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Abstract

The Hamiltonian of the Chiral Quark Soliton model (CQS) in nuclear physics is described
by the following Dirac type operator

3
HCQS = —1 ZO&ij ® 1o + mﬂ (%9 lzeiZJS:l F75®ajnj,
j=1

on the Hilbert space L?(R3;C*) @ C2.
Let us compare it to the usual free Dirac operator with mass m

3

Hyp := —1 Zaij + mp,
j=1

on the Hilbert space L?(R?; C*).

Here 4 is the imaginary unit, oy, as, ag and 8 = a4 are 4 X 4 Dirac matrices and 1,, denotes
the n x n unit matrix, D; (j = 1,2, 3) is the generalized partial differential operator in the space
variable z; (x = (z1,z2,73) € R?), m > 0 denotes the mass of a quark,

V5 1= —ia1aas,

F : R® — R is called a profile function, Borel measurable, finite for almost everywhere (a.e.)
x €R3 01,00 and o3 are the Pauli matrices and n; : R3 — R is a Borel measurable function

such that s
D @)’ =1
=1

for a.e. x € R3.

The main difference in the above operators are the mass term. The mass term of Hcqs
is spatially variable in general. Hence, the CQS model may be regarded as a model of Dirac
particle with a variable mass.

This thesis is mainly based on the paper [3]. The main purpose of this work is to build a
model, which can be an abstract d-dimensional extension of the CQS model and under suitable
conditions to investigate its Hamiltonian’s self-adjoint property, supersymmetric aspects and
spectral properties. We will name the Hamiltonian of this extended model by ”d-dimensional
Dirac operator with a variable mass”. The Hamiltonian of a d-dimensional chiral quark soliton

model is defined as follows: .

H = 72120[ij + ad+1ei¢M.

Jj=1

Here d > 2 is natural number,

Ny 24/2 for d even
47 2@+D/2 for d odd,

aj, j=1,...,d+1are Ny x Ng Hermitian matrices satisfying

{aj7ak}:26jklNd7 Jak:177d+]—



Let K be a finite dimensional Hilbert space. We denote by F;_ ,. the set of self-adjoint operators ®
on L?(R%; CNe®K) such that the mapping :R? 3 x — (®(x)+i) ! is measurable. ®(-), M(-) €
Fin. ® and M be the direct integrals of ®(-), M(-) respectively over RZ.

The 7d-dimensional Dirac operator with a variable mass” acts on

H = L*(RELCV) @ K.

In this work we will give a simple condition for H to be self-adjoint and discuss supersym-
metric aspects and the spectrum of H. Also we give a condition for H to be a supercharge of a
supersymmetric quantum mechanical model. In that case, ker H, the kernel of H, describes the
supersymmetric states. Hence it is interesting and important to analyze ker H. We will prove
that, under some condition, ker H is trivial: ker H = {0}. In the case where H is a supercharge,
this means that there is no supersymmetric state, namely, the supersymmetry is spontaneously
broken. We are concerned with a unitary equivalence of H to a gauge theoretic Dirac operator.
This may be physically interesting. Using this structure, we find another condition for the kernel
of H to be trivial. We identify the essential spectrum of H under a suitable condition. In the
last, we will discuss the number of eigenvalues of H in the interval (—m,m) with m > 0 being
a constant.
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Chapter 1

Introduction

1.1 Dirac operator

In particle physics, the Dirac equation is a relativistic wave equation formulated by British
physicist Paul Dirac in 1928 (e.g., see [11], [18]). It describes fields corresponding to elementary
spin % particles as a vector of four complex numbers, in contrast to the Schrdinger equation
which describes a field of only one complex value. The Dirac equation is consistent with both
the principles of quantum mechanics and the theory of special relativity, and was the first theory
to account fully for relativity in the context of quantum mechanics. The equation also implied
the existence of a new form of matter, antimatter, hitherto unsuspected and unobserved, and
actually predicted its experimental discovery. It also provided a theoretical justification for the
introduction of several-component wave functions in Pauli’s phenomenological theory of spin.
Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation.

The equation to describe a relativistic wave equation of a free electron must be ( e.g., see
[11]) Lorentz invariant, first order in time derivative and energy E must be calculated by the

following formula
E = cy/m?2c? + |p)? (1.1)

Here c is the light speed, m is the mass of the particle and p = (p1, p2,p3) is the momentum.
From non-relativistic theory, for the energy £ and momentum p we have the following sub-
stutions

E— z’h%, p — —ihV, (1.2)

9 9 9
Ox; Oxs’ Oxs
divided by 27. So Dirac reconsidered the energy-momentum relation (1.1) and before translating
it to quantum mechanics with the substitution (1.2), he linearized it and wrote:

here t € R, x = (x1,x2,x3) is coordinate, V = ( ) and £ is the Planck constant

3

E:cZajpj+mc252a~p+mczﬁ. (1.3)
j=1

Here o = (a1, a0, 3) and S have to be determined from (1.1). Indeed, (1.1) can be satisfied
aj (j=1,2,3) and 3 anti commuting n x n matrices (Dirac matrices). Comparing E? in (1.3)
with (1.1) we will find the following relations:

(eP1e7% + apa; = 25jkll’l (.77 k= ]-a 2) 3)

a;jf+Ba; =0, (j=12,3) (1.4)

B* = 1,.



