq

(
xp

xp + εxq

)s(
εxq

xp + εxq

)s

= (xp + εxq)
xrp − (εxq)

r

xp − εxq
(xp · εxq)s.

Proposition 3.2.6. The derivations φB
j (1 ≤ j ≤ ℓ) belong to the module

D(S(Bℓ)).

Proof. By Proposition 3.2.5, we first have

φB
j (xp + εxq) = (−1)j

∑
N1,N2⊂I

(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xtz)
)

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

(B
B

r,s(xp, z) + εB
B

r,s(xq, z))

≡ 0 mod (xp + εxq)

for 1 ≤ j ≤ ℓ. Thus we conclude that φB
j (xp), φ

B
j (xp ± xq) are divisible by

xp, xp ± xq for 1 ≤ p ≤ ℓ, 1 ≤ p < q ≤ ℓ respectively.

Let the congruent notation ≡ in the following calculation be modulo the
ideal (xp + εxq − z). By Proposition 3.2.5, for 1 ≤ j ≤ ℓ, we also have

φB
j (xp + εxq − z) = φB

j (xp + εxq)

= (−1)j
∑

N1,N2⊂I
(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xtz)
)

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

(B
B

r,s(xp, z) + εB
B

r,s(xq, z))

≡ (−1)j
∑

N1,N2⊂I
(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xt(xp + εxq))

)

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

(xp + εxq)
xrp − (εxq)

r

xp − εxq
(xp · εxq)s
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= (xp + εxq)
∑

N1,N2⊂I
(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xt(xp + εxq))

)
(xp · εxq)s

(−1)ℓ+1

xp − εxq

{ ∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)ℓ−j+1−k2−k3σ
(2,j)
k2

τ
(3,j)
k3

xrp

−
∑

0≤k2≤1
0≤k3≤ℓ−j

(−1)ℓ−j+1−k2−k3σ
(2,j)
k2

τ
(3,j)
k3

(εxq)
r

}
.

Here,

∑
N1,N2⊂I

(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xt(xp + εxq))

)
(xp · εxq)s

=

j−1∏
t=1

(x2t − (xp + εxq)xt + xp · εxq) =
j−1∏
t=1

(xt − xp)(xt − εxq)

and

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)ℓ−j+1−k2−k3σ
(2,j)
k2

τ
(3,j)
k3

xrp

= xp

1∑
k2=0

σ
(2,j)
k2

(−xp)1−k2

ℓ−j∑
k3=0

τ
(3,j)
k3

(−x2p)ℓ−j−k3 = xp(xj − xp)
ℓ∏

t=j+1

(x2t − x2p).

If 1 ≤ p ≤ j − 1, then

j−1∏
t=1

(xt − xp)(xt − εxq) = 0.

If j ≤ p < q ≤ ℓ, then

xp(xj − xp)

( ℓ∏
t=j+1

(x2t − x2p)

)
= εxq(xj − εxq)

( ℓ∏
t=j+1

(x2t − (εxq)
2)

)
= 0.
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Therefore

φB
j (xp + εxq − z)

≡ (−1)ℓ+1xp + εxq
xp − εxq

j−1∏
t=1

(xt − xp)(xt − εxq){
xp(xj − xp)

( ℓ∏
t=j+1

(x2t − x2p)

)
− εxq(xj − εxq)

( ℓ∏
t=j+1

(x2t − (εxq)
2)

)}
= 0

for all pairs (p, q) with 1 ≤ p < q ≤ ℓ and ε ∈ {−1, 0, 1}. Hence φB
j ∈

D(S(Bℓ)) for 1 ≤ j ≤ ℓ.

3.3 The W -equivariance

Recall that A(Φ) is the Weyl arrangement in E corresponding to the irre-
ducible root system Φ. In [12] L. Solomon and H. Terao studied the S-module

D(A(Φ), 2) := {θ ∈ Der(S) | θ(αH) ∈ Sα2
H , H ∈ A(Φ)},

which was denoted by E(A) in [12]. Let h be the Coxeter number for Φ.
Define

D(A(Φ), 2)h := {θ ∈ D(A(Φ), 2) | deg θ = h} ∪ {0},

which is a real vector space. Note that the Weyl groupW corresponding to Φ
naturally acts on D(A(Φ), 2) and D(A(Φ), 2)h. We recall the Sz-submodule

D0(S(Φ)) = {φ ∈ D(S(Φ)) | φ(z) = 0}

of D(S(Φ)). Then by Proposition 1.1.9, D(S(Φ)) has a decomposition

D(S(Φ)) = SzθE ⊕D0(S(Φ))

over Sz. Let

D0(S(Φ))h := {φ ∈ D0(S(Φ)) | degφ = h} ∪ {0},

which is a real vector space. If φ ∈ D0(S(Φ)), then φ(αH) ∈ αH(αH − z)Sz

for any H ∈ A(Φ). Let φ := φ|z=0 be the restriction of φ to z = 0. Then
φ(αH) ∈ α2

HS for any H ∈ A(Φ), hence φ ∈ D(A(Φ), 2).
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Theorem 3.3.1. (1) (L. Solomon-H. Terao [12]) The S-module D(A(Φ), 2)
is a free module with a basis consisting of ℓ derivations homogeneous of degree
h. In other words, we have an isomorphism

D(A(Φ), 2) ≃ D(A(Φ), 2)h ⊗R S.

(2) (M. Yoshinaga [21]) The Sz-module D0(S(Φ)) is a free module with
a basis consisting of ℓ derivations homogeneous of degree h. In other words,
we have an isomorphism

D0(S(Φ)) ≃ D(S(Φ))h ⊗R Sz.

Also the restriction map

ρ : D0(S(Φ))h −→ D(A(Φ), 2)h

defined by φ 7→ φ = φ|z=0 is a linear isomorphism.

Suppose that Φ is of the type Bℓ in the rest of this section. Then we may
define an explicit R-linear map

Ψ : E∗ → D0(S(Bℓ))h

by

Ψ(xj) = φB
j (1 ≤ j ≤ ℓ)

using the derivations φB
1 , . . . , φ

B
ℓ in Definition 3.2.4.

Theorem 3.3.2. Let Φ be a root system of the type Bℓ.

