") HOKKAIDO UNIVERSITY
Y X7
Title Basis construction for the Shi and Catalan arrangements
Author(s) 00,00
Citation 0o0o0o00o.00@0)00113650
Issue Date 2014-03-25
DOI 10.14943/doctoral.k11365
Doc URL http://hdl.handle.net/2115/55313
Type theses (doctoral)
File Information Daisuke_Suyama.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP


https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Basis construction for
the Shi and Catalan arrangements

(ShiD0O0O Catalan0 00 OO0 OOO0O0OO)

Daisuke Suyama

Department of Mathematics
Hokkaido University, Japan
March 2014






Preface

A hyperplane arrangement is a finite set of hyperplanes in a finite di-
mensional vector space. For a Weyl group W, The Weyl arrangement is the
set of all reflecting hyperplanes of reflections in W. In particular, the Weyl
arrangement with respect to the Weyl group of the type Ay is called the braid
arrangement. The Shi arrangement is originally defined as an affine arrange-
ment of hyperplanes consisting of the hyperplanes of the braid arrangement
and their parallel translations. The Shi arrangement was introduced by J. Y.
Shi in [11] in the study of the Kazhdan-Lusztig representation theory of the
affine Weyl groups. One of the remarkable properties of the Shi arrangement
is the fact that its number of chambers is equal to (£ + 2)*. A good number
of articles, including [5, 6, 8, 13, 21], study this intriguing property. Because
of Zaslavsky’s chamber counting formula [22], the property follows from the
formula

T(S(Ay),t) = (L+)(1+ (£ + 1)t)*

for the Poincaré polynomial [9] of the cone over the Shi arrangement S(Ay).
Ch. Athanasiadis proved that D(S(A)) is a free S,-module with exponents
(0,1,0+1,...,¢+1) in [5]. He consequently proved the formula above thanks
to the factorization theorem in [18] which asserts that if the logarithmic
derivation module D(A) is a free S-module with a basis 6y, ...,6, then the
Poincaré polynomial of A is equal to Hle(l + (deg6;)t). His proof of the
freeness in [5] uses the addition-deletion theorem [16, 17]. Later M. Yoshinaga
extended this result in [21] to the extended Shi and Catalan arrangements
and affirmatively settled the Edelman-Reiner conjecture [6] by using algebro-
geometric method. However, even in the case of Shi arrangements, no basis
was constructed until [14].

This doctoral thesis is based on [1, 14, 15]. In this thesis we construct
bases for the logarithmic derivation modules of the cones over the Shi ar-
rangements of the types Ay, By, Cy, and the extended Shi and Catalan ar-
rangements of the type A,. For the type D,, an explicit basis formula for
the Shi arrangement was constructed by R. Gao, D. Pei and H. Terao in
[7]. In the construction for the Shi arrangements of the types Ay, By, Cy, the
most important ingredients of our recipe are the Bernoulli polynomial By (x)
and their relatives B, ,(z). In the construction for the Shi and Catalan ar-
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rangements of the type Ay, the simple-root basis [3] which is a special basis
of the extended Shi arrangement and the multiarrangement theory play the
important role. In particular, as for the multiarrangement theory, explicit
bases for the restriction of the Shi and Catalan arrangements onto the infi-
nite hyperplane are constructed by T. Abe, L. Solomon, H. Terao, and M.
Yoshinaga [2, 12, 20].

The organization of this thesis is as follows: In chapter 1, we recall def-
initions of arrangement theory and define the extended Shi and Catalan
arrangement. In chapter 2, we give an explicit construction of bases for the
Shi arrangement of the type A,. In chapter 3, we give an explicit construc-
tion of bases for the Shi arrangement of the type By. In chapter 4, we give
an explicit construction of bases for the Shi arrangement of the type Cy. In
chapter 5, we give an explicit construction of bases for the extended Shi and
Catalan arrangement of the type A,.
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Chapter 1

Preliminaries

1.1 Arrangements

In this section we give some basic definitions of the theory of hyperplane
arrangements.
Let K be a field and V' an /-dimensional vector space over K.

Definition 1.1.1. A hyperplane H in V is an (¢ — 1)-dimensional affine
subspace of V.. A hyperplane arrangement A is a finite set of hyperplanes
in'V. We call A an (-arrangement when we would like to emphasize the
dimension of V. If each hyperplane H in A passes through the origin Oy,
that is Oy € NpyeaH, we call A central.

Let S = S(V*) be the symmetric algebra of the dual space V* and
{z1,..., 24} C V* a basis for V*. S can be identified with a polynomial
ring K[zy, ..., z,. Each hyperplane H € A is the kernel of a polynomial ay
of degree 1 defined up to constant multiple.

Definition 1.1.2. For a hyperplane A, we define the defining polynomsial
Q(A) of A by

HeA

We agree that if A is the empty arrangement, then the defining polynomial
is Q(A) = 1.

Definition 1.1.3. Let U be an (¢+1)-dimensional vector space containing V'
as an affine subspace {z = 1} of U, where z is an element of the dual space
U*. Then we may regard U* = V* & (z) = (x1,...,2¢,2), and let S, denote
the symmetric algebra S(U*) = K[z, ..., 2y, 2] of the dual space U*. Let H
be a hyperplane in V. The cone cH over H is the hyperplane in U which

1



2 CHAPTER 1. PRELIMINARIES

passes through the origin Oy of U and H. Let A be an affine arrangement
in V. Then the cone cA over A is defined by

cA={{z=0}}U{cH | H € A}.

Since the cone cH is the kernel of homogenization zag(z1/z,...,2e/2)
of ag(zy,...,x), the defining polynomial of the cone cA is
Qed) = 2 2= ANQA (..., 7).

Note that the cone cA is a central arrangement for any affine arrangement

A.
Definition 1.1.4. The S-module

Der(S) ={0:5 — S| 0 is K-linear,
0(fg) = 0(f)g + f0(g) for any f,g € S}

is called the derivation module of S over K. We call an element of Der(S)
a derivation. It is well known that

0 0
Der(S) = <a_l‘1’ ey 8_;L‘£>S .

Definition 1.1.5. Let A be a central arrangement in V. Then the loga-
rithmic derivation module D(A) of A is defined by

D(A) = {0 € Der(5) | 0(Q(A)) € Q(A)S}
= {6 € Der(S) | 0(ay) € ayS for any H € A}.

We call an element of D(A) a logarithmic derivation.

Definition 1.1.6. The FEuler derivation 0g € Der(S) is defined by

L
0

It is easy to see that 6 € D(A) for any arrangement A.

Definition 1.1.7. A central arrangement A is called o free arrangement
if the logarithmic derivation module D(A) is a free S-module.
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If A is a free arrangement, then there exists a homogeneous basis
{01,...,0,} of D(A), and the multiset of degrees of {6,...,60,} is uniquely
determined independent of the choice of a homogeneous basis. We call the
multiset the exponents of A and write exp A = (degby,...,deg0).

Let 61,...,0, € D(A). There is a very useful criterion for checking
whether 61, ..., 6, form a basis for D(A).

Theorem 1.1.8. (Saito’s criterion [10]) Let 0, ...,0; be homogeneous log-
arithmic deriwations of A. Then the following two conditions are equivalent:

(1) det M(0y,...,60,) = Q(A),
(2) 01,...,0, form a basis for D(A),
(3) b,...,60, are linearly independent over S and Zle deg6; = |A|,

where M (01, . ..,00) is the coefficient matriz
O1(x1) -+ BOe(z1)
M(by,...,0) = : : )
O1(xg) -+ Oo(xy)
and the notation f =g (f,g € S) expresses that f = cg for some ¢ € K*.
Let A be an affine arrangement. For the cone cA over A, we define the
S.-module Dy(c.A) by
Do(cA) ={0 € D(cA) | 6(z) = 0}.
Proposition 1.1.9. The logarithmic derivation module D(cA) can be de-
composed as a direct sum of S,-modules as follows:

D(cA) = S.0r @ Do(cA),

where ,
0 0
Op — »— .

1s the Euler derivation.

Proof. Let 8 € D(cA). By definition of the cone, we can write §(z) = fz for
some [ € S,. Here we express 0 = f0g + (0 — f0g), then § — f0g € Dy(cA).
Hence D(cA) = S,0g + Do(cA). Let 0 € S.0p N Dy(cA). If 0 = gOg
for some g € S,, then 0 = 0(z) = gz, hence g = 0. Therefore D(cA) =
SZHEEBDO(CA) [l

Hence cA is free if and only if Dy(cA) is a free S,-module, and 6y, ..., 0,
form a basis for Dy(cA) if and only if 05,0y, ..., 60, form a basis for D(cA).
Thus in order to construct a basis for D(c.A), it is sufficient to construct a
basis for Dy(cA).