Here we denote §;i is the Kronecker delta, 1, and 0, are n x n unit and zero matrices . The
a; (j = 1,2,3) and B should be Hermitian. For representation of a; (j = 1,2,3) and
matrices we will use the following matrices, which are named the Paul matrices

b () e (05) e (2 h) o

The following representation was introduced by Dirac and named the standard representation:

- 10 - 0 o -
B.—(O 1), aj.—(gj 0), ji=1,23. (1.6)

If one "translates” the equation (1.3) to quantum mechanics, one obtains the Dirac equation

(1, %) = Hip(m) (1, ). (L.7)

The operator

Hpp(m) := —ihc (a +aga+a38> +mc?B = —ihca - V +mc? B (1.8)

9
Y92y Ozs O0zs

is named the free Dirac operator and it acts on C*-valued wavefunctions

1/)1 (t7 X)
P(t,x) = . (1.9)
¢4(t7 X)
The square of the free Dirac operator is
02 0? 0?

Hpp(m)? = + =) +m?=—-A+m? (1.10)

G T 52 T 82

the Laplacian operator with mass in R3.

1.2 d-dimensional free Dirac operator

In this section we will define a ”d-dimensional” free Dirac operator on R%. From now we will
use the physical unit system where the light speed ¢ and h are equal to 1.
Let o; be the Paul matrices and

Wi=IL ~:=0; j=1,23. (1.11)
Then by the following recursive formula
=L ®

’yZL =0 ®’yi_1, j=1.2n-1

N i=02 @01, et = (=) et
we can build 2" x 2" anticommuting Hermitian 2n+1 distinctive matrices {77}, j=1,...,2n+1
(e.g., [1]). For notational simplicity for fixed number n,we denote v* by o, k=1,...,2n+1

and name it 2™ dimensional Dirac matrices.



Let d > 2 be a natural number,

(1.12)

Ny 2d/2 for d even
4= 20@+1)/2 for 4 odd

and {o; };ii% be Ngq x Ng4 Dirac matrices. We denote by D; the generalized partial differential

operator in the variable z; (x = (x1,-+-,74) € R?), acting in L?(R%). The d-dimensional
generalized Laplacian

d
A:=) D3 (1.13)
j=1
on L?(R%) is a non-positive self-adjoint operator.
The d dimensional free Dirac operator with mass m on L?(R%;CM4) is defined by

d
Hp o= =i a;Dj+ maggs. (1.14)
j=1
The operator, square of H,,, is positive and

H? = —A+m? (1.15)

Theorem 1.1 The d dimensional free Dirac operator H,, is essentially self-adjoint on the dense
domain C®(R®\ {0}; CN) and self-adjoint on the Sobelov space

d
D(H,,) = H'(R%;CN*) = (| D(D;).

j=1
Its spectrum is purely absolutely continuous and
o(Hp) = (—o0; —m] U [m; 00). (1.16)
Proof.
See [Theorem 1.1][18]. O

1.3 Dirac type operator in Chiral Quark Soliton Model

Since in 1964 Murray Gell-Mann and George Zweig had predicted quark, physics have studied
many quark models. The QCS model is a relativistic quark model (e.g., [7]). The Hamiltonian
of CQS model is an abstract Dirac type operator with matrix-valued mass term (e.g., [16]).

3
HCQS =1 Zaij ®1la+mf 126i2;:1 F’)’5(§§ij?“bj7
j=1

on the Hilbert space L?(R?; C*)  C2.
Here a;, j =1,2,3 and § are 4 x 4 the Dirac matrices, 75 := —iagasas, 0, j=1,2,3
are the Paul matrices, F' : R® — R measurable, a.e. (almost everymhere) finite, n; : R? —

3
R j = 1,2,3, measureable with > |n;(x)|> =1 a.e x € R% The function F is called
j=1
profile function.



Hcaqs is self-adjoint on D(Hcqs) = D(Hy) by Kato-Rellich theorem.
Let n;(x), j = 1,2,3 is continuously differentiable on R® | (n1(x),n2(x)) # (0,0),

<) o1na(X) — oang (x)
§(x) : T

(1.17)
and T'(x) := iy58 ® £(x) acting on C* ® C2. Then (['¢)(x) := I'(x)¢(x) is self-adjoint, ['? = 1 on
‘H and unitary.

Theorem 1.2 (4, Prop 2.1]) If  is constant matriz then Vi € D(Hcqs),I' € D(Hcqs) and

{F, H(xgs}’(ﬂ = O7 ¢ S D(HCQS)- (118)

From (1.2) implies Hcqs = —I'HeqsI™ and in suitable condition Heqs can be a generator of
supersymmetry with grading operator I'.

Theorem 1.3 Suppose that
lim F(x)=0

|x|—00

then
o(Hecgs) = (—o0; —m| U [m; 00).

1.4 d-dimensional version of Chiral Quark Soliton Model

Let d > 2 be a natural number and Hy be free massless Dirac operator on L?(R%; CN¢),

d
Hy:=—iY_o;D;. (1.19)
j=1
then
HZ = —-A. (1.20)

Let K be a separable complex Hilbert space and

D
H = L*RECY) o K= L2RECM oK) =2 | CV® Kdz, (1.21)
Rd

where each = means the natural Hilbert space isomorphism and fﬂg CN¢ @ Kdx denotes the
constant fibre direct integral with fiber CV¢ @ K (e.g., [15, §XIII.16]). Each linear operator A
on L?(R?) is extended as the direct sum ®V4A on L?(R%;CNe) = ¢NaL2(R?). For notational
simplicity, we denote it by A again.