(1) The map

Ξ : E∗ → D(A(Bℓ), 2)h

defined by Ξ = ρ ◦Ψ is a W -equivariant isomorphism.

(2) The map

Ψ : E∗ → D0(S(Bℓ))h

is a linear isomorphism.

Proof. (1) Since

B
B

r,s(xi, 0) =

{
(−1)sxr+2s

i /(r + 2s) (r : odd number)

0 (r : even number)
,
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Ξ(xj)(xi) = (ρ ◦Ψ(xj))(xi) = φB
j (xi)|z=0

= (−1)jxj
∑

N1⊂I
(j)
1

( ∏
xt∈N1

x2t

) ℓ−j∑
k3=0

(−1)1+k3τ
(3,j)
k3

(−1)s
xr+2s
i

r + 2s

= (−1)jxj

j−1∑
m=0

∑
N1⊂I

(j)
1

|N1|=m

( ∏
xt∈N1

x2t

) ℓ−j∑
k3=0

(−1)1+k3τ
(3,j)
k3

(−1)s
xr+2s
i

r + 2s

= xj

j−1∑
m=0

τ (1,j)m

ℓ−j∑
k3=0

(−1)m+k3τ
(3,j)
k3

x2ℓ−2m−2k3−1
i

2ℓ− 2m− 2k3 − 1

= xj

ℓ−1∑
k=0

(−1)kσk(x
2
1, . . . , x

2
j−1, x

2
j+1, . . . , x

2
ℓ)

x2ℓ−2k−1
i

2ℓ− 2k − 1
.

Thus we obtain

Ξ(xj) = xj

ℓ−1∑
k=0

(−1)kσk(x
2
1, . . . , x

2
j−1, x

2
j+1, . . . , x

2
ℓ)

ℓ∑
i=1

(
x2ℓ−2k−1
i

2ℓ− 2k − 1

)
∂i.

Since
ℓ∑

i=1

(
x2ℓ−2k−1
i

2ℓ− 2k − 1

)
∂i

is a W -invariant derivation and the correspondence

xj 7→ xjσk(x
2
1, . . . , x

2
j−1, x

2
j+1, . . . , x

2
ℓ) (0 ≤ k ≤ ℓ− 1)

is W -equivariant for every k ∈ Z≥0, we conclude that Ξ is W -equivariant.
Therefore Ξ is bijective by Schur’s lemma.

(2) follows from (1) because the restriction map ρ is bijective by Theorem
3.3.1 (2).

Theorem 3.3.3. The derivations φB
1 , . . . , φ

B
ℓ form a basis for D0(S(Bℓ)).

Proof. Recall that each Ψ(xj) = φB
j belongs to D0(S(Bℓ))h. Theorems 3.3.1

(2) and 3.3.2 (2) complete the proof.

Remark 3.3.4. Since the W -equivariant isomorphism Ξ : E∗ →
D(A(Bℓ), 2)h in Theorem 3.3.2 (1) is unique up to a nonzero constant mul-
tiple by Schur’s lemma, the derivations φB

1 |z=0, . . . , φ
B
ℓ |z=0 coincide with the

Solomon-Terao basis in [12] up to a nonzero constant multiple. Therefore,
our construction of φB

1 , . . . , φ
B
ℓ can be regarded as an explicit realization of

the basis existence theorem by M. Yoshinaga in [21].



Chapter 4

The Shi arrangements of the
type Cℓ

In this chapter, we construct a basis for the logarithmic derivation module
of the cone over the Shi arrangement of the type Cℓ. This chapter is based
on [15].

4.1 Notations

In this chapter we explicitly choose root systems ΦC and positive root system
Φ+

C of the type Cℓ as follows:

ΦC := {±2xi,±xp ± xq ∈ E∗ | 1 ≤ i ≤ ℓ, 1 ≤ p < q ≤ ℓ},
Φ+

C := {2xi, xp ± xq ∈ ΦB | 1 ≤ i ≤ ℓ, 1 ≤ p < q ≤ ℓ}.

We express the cones over the Shi arrangements Shi1 of the type Cℓ by S(Cℓ).
Then the defining polynomial of S(Cℓ) is

Q(S(Cℓ)) = z

ℓ∏
i=1

2xi(2xi − z)
∏

1≤p<q≤ℓ

{(xp + xq)(xp − xq)

(xp + xq − z)(xp − xq − z)}.

It follows from Yoshinaga’s Theorem 1.2.3 that S(Cℓ) is free with

exp(S(Cℓ)) = (1, 2ℓ, 2ℓ, . . . , 2ℓ).

21
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4.2 A basis construction for the type Cℓ

Definition 4.2.1. For (r, s) ∈ Z>0 × Z≥0, define a polynomial BC
r,s(x) in x

satisfying the following two conditions:

(i) BC
r,s(x+ 1)−BC

r,s(x) = {(x+ 1)r−1 + (−x)r−1}(x+ 1)s(−x)s,

(ii) BC
r,s(0) = 0.

It is easy to see that BC
r,s(x) uniquely exists and

degBC
r,s(x) =

{
r + 2s if r is odd,

r + 2s− 1 if r is even.

The following lemma can be proved by a smilar argument to the proof of
Lemma 3.2.2:

Lemma 4.2.2. BC
r,s(x) is an odd function.

Definition 4.2.3. The homogenization B
C

r,s(x, z) of B
C
r,s(x) is defined by

B
C

r,s(x, z) := zr+2sBC
r,s(x/z).

Definition 4.2.4. Define homogeneous derivations

φC
j := (−1)j

ℓ∑
i=1

{ ∑
N1,N2⊂I

(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xtz)
)

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

B
C

r,s(xi, z)

}
∂i

where

r := 2ℓ−2j−k2−2k3+2 ≥ 1, s := |I(j)1 \(N1∪N2)| = (j−1)−|N1|−|N2| ≥ 0

for 1 ≤ j ≤ ℓ.