4 CHAPTER 1. PRELIMINARIES

1.2 The extended Shi and Catalan arrange-

ments
In this section we introducce the extended Shi and Catalan arrangements.
Then we recall a result of a freeness for the cones over the extended Shi and
Catalan arrangements obtained by Yoshinaga.
Let E be an /-dimensional Euclidean space over R. Let ® be a crystal-

lographic irreducible root system in the dual space E* and ®* a positive
system of ®. For a € & and i € Z, define the affine hyperplane H,; by

H,i={veV|al) =1}

Definition 1.2.1. The arrangement A(®) = {Hapo | @ € ®T} is called the
Weyl arrangement of the type ®.

Definition 1.2.2. Let k € Z>¢. Then the extended Shi arrangement
Shi* of the type ® and the extended Catalan arrangment Cat® of the
type ® are affine arrangements defined by

Shi* = {H,;| o € ®", —k+1<i <k},
Cath = {H,; | o € 7, —k <i < k}.

In particular, the arrangement Shi' is called Shi arrangement which
was introduced by J. Y. Shi in [11] in the study of the Kazhdan-Lusztig
representation theory of the affine Weyl groups. Yoshinaga [21] proved the
freeness of the cones over the extended Shi and Catalan arrangements and
affirmatively settled the Edelman-Reiner conjecture [6].

Theorem 1.2.3. (M. Yoshinaga [21]) Let k € Z>o. Then

(1) the cone over the extended Shi arrangement cShi* is free with

exp(cShi*) = (1,kh, kh, ... kh),

(2) the cone over the extended Catalan arrangement cCat® is free with

exp(cCat®) = (1,e; 4+ kh, ey + kh, ... e, + kh),

where h is the Coxeter number of ® and ey, ..., e, are the exponents of P.



Chapter 2

The Shi arrangements of the
type 4,

In this chapter, we construct a basis for the logarithmic derivation module
of the cone over the Shi arrangement of the type A,. This chapter is based
on [14].

2.1 Notations

Let E be an /-dimensional Euclidean space and ® 4 be the root system of
the type A;,. Let @) denote the set of positive roots. In this chapter we
explicitly choose £ and ®4 as follows: let V = R“! and x1,..., 24, be an
orthonormal basis for the dual space V*. Define

r+1 r+1
E = {ZQIZ evVv” Zci = 0},

=1 =1
Ppi={o;—2; e E[1<i<l+1,1<j<l+1,i#j},
Ohi={z;—x; €P|i<j}

Then A(®4) is called a braid arrangement, which is undoubtedly the
most-studied arrangement of hyperplanes in various contexts. The Shi ar-
rangement of the type A, is given by

A@N)U{H,y laed}= | {{oi—a; =0} {zi—2; = 1}}.
1<i<d41
1<5<e+1

5



6 CHAPTER 2. SHI ARRANGEMENTS OF TYPE A,

Let S(Ay) denote the cone over the Shi arrangement cShi' of the type A. It
is a central arrangement defined by

QSN == ] @-z) ][] @-z—-2=0.
1<p<q<t+1 1<p<g<t+1
It follows from Theorem 1.2.3 that S(A) is free with
exp(S(A)) = (0,1,0+1,....0+1).

Here there appears 0 in exp(S(Ay)) because the Weyl group W of the type
A, is not essential for V = R,

The organization of this chapter is as follows: In Section 2.2, we will define
the polynomials B, ,(z) which includes the Bernoulli polynomials. In Section
2.3, Theorem 2.3.5 proves that the derivations constructed in Definition 2.3.1
form a basis for the derivation module D(S(Ay)).

2.2 The Bernoulli polynomials and B]fq(:r:)

Let Bi!(z) denote the k-th Bernoulli polynomial. Let B;}(0) = B, denote
the k-th Bernoulli number. The most important property of the Bernoulli
polynomial in this paper is the following elementary formula (e.g., [4]):

Theorem 2.2.1.
Bz +1) — B (x) = ka™ .

Definition 2.2.2. For (p,q) € (Zx0)?, consider a polynomial B\ (x) in x
satisfying the following two conditions:

(1) BA(x+1) = BA(2) = (@ + 1)rat,
(2) B (0)=0.
It 1s easy to see that B;‘q(x) 15 uniquely determined by these two conditions.

Example 2.2.3. (1) When (p,q) = (0,q), we have

1
By, (z) = ] {B1(x) = By, }

because of Theorem 2.2.1.
(2) When (p,q) = (p,0), we obtain

(_1)p+1
p+1

Byo(x) = {Ba(=2) = By} = (—1)"7' By, (—)
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because
(=1 By (—x — 1) — (1" Byl ()
= (-1)"{Bg,(—x) = Bi,(—x — 1)} = (=1)P(—z — 1)” = (z + 1)".
(3) For a general (p,q) € (Z>0)?, it easily follows from Theorem 2.2.1

that the polynomial has an expression in terms of the Bernoulli polynomials
as

:Xp:q+l+1(){ i (t) = B} = Z() 0.0+i(T

For exzample, B, () = Bg(x) + Bjy(z) = 3(2* — 2).
Note that the polynomial Bz’iq(a:) is a polynomial of degree p+ ¢+ 1. The
homogenization §2q<l‘, z) of B! () is defined by

—A i
. gl pA (2
B, (z,2) =z B, (z> :

2.3 A basis construction

Let 1 < j < /. Define
L ={z1,29,...,0521}, Lb={xj40,Tjts, .., Tes1}-

Let ak ) denote the elementary symmetric function in the variables in I, of

degree k (s = 1,2, k € Z>q). Recall the homogeneous polynomials BA (7, 2)
of degree p 4+ q + 1 defined at the end of the previous section.

Definition 2.3.1. Let 9; (1 <i < {+1) denote 0/0x;. Define homogeneous

derivations
+1

ni=Y_0; € Do(S(Ay)),

and
041 .
A k1+k2 1) (2) ) .
P; = (¥j — Tj41 — 2) E E 05 1-k190—j—ky Bkl,kz(xlvz)al
i=1 0<k;<j—1
0<ko<l—j

for1 <j<Ut.
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We will prove that the derivations n,¢f, ..., ¢! form a basis for
Do(S(Ay)). First we will verify the following Proposition:

Proposition 2.3.2. The derivations QOJA (1 < j < 0) belong to the module
Do(S(Ay)).

Proof. We first have

oz — 2q) = (x5 — Tjs1 — 2)

1 2 A4 —A
Z (_1)k1+k20§—)1—k10lg—)‘j—k2 {Bkl,kg ('TPJ Z) - Bkl,kQ (mfb Z)} .

0<ki<j—1
0<ky<t—j

Since the right hand side equals zero if we set x, = x,, we may conclude that
gpj‘(xp — x,) is divisible by z, — z, for all pairs (p,q) with 1 <p < ¢ </{+1.
The congruent notation = in the following calculation is modulo the ideal
(xp —xy — 2):
A
¥ (Tp — g — 2)
= (2 — 2 — 2)

_\kitke (1) (2) 74 oy A _
§ (—1) 05 11,00 j—ky B, ks (Tp, Tp — 24) B, ks (Tg, Tp — T4)
0<k1<j—-1

0<ko<l—j
1 2
= (ZL‘]‘ — Tj41 — Z) Z (_1)k1+k20‘§—)17k10’lgf)j7k2
k1<j—
0kt
(= 5 B ()~ B ()
P q k1,ko T, — T, ko ks Ty — Tq

= (2 —xj11 — 2)

1 2 i X
Z (_1)k1+k20§—)1—k10§—)j—k2 (J}p o xq)k1+k2+1(x _p:r )kl x —qZE )kz
0<hi<j1 b P
0<ky<t—j

1 2
G R TR [ B N G ) e Y/

0<k1<j—1
0<ko<l—j
Jj—1 L—j
1 2
= (5 —xj41 — 2)(Tp — 1) Z UJ('—)l—kl(_xp)kl Z Cré—)j—lcg(_ﬂcq)k2
k1=0 ko=0
Jj—1 41
= (v; — i1 — 2)(zp — Tg) H(xs — Tp) H (x5 —2q) =0
s=1 s=j+2

for all pairs (p,q) with 1 <p < ¢ </{+ 1. O
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Lemma 2.3.3. Suppose ¢ > 1. Let N be the { x {-malriz whose (i, j)-entry
15 equal to the elementary symmetric function of degree ¢ — i in the variables
L1y ey Tj—1,Lj42y -« oy Tp41- Then

det N = (=172 T (2 — ).

1<p<g<t
q—p>1

Proof. Note that we have the equality

{1 —ay (=) () (_xp)g_l} N

= H (xs — xp) H (Ts — @) - .. H (25 — @p)

1<s<t+1 1<s<b+1 1<s<t+1
s¢{1,2} 5¢{2,3} sg{€,0+1}

for any 1 < p < {. Suppose that
1<p<qg</l+1, g—p>1.
Set x, = 2, in IV, and we get N,,. Then we may conclude that
[1 —ap (=xp)° () (_xp)é_l] Npq = 0.