Every densely defined closable linear operator 7' on L?(R%; CN¢) (resp. K) has a tensor
product extension T'® I (resp. I ® T) to H (I denotes identity). But we write it T simply if
there is no danger of confusion.

We denote by F .. the set of mappings ®(-) from R? to the set of self-adjoint operators on
CNi ® K such that the mapping: R? > x + (®(z) + i) ! is measurable. By a general theorem
(e.g., [15, Theorem XIII.85-(i)]), for each ®(-) € F.,., the direct integral

52
<I>::/]R O(x)dx (1.22)

d

is self-adjoint.



To introduce a mass operator, let M(-) € F .. such that, for a.e.xz € RY M(z) is a bounded

operator on CV¢ ® K, and set
52

M = M (z)dx. (1.23)
Rd

We use this self-adjoint operator as an extended mass (variable in the space R?) of the quan-
tum particle of our model (a Dirac particle). Note that M is not necessarily bounded. The
Hamiltonian H of our model, a d-dimensional version of the CQS model, is defined as follows:

H:=Hy+V (1.24)

with ,
V= ags e’ M. (1.25)

Definition 1.4 Let A and B be self-adjoint operators on &'
(i) A and B are said to strongly commute if their spectral measures commute.

(ii) A and B are said to strongly anticommute [12, 19] if, for all ¢ € R, e!*BA C Ae~ 5.
(it is shown from e.g. [12] that this definition is in fact symmetric in A and B).

The next lemma summarizes some basic facts on strongly commuting (resp. anticommuting)
self-adjoint operators:

Lemma 1.5 Let A and B be self-adjoint operators on X.
(i) A and B strongly commute if and only if, for all t,s € R, e'Be?s4 = ¢isA¢eitB,
(ii) A and B strongly commute if and only if, for all t € R, e?*BA = AeitB,
(iii) Let A be bounded. Then A and B strongly commute if and only if AB C BA.
(iv) Let A be bounded. Then A and B strongly anticommute if and only if AB C —BA.

Proof.

(i) well known (e.g., [13, Theorem VIII.13]).
(ii) V¢ € D(A) by [13, Theorem VIIIL.7(c)]

itBgisA _ itB

lim S & TC 4= itB gy, (1.26)
s—0 18
From (i
( ) ) 6itA _71 .
P AP = lim ———€Bp. (1.27)
s—0 1S

Then by [13, Theorem VIIL.7(d)] e®*B¢ € D(A) and (ii) holds.
(iii) Using (ii) and same to proof of (ii).

(iv) Same to proof of (iii).

In the work, we assume the followings:

(A].) ozd+1(I> C —(Dad+1



(A.2) g1 M C Magss.
(A.3) ® and M strongly commute.
(A.4) The operator M is (—A)'/?-bounded:
IM)> < a®|[(=2)29 )2 + 02 [[0)?, Vi € D((=A)?)
with constants 0 < a < 1 and b > 0.

Remark 1.6 In the abstract CQS model [10], the strong commutativity of M and Hj as well
as the boundedness and the strict positivity of M is assumed. But, in our model, they are not
assumed.

Lemma 1.7
(i) Condition (A.1) holds if and only if agy1 and @ strongly anticommute.
(ii) Condition (A.1) is equivalent to the operator equality cg11® = —Pagyq.
(iii) Condition (A.2) holds if and only if agy1 and M strongly commute.
(iv) Condition (A.2) is equivalent to the operator equality cgi1M = Magyq.

Proof.

(i) This follows from Lemma 1.5-(iv).

(ii) Assume (A.1). Let ¢ € D(Pagy1). Then n := ag41¢ € D(P). Hence, by (A.1),
ag41n € D(®). But, since a3, = I, we have agy1n = . Hence ¢ € D(®). There-
fore D(®agy1) € D(ag41®). Thus D(Pagi1) = D(ag+1P). Hence the desired operator
equality holds.

(iii) This follows from Lemma 1.5-(iii).

(iv) Simliar to the proof of the part (ii).

1.5 Organization of the dissertation

This dissertation is based mainly on the joint work [3] of Arai Asao and the candidate. In
Chapter 2 is concerned self-adjointness and supersymmetric aspects of H. In 2.1 is given suitable
conditions for H is self-adjoint. In 2.2 is discussed supersymmetric aspect. In [3], was considered
only odd dimensions of R?. In this dissertation is discussed ever d is even. For supersymmetric
operators, the kernel, i.e. supersymmetric states are very interesting and important. In 2.3 we
will show in our case the symmetry is spontaneously broken. In 2.4 we concern about unitary
equivalence of H to a gauge theoretic Dirac operator. This may be physically interesting.

Chapter 3 is concerned spectrum of H. In 3.1 is considered essential spectrum. In 3.2 we
discuss the number of eigenvalues in the interval (—m,m).

Finally some remarks of typographical nature. Chapter, section and subsection are numbered
in arabic numerals. Equations are numbered sequentially within a chapter number. Also math-
ematica (i.e., lemmas, theorems,...) are numbered sequentially within a chapter number.We use
O notation to signify the and of a proof.