Note that φC
j is exactly the same as φB

j with only one exception: the use

of B
C

r,s(xi, z) instead of B
B

r,s(xi, z). Thus each φ
B
j is a homogeneous derivation

of degree 2ℓ which is equal to the Coxeter number for Cℓ. We will prove that
the derivations θE and φC

1 , . . . , φ
C
ℓ form a basis for D(S(Cℓ)). We first have

the following propositions:
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Proposition 4.2.5. Let ε ∈ {−1, 0, 1}. Then we have the following congru-
ence relations:

B
C

r,s(xp, z) + εB
C

r,s(xq, z) ≡ 0 mod (xp + εxq),

B
C

r,s(xp, z) + εB
C

r,s(xq, z) ≡ (xp + εxq){xr−1
p + (εxq)

r−1}(xp · εxq)s

mod (xp + εxq − z).

Proof. Imitate the proof of Proposition 3.2.5.

Proposition 4.2.6. The derivations φC
j (1 ≤ j ≤ ℓ) belong to the module

D(S(Cℓ)).

Proof. This proof is very similar to the proof of Proposition 3.2.6. However,
in this proof, we have to verify that φC

j (2xp − z) is divisible by 2xp − z while
we verified that φB

j (xp − z) is divisible by xp − z in the proof of Proposition
3.2.6. By Proposition 4.2.5, we first have

φC
j (xp + εxq)

= (−1)j
∑

N1,N2⊂I
(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xtz)
)

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

(B
C

r,s(xp, z) + εB
C

r,s(xq, z))

≡ 0 (mod (xp + εxq))

for 1 ≤ j ≤ ℓ. Thus we conclude that φC
j (2xp), φ

C
j (xp ± xq) are divisible by

2xp, xp ± xq for 1 ≤ p ≤ ℓ, 1 ≤ p < q ≤ ℓ respectively.
Let the congruent notation ≡ in the following calculation be modulo the

ideal (xp + εxq − z). By Proposition 4.2.5, for 1 ≤ j ≤ ℓ, we also have

φC
j (xp + εxq − z) = φC

j (xp + εxq)

= (−1)j
∑

N1,N2⊂I
(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xtz)
)

∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

(B
C

r,s(xp, z) + εB
C

r,s(xq, z))
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≡ (−1)j
∑

N1,N2⊂I
(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xt(xp + εxq))

)
∑

0≤k2≤1
0≤k3≤ℓ−j

(−1)k2+k3σ
(2,j)
k2

τ
(3,j)
k3

(xp + εxq){xr−1
p + (εxq)

r−1}(xp · εxq)s

= (xp + εxq)
∑

N1,N2⊂I
(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xt(xp + εxq))

)
(xp · εxq)s

(−1)ℓ+1

{ ∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)ℓ−j+1−k2−k3σ
(2,j)
k2

τ
(3,j)
k3

xr−1
p

+
∑

0≤k2≤1
0≤k3≤ℓ−j

(−1)ℓ−j+1−k2−k3σ
(2,j)
k2

τ
(3,j)
k3

(εxq)
r−1

}
.

Here, ∑
N1,N2⊂I

(j)
1

N1∩N2=∅

( ∏
xt∈N1

x2t

)( ∏
xt∈N2

(−xt(xp + εxq))

)
(xp · εxq)s

=

j−1∏
t=1

(x2t − (xp + εxq)xt + xp · εxq) =
j−1∏
t=1

(xt − xp)(xt − εxq),

and ∑
0≤k2≤1

0≤k3≤ℓ−j

(−1)ℓ−j+1−k2−k3σ
(2,j)
k2

τ
(3,j)
k3

xr−1
p

=
1∑

k2=0

σ
(2,j)
k2

(−xp)1−k2

ℓ−j∑
k3=0

τ
(3,j)
k3

(−x2p)ℓ−j−k3 = (xj − xp)
ℓ∏

t=j+1

(x2t − x2p).

If 1 ≤ p ≤ j − 1, then

j−1∏
t=1

(xt − xp)(xt − εxq) = 0.

If j ≤ p < q ≤ ℓ and ε ∈ {−1, 1}, then

(xj − xp)
ℓ∏

t=j+1

(x2t − x2p) = (xj − εxq)
ℓ∏

t=j+1

(x2t − (εxq)
2) = 0.
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Therefore

φC
j (xp + εxq − z)

≡ (−1)ℓ−j+1(xp + εxq)

j−1∏
t=1

(xt − xp)(xt − εxq){
(xj − xp)

( ℓ∏
t=j+1

(x2t − x2p)

)
+ (xj − εxq)

( ℓ∏
t=j+1

(x2t − (εxq)
2)

)}
= 0

for all pairs (p, q) with 1 ≤ p < q ≤ ℓ where ε ∈ {−1, 1}. When p = q, ε = 1,

φC
j (xp + εxq − z) = φC

j (2xp − z)

≡ (−1)ℓ−j+1(2xp)

j−1∏
t=1

(xt − xp)
2

{
2(xj − xp)

ℓ∏
t=j+1

(x2t − x2p)

}
= 0

for 1 ≤ p ≤ ℓ. Hence φj ∈ D(S(Cℓ)) for 1 ≤ j ≤ ℓ.

We may define an explicit R-linear map

Ψ : E∗ → D0(S(Cℓ))h

by
Ψ(xj) = φC

j (1 ≤ j ≤ ℓ)

using the derivations φC
1 , . . . , φ

C
ℓ in Definition 4.2.4.

Theorem 4.2.7. Let Φ be a root system of the type Cℓ.
(1) The map

Ξ : E∗ → D(A(Cℓ), 2)h

defined by Ξ = ρ ◦Ψ is a W -equivariant isomorphism.
(2) The map

Ψ : E∗ → D0(S(Cℓ))h

is a linear isomorphism.

Proof. Since

B
C

r,s(xi, 0) = 2B
B

r,s(xi, 0) =

{
(−1)s2xr+2s

i /(r + 2s) (r : odd number)

0 (r : even number)
,

we may prove this theorem in the same way as Theorem 3.3.2.
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Theorem 4.2.8. The derivations θE, φ
C
1 , . . . , φ

C
ℓ form a basis for D(S(Cℓ)).

Proof. Apply Theorems 4.2.7 (2) and 3.3.1 (2) in the same way as the proof
of Theorem 3.3.3.

Remark 4.2.9. Remark 3.3.4 is also true for the type Cℓ, that is, our con-
struction of φC

1 , . . . , φ
C
ℓ can be regarded as an explicit realization of the basis

existence theorem by M. Yoshinaga in [21].