This implies that det IV, = 0 and that det N is divisible by z,, — z,. Since

deg(det N) = £({ —1)/2=deg ] (2, — =),
1<p<q<i+1
q—p>1

there exists a constant C' such that

det N=C (-2 T (m-z)=C [] (25—

1<p<q<i+1 1<p<qg<i+1
q—p>1 q—p>1
By comparing the coefficients of x3x? .. .xﬁ’%gﬁ on both sides, we obtain
C=1. O]
Proposition 2.3.4. The derivations 0,91, ..., ¢ are linearly independent

over S,.
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Proof. Set z =0 in <p3-4 and we get ¢; as follows:

L 1)kathe
_ (1) (2) ki+ko+1
;- %|zo —$J+1Z Z +k+1%1k1053k2x 0;
i=1 0<ky<j—1 ki + ks
0<ko<l—j
(-1t o @ <
= (& —j11) Y ’ > 5, E,Ia
k=1 ky+ka+1=k
0<k1<j—1
0<ko<l—j
I 3t
= (951' —$j+1) 2 Uz—k(ﬂﬁh-~7Ij—1,Ij+27~-7$e+1) x;0;.
k=1 i=1
Here oy_i(x1,...,2j-1,%j42,...,2¢41) stands for the elementary symmetric
function of degree ¢ — 4 in the variables x1,...,2;_1,%j42,...,2¢+1. This is

equal to the (7, j)-entry N;; of the matrix N in Lemma 2.3.3. Thus we have

4 (_
6(1:) = (27— 201) Y

k=1

k—1

¥ Ny (2.1)

Define two (¢ + 1) x (¢ + 1)-diagonal matrices Dy and D, by
D= (1@ 1@ [(-1)'/2] @ [(-1)?/3] @ & [(-1) /4,
Dy :=[1]® [11 — o] ® [T — 23] © - -+ © [T — T31],

where @ stands for the direct sum of matrices. Also define two (£+1) x ({+1)-
matrices N and M by

~ o L -1
N:=[1]@&N, M:= [xi }1§i§£+1,1§j§£+1’

From (2.1) we obtain

1 () ... de(xr) ]
1 ¢1 (.TQ) Ce ¢g($2)

e R BRI
_i 1 (il;€+1) @(@H)_

Thus, by applying the Vandermonde determinant formula and Lemma 2.3.3,
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we deduce

det P = (det M)(det D;)(det N)(det Ds)

1\Le=1)/2

1<p<q<i+1 1<p<e

_ ((_”Zﬂ) [T (-2 40

1<p<q<t+1

Thus 7, ¢1, . .., ¢ are linearly independent. This implies that n, pi', ..., ¢!

are linearly independent.

Remark. The derivations ¢, ..., ¢, are a basis for the derivation module of
the double Coxeter arrangement of the type A, studied in [12] (cf. [19]).

Theorem 2.3.5. The derivations 1,07, . .., @3 form a basis for Do(S(Ay)).

Proof. We may apply Theorem 1.1.8 (Saito’s criterion) thanks to Proposi-
tions 2.3.2 and 2.3.4 because

4
degn + Y degf = L(0+1) = [S(Ay)] - L.

j=1
]

Remark: The Bernoulli polynomials explicitly appear in the first derivation
@1 and the last one ¢! because of Example 2.2.3 (1) and (2):

041 -1
—A
ol = (r1— 2= 2) Y Y (=10, By, (w1, 2)0;
=1 ko=0
+1 ¢
(x1 — 29 — 2 Z af_)kzk (B,’f(:ci/z) — Bk) 0;,

=1 k=1

+

N S,
N

and
41 6-1

1 —A
o = (we— 21— 2) > Y (D)Mo By, olai, 2)0;

i=1 k1=0

+1 ¢ -1
(_1k)k Uél,)k (—Z)k (B,?(—%/Z) - Bk) 0;.

(]

= (IEZ — Tep1 — Z)
i=1 k=1

Here 0((11) and O'((f) are the elementary symmetric functions of degree d in the

variables x1,...,xp_1 and x3, ..., T, respectively.
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Example 2.3.6. For As, we have

77:81+82+83+84,

1 1 3 1
o =z (21 — 19 — 2) {x3x4 — §(x3 +24) (21 — 2) + 3 (xf — 50zt §z2) } O
1 1/, 3 1,
+ xo(r1 — 9 — 2) S 3wy — = (X3 +24) (X2 — 2) + = | 25 — =222 + =2 0o
2 3 2 2
1
— 61’3(371 — L9 — Z)(SUg + Z)(l’g — 31’4 — 2)83
1
— 6x4(x1 — 29 — 2)(x4 + 2) (x4 — 323 — 2)04,
1
e —éxl(xQ —x3— 2)(x1 — 2) (21 — 324 — 22)04

1 1 1
+ $2 T9g — T3 — X% {.T1$4 — §LL’1 To — Z) — §$4<I2 —+ Z) —+ g(l’g — 22)} 82

1 1 1
T1Tq4 — §$1 T3 — z) — §$4($3 +2) + 3($§ - ZQ)} 03

1
+ 6:(:4(:1:2 — x5 — 2)(x4 + 2)(3x1 — x4 — 22)04,
1
o5 = —61’1(1‘3 — x4 —2)(x1 — 2) (21 — 322 + 2)01
1
— 6$2<I3 — 24— 2) (29 — 2) (79 — 321 + 2)0s

1
—+ .Tg(l’g — Ty — Z) {131.%2 — 5(371 + $2)<I3 —+ Z) —+

3 1

(IE% + 5.7}32 + 522) } 63
3 1

(xi + §ZE4Z + 522) } 84.

1
+x4(23 — x4 — 2) {xlxg — 5(1:1 + x9) (s + 2) +

Wl = W+~



Chapter 3

The Shi arrangements of the
type By

In this chapter, we construct a basis for the logarithmic derivation module
of the cone over the Shi arrangement of the type B,. This chapter is based
on [15].

3.1 Notations

Let E be an /-dimensional Euclidean space. Let xq, ..., z, be an orthonormal
basis for the dual space E*. In this chapter we explicitly choose root systems
5 and positive root system @} of the type By as follows:

Op :={tw;, tr, £, e E" |1 <i</(1<p<q</l}
oL ={r;,x,L2,e€Pp|1<i<l1<p<q<(}

We express the cones over the Shi arrangements Shi' of the type By by S(By).
Then the defining polynomial of S(By) is

Q(S(By)) = = H iwi—2) [T Alep+2q)(2, — )

1<p<q<t

(zp + 24 — 2)(7p — 7y — 2)}

It follows from Yoshinaga’s Theorem 1.2.3 that S(By) is free with
exp(S(By)) = (1,26,2¢,...,20).

The organization of this chapter is as follows: In Section 3.2, we will
construct ¢ derivations P, ..., ©F belonging to Dy(S(By)). In Section 3.3,
we will prove that they form a basis of Dy(S(By)).

13



14 CHAPTER 3. SHI ARRANGEMENTS OF TYPE By

3.2 A basis construction for the type By

Definition 3.2.1. For (r,s) € Zsq X L, define a polynomial BE (x) in x
satisfying the following two conditions:

(24 1) = (—a)
(z+1) = (—2)

(i) Bz +1) = Bl(x) = (z+1)°(=2)’,

(i) BE,(0) = 0.

Note that % is a polynomial either of degree r — 1 (when 7 is

odd) or of degree r — 2 (when r is even). It is thus easy to see that B2 (x)
uniquely exists and

r+ 2s if r is odd,

r4+2s—1 if ris even.

deg st(x) = {
Lemma 3.2.2. BP () is an odd function.

Proof. Replacing x with —x — 1 in 3.2.1 (i), we have
(ca)" = @+ 1)
(=) — (z +1)
=B (z+1) — Bl,(z).

Then we get F(z) = F(x + 1) where F(z) := Bf,(z) + Bf,(—). Thus we
obtain

B;(—z) = B (-2 — 1) = (—=2)°(z +1)°

Fin)=Fn—1)=---=F(0)=0 (n € Zs)
and
B (x) + By (—x) = F(z) = 0.
O
Definition 3.2.3. The homogenization Efs(:v,z) of st(x) is defined by
By(x,2) == 2" B2 (x/2).
Let 1 < j < /. Define
1 ={an,ad, B = o), I = {aja,. 0

Let ok (y1,Y2,...) (k € Z>o) denote the elementary symmetric polynomials
in y1,s,... of degree k. Then define

0.(2,1') — Uk(flfj)a T1§3,j) = Uk<33'j2'+17 s 71.?)