Chapter 2

Hamiltonian of d-dimensional

CQS Model

2.1 Self-adjointness

We define
HM = HO + ad+1M. (21)

If M is a constant operator with m > 0, then H,, represents the free Dirac operator with a
constant mass m. H,, is self-adjoint with D(H,,) = D(Ho) = NY_, D(D;) ( Theorem(1.1)) and
bijective with ||H || = 1/m.

Lemma 2.1 Assume (A.4). Let m > 0 be a constant. Then M H,! is bounded with
1 b
IMH, || < max<a,— ¢. (2.2)
m

Proof.
It is well known or easy to see that, for all v € D(H,,) = D(Hy),
1H o[ = 11(=2)"291? +m? [
Hence, by (A.4), we have
1My < a®||Hmto|| + (b2 — a®>m?)[[].
This implies the following:

(i) if am < b, then |[MH'||? < a® 4+ (b — a®*m?)/m? = b*/m?
(i) if am > b, then || M H,,}|| < a. Thus (2.2) follows. O

Lemma 2.2 Assume (A.1)-(A.4). Then:
(i) V is self-adjoint with D(V') = D(M).
(ii) H is self-adjoint with D(H) = D(Hp) and the subspace
Dy := Cg° (R4 CN)BK (2.3)

(& means algebraic tensor product) is a core of H.



Proof.

(i) Since D(V) = D(M) and D(M) is dense, V is densely defined. Since agi1e'® is
bounded, it follows that V* = Me *®a4y;. By (A.1) and Lemma 1.5-(iv), we have

e Pagy, = ozd_Heiq). (2.4)

By (A.2), (A.3), Lemma 1.5-(ii) and Lemma 1.7-(iv), we have
V* = Mag1e'® = agyg 1 Me'® = ag 1M = V. (2.5)
Hence V is self-adjoint.
(ii) By (A.4), we have for all ¢ € D((—A)'/?)
IVl = 1 My|| < al|(=2)2|| + bl .

Note that
(=) 24p|| = || How|.

Hence ||V9|| < al|Hov|| + b]|9]|. Here 0 < a < 1. Thus, by the Kato-Rellich theorem (e.g.,
[14, Theorem X.12]), H is self-adjoint with D(H) = D(Hj) and every core of Hy is a core
of H. It is well known that the subspace C§°(R%; CV4) is a core of Hy as a linear operator
on L?(R%; CN). Hence the subspace Dy defined by (2.3) is a core of Hy as a linear operator
on H. Thus it is a core of H too.

Remark 2.3 One of the other sufficient conditions for H to be essentially self-adjoint is as
follows: Assume (A.1)-(A.3) and ess.sup, < g||M(z)|| < oo for all R > 0. Then H is essentially
self-adjoint on Dy. The proof is similar to that of [18, Theorem 4.3].

2.2 Supersymmetric aspects

As is well known, the standard free Dirac operator —i Z?Zl a;Dj+mf on L*(R3;C*) with con-
stant mass m > 0 and its suitably perturbed ones have supersymmetry, i.e., they are respectively
a supercharge with the grading operator 75 [18, §5.5]. From this point of view, it would be
interesting to investigate if the Hamiltonian H of the present model has supersymmetry. Indeed,
it was shown that the Hamiltonian of the CQS model as well as that of the GCQS model has
supersymmetry [2, 4]. In this section we see that a supersymmetric structure similar to that of
the CQS (GCQS) model exists in our model.

Let (d+1)/2
2 d—odd
Ty:= 2.
d { 2d/2+1  g_even (2.6)
In this section, we will use Ty x T,; Dirac matrix representation. Then there are d + 2 distinct
Dirac matrices for odd number d, d + 3 distinct Dirac matrices for even number d.

Let d(d—1)/2
(d) ._ (A Q1. Qg d—odd
V5T { PN 20, agagrs  d—even (2.7)
Then ~¢ is self-adjoint with
()2 = 1z, (2:8)



Then we have ., . 4
O‘j’Yé ) = 7; )aj (.7 = ]-a T 7d)a {Oéd—i-l?’)/é )} = 0. (29)

Let ¢ : RY — B(K) be Borel measurable such that, for a.e. z € RY, £(x) is self-adjoint with
E(x)? =1. (2.10)

Then
I€(z))| =1, a.exeRL (2.11)

Let T'(:) : RY — B(CT@ @ K) be such that

I(x):= i’yéd)ode ®&(z), aexcRY (2.12)
Then
®
r:.= / I'(x)dx (2.13)
Rd
is self-adjoint with
r?=r. (2.14)

Hence I' is a grading operator on H. The following proposition shows that, under some additional
condition for £(x), H has supersymmetry with respect to I':

Proposition 2.4 Assume (A.1)-(A.4). Suppose that & is strongly differentiable on R? with

z€R

Then
I'H c —HT (2.16)

if and only if

d
Z’Véd)adJrlO‘ijg(x) =1 (Véd) © E(0)e' ™M (@) — M(a)e "W @ f(x)) , aes €RL
=1

(2.17)
In that case, the spectrum o(H) and the point spectrum o, (H) of H are respectively symmetric
with respect to the origin 0 € R.