Chapter 5

Extended Shi and Catalan
arrangements of the type A2

In this chapter, we give the first explicit construction of a series of bases for
the extended Shi and Catalan arrangements when the corresponding root
system is of the type A2. This chapter is based on [1].

5.1 Introduction

Let E be a 2-dimensional Euclidean space and Φ ⊂ E∗ the root system of
type A2. Let W be the Weyl group of Φ and Wz the group generated by W
and the reflection τz with respect to z. In this chapter we choose a simple
system ∆ and a positive system Φ+ of Φ as follows:

∆ = {α1, α2}, Φ+ = {α1, α2, α1 + α2}.

Then, for k ∈ Z≥0, the cones over the extended Shi arrangement cShik of
the type A2 and the extended Catalan arrangement cCatk of the type A2 are
defined by

Q(cShik) = z
∏

−k+1≤i≤k

(α1 − iz)(α2 − iz)(α1 + α2 − iz),

Q(cCatk) = z
∏

−k≤i≤k

(α1 − iz)(α2 − iz)(α1 + α2 − iz).

It follows from Yoshinaga’s Theorem 1.2.3 that cShik is a free arrange-
ment with exp(cShik) = (1, 3k, 3k), and cCatk is a free arrangement with
exp(cCatk) = (1, 3k + 1, 3k + 2). We give bases for the logarithmic modules
of these arrangements as follows:

27
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Theorem 5.1.1. Let ∆ = {α1, α2} be a simple system and {∂1, ∂2} its dual
basis for Der(S). For k ∈ Z≥0, define

Mk =

(
α1 + kz (2α1 + 4α2 + 3kz)(α1 + kz)
α2 + kz −(4α1 + 2α2 + 3kz)(α2 + kz)

)
,

Nk =

(
0 1
1 0

)
tMk|z→−z

=

(
(2α1 + 4α2 − 3kz)(α1 − kz) −(4α1 + 2α2 − 3kz)(α2 − kz)

α1 − kz α2 − kz

)
,

Tk =

 1

3k + 1
0

0
1

3k + 2

 ,

A = [I∗(αi, αj)]1≤i,j≤2 =

(
2 −1
−1 2

)
,

where I∗ is the natural inner product on E∗ induced from the inner product
I on E. Then the Euler derivation and

[∂1, ∂2]
k−1∏
i=0

(MiTiNi+1A
−1)

form a basis for D(cShik), and

[∂1, ∂2](
k−1∏
i=0

(MiTiNi+1A
−1))Mk

a Wz-invariant basis for D(cCatk).

The idea to prove Theorem 5.1.1 is to use the simple-root bases ([3]) and
Terao’s matrix B(k) ([2], [19]) with the invariant theory. Namely, if we fix
a simple system and a primitive derivation, then we obtain a family of nice
bases (simple-root basis plus/minus) for the logarithmic modules of cShik

for all k ∈ Z≥0. By computations based on invariant theory and Weyl group
actions, we can find a way to construct the bases for that of cCatk from
these bases. Hence the rest problem is to connect these new bases, which is
achieved by restricting them onto the infinite hyperplane and applying the
invariant theoretic method. In that invariant theory, Terao’s matrix B(k)

plays the essential role.
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The organization of this chapter is as follows: In section 5.2, we review
the simple-root bases for extended Shi arrangements introduced in [3], which
play key roles in our construction of bases. In section 5.3, we give an explicit
construction of bases for the extended Shi and Catalan arrangements of the
type A2 in Theorem 5.3.1.

5.2 The simple-root basis

In this section we review the definition and properties of multiarrangemetns
and the simple-root bases for the extended Shi arrangements.

First, let A be a central arrangement and fix H ∈ A. Then define

D0(A) := {θ ∈ D(A) | θ(αH) = 0}.

Let AH := {K ∩H | K ∈ A \ {H}} and define a map mH : AH → Z>0 by

mH(K ∩H) := |{L ∈ A \ {H} | L ∩H = K ∩H}|.

Then for a logarithmic module

D(AH ,mH) := {θ ∈ Der(S/(αH)) |
θ(αK) ∈ (S/(αH))(αK)

mH(K) (∀K ∈ AH)},

the Ziegler restriction map π : D0(A) → D(AH ,mH) is defined by π(θ) :=
θ|αH=0.

Proposition 5.2.1. ([23]) Assume that A is free with exp(A) =
(1, d2, . . . , dℓ). Then D0(AH ,mH) is also free with basis φ2, . . . , φℓ such that
deg(φi) = di (i = 2, . . . , ℓ). Moreover, the Ziegler restriction map is surjec-
tive.

For the rest of this section, let V = Rℓ, and we recall the simple-root bases
introduced in [3]. LetW be a finite irreducible reflection group corresponding
to an irreducible root system Φ. Then by the famous theorem of Chevalley,
there are homogeneos basic invariants P1, . . . , Pℓ generating the W -invariant
ring SW of S as R-algebra such that

degP1 < degP2 ≤ · · · ≤ degPℓ−1 < degPℓ.

Let F be the quotient field of S. Then the primitive derivation D = ∂
∂Pℓ

∈
Der(F ) is characterized by

D(Pi) =

{
c ∈ R× (i = ℓ)

0 (1 ≤ i ≤ ℓ− 1) .
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The primitive derivation D is uniquely determined up to nonzero constant
multiple c independent of the choice of the basic invariants. We define an
affine connection ∇ : Der(F )×Der(F ) → Der(F ) by

∇θ1θ2 =
ℓ∑

i=1

θ1(fi)
∂

∂xi

for θ1, θ2 ∈ Der(F ) with θ2 =
∑ℓ

i=1 fi
∂
∂xi

. For m ∈ Z>0, we define an S-
module D(A(Φ),m) by

D(A(Φ),m) = {θ ∈ Der(S) | θ(αH) ∈ αm
HS for any H ∈ A(Φ)}.

Note that the action of W onto V canonically extends to those onto
V ∗, S, Der(S) and D(A(Φ),m). Let D(A(Φ),m)W denote the W -invariant
set of D(A(Φ),m).

Lemma 5.2.2. ([20]) For the derivations ∂
∂Pi

∈ Der(SW ) (1 ≤ i ≤ ℓ),

∇ ∂
∂Pi

D(A(Φ), 2k + 1)W ⊂ D(A(Φ), 2k − 1)W (k > 0).