The following construction of gpf is inspired by the basis of the type A, in
Chapter 2. The definition of gpf is a suitable variation of goj‘ which is defined
in Chapter 2 for the type Ay.
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Definition 3.2.4. Let 0; (1 <1i <{) and 0, denote 0/0x; and 0/0z respec-
tively. Define the following homogeneous derivations

gy T (I 4)(11 o)

i=1 Nl,N2cI§j) €N 2¢EN2

N1NNa=0
0<k2<1
0<ks<t—j
where
ro=20—2j—ko—2ks+2 > 1, 5= |TV\(N{UN,)| = (j—1)—|Ny|—|No| > 0
for1 <j </t

It is easy to see that each @f is a homogeneous derivation of degree
2¢ which is equal to the Coxeter number for B,. We will prove that the
derivations 0 and P, ... pP form a basis for D(S(By)). First we will
verify the following

Proposition 3.2.5. Let ¢ € {—1,0,1}. Then we have the following congru-
ence relations:

Efs(xp, z) + 6§fs(xq, z) =0 mod (z, +cx,),

x) — (emy)"

Efs(xp, z)+5§fs(xq, 2) = (zp+ezy) (xp-exy)® mod (zp+er,—z).

Tp — ETyq

Proof. The first congruence follows from Definition 3.2.1 (ii) and Lemma
3.2.2. Let the congruent notation = in the following calculation be modulo
the ideal (z, + ex, — z). By Definition 3.2.1 and Lemma 3.2.2, we have

B, (2, 2) + B, (24,2) = By, (2, 2) + By.y(ex4, 2)

— Zr-l-QS{BB (ﬁ BB <%>}
rs\ 4 7,8 P

_I_
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r r
Tp - Exq s s
r42s \ Tp1eTq Tpt+exg ( Tp ) ( EXq )

= (pr + E[L'q) T ET
xp-l—l.;ccq - a:p—l—gxq Tp + Exq Lp + €Tq
7y, — (exy)"
= (zp + £7,) ZJ o (zp - £x4)°.
p q

]

Proposition 3.2.6. The derivations gpf (1 < j < ¥) belong to the module
D(S(By)).

Proof. By Proposition 3.2.5, we first have

OF (wy+exg) = (-1 Y (fo)(Hextz))

Nl,NQCI{J) xtENl xteNQ
N1NNo=0
Z kotks (2.) _(3.4) (B yold
(_1) Oky Thy (Br,s<xp?2) +€Br,s($q?2))
0<k2<1
0<ks<t—j

=0 mod (z,+ex,)

for 1 < j < £. Thus we conclude that ¢P(x,), P (x, & x,) are divisible by
Tp, Ty Exy for 1 <p <1 <p < q <L respectively.

Let the congruent notation = in the following calculation be modulo the
ideal (x, 4+ ez, — 2z). By Proposition 3.2.5, for 1 < j < ¢, we also have

90;'3@17 +exg—2) = SO}B(@D + €xy)

VS (H)(HN<—>)

Nl,Ngcfgj) ItENl

N1NNo=0
i iy ,~—=B —B
Z (_1)k2+k30-l(c§7])7-l§§7])(Br,s(xp7 Z) + EBT,s(xfb Z))
0<ko<1
0<kz<l—j
=1 ¥ (I #)( I ot o)
Nl,NQC]:Ej) Tt €N Tt EN2
N1NNo=0
. A xr — (exy)"
S (DR g, 1 en) I
01 Tp — EXyq

0<k3<l—j
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~yten) X (IT ) (IT (oo + 2o ) ooy

N1,N2CI£j) TtENy T4 ENo
NiNN2=0
_1)¢+1 4 '
( 1) { Z (_1)Z—j+1—k’2—k’30.(2:.7)7_(3a])x7’
ko ks p
Xy, —ET
p 7\ p<ky<1
0<k3z<l—j
z ( 1) Jkg Tkg (ng) :
0<ka<1
0<k3<l—j

Here,
Z < H $?> ( H (—ae(xp + 5%))) (zp - £24)°
N17N2CI§J) CEteNl fEtENQ
N1NNo=0
Jj—1 Jj—1
= H(x? — (2p +exg)re + 7 - £74) = H(mt — @) (21 — £74)
t=1 t=1
and
Z (_1)£_j+1_k2_k3O—I(c?j)’rlgjj)m;
0<kz<1
0<ks <l—j
1 l—j l
2,j - 3, i
=, > o (=) T Yl (=) I =y (ay — ) [ (@7 - ),
k2=0 k3=0 t=j+1
If1<p<j—1, then
j—1
H(xt — ap) (2 — exg) =0
t=1

If 7 <p<q</¥ then

L L

sty — ) T] (a2 = a2)) = oyt 2o ( I 6 = () =0,

t=j+1 t=j+1
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Therefore

gpf(xp +ex, — 2)
-1

111 p —|—€l’q
—_— Ty — X Ty — EX
.Z'p—&fl?qt 1( ¢ p)( ! q)

=(=1

4

{outes o T @t -

t=j+1

v
~_
|
m
S
_Q
&
<.
|
)

&
e
VR
N
N
|
o
3

_

S~—
N>
N~
——

=0
for all pairs (p,q) with 1 < p < ¢ < ¢ and ¢ € {-1,0,1}. Hence gof €
D(S(By)) for 1 < j < /. O
3.3 The W-equivariance

Recall that A(®) is the Weyl arrangement in E corresponding to the irre-
ducible root system ®. In [12] L. Solomon and H. Terao studied the S-module

D(A(®),2) := {0 € Dex(S) | 0(ag) € Sa2, H € A(®)},

which was denoted by E(A) in [12]. Let h be the Coxeter number for .
Define

D(A(®),2), == {0 € D(A(®),2) | deg = h} U {0},

which is a real vector space. Note that the Weyl group W corresponding to ¢
naturally acts on D(A(®),2) and D(A(®P),2),. We recall the S,-submodule

Do(8(®)) = {y € D(S(®)) | (2) = 0}
of D(S(®)). Then by Proposition 1.1.9, D(S(®)) has a decomposition
D(S(®)) = 5.05 ® Do(S())
over S,. Let
Do(S(®)1 i= {p € Do(S(®)) | degp = h} U {0},
which is a real vector space. If ¢ € Dy(S(®)), then p(ay) € ag(ag — 2)S.

for any H € A(®). Let ¥ := ¢|,—0 be the restriction of ¢ to z = 0. Then
p(ay) € oS for any H € A(®), hence p € D(A(®D), 2).
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Theorem 3.3.1. (1) (L. Solomon-H. Terao [12]) The S-module D(A(®),2)
15 a free module with a basis consisting of ¢ derivations homogeneous of degree
h. In other words, we have an isomorphism

D(A(®),2) =~ D(A(®),2), @ S.

(2) (M. Yoshinaga [21]) The S.-module Do(S(®P)) is a free module with
a basis consisting of £ derivations homogeneous of degree h. In other words,
we have an isomorphism

Dy(S(P)) ~ D(S(P)), ®r 5.
Also the restriction map

p: Do(S(®))n — D(A(®),2)n
defined by p — P = ¢|.—¢ 1s a linear isomorphism.

Suppose that ® is of the type By in the rest of this section. Then we may
define an explicit R-linear map

v: BF*— Do(S(B[))h
by
U(z;) =] (1<j<0)

using the derivations ¢, ... pP in Definition 3.2.4.

Theorem 3.3.2. Let ® be a root system of the type By.
(1) The map
=:E"— D(A(By),2)n

defined by = = po W is a W-equivariant isomorphism.
(2) The map
v B — DO(S(BZ))h

1$ a linear isomorphism.

Proof. (1) Since

Efs(%', 0) = {(—1)%;“5/(7’ +2s)  (r: odd number)

(r : even number) ’
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r+2s

-7
1 3,7 s xi
— v Y (11 x?)2<—1>”’“3n£3”<—1> /A
r—+ 2s
. izt = (3, $T+25
~Cn Y X (I ) Den eyt

m=0 N1C1§j) xrtENy
|N1|—

20—2m—2k3—1

— (1,5) m+k3 Z;
xZT Z iy 26—2m—2k3—1

k3=0
-1 221
_ k 2 2 2 2 3
= E (1) O-k('rla'-wxjfluijrla'--7xﬂ)m'
k=0

Thus we obtain

-1 ¢ $2£ 2k—1
- k S
E(zj) =x; Y (-1) ak(afl,...,x? 1,1‘3_,’_1,.. x5 Z(% 2k—1)8'

0 =1

~

>
Il

Since
¢ 20—2k—1
0;
> (71)
=1
is a W-invariant derivation and the correspondence

T, |—>xjak(x%,...,x?fl,a:ﬁl,...,x?) 0<k<t-1)

is W-equivariant for every k € Zso, we conclude that = is W-equivariant.
Therefore = is bijective by Schur’s lemma.

(2) follows from (1) because the restriction map p is bijective by Theorem
3.3.1 (2). 0

Theorem 3.3.3. The derivations o2, ... 0P form a basis for Do(S(By)).