Proof.
Since the subspace Dy given by (2.3) is a core of H by Lemma 2.2-(ii), (2.16) is equivalent to
that, for all ¢ € Dy, I'y € D(H) and

THy = —HTW. (2.18)
Let ¥ € Dy. Then
(D) (z) = insV i1 ® E(x)0(), aex €RY
It follows that the CT¢ @ K-valued function: z + (I'¢)(x) is strongly differentiable on R? with
D;(19)(x) = iy s ® (D& (@) ia) + i aas @ E@)Dja), =1, .d.
Hence

1D; () (2)1* < 2(C5 9 (@) 1> + 1 D53 ()]1?),

10



which implies that D;I'¢) € H and hence 'y € D(Hy) = D(H). Moreover, we have

(Holw)(z) = = aan Z%D {(z) | ¥(z) — (PHov) ().

j=1
and
(VD) (@) = —(OV)(@) +i (1 @ ¢(@)e™ @M (@) = M(@)e Ol 2 () ) ().

Hence
d
(HT)(z) = —(THY)(x Z Jagri0; ® (DE())0 (@)

+i ('Yéd) £(z)e z<I>(z)M( ) — M(z)e*@(m)’yéd) ® f(»’c)) ¥(z).

Therefore, HT'Y) = —T'H for all ¢ € Dy if and only if
d
d
> 5" aura; @ (Djg(x))(a)
j=1

=i (1 @ £@)e™ O M (@) - M(@)e "D @ £(2)) ¥(2), % € Do, (219)

By the original assumption for M(-), M(z) € B(C’? ® K) for a.e.x € R, Thereore (2.19) is
equivalent to (2.17).

By (2.14) and T'* =T, one easily sees that (2.16) is in fact equivalent to operator equality
I'*HT = —H. Hence H is unitarily equivalent to —H. This implies the symmetry of o(H) and
op(H) with respect to the origin. O

Remark 2.5 Proposition 2.4 gives a generalization of [2, Theorem 1] and clarifies a condition
for H to have supersymmetry.

It may be difficult in general to show the existence of self-adjoint, unitary solutions £(z) to
operator equation (2.17). Here we only note the following fact:

Lemma 2.6 Assume (A.1)-(A.3). Suppose that
Yo (x) Cc B(x)yt?, aexecRLj=1,---d, (2.20)
¢ = &(x) is independent of x € R? and
(I & €)B(r) C ~0(x)(I @), (2.21)
KD @ OM(z) c Mz)(W?Y ®¢€), aeaxeR™ (2.22)
Then & is a solution to (2.17).

Proof.

Since ¢ is a constant operator, D;€ = 0. By Lemma 1.5-(iii), (2.20) implies the strong commuta-
tivity of7 and ®. Hence ’y( )ei®(@) = eié(z)’yéd) for a.e.z € RY. By (2.21) and Lemma 1.5-(iv),
(I®¢&)e ile) _ = ¢ ®@)(I @ £). We also have (2.22) and the strong commutativity of ® and M.

Hence
(157 ® M (@) = M(2) (15" ® @ = M(@)e™* (15" @ ¢). (2:23)

11



Thus (2.17) holds with the both sides being zero. O

Additionally we make a remark on the converse of Lemma 2.6. For this purpose, we need a
lemma;

Lemma 2.7 Let T; (j = 1,---,d) be a densely defined closed linear operator on K. Suppose

that
d

Zaj @T; =0 onnNd_D(a; ®Ty). (2.24)

j=1

Then, for allj=1,...,d, T; =0 on ﬂ;l:lD(Tj).

Proof.
Eq.(2.24) implies that, for all u € N9_, D(T}) and v € K, Z?Zl (v, Tyu) o = 0. Since {a;}9_; is
linearly independent, it follows that (v,T;u) =0,7=1,--- ,d. Hence Tju =0,j=1,--- ,d. O

The following lemma gives a sufficient condition for a solution to (2.17) to be a constant operator:

Lemma 2.8 Assume (A.1)-(A.3). Let £(x) be strongly differentiable on R? with (2.15) and be
a solution to (2.17). Suppose that (2.20)-(2.22) hold. Then ¢ is independent of x € RY.

Proof.

As in the proof of Lemma 2.6, (2.20)—(2.22) imply (2.23). Hence the right hand side of (2.17)
vanishes, so that 2?21 75()d)ad+1aj ® D;&(x) = 0, which implies that Z;l:l a; @ Djé(x) = 0. By
Lemma 2.7, D;j§(x) = 0,5 =1,--- ,d, which implies that £ is independent of x. O

We have from Proposition 2.4 and Lemma 2.6 the following result:

Corollary 2.9 Assume (A.1)-(A.4). Suppose that & = &(x) is independent of x € R? and that
(2.20)—(2.22) hold. Then H has supersymmetry with respect to T'.

2.3 Vanishing theorems of the kernel of H

In supersymmetric quantum mechanics with a supercharge @), a non-zero vector in ker @ is called
a supersymmetric state. If the kernel of @) vanishes, i.e., ker @ = {0}, then the supersymmetry
is said to be spontaneously broken. It turns out that, in supersymmetric quantum mechanics,
it is importnat to investigate ker ). Thus we are led to consider ker H in view of Proposition
2.4. This would be interesting even if H does not have supersymmetry (note that H does not
necessarily have supersymmetry).