In particular, as mentioned in [2], the connection ∇D induces an
R[P1, . . . , Pℓ−1]-isomorphism

∇D : D(A(Φ), 2k + 1)W
∼−→ D(A(Φ), 2k − 1)W (k > 0).

So we can consider the inverse map

∇−1
D : D(A(Φ), 2k − 1)W

∼−→ D(A(Φ), 2k + 1)W .

Proposition 5.2.3. ([3],[20]) Let θE =
∑ℓ

i=1 xi
∂
∂xi

be the Euler derivation
and define ∂v (v ∈ E) by ∂v(α) := ⟨v, α⟩ for α ∈ E∗. We define Ξ : E →
D(AΦ, 2k) by Ξ(v) = ∇∂v∇−k

D θE. Then Ξ is a W -isomorphism.

Proposition 5.2.4. ([21]) Let D0(cShi
k) = {θ ∈ D(cShik) | θ(z) = 0}.

Then the Ziegler restriction map res : D0(cShi
k) → D(AΦ, 2k) defined by

res(θ) = θ|z=0 is surjective. In particular, res : D0(cShi
k)kh → D(AΦ, 2k)kh

is R-linear isomorphism where D0(cShi
k)kh and D(AΦ, 2k)kh are the homo-

geneous parts of degree kh of D0(cShi
k) and D(AΦ, 2k) respectively and h is

the Coxeter number.

Definition 5.2.5. ([3]) Fix k ∈ Z≥0. Define a linear isomorphism Θ : E →
D0(cShi

k) by Θ = res−1 ◦ Ξ. Let {α1, . . . , αℓ} ⊂ E∗ be a simple system of
Φ+ and {α∗

1, . . . , α
∗
ℓ} ⊂ E be its dual basis. Then the derivations

φ
(k)
i = Θ(α∗

i ) (1 ≤ i ≤ ℓ)
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are called a simple-root basis plus (SRB+) of D0(cShi
k) and the deriva-

tions

ψ
(k)
i =

ℓ∑
p=1

I∗(αi, αp)φ
(k)
p (1 ≤ i ≤ ℓ)

are called a simple-root basis minus (SRB−) of D0(cShi
k). Here I∗ is

the natural inner product on E∗ induced from the inner product I on E.

Remark 5.2.6. Let A = [I∗(αi, αj)]1≤i,j≤ℓ be the inner product matrix. Then

we have the following relation between an SRB+ {φ(k)
1 , . . . , φ

(k)
ℓ } and an SRB−

{ψ(k)
1 , . . . , ψ

(k)
ℓ } by the definitions:

[φ
(k)
1 , . . . , φ

(k)
ℓ ] = [ψ

(k)
1 , . . . , ψ

(k)
ℓ ]A−1.

It follows from Schur’s lemma that these bases are uniquely determined
if we fix a simple system and a primitive derivation D. These bases can be
characterized by the following conditions:

Proposition 5.2.7. ([3])

(1) Let φ
(k)
1 , . . . , φ

(k)
ℓ be an SRB+ of D0(cShi

k). Then φ
(k)
1 , . . . , φ

(k)
ℓ satisfy

φ
(k)
i (αj + kz) ∈ (αj + kz)Sz (i ̸= j).

(2) Let ψ
(k)
1 , . . . , ψ

(k)
ℓ be an SRB− of D0(cShi

k). Then ψ
(k)
1 , . . . , ψ

(k)
ℓ satisfy

ψ
(k)
i ∈ (αi − kz)Der(Sz) (1 ≤ i ≤ ℓ).

Remark 5.2.8. For an arbitrary root system, we do not know an explicit
expression of the simple-root basis because the inverse mapping of Ziegler
restriction res−1 is impossible to describe at this writing.

Now we introduce some propositions concerning the action of W to these
bases.

Proposition 5.2.9. ([3]) The derivation

ℓ∑
i=1

(αi + kz)φ
(k)
i

is called the k-Euler derivation. The k-Euler derivation is W -invariant
and belongs to D0(cCat

k)kh+1.

Proposition 5.2.10. ([3]) Let si ∈ W be the reflection with respect to αi for
1 ≤ i ≤ ℓ. Then

(1) siφ
(k)
j = φ

(k)
j whenever i ̸= j, and

(2) si

(
ψ

(k)
i

(αi − kz)

)
=

ψ
(k)
i

(αi − kz)
for 1 ≤ i ≤ ℓ.
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5.3 Construction of bases of the type A2

For the rest of this paper, we assume that the root system Φ is of the type
A2. Let {α1, α2} ⊂ E∗ be a simple system. For α ∈ Φ+ and k ∈ Z, let
Hα−kz := {α− kz = 0}. Then the results in [3] shows that cShik \ {Hαi−kz}
and cShik \ {Hα1−kz, Hα2−kz} are also both free with exponents

exp(cShik \ {Hαi−kz}) = (1, 3k − 1, 3k),

exp(cShik \ {Hα1−kz, Hα2−kz}) = (1, 3k − 1, 3k − 1)

for i = 1, 2.

Theorem 5.3.1. Let us fix basic invariants

P1 := α2
1 + α1α2 + α2

2, P2 :=
2

27
(α1 − α2)(α1 + 2α2)(2α1 + α2)

of the Weyl group W and choose the primitive derivation D in such a way
that D(P2) = 1/3. For k ∈ Z≥0, let Mk, Nk, Tk and A be the same as in
Theorem 5.1.1.

Let φ
(k)
1 , φ

(k)
2 be an SRB+ of D0(cShi

k). Then

[φ
(k)
1 , φ

(k)
2 ]Mk

form a Wz-invariant basis for D0(cCat
k), and

[φ
(k)
1 , φ

(k)
2 ]MkTkNk+1

is an SRB− of D0(cShi
k+1).

We prove Theorem 5.3.1 by using following propositions.

Proposition 5.3.2. Let φ
(k)
1 , φ

(k)
2 be an SRB+ of D0(cShi

k) and [θ
(k)
1 , θ

(k)
2 ] :=

[φ
(k)
1 , φ

(k)
2 ]Mk. Then θ

(k)
1 , θ

(k)
2 form a W -invariant basis for D0(cCat

k).