Proof. Recall that each U(z;) = ¥ belongs to Do(S(By)). Theorems 3.3.1
(2) and 3.3.2 (2) complete the proof. O

Remark 3.3.4. Since the W-equivariant isomorphism Z : E* —
D(A(By),2)y, in Theorem 3.3.2 (1) is unique up to a nonzero constant mul-
tiple by Schur’s lemma, the derivations p?|.—o, ..., 0P|.—0 coincide with the
Solomon-Terao basis in [12] up to a nonzero constant multiple. Therefore,
our construction of P, ... oF can be regarded as an explicit realization of
the basis existence theorem by M. Yoshinaga in [21].



Chapter 4

The Shi arrangements of the
type Cy

In this chapter, we construct a basis for the logarithmic derivation module
of the cone over the Shi arrangement of the type C,. This chapter is based
on [15].

4.1 Notations

In this chapter we explicitly choose root systems ® and positive root system
. of the type Cy as follows:

O = {2z, tr, 2, e B |1 <i</{1<p<q</{}
oL = {2z, 2,2, €Pp |1 <i<(1<p<q<{}.

We express the cones over the Shi arrangements Shi' of the type C; by S(Cy).
Then the defining polynomial of S(Cy) is

l
Q(S(Cr)) = ZH 22;(2z; — 2) H {(zp + zq)(xp — 7)

i=1 1<p<q<t

(Tp + 24 — 2) () — 24 — 2)}.

It follows from Yoshinaga’s Theorem 1.2.3 that S(Cy) is free with
exp(S(Cy)) = (1,2¢,2¢,...,20).

21
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4.2 A basis construction for the type C;

Definition 4.2.1. For (r,s) € Zsq X L, define a polynomial BE,(x) in x
satisfying the following two conditions:

(i) Biy(w +1) = Biy(x) = {(z + 1) + (=) "} (& + 1)*(—2)°,
(i) BS,(0) = 0.
It is easy to see that BSS(:E) uniquely exists and

r+2s if r is odd,

r4+2s—1 if ris even.

deg st(x) = {
The following lemma can be proved by a smilar argument to the proof of
Lemma 3.2.2:

Lemma 4.2.2. B, (x) is an odd function.

Definition 4.2.3. The homogenization Efs(x, z) of BS () is defined by

Bl (w,2) = 27 BS, (1))

Definition 4.2.4. Define homogeneous derivations

pj = (—1>j§:{ > ( 11 l‘f) ( 11 <—1‘t2>)

i=1 N1,N2C1£j) zt€NY TtEN2
N1NNo=0

Z ko+ks _(2.4) _(3,5) €

(_1) O-kg Tkg BT’,S (xl? Z) al
0<ko2<1
0<ks<l—j

where
ra= 2 —2f—ky—2ks+2 > 1, s:= [T\ (NLUN,)| = (j—1)— |Ny|—|Na| > 0
for1 <j<U/.

Note that gpjc is exactly the same as gof with only one exception: the use
of ES (i, z) instead of Ef o(xs, 2). Thus each ¢ is a homogeneous derivation
of degree 2¢ which is equal to the Coxeter number for C,. We will prove that
the derivations g and ¢, ..., ¢ form a basis for D(S(Cy)). We first have
the following propositions:
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Proposition 4.2.5. Let ¢ € {—1,0,1}. Then we have the following congru-
ence relations:

Efs(xp, z) + 6§Ss(xq, z) =0 mod (z, +cx,),

Brc,s(xpa z) + €B (g, 2) = (2, + ex a4 (exy) M Y xy - £x,)°

p
mod (x, + exy — 2).

Proof. Imitate the proof of Proposition 3.2.5. O]

Proposition 4.2.6. The derivations gojc (1 < j < 0) belong to the module
D(S(CY)).

Proof. This proof is very similar to the proof of Proposition 3.2.6. However,
in this proof, we have to verify that ¢ (2z, — 2) is divisible by 2z, — z while
we verified that 7 (z, — z) is divisible by x,, — z in the proof of Proposition
3.2.6. By Proposition 4.2.5, we first have

o5 (@p + exy)

S (H)(HN<—>)

Nl,NQCI{j) xteNl
N1NNy=0

2 3
ST (~1)fethag PO (B (2, 2) + B, (24, 2)
0<ko<1
0<k3<l—j

=0 (mod (x, +ezy))

for 1 < j < ¢. Thus we conclude that ¢ (2,), 5 (x, £ ) are divisible by
2ap,xp, £ ag for 1 < p < /{1 <p<q< L respectively.

Let the congruent notation = in the following calculation be modulo the
ideal (z, + ex, — z). By Proposition 4.2.5, for 1 < j < ¢, we also have

@?(xp +exg—z) = 90?(1319 +exy)

RS (H)( H(—w))
Nl,NQCI{j) xt€N1 LL‘teN2
N1NNy=0
2 3
ST (—1)fethag IOV (BY (2, 2) + B, (24, 2)

0<ko<1
0<ks<l—j
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1 X (IT ) ( IT oty +200)

Nl,NQCIfi) Tt€N1 zt€ENg
N1NNo=0
S (=0t P00 (g, 4 exg) o + (e2) T H(w  exy)”
0<ko<1
0<k3<l—j

—pren) X (1 o) (T Conton 20 ) (e

Nl,NQCIij) T €Ny €N
N1NNa=0

(_1)z+1{ Z (_1)£—j+1—k2—k30(2u’) (3:) 1.

ko Tks ;_1
0<kz<1
0<ks<lj
+ Y (—1)““’“2kSa,ﬁ’j)r,Sj’j)(axq)”},
0<ka<1
0<kz<l—j
Here,
2. ( 11 ) ( [T (-2l +mq>>) (2, - £2)°
Ni, NI "TEN x+€Ng
NiNN2=0
Jj—1 j—1
= H(l’? — (Tp + €2g)3t + Tp - €Ty) = H(It — xp) (¢ — £xg),
=1 t=1
and

Z (_1>€7j+17k27k‘30_(27.7)T(37j)x

r—1
ko k3 p

1 l—j L
2,j - 3, —j—
= 2ol ) 3l ) T = (=) [T (0 - ).
ko=0 k3=0 t=j+1
If1<p<j—1, then

j—1

H(xt —z,) (2 — exy) = 0.

t=1
Ifj<p<qg<landee€{-1,1}, then

14

4
(@ =) TT @ =) = (a; —ew)) I] (o = (2)®) =
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Therefore

gojc(xp +ex, — 2)
j—1

(_1)€_j+1(xp + exq) H(xt — &) (2t — €24)

for all pairs (p,q) with 1 < p < ¢ < ¢ where e € {—1,1}. When p = ¢q,e = 1,

@?(mp +exg —2) = 9030(2%9 —2)

— (1 ) T - mpf{z(xj o T xﬁ)}

t=1 t=7+1

=0
for 1 <p < /{. Hence p; € D(S(Cy)) for 1 < j <. O
We may define an explicit R-linear map
U: EF*— Do(S(Cg))h
by
V() =¢f (1<j<0)
using the derivations ¢¢, ..., ¢ in Definition 4.2.4.

Theorem 4.2.7. Let ® be a root system of the type C,.
(1) The map
=: B —= D(A(Cy),2)

defined by = = po ¥ is a W-equivariant isomorphism.
(2) The map
U: E* — Do(S(Cg))h

s a linear isomorphism.

Proof. Since

C

— . —1)52 1j+25 9 - odd b
Br,s(xho) = 2355(171,0) = {( ) X /(T + S) (T o num eI‘)

(2
0 (r : even number) ’

we may prove this theorem in the same way as Theorem 3.3.2. O
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Theorem 4.2.8. The derivations 0g, ¢$, ..., o5 form a basis for D(S(Cy)).

Proof. Apply Theorems 4.2.7 (2) and 3.3.1 (2) in the same way as the proof
of Theorem 3.3.3. O

Remark 4.2.9. Remark 3.5.4 is also true for the type C,, that is, our con-

struction of oS, ..., ¢f can be regarded as an explicit realization of the basis
ezistence theorem by M. Yoshinaga in [21].



Chapter 5

Extended Shi and Catalan
arrangements of the type A,

In this chapter, we give the first explicit construction of a series of bases for
the extended Shi and Catalan arrangements when the corresponding root
system is of the type As. This chapter is based on [1].

5.1 Introduction

Let E be a 2-dimensional Fuclidean space and ® C E* the root system of
type As. Let W be the Weyl group of ® and W, the group generated by W
and the reflection 7, with respect to z. In this chapter we choose a simple
system A and a positive system ®* of ® as follows:

A= {041,%}, GREES {041,0627041 + 042}-

Then, for k € Z>, the cones over the extended Shi arrangement cShi® of
the type A, and the extended Catalan arrangement cCat” of the type A, are
defined by

Q(cShi*) = » H (oq —iz) (g —iz) (o + g — i2),

—k+1<i<k

Q(cCat®) = » H (g —i2) (g —iz) (o + ag — 12).