To investigate ker H, we also need an additional condition:

(A.5) (i) For each f € CN¢ ® K, the function: z +— M (z)f is strongly differentiable on R?
and, for all z € R%, M(x) commutes with a; (j = 1,--+ ,d).

(ii) There exists a constant po > 0 such that
d

M(x)* - iZajadHDjM(x) > 2, VreR? (2.25)
j=1

as an operator inequality on CV¢ ® KC (note that, by the principle of uniform boundedness,
the strong partial derivative D; M (z) is a bounded operator on CN¢®K for each z € R? and
hence, under (A.2) and condition (A.5)-(i), the opeartor M (z)? — iZ?:l ajog1 DM (x)
on CN¢ @ K is a bounded self-adjoint operator).
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For a linear operator L on a Hilbert space, we denote the resolvent set of L by p(L).

Lemma 2.10 Assume (A.2), (A.4) and (A.5). Then Hy; defined by (2.1) is self-adjoint with
D(Hy;) = D(Hp) and

[ Hol* + i llell* < [ Hawll?, & € D(Ho). (2.26)

In particular, 0 € p(Hpr) with operator-norm bound

1

IH < — (2.27)
Mo
and H()HJ\_41 18 bounded with
[HoHy' || < 1. (2.28)
Moreover, MH]\}1 1s bounded with
1 b
IMH /|| <a+ —. (2.29)
Ho

Proof.

The self-adjointness of Hy; follows from that of H with ® = 0. For all v € Dy, using the
anticommutativity of o; with o441 and the commutativity of M(z) with agyq and o) (j =
1,--+,d), we have

d
IHywo|* = [Howl* + [IMy)* + > (0, (—iD;M)ajoaseh)
j=1
d
> HH()¢|2+/Rd <7ﬁ(x)a M (x)* _izajad+1DjM(x) ¢(=’J5)>d$
j=1
> ([ Howll* + wgllv]l*.

Hence (2.26) holds for all ¢» € Dy. Since Dy is a core of Hyy, this inequality extends to all
¥ € D(Hyp). In particular, we have

pollll < 1Haredll, o € D(Ho). (2.30)

This implies that the self-adjoint operator Hjy is bijective with (2.27).

Inequality (2.26) implies also that, for all ¢ € D(Hy), ||Hov|| < ||Hat||. Hence HOH]_\/[l is
bounded with (2.28).

By (A4) and [[(—A)"29] = [|How| for all § € D(~A)"/2) = D(H,), we have [My] <
a||Hov|| + bl|¢||. Hence, for all ¢ € H,

IMHG 6| < alHoHy ¢l + bllHy ol < (al HoH ' || + 0l Hy' D] ]

b
@+)ML
Ho

Thus (2.29) holds. O

IN

Lemma 2.11 Let A be a self-adjoint operator on a complex Hilbert space X. Then

le —1] =2

A
sin — || . 2.31
sin 5 H (2.31)
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Proof.
By the functional calculus, one has e*4—1 = 2ie?*4/2 sin(A/2). Hence ||’ —1|| = 2]|e?*4/? sm(A/2)||.
Since €4/2 is unitary, one has ||e*4/2sin(A4/2)|| = || sin(A/2)||. Thus (2.31) holds.

Theorem 2.12 Assume (A.1)-(A.5) and

. D(x) 1
ess.su sin . 2.32
Dot 2 H 2(a+buy ') 232
Then ker H = {0} and 0 € p(H).
Moreover, the constant
H):= inf H 2.33
vH) = et HY (2.33)
is strictly positive, y(H) € o(H) or —y(H) € o(H), and
o(H) C (o0, =y(H)]U[y(H), ). (2.34)
Proof.
The operator H is written as
H=Hy + agp1(e® —1)M = KHy,
with ‘
K =T+ a4.1(e® - 1)MH; .
By applying Lemma 2.11 with A = &(x), we have
. )
[ef®® — 1| =2 sin$ ’ . (2.35)

Therefore, for all ¢ € H,
a1 (e"® = )M H || < 2ess.supgepe | sin(@(a)/2)[[[|MHy | [[4].
By this estimate and (2.29), we obtain
lovg1 (€7 = 1)MH | < 2(ess.sup, cgal| sin(@(2)/2)])(a + bug ).
Hence, by (2.32), we obtain [agyi(e’® — 1)MH,,'|| < 1. This implies that K is bijective
with bounded inverse K. Thus H is bijective with H~' = H;;' K~ being bounded. Hence
ker H = {0} and 0 € p(H).
We set by = |[H Y. If [A] < 1/bg, then X is in p(H). Therefore
o(H) C (—o0, —by'| U [, 00).

It is obvious that, for all ¥ € D(H) with ||¢|| = 1, 1 < by | H%||. This implies that byy(H) >
On the other hand, we have from (2.33) ||[¢| > v(H)|H 9|,V € H. Hence byy(H) <

it follows that y(H) = by;' € o(H) or —y(H) € o(H). O

Remark 2.13 Under the same assumption as in Theorem 2.12, H is Fredholm (the proof is
easy).
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We next consider a perturbation of ®(-). Let n(-) € Fy... such that, for a.e. x € RY, n(x) is
bounded and strongly commutes with ®(x) and M(z). Then, for a.e.x € RY,

@, (z) := @(z) + n(z) (2.36)
is self-adjoint on CV¢ ® K and
®
P, = / O, (x)dx (2.37)
Rd
is a self-adjoint operator on H.
The quantity
M
Kk(H) = sup 1] (2.38)

penlvl=1 |HY|’

may be infinite. But we have:
Lemma 2.14 Under the assumption of Theorem 2.12, 0 < k(H) < oo.