Proof. Since θ
(k)
1 = (α1 + kz)φ

(k)
1 + (α2 + kz)φ

(k)
2 is the k-Euler derivation, it

follows from Proposition 5.2.9 that θ
(k)
1 ∈ D0(cCat

k)W . Let us show θ
(k)
2 ∈

D0(cCat
k)W . By Proposition 5.2.7 (1), it is clear that θ

(k)
2 (αi + kz) ∈ (αi +

kz)Sz (i = 1, 2). Since

θ
(k)
2 = (2α1 + 4α2 + 3kz)(α1 + kz)φ

(k)
1 − (4α1 + 2α2 + 3kz)(α2 + kz)φ

(k)
2

= (2α1 + 4α2 + 3kz){θ(k)1 − (α2 + kz)φ
(k)
2 }

− (4α1 + 2α2 + 3kz)(α2 + kz)φ
(k)
2

= (2α1 + 4α2 + 3kz)θ
(k)
1 − 6(α1 + α2 + kz)(α2 + kz)φ

(k)
2 ,
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it holds that θ
(k)
2 (α1 + α2 + kz) ∈ (α1 + α2 + kz)Sz. So θ

(k)
2 ∈ D0(cCat

k).

Moreover, since siφ
(k)
j = φ

(k)
j (i ̸= j) for the reflection si with respect to αi

because of Proposition 5.2.10 (1),

s1θ
(k)
2 = (2α1 + 4α2 + 3kz)s1θ

(k)
1 − 6(α2 + kz)(α1 + α2 + kz)s1φ

(k)
2

= θ
(k)
2 .

Similarly, we can express θ
(k)
2 in terms of θ

(k)
1 and φ

(k)
1 . Then the same

argument as the above shows that s2θ
(k)
2 = θ

(k)
2 . Hence θ

(k)
2 is W -invariant.

Finally, since

det(Mk) = −6(α1 + kz)(α2 + kz)(α1 + α2 + kz),

and φ
(k)
1 , φ

(k)
2 form a basis for D0(cShi

k), it follows that θ
(k)
1 , θ

(k)
2 form a basis

for D0(cCat
k).

Lemma 5.3.3. Let Ω1(AΦ) denote the module of logarithmic differential
forms of AΦ (i.e., the dual S-module of D(AΦ)). If ω ∈ Ω1(AΦ), then
∇I∗(ω)∇−k

D θE ∈ D(AΦ, 2k − 1).

Proof. By [2], it follows that

I∗(Ω1(AΦ)) ⊂
ℓ⊕

i=1

S
∂

∂Pi

.

Since ∇ ∂
∂Pi

∇−k
D θE ∈ D(AΦ, 2k − 1) by Lemma 5.2.2, we conclude that

∇I∗(ω)∇−k
D θE ∈ D(AΦ, 2k − 1).

Proposition 5.3.4. Let ψ
(k)
1 , ψ

(k)
2 be an SRB− of D0(cShi

k). Then

[η
(k−1)
1 , η

(k−1)
2 ] := [ψ

(k)
1 , ψ

(k)
2 ]N−1

k form a W -invariant basis for D0(cCat
k−1).

Proof. First we will show that ηk−1
1 ∈ D0(cCat

k−1)W . Since

N−1
k =


1

6(α1 − kz)(α1 + α2 − kz)

4α1 + 2α2 − 3kz

6(α1 − kz)(α1 + α2 − kz)

− 1

6(α2 − kz)(α1 + α2 − kz)

2α1 + 4α2 − 3kz

6(α2 − kz)(α1 + α2 − kz)

 ,

we have

η
(k−1)
1 =

1

6(α1 + α2 − kz)

(
ψ

(k)
1

α1 − kz
− ψ

(k)
2

α2 − kz

)
.
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Consider a commtative diagram

D0(cShi
k \ {Hα1−kz, Hα2−kz})3k−1

res
∼

//∪ D(AΦ, 2k −m)3k−1∪
(α1 + α2 − kz)D0(cCat

k−1)3k−2
res
∼

// (α1 + α2)D(AΦ, 2k − 1)3k−2,

where m : AΦ → {0, 1} is a multiplicity map defined by

m(H) =

{
1 H ∈ {Hα1 , Hα2}
0 H = Hα1+α2

(H ∈ AΦ).

Let

η := 6(α1 + α2 − kz)η
(k−1)
1 =

ψ
(k)
1

α1 − kz
− ψ

(k)
2

α2 − kz
.

Then it follows from Proposition 5.2.7 (2) that η is a regular derivation and
η ∈ D0(cShi

k \ {Hα1−kz, Hα2−kz})3k−1. By the definition of SRB−, we have

1

α1 + α2

res(η) =
1

α1 + α2

res

(
ψ

(k)
1

α1 − kz
− ψ

(k)
2

α2 − kz

)

=
1

α1 + α2

(
∇I∗(dα1)∇−k

D θE
α1

−
∇I∗(dα2)∇−k

D θE
α2

)
= ∇

I∗
(

1
α1+α2

(
dα1
α1

− dα2
α2

)
)∇−k

D θE.

Since
1

α1 + α2

(
dα1

α1

− dα2

α2

) ∈ Ω1(AΦ),

Lemma 5.3.3 implies that

1

α1 + α2

res(η) ∈ D(AΦ, 2k − 1)3k−2.

Hence

res(η) ∈ (α1 + α2)D(AΦ, 2k − 1)3k−2.

Then we can see that η ∈ (α1 + α2 − kz)D0(cCat
k−1)3k−2 by chasing the

diagram above. Thus we may conclude that η
(k−1)
1 ∈ D0(cCat

k−1)3k−2. Since
D0(cCat

k−1)3k−2 = D0(cCat
k−1)W3k−2 is the one-dimensional R-vector space
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generated by (k−1)-Euler derivation by Proposition 5.2.9, we obtain η
(k−1)
1 ∈

D0(cCat
k−1)W . Next we will prove that η

(k−1)
2 ∈ D0(cCat

k−1)W . We compute

η
(k−1)
2 =

4α1 + 2α2 − 3kz

6(α1 − kz)(α1 + α2 − kz)
ψ

(k)
1 +

2α1 + 4α2 − 3kz

6(α2 − kz)(α1 + α2 − kz)
ψ

(k)
2

= (4α1 + 2α2 − 3kz)

(
η
(k−1)
1 +

ψ
(k)
2

6(α2 − kz)(α1 + α2 − kz)

)
+

2α1 + 4α2 − 3kz

6(α2 − kz)(α1 + α2 − kz)
ψ

(k)
2

= (4α1 + 2α2 − 3kz)η
(k−1)
1 +

ψ
(k)
2

α2 − kz
.