—k<i<k

It follows from Yoshinaga’s Theorem 1.2.3 that cShi® is a free arrange-
ment with exp(cShi*) = (1,3k, 3k), and cCat® is a free arrangement with
exp(cCat®) = (1,3k + 1,3k + 2). We give bases for the logarithmic modules
of these arrangements as follows:

27
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Theorem 5.1.1. Let A = {aq, s} be a simple system and {0y, 02} its dual
basis for Der(S). For k € Z>, define

M- (@ +kz  (20q + 4oy + 3kz) (g + k2)
P \ag Fkr —(dag + 200 4+ 3k2) (ap + k2) )

01
Nk) = <1 O) th'Z‘)*Z

_ <(2a1 +4dag — 3kz)(ay — kz) —(daq + 200 — 3kz) (g — kz))

o — kz oy — kz

1
T, = 3k+1

3k 42
* 2 -1
A= [, a5)h<ijeo = (_1 9 ) :
where I* is the natural inner product on E* induced from the inner product

I on E. Then the Euler derivation and

k—

(01, 05 H(MiTiNi—HAil)

=0

[y

~

form a basis for D(cShi*), and

k—1

(01, 0] (H(MiTiNi—i-lA_l))Mk

i=0
a W.-invariant basis for D(cCat").

The idea to prove Theorem 5.1.1 is to use the simple-root bases ([3]) and
Terao’s matrix B® ([2], [19]) with the invariant theory. Namely, if we fix
a simple system and a primitive derivation, then we obtain a family of nice
bases (simple-root basis plus/minus) for the logarithmic modules of cShi”
for all k € Z>y. By computations based on invariant theory and Weyl group
actions, we can find a way to construct the bases for that of cCat” from
these bases. Hence the rest problem is to connect these new bases, which is
achieved by restricting them onto the infinite hyperplane and applying the
invariant theoretic method. In that invariant theory, Terao’s matrix B®*)
plays the essential role.
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The organization of this chapter is as follows: In section 5.2, we review
the simple-root bases for extended Shi arrangements introduced in [3], which
play key roles in our construction of bases. In section 5.3, we give an explicit
construction of bases for the extended Shi and Catalan arrangements of the
type As in Theorem 5.3.1.

5.2 The simple-root basis

In this section we review the definition and properties of multiarrangemetns
and the simple-root bases for the extended Shi arrangements.
First, let A be a central arrangement and fix H € A. Then define

Do(A) := {0 € D(A) | () = 0}
Let AT :={KNH|KeA\{H}} and define a map my : A" — Z- by
mg(KNH)={Le A\{H} | LNH=KnNH}|.
Then for a logarithmic module

D(A" mpy) .= {6 € Der(S/(ag)) |
0(ax) € (S/(an))(ax)™ ) (VK € A")},

the Ziegler restriction map 7 : Do(A) = D(A® my) is defined by 7 (6) :=
i p—

Proposition 5.2.1. (/23]) Assume that A is free with exp(A) =
(1,dy,...,dg). Then Do( A my) is also free with basis s, . .., pe such that
deg(p;) = d; (i =2,...,0). Moreover, the Ziegler restriction map is surjec-
tive.

For the rest of this section, let V = R, and we recall the simple-root bases
introduced in [3]. Let W be a finite irreducible reflection group corresponding
to an irreducible root system ®. Then by the famous theorem of Chevalley,
there are homogeneos basic invariants Py, ..., P, generating the W-invariant
ring SV of S as R-algebra such that

deg Py < degP, < --- <degP,_; <degl.

Let F' be the quotient field of S. Then the primitive derivation D = a% €
Der(F) is characterized by

D(P) = ceR* (i=1Y)
Y00 (1<i<l—1).



30 CHAPTER 5. EXTENDED SHI AND CATALAN OF TYPE A,

The primitive derivation D is uniquely determined up to nonzero constant
multiple ¢ independent of the choice of the basic invariants. We define an
affine connection V : Der(F') x Der(F) — Der(F') by

l
0
0= 01(f;)—
Vo, 02 ; 1<fl)8ﬂji
for 01,0, € Der(F) with 6, = 3, fizZ-. For m € Z., we define an S-
module D(A(®), m) by

D(A(®),m) = {6 € Der(S) | 0(an) € oS for any H € A(P)}.

Note that the action of W onto V canonically extends to those onto
V* S, Der(S) and D(A(®),m). Let D(A(®), m)" denote the W-invariant
set of D(A(®P), m).

Lemma 5.2.2. ([20]) For the derivations 5% € Der(S") (1 <i <),

V_a D(A(®), 2k + DY c D(A(®),2k — D)V (k> 0).

In particular, as mentioned in [2], the connection Vp induces an
R[Py, ..., Py_q]-isomorphism

Vo : D(A(®),2k + 1)V = D(A(®),2k — 1) (k> 0).
So we can consider the inverse map
Vo' D(A(®), 2k — 1)V = D(A(®), 2k + 1)V,

Proposition 5.2.3. ([3/,/20]) Let 6 = b, z;52- be the Euler derivation

and define 8, (v € E) by 0y(a) := (v,a) for a € E*. We define 2 : E —
D(Ag,2k) by Z(v) = Vo,V 5 0p. Then = is a W-isomorphism.

Proposition 5.2.4. (/21]) Let Dy(cShi*) = {6 € D(cShi*) | 6(z) = 0}.
Then the Ziegler restriction map res : Dy(cShi*) — D(Ag,2k) defined by
res() = 0|.—q is surjective. In particular, res : Dy(cShi®), — D(As, 2k)kn
is R-linear isomorphism where DO(CShik)kh and D(Ag,2k)g, are the homo-
geneous parts of degree kh of Do(cShi*) and D(Ag, 2k) respectively and h is
the Coxeter number.

Definition 5.2.5. ([3]) Fiz k € Z>o. Define a linear isomorphism © : E —
Dy(cShi®) by © = res ' 0 Z. Let {on,...,a;} C E* be a simple system of
Ot and {aj,...,a;} C E be its dual basis. Then the derivations

o) =0(0f) (1<i<y)

(2
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are called a simple-root basis plus (SRB.) of Dy(cShi*) and the deriva-
tions

14
P =3 "Iyl (1<i<)
p=1

are called a simple-root basis minus (SRB_) of Dy(cShi*). Here I* is
the natural inner product on E* induced from the inner product I on E.
Remark 5.2.6. Let A = [I* (o, a;)]1<ij<e be the inner product matriz. Then
we have the following relation between an SRB {cpgk), ceey cpgk)} and an SRB_
{@b%k), o ,wék)} by the definitions:

027l = [ AT
It follows from Schur’s lemma that these bases are uniquely determined
if we fix a simple system and a primitive derivation D. These bases can be
characterized by the following conditions:
Proposition 5.2.7. (/3])
(1) Let wgk), e ,@ék) be an SRB. of Dy(cShi*). Then wgk), . ,@ék) satisfy

o1 0y + k2) € (a; + k2)S. (i # ).
(2) Let @/ch), . ,@Dék) be an SRB_ of Dy(cShi*). Then ¢§k), e ,@Uék) satisfy
O™ € (o — kz)Der(S,) (1<i<0).

Remark 5.2.8. For an arbitrary root system, we do not know an explicit
expression of the simple-root basis because the inverse mapping of Ziegler
restriction res—! is impossible to describe at this writing.

Now we introduce some propositions concerning the action of W to these
bases.

Proposition 5.2.9. (/3/) The derivation
]
Z(ai + k?z)%('k)
i=1
1s called the k-FEuler derivation. The k-Euler derivation is W -invariant
and belongs to Do(cCat®) .

Proposition 5.2.10. (/3]) Let s; € W be the reflection with respect to o for
1<i</{. Then

(1) Sigpgf“) — gp§k) whenever 1 # j, and

LA W .
(2) s; ((Ozi—k’z)> = (01— 7) for1 <i</.
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5.3 Construction of bases of the type A,

For the rest of this paper, we assume that the root system @ is of the type
Ay. Let {ay,a0} C E* be a simple system. For « € & and k € Z, let
Hy . = {a — kz = 0}. Then the results in [3] shows that cShi* \ {Hg, 4.}
and cShi* \ {Ha, ks, Hay—r-} are also both free with exponents

exp(cShi* \ {Hqa,1.}) = (1,3k —1,3k),
exp(cShi* \ {Ha, k2 Hay—iz}) = (1,3 — 1,3k —1)

fori=1,2.
Theorem 5.3.1. Let us fix basic invariants
2

27<

of the Weyl group W and choose the primitive derivation D in such a way
that D(P,) = 1/3. For k € Z>o, let My, Ny, T} and A be the same as in
Theorem 5 1. Z

Let gpl ,@2 ) be an SRB, of Do(cShi*). Then

P, = a% + ooy + 04%, Py = a; — ag)(ag + 202) (20 + az)

k
o7, ol
form a W,-invariant basis for Dy(cCat®), and
[0, oML TNy
is an SRB_ of Dy(cShi**).