Proof.
Since H is closed with D(H) = D(Hy) N D(V)(= D(Hy)) and |Vy| = |My|,v € D(H), it
follows from the closed graph theorem that there exists a constant ¢ > 0 such that

My < c(HY| +11¢l), ¢ € DH).
Let ¢ € D(H) with ||¢|| = 1. Then, by Theorem 2.12, we have |Hv|| > v(H) > 0. Hence

Myl e

IHy| = ~(H)
Thereore k(H) < ¢+ c¢/v(H) < co. If K(H) = 0, then |[Mvy| = 0 for all ¢» € D(M) = D(H,).
Hence M = 0. But this contradicts condition (A.5). O

Theorem 2.15 Assume (A.1)-(A.5) and (2.32). Suppose that

€8S.SUP,cRa

sinn(;)H < 2/.;(11{) (2.39)

Let ‘
H, := Hy+ agp1e"®" M. (2.40)

Then ker H,y = {0} and 0 € p(H,,). Moreover, the last statement on ~(H) and o(H) in Theorem
2.12 holds with H replaced by H,,.

Proof.
We write ' .
H,=H+W, W :=ag(e® —e®)M.

By the strong commutativity of ®(x) and n(x), we have for a.e.x € R?
@iq)n(m) _ ei@(z) — ei@(z) (ein(z) _ 1) — 2iei<l>(m)ein(m)/2 Sin(n(x)/Q).

Hence, for all 1) € D(Hyp)

W < 2ess.sup,epa

sin 2 | yazui.
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We have ||Mv| < x(H)|Hv||. Hence
Wl < CyllHy||

with ()

o
sin — ‘ .
Hence W is H-bounded. By Remark 2.13, H is Fredholm. Condition (2.39) is equivalent to
C, < 1. Hence, by a stability theorem (e.g., [9, Chapter IV, Theorem 5.22]), H, is Fredholm
and dimker H,, < dimker H = 0. Therefore ker H, = {0}. It follows from this fact and the
self-adjointness of H, that Ran(H,) = H. Hence 0 € p(H,). Then the last statement of the
present theorem can be proved in the same way as in the proof of the corresponding part in
Theorem 2.12. O

Cyy = 2k(H )ess.sup,cpa

2.4 Unitary equivalence to a gauge theoretic Dirac opera-
tor and a vanishing theorem for ker H

In the papers [2, 4], it was shown that, under a suitable condition, the Hamiltonian of the CQS
(GCQS) model is unitarily transformed to a Dirac operator which is simpler in a sense. In this
section, we show that those structures are unified into a simple general structure.

We introduce a class of ®(-):

F :={®() € Fua | eF®0)/2 s strongly differentiable and
SUp,epa || Ej(2)]| <00, j=1,---,d}, (2.41)
where .
Ej(z) := Dje"®@)/2 (2.42)

denotes the strong partial derivative of e~ ®(®)/2

linear operator

in ;. For ®(-) € F, one can define a bounded

(7]
Aj=i / @2 R, (x)da (2.43)
Rd
on H.

Remark 2.16 If ®(-) € F sucht that ®(z) and ®(z’) commute for a.e.x, 2’ € RY, then E;(z) =
—ie7"®@/2D;®(x)/2 and hence
1 b
Aj = = DJ(I)(Z‘)dJ?
2 Jpa
Lemma 2.17 For each j=1,---,d, A; is a bounded self-adjoint operator on H.

Proof.
Since ess.sup, cga||e'®@/2E;(z)|| = ess.sup,ega||E;(x)|| < 00, A; is bounded. We have

e (D) [ a2y i)
A =~—= (Dje )e dzx.
iT 7 )

i®(x)/2—i®(z)/2

Differentiating the identity e =TI in x;, we have

PO E (z) = —(D;e®)/2)em(@)/2, (2.44)
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Hence A;f =A;j. O

For ®(-) € F, we define an operator:

d d
H/ = ZaJ<_ZDJ - A]) + ad+1M = H]VI - ZajAj (245)
j=1 j=1
Lemma 2.18 Assume (A.4). Let ®(-) € F. Suppose that
ajq) - q)Oéj, j=1,---d. (246)

Then H' is self-adjoint and every core of Hy is a core of H'.

Proof.
Under condition (A.4), Hys is self-adjoint. By (2.46), we have a;A; = Aja; (5 = 1,---,d).
Hence, by Lemma 2.17, — Z;l=1 o A; is a bounded self-adjoint operator. Hence the Kato-Rellich
theorem yields the desired result. O
We note that, if one regards A := (41, --,A4) as a (non-commutative) gauge potential,
then H' is a gauge theoretic Dirac operator with gauge potential A.
Let

U :=e'®/? (2.47)

which is unitary. The following theorem shows that, under a suitable condition, H is unitarily
equivalent to a gauge theoretic Dirac operator H’:

Theorem 2.19 Assume (A.1)-(A.4) and (2.46). Let ®(-) € F. Then
UHU'=H' (2.48)
Proof.