Since ψ
(k)
2 /(α2 − kz) ∈ D0(cShi

k \ {Hα2−kz}) ⊂ D0(cCat
k−1), η

(k−1)
2 belongs

to D0(cCat
k−1). Moreover, since si(ψ

(k)
i /(αi−kz)) = (ψ

(k)
i /(αi−kz)) for the

reflection si with respect to αi because of Proposition 5.2.10 (2),

s2η
(k−1)
2 = s2(4α1 + 2α2 − 3kz) · s2η(k−1)

1 + s2

(
ψ

(k)
2

α2 − kz

)

= (4α1 + 2α2 − 3kz)η
(k−1)
1 +

ψ
(k)
2

α2 − kz
= η

(k−1)
2 .

Similarly, we can express η
(k−1)
2 in terms of η

(k−1)
1 and ψ

(k)
1 . Then the same

argument as the above shows that s1η
(k−1)
2 = η

(k−1)
2 . Hence η

(k−1)
2 is W -

invariant. Finally, since

det(N−1
k ) =

1

6(α1 − kz)(α2 − kz)(α1 + α2 − kz)
,

and ψ
(k)
1 , ψ

(k)
2 form a basis for D0(cShi

k), it holds that η
(k−1)
1 , η

(k−1)
2 form a

basis for D0(cCat
k−1).

Proposition 5.3.5. Let θ
(k)
1 , η

(k−1)
1 be as in Proposition 5.3.2 and 5.3.4.

Then θ
(k)
1 , η

(k−1)
1 are Wz-invariant.

Proof. First we note that the action of the reflection τz with respect to
z preserves cCatk. Hence τz acts on D0(cCat

k). Since D0(cCat
k)3k+1 =

D0(cCat
k)W3k+1 is the one-dimensional R-vector space generated by k-Euler

derivation θ
(k)
1 , we can express τzθ

(k)
1 = cθ

(k)
1 for some c ∈ R×. Then

θ
(k)
1 |z=0 = τzθ

(k)
1 |z=0 = cθ

(k)
1 |z=0. Thus c = 1 and we conclude that θ

(k)
1 is

Wz-invariant. Similarly, we can check that η
(k−1)
1 is Wz-invariant.
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Proposition 5.3.6. Let φ
(k)
1 , φ

(k)
2 be an SRB+ and ψ

(k)
1 , ψ

(k)
2 an SRB− of

D0(cShi
k). Then

τzφ
(k)
1 =

(α1 + α2)(α1 + kz)φ
(k)
1 − kz(α2 + kz)φ

(k)
2

(α1 − kz)(α1 + α2 − kz)
, (5.1)

τzφ
(k)
2 =

−kz(α1 + kz)φ
(k)
1 + (α1 + α2)(α2 + kz)φ

(k)
2

(α2 − kz)(α1 + α2 − kz)
, (5.2)

and

τzψ
(k)
1 =

α1 + kz

α1 + α2 − kz

(
α1 + α2

α1 − kz
ψ

(k)
1 − kz

α2 − kz
ψ

(k)
2

)
, (5.3)

τzψ
(k)
2 =

α2 + kz

α1 + α2 − kz

(
− kz

α1 − kz
ψ

(k)
1 +

α1 + α2

α2 − kz
ψ

(k)
2

)
. (5.4)

Proof. By Proposition 5.3.5, θ
(k)
1 , η

(k−1)
1 are Wz-invariant. Thus we have two

equations:

(α1 + kz)φ
(k)
1 + (α2 + kz)φ

(k)
2 = (α1 − kz)τzφ

(k)
1 + (α2 − kz)τzφ

(k)
2 , (5.5)

1

6(α1 + α2 − kz)

(
ψ

(k)
1

α1 − kz
− ψ

(k)
2

α2 − kz

)

=
1

6(α1 + α2 + kz)

(
τzψ

(k)
1

α1 + kz
− τzψ

(k)
2

α2 + kz

)
. (5.6)

By Remark 5.2.6, we have

[ψ
(k)
1 , ψ

(k)
2 ] = [φ

(k)
1 , φ

(k)
2 ]A = [φ

(k)
1 , φ

(k)
2 ]

(
2 −1
−1 2

)
. (5.7)

Therefore we can rewrite the equation (5.6) by using φ
(k)
1 , φ

(k)
2 instead of

ψ
(k)
1 , ψ

(k)
2 , and solving the equations (5.5) and (5.6), we get (5.1) and (5.2).

Applying τz to the both sides of (5.7) we obtain

[τzψ
(k)
1 , τzψ

(k)
2 ] = [τzφ

(k)
1 , τzφ

(k)
2 ]A

= [φ
(k)
1 , φ

(k)
2 ]


(α1 + α2)(α1 + kz)

(α1 − kz)(α1 + α2 − kz)

−kz(α1 + kz)

(α2 − kz)(α1 + α2 − kz)
−kz(α2 + kz)

(α1 − kz)(α1 + α2 − kz)

(α1 + α2)(α2 + kz)

(α2 − kz)(α1 + α2 − kz)

A
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= [ψ
(k)
1 , ψ

(k)
2 ]A−1


(α1 + α2)(α1 + kz)

(α1 − kz)(α1 + α2 − kz)

−kz(α1 + kz)

(α2 − kz)(α1 + α2 − kz)
−kz(α2 + kz)

(α1 − kz)(α1 + α2 − kz)

(α1 + α2)(α2 + kz)

(α2 − kz)(α1 + α2 − kz)

A

= [ψ
(k)
1 , ψ

(k)
2 ]


(α1 + α2)(α1 + kz)

(α1 − kz)(α1 + α2 − kz)

−kz(α2 + kz)

(α1 − kz)(α1 + α2 − kz)
−kz(α1 + kz)

(α2 − kz)(α1 + α2 − kz)

(α1 + α2)(α2 + kz)

(α2 − kz)(α1 + α2 − kz)

 ,

thus we have (5.3) and (5.4).