We prove Theorem 5.3.1 by using following propositions.

Proposition 5.3.2. Let gpl ,gpz ) be an SRB, of Do(cShi*) and [01 ,G(k ]:=
[gog ,goz }M Then le),ﬁ(k form a W -invariant basis for Do(cCat").

Proof. Since 07 = (a1 + k2)ol® + (g + k2)¢Y is the k-Euler derivation, it
follows from Proposition 5.2.9 that 95’“) € Dy(cCat")V. Let us show Hék) €
Dy(cCat®)V. By Proposition 5.2.7 (1), it is clear that Hék)(ai +kz) € (a; +
kz)S, (i =1,2). Since
08 = (20 + 4y + 3k2) (g + kz)pl") — (4day + 2a9 + 3k2)(ag + kz)gog )
= (201 + 4 + 3kz){9§k) — (g + k:z)gogk)}
— (4o + 209 + 3kz) (g + kz)gogk)
= (201 + 4 + 3kz)9§ —6(o + az + kz) (e + k’z)<,02 ,
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it holds that Oék)(al + g + kz) € (1 + ag + k2)S,. So Hék) € Dy(cCat").
Moreover, since sigpgk) = gog-k) (i # j) for the reflection s; with respect to o

because of Proposition 5.2.10 (1),

319§k) = (204 +4ay + 3kz)319§k) —6(ag + kz)(oq + ag + kz)slcpgk)
= 65",
Similarly, we can express ng) in terms of 9§k) and 905’“). Then the same
argument as the above shows that 529§k) = Qék). Hence Qék) is W-invariant.
Finally, since

det(My) = —6(ay + k2)(ag + k2) (a1 + ag + kz),

and gogk), gpék) form a basis for Dy(cShi*), it follows that 05’“% ng) form a basis
for Do(cCat). O

Lemma 5.3.3. Let Q'(Ag) denote the module of logarithmic differential
forms of Ag (i.e., the dual S-module of D(As)). If w € Q' (Ag), then
VI*(W)VBkQE S D(A@, 2k — 1)

Proof. By [2], it follows that
N O

* 1
I"(Q (Ag)) C @Sapi.

i=1

Since V%VBkGE € D(Ag,2k — 1) by Lemma 5.2.2) we conclude that
VI*(UJ)VBkQE € D(.A@, 2k — 1) ]

Proposition 5.3.4. Let w%k), ék) be an SRB_ of Dy(cShi*).  Then
[nikil),ngg*l)] = §”,¢§“]N,;1 form a W-invariant basis for Dy(cCat"™1).

Proof. First we will show that nf~ € Dy(cCat* )", Since

1 4oy + 2009 — 3kz
X 6(a; — kz)(ar + s — kz)  6(ag — kz)(a1 + ag — k2)
N, = ,
_ 1 201 + 4oy — 3kz
6(ay — kz)(a1 + as — kz)  6(ay — kz)(a1 + as — kz)
we have

o 1 ( ¢§k) ¢ék) )
U5 = .

6(ay + g — kz) o —kz g —kz



34 CHAPTER 5. EXTENDED SHI AND CATALAN OF TYPE A,

Consider a commtative diagram

DO(CShlk \ {Ha1—k‘27 Hag—kz})?)k—l 1‘35 D(ACI’7 2k — m)3k*1
U U

(o1 + ag — k2)Dy(cCat* 1), o —=— (1 + a2) D(As, 2k — 1)35,_2,

where m : Ag — {0, 1} is a multiplicity map defined by

| Hel{H,, H,
m(H):{O H_Eq Vo e Ag).
- a1 tasg

Let

(k) (k)
6 ey () ‘
U (1 + g — k2)my a1 —kz g — k2

Then it follows from Proposition 5.2.7 (2) that 7 is a regular derivation and
n € Do(cShi* \ {Hu, s, Hay—:})3k—1. By the definition of SRB_, we have

(k) (k)
! res(n) = ! res ( 2! L2 )

a1+ o ay + as oap —kz  ay—kz

a1 + Qg a7} Q9

1 (vmdal)vg’fe]g - vp(dw)vg’feE)

:vl*( . m,dﬂ))vﬁkeﬂ

ajtagt ag ag

Since

1 dOél _ dOéQ) c Ql<Aq))

o1+ oy o Q9

Lemma 5.3.3 implies that

1
o1 + Qo

res(n) € D(Ag, 2k — 1)35_2.

Hence
res(n) € (a1 + az)D(Ag, 2k — 1)35_2.

Then we can see that n € (a1 + g — kZ)DQ(Ccatk_l)gk_g by chasing the

diagram above. Thus we may conclude that n%k_l) € Do(Ccatk_l)gk_g. Since

Do(cCat" )3,y = Dy(cCat* )% , is the one-dimensional R-vector space
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generated by (k—1)-Euler derivation by Proposition 5.2.9, we obtain n%kil) €
Dy(cCatF* ")V, Next we will prove that nékil) € Dy(cCat"™™ ). We compute

(k=1) 4oy + 20090 — 3kz (k) n 201 + 4oy — 3kz (k)

O 6(a; — k2)(ay +ag —k2) ! 6(cg — k2)(o1 + g — k2)

(k)
= (4o + 2 kz) [ ntFY 2
(Ao + 20, = 3kz) <771 * 6(ae — kz)(a1 + ag — kz)

2041 + 40(2 — 3kz (k)

6(ag — kz) (a1 + ag — k2)

(k)
2

= (4o + 209 — 3l€z)n§k—1) +—= o
Since wék)/(ag — kz) € Do(cShi* \ {Hq,_1.}) C Do(cCatF™), n ) pelongs
to Do(cCat*~!). Moreover, since Si(wi(k)/(ai —kz)) = (@bfk)/(al kz)) for the
reflection s; with respect to «; because of Proposition 5.2.10 (2),

(k)

Y = sy(da + 200 — 3kz) - sant 2
So7s So(4day + 2a Z) - Somy + 59 p—

) -
2 _ D),

= (dog + 209 — 3]{2)17516_1) + — s

Similarly, we can express nékil) in terms of n%kil) and wik). Then the same

argument as the above shows that smék_l) = nék_l). Hence nék_l) is W-

invariant. Finally, since

1

AN = o = ko) (an — ko) ar + az — 2

and w%k) ,wék) form a basis for Dy(cShi"), it holds that ngk_l) ,nék_l) form a
basis for Dy(cCat®™1). O

Propos1t10n 5.3.5. Let 0§ ,771 1 be as in Proposition 5.3.2 and 5.3.4.
(k=1)

Then 91 ;T are W -invariant.

Proof. First we note that the action of the reflection 7, with respect to
z preserves cCat®. Hence 7, acts on Dy(cCat¥). Since Dy(cCat")s1 =
Dy(cCat®)} | is the one-dimensional R-vector space generated by k-Euler

derivation ng), we can express Tzé’gk) = c@%k) for some ¢ € R*. Then

ng)\zzo = Tzﬁgk)lzzo = c@%k)\zzo. Thus ¢ = 1 and we conclude that 95’” is

W -invariant. Similarly, we can check that nikil) is W,-invariant. O]
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Proposition 5.3.6. Let gogk ,902 be an SRB, and wl ,% an SRB_ of
Dy(cShi*). Then

ok (o1 + an)(ay + kz)cpgk) — kz(ag + kz)gf?gk) o)
2P1 ( - k2>(@1 4 g — kZ) 5 .

wy  —kz(ag + kZ)gng) + (a1 + ag)(ag + kZ)Sng)

z = s 5.2
T2 (02 — k2) (a1 + az — k2) (52)
and
(k) ay + kz o1+ Qg (k) kz ()
: = — , 5.3
e a1+a2—kz( —kz ! 042—kzw2 (5:3)
(k) g + kz kz (k) a1 + Qg (k)
: = - ) 5.4
T o1+ oy — kz ( al—kzwl +a2—kzw2 (5-4)

-1

Proof. By Proposition 5.3.5, 91 ,771 are W -invariant. Thus we have two

equations:

(o1 + k2)® + (o + k2)pl) = (1 — k2)mol? + (0 — k2o, (5.5)

1 O
6(ag +ag—kz) \ay —kz g —kz

_ 1 <Tz¢§k) B Tz¢£k) ) (5.6)

6(ay + s+ kz) \ag+kz  as+kz

By Remark 5.2.6, we have
2 -1
WO == (2 ). 6

Therefore we can rewrite the equation (5.6) by using gogk)7<p§k) instead of
Ek),wék), and solving the equations (5.5) and (5.6), we get (5.1) and (5.2).

Applying 7, to the both sides of (5.7) we obtain

k k k k
™, 7s?] = [re®, m.ei)A

(aq + ag) (g + kz) —kz(on + kz)
ok | (= k) (o + g —kz) (g — kz)(oq + ag — k2)
=lpi o] —kz(og + kz) (oq + az2)(ag + kz) A

(1 —k2)(ag + o — kz) (g — k2)(ag + oo — kz)
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(a1 + o) (o + k2) —kz(a1 + k2)
_ —k +as—k —k +a—k
= [p®, At (s _12232 + %2) ?) (&2(041 jlgj;l(ozzosz) HE
(o —kz)(on +ag —kz)  (ag — kz)(oq + ag — kz2)
(o + ag)(ay + kz) —kz(as + kz)
= o,y | (o~ R e k) (e DR e

(g —kz)(ag + s —kz)  (ag —kz)(aq + g — k2)
thus we have (5.3) and (5.4). O

Propos1t10n 5.3.7. Let 62 ,nék Y be as in Proposition 5.3.2 and 5.3.4.

Then 92 ,nék Y are W -invariant.

Proof. The W-invariance is checked in Proposition 5.3.2 and 5.3.4. The
T.-invariance follows by the direct computation combined with Proposition
5.3.6. O

It follows from Proposition 5.3.2 and 5.3.4 that both [p{", oM}, and

[wlkH) ¢(k:+1 ]Nk+1 are bases for Dy(cCat*)"= and their exponents are equal
o (3k 4+ 1,3k + 2) as ordered sets. Therefore, there exists a matrix T €
MQ(R[al, ag, z]) such that

k k k+1 k+1 k+1 k+1
[0, o8N My - T = [ S TIINGY = [, o8 AN

Note that every entry of T}, is W,-invariant since T}, gives a transformation
between the W, -invariant bases in Dy(cCat*)"'. Comparing the degrees of
both sides, we can see that the (2,1)-entry of T} is 0, the (1, 1)-entry and
the (2, 2)-entry of T}, are constants, and the (1, 2)-entry of T is a polynomial
of degree 1. Furthermore, the (1,2) entry of T} is 0 because it must be W,-
invariant but there is no polynomial of degree 1 in R|ay, as, 2]"V=. Hence we
may assume that

_ Qg 0
T, = (0 bk) (ak,bk S ]R)
Hence Ty|,—o = Ty and
k) (k k k
[‘Pg )v @é )]|z:0Mk|z:0 Tk = [Sog +1)a 90( +1)]|z OANkJrllz 0-
Now recall the following:
Theorem 5.3.8. (T. Abe-H. Terao [2]) Define

Ry := (=1)"J(D*(0n), D*(02)) ™,
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where J(f,g) denotes the Jacobian matriz of c, B with respect to the simple
system oy, . Then

(4.0, 0 |.o] = [V, V505, Vo, Vi05] = [0y, 0o] ARy A"

By using these two, let us compute T}, directly in terms of D(Ag,2k+1).
For that purpose, let us rewrite several polynomials and matrices in [3] in
terms of a; and as. First, it is easy to check that

2
P1 = Oé% + (658D + Ozg, PQ = ﬁ(al — Oég)(Oél + 20[2)(2051 + OZQ).

are basic invariants of the type As. Let 01, 0 denote the dual basis of {1, as}
for Der(S). Then the Jacobian matrix J := (0F;/0c;) is

2
201 + g 5(20@ + 20090 — 3)
J =

2
oy + 20 5(0@ — 2000 — 2003)

Hence the primitive derivation D is expressed as
81<P1) 81
82<P1) 82
N 1

- 60&1@2(0&1 -+ Oéz)

1
D=—
Q

(o + 202)01 — (201 + @2) 0],

where Q = ajas(a; +ay) is the defining polynomial of the Weyl arrangement
of the type As. Also in the above, we multiplied —1/6 to D to satisfy the
condition D(P) = 1/3 in Theorem 5.3.1. For a matrix M = (m;), let
D[M] := (D(m;j)). Then we can compute

DL = 1 9 4201 + an)
180410[2(0[1 + 062) —9051 40&1 (CYl + 20(2) ’

Moreover, the matrix B := J'AD[J] and B® := kB + (k — 1)B" are also
computed as follows:

0 2 0 3k—1
b (1 0)’3 (3k:—2 0 )

1
0
(B(k))—l _ 1 3k —2

Hence

3k—1
Now by using Theorem 5.3.8, we can determine the matrix 7Tj.
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Proposition 5.3.9.

1
0
T, = 3k+1 )
0 3k +2

Proof. First recall that
k) (k k k _
[, o8 NML T = [0, o VAN,

Restricting the equality above onto z = 0 and applying Theorem 5.3.8, we
obtain

AR2kA71(Mk‘z:O)<Tk|z=O> = AR2k+2A71A(Nk+1|z:0)71-

Therefore,
Ti|=0 = (My].=0) ARy Rogro(Niya|.=0) "

By Proposition 2.6 in [2],
Ry Ropyo = J(BET) 71T A,
Now we can compute Ty 1],—o directly as follows:

Tielam0 = (M| .—0) P AT(B®TN) LT A(Nyy 1 ]—0) ™
1
3k +1

0

3k + 2

Proof of Theorem 5.3.1. Combine Propositions 5.3.2, 5.3.4 and 5.3.9.

Proof of Theorem 5.1.1. First, note that P, and P, are unique up to nozero-
constant when @ is of the type A, since there is no invariant polynomial
of degree one. Therefore the construction in Theorem 5.3.1 shows that for
any choice of P;, P, and D, the bases constructed by them are unique up
to nonzero constants. Moreover, we can connect the SRB; and SRB_ using
the inner product matrix A as Remark 5.2.6. Hence we may apply Theorem
5.3.1 starting from [0y, 05| inductively to obtain the bases stated in Theorem
2.3.5, which completes the proof.






Bibliography

1]

2]

[10]

[11]

T. Abe and D. Suyama, A basis construction of extended Catalan and
Shi arrangements of the type As, arXiv:1312.5524 (2013).

T. Abe and H. Terao, A primitive derivation and logarithmic differential
forms of Coxeter arrangements, Math. Z. 264 (2010), no. 4, 813-828.

T. Abe and H. Terao, Simple-root bases for Shi arrangements,
arXiv:1111.3510v2 (2012).

T. M. Apostol, Introduction to analytic number theory, Springer-Verlag,
New York, 1976, Undergraduate Texts in Mathematics.

C. A. Athanasiadis, On free deformations of the braid arrangement,
FEuropean J. Combin. 19 (1998), no. 1, 7-18.

P. H. Edelman and V. Reiner, Free arrangements and rhombic tilings,
Discrete Comput. Geom. 15 (1996), no. 3, 307-340.

R. Gao, D. Pei, and H. Terao, The Shi arrangement of the type Dy,
Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), no. 3, 41-45.

P. Headley, On a family of hyperplane arrangements related to the affine
Weyl groups, J. Algebraic Combin. 6 (1997), no. 4, 331-338.

P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences|, vol. 300, Springer-Verlag, Berlin, 1992.

K. Saito, Theory of logarithmic differential forms and logarithmic vector
fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265-291.

J. Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lec-
ture Notes in Mathematics, vol. 1179, Springer-Verlag, Berlin, 1986.

41



42

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

BIBLIOGRAPHY

L. Solomon and H. Terao, The double Coxeter arrangement, Comment.
Math. Helv. 73 (1998), no. 2, 237-258.

R. P. Stanley, Hyperplane arrangements, interval orders, and trees, Proc.
Nat. Acad. Sci. U.S.A. 93 (1996), no. 6, 2620-2625.

D. Suyama and H. Terao, The Shi arrangements and the Bernoulli poly-
nomials, Bull. Lond. Math. Soc. 44 (2012), no. 3, 563-570.

D. Suyama, A basis construction for the Shi arrangement of the type By
or Cy, Comm. Algebra (to appear).

H. Terao, Arrangements of hyperplanes and their freeness. I, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 293-312.

H. Terao, Arrangements of hyperplanes and their freeness. II. The Cox-
eter equality, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2,
313-320.

H. Terao, Generalized exponents of a free arrangement of hyperplanes
and Shepherd-Todd-Brieskorn formula, Invent. Math. 63 (1981), no. 1,
159-179.

H. Terao, Multiderivations of Coxeter arrangements, Invent. Math. 148
(2002), no. 3, 659-674.

M. Yoshinaga, The primitive derivation and freeness of multi-Coxeter
arrangements, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7,
116-119.

M. Yoshinaga, Characterization of a free arrangement and conjecture of
Edelman and Reiner, Invent. Math. 157 (2004), no. 2, 449-454.

T. Zaslavsky, Facing up to arrangements: face-count formulas for parti-
tions of space by hyperplanes, Mem. Amer. Math. Soc. 1 (1975), no. 154,
vii+-102.

G. M. Ziegler, Multiarrangements of hyperplanes and their freeness, in
Singularities (lowa City, 1A, 1986), Contemp. Math., vol. 90, Amer.
Math. Soc., Providence, RI, 1989, pp. 345-359.