Proposition 5.3.7. Let θ
(k)
2 , η

(k−1)
2 be as in Proposition 5.3.2 and 5.3.4.

Then θ
(k)
2 , η

(k−1)
2 are Wz-invariant.

Proof. The W -invariance is checked in Proposition 5.3.2 and 5.3.4. The
τz-invariance follows by the direct computation combined with Proposition
5.3.6.

It follows from Proposition 5.3.2 and 5.3.4 that both [φ
(k)
1 , φ

(k)
2 ]Mk and

[ψ
(k+1)
1 , ψ

(k+1)
2 ]N−1

k+1 are bases for D0(cCat
k)Wz and their exponents are equal

to (3k + 1, 3k + 2) as ordered sets. Therefore, there exists a matrix Tk ∈
M2(R[α1, α2, z]) such that

[φ
(k)
1 , φ

(k)
2 ]Mk · Tk = [ψ

(k+1)
1 , ψ

(k+1)
2 ]N−1

k+1 = [φ
(k+1)
1 , φ

(k+1)
2 ]AN−1

k+1.

Note that every entry of Tk is Wz-invariant since Tk gives a transformation
between the Wz-invariant bases in D0(cCat

k)W . Comparing the degrees of
both sides, we can see that the (2, 1)-entry of Tk is 0, the (1, 1)-entry and
the (2, 2)-entry of Tk are constants, and the (1, 2)-entry of Tk is a polynomial
of degree 1. Furthermore, the (1, 2) entry of Tk is 0 because it must be Wz-
invariant but there is no polynomial of degree 1 in R[α1, α2, z]

Wz . Hence we
may assume that

Tk =

(
ak 0
0 bk

)
(ak, bk ∈ R).

Hence Tk|z=0 = Tk and

[φ
(k)
1 , φ

(k)
2 ]|z=0Mk|z=0 · Tk = [φ

(k+1)
1 , φ

(k+1)
2 ]|z=0AN

−1
k+1|z=0.

Now recall the following:

Theorem 5.3.8. (T. Abe-H. Terao [2]) Define

R2k := (−1)kJ(Dk(α1), D
k(α2))

−1,
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where J(f, g) denotes the Jacobian matrix of α, β with respect to the simple
system α1, α2. Then

[φ
(k)
1 |z=0, φ

(k)
2 |z=0] = [∇∂1∇−k

D θE,∇∂2∇−k
D θE] = [∂1, ∂2]AR2kA

−1.

By using these two, let us compute Tk directly in terms of D(AΦ, 2k+1).
For that purpose, let us rewrite several polynomials and matrices in [3] in
terms of α1 and α2. First, it is easy to check that

P1 = α2
1 + α1α2 + α2

2, P2 =
2

27
(α1 − α2)(α1 + 2α2)(2α1 + α2).

are basic invariants of the type A2. Let ∂1, ∂2 denote the dual basis of {α1, α2}
for Der(S). Then the Jacobian matrix J := (∂Pj/∂αi) is

J =


2α1 + α2

2

9
(2α2

1 + 2α1α2 − α2
2)

α1 + 2α2
2

9
(α2

1 − 2α1α2 − 2α2
2)

 .

Hence the primitive derivation D is expressed as

D =
1

Q

∣∣∣∣∂1(P1) ∂1
∂2(P1) ∂2

∣∣∣∣
.
=

1

6α1α2(α1 + α2)
[(α1 + 2α2)∂1 − (2α1 + α2)∂2],

where Q = α1α2(α1+α2) is the defining polynomial of the Weyl arrangement
of the type A2. Also in the above, we multiplied −1/6 to D to satisfy the
condition D(P2) = 1/3 in Theorem 5.3.1. For a matrix M = (mij), let
D[M ] := (D(mij)). Then we can compute

D[J ] =
1

18α1α2(α1 + α2)

(
9α2 4α2(2α1 + α2)
−9α1 4α1(α1 + 2α2)

)
,

Moreover, the matrix B := JTAD[J ] and B(k) := kB + (k − 1)BT are also
computed as follows:

B =

(
0 2
1 0

)
, B(k) =

(
0 3k − 1

3k − 2 0

)
Hence

(B(k))−1 =

 0
1

3k − 2
1

3k − 1
0

 .

Now by using Theorem 5.3.8, we can determine the matrix Tk.
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Proposition 5.3.9.

Tk =

 1

3k + 1
0

0
1

3k + 2

 .

Proof. First recall that

[φ
(k)
1 , φ

(k)
2 ]MkTk = [φ

(k+1)
1 , φ

(k+1)
2 ]AN−1

k+1.

Restricting the equality above onto z = 0 and applying Theorem 5.3.8, we
obtain

AR2kA
−1(Mk|z=0)(Tk|z=0) = AR2k+2A

−1A(Nk+1|z=0)
−1.

Therefore,
Tk|z=0 = (Mk|z=0)

−1AR−1
2k R2k+2(Nk+1|z=0)

−1.

By Proposition 2.6 in [2],

R−1
2k R2k+2 = J(B(k+1))−1JTA.

Now we can compute Tk+1|z=0 directly as follows:

Tk|z=0 = (Mk|z=0)
−1AJ(B(k+1))−1JTA(Nk+1|z=0)

−1

=

 1

3k + 1
0

0
1

3k + 2

 .

Proof of Theorem 5.3.1. Combine Propositions 5.3.2, 5.3.4 and 5.3.9.

Proof of Theorem 5.1.1. First, note that P1 and P2 are unique up to nozero-
constant when Φ is of the type A2 since there is no invariant polynomial
of degree one. Therefore the construction in Theorem 5.3.1 shows that for
any choice of P1, P2 and D, the bases constructed by them are unique up
to nonzero constants. Moreover, we can connect the SRB+ and SRB− using
the inner product matrix A as Remark 5.2.6. Hence we may apply Theorem
5.3.1 starting from [∂1, ∂2] inductively to obtain the bases stated in Theorem
2.3.5, which completes the proof.
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