We have
d

UHU™' = =iy (Ua;U " YUD;U™" + Uag1e’ U (UMU™Y).

j=1

By (2.46) and Lemma 1.5, Ua;U~! = a;. By (A.3) and Lemma 1.5, UMU~! = M. By (A.1)
and Lemma 1.5-(iv), Uag1e®U~" = agp1e7®/2e'®e®/2 = oy, 1. Moreover

UD;U™" = D, —iA;.

Hence (2.48) holds. O

The following theorem gives another sufficient condition for ker H to be trivial:

Theorem 2.20 Assume (A.1)-(A.4) and (2.46). Let ®(-) € F and

d
> ess.sup, cpa || Ej (@) < po. (2.49)

Jj=1

Then ker H = {0} and 0 € p(H).
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Proof.
We write H' = Hy + X with X := — 3 | a;A;. Then

d d

IXI< D o Azl <D esssup,epa || E; (@)

J=1 Jj=1

By this estimate and (2.49), | X H,;'|| < 1. Hence H' is bijective and 0 € p(H'). In particular,
ker H' = {0}. On the other hand, (2.48) implies that p(H') = p(H) and ker H = U~ ker H'.
Thus 0 € p(H) and ker H = {0}. O
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Chapter 3

Spectrum of d-dimensional Dirac
operator with variable mass

3.1 Essential spectrum of H

We recall that In this section, we consider the essential spectrum of H. For a self-adjoint operator
S on a Hilbert space, we denote by oess(S) the essential spectrum of S.

Lemma 3.1 Let dim K < oo and m > 0 be a constant. Let V(-) : R? — B(CNe @ K) be Borel
measurable satisfying the following conditions:

(i) The operator V := fﬂg V(z)dz is relatively bounded with respect to Hp.

(i)
lim ||V (z)]| =0.
|z|—o00

(iii) The operator H,, + V on H is self-adjoint.

Then
O'ess(Hrn + V) = (—OO, _m] U [m’ OO) (31)

Proof.

For each R > 0, we denote by x g the characteristic function of the set {z € R?||z| < R}. As
in the case of the 3-dimensional free Dirac operator (cf. [18, Lemma 4.6]), one can show that
|H,| %X g is compact for all k > 0 as an operator on L?(R?; CN¢). Since dim K < oo, it follows
that |H,,| ¥xgr is compact as an operator on H. Hence, for all z € C\ R, (H,, — 2)"'xr =
(Hpm — 2)7YHu|)|Hm| xR is compact. Since H,, + V is self-adjoint with D(H,, + V) =
D(H,,) = D(Hy) and hence closed, there exists a constant ¢ > 0 such that [|[V| < c(||(Hm +
Y| + |¢]), Vi € D(H,,). Hence V(Hy, +V — 2)~! is bounded. Therefore we have

(Hp +V —2) ' —(Hy —2) = —(Hyp —2) 'V H, +V —2)" = —Wg — Xg,

where Wg = (Hp, — 2) 'Xr[V(Hpm +V — 2)7 Y, Xr = (Hy, — 2) Y1 = xr)V(Hp +V — 2)7 L
By the fact mentioned above, Wg is compact. We have

1
[Xr| < m“(l - xr)V]|-

By condition (ii), for every € > 0, there exists a constant R > 0 such that, for all a.e.x € R?
with [z| > R, [[V(z)]| < e, ie., ess.supy>gl|V(z)| < &, which implies that [|(1 — xg)V| < e.
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Hence limp .o || Xg|| = 0. Therefore (H,, +V — 2)~! — (H,, — z)~! is compact. Hence, by
Weyl’s essential spectrum theorem (e.g., [15, Theorem XIII1.14]), ess(Hpm + V) = Oess(Hm ). On
the other hand, as in the case of the 3-dimensional free Dirac operator [18, Theorem 1.1], one
can show that o(H,,) = (—o0o, —m| U [m, 00). Thus (3.1) holds. O

Theorem 3.2 Let dimK < oco. Assume (A.1)-(A.4). Suppose that there exists a constant
m € R satisfying

lim ||M(x)—m| =0 (3.2)
|| —o0

and o

lim ||sin (x)H =0. (3.3)
Then

Oess(H) = (—00, —m] U [m, ). (3.4)

Proof.
We write

H = Hm + ‘/1 + ‘/2
with

Vi i=agr1 (M —m), Vi:= ad+1(ei¢ - 1)M.
It is obvious that V; and V5 are relatively bounded with respect to Hy and

lm [Vi() = lm [[M(z)— ] =0.

As for V5, we have
®(x)

sin

IVa ()l < |M(@)[|lle"® — 1)) < 2] M ()]

Hence, by (3.2) and (3.3), we have lim|| o [|V2(X)|| = 0. Therefore lim || o ||Vi(2)+Va(z)|| =
0. Thus we can apply Lemma 3.1 to obtain (3.4). O

If ®(-) is in the class F introduced in Section 2.4, then we can obtain a sufficient condition
for (3.4) hold:

Theorem 3.3 Let dimK < co. Assume (A.1)-(A.4), (2.46) and (3.2). Let ®(-) € F. Suppose
that

lim ||E;(z)|| =0. (3.5)
|z|—o00

Then (3.4) holds.
Proof.
By (2.48), we have 0ess(H) = 0ess(H'). Hence we need only to prove

Oess(H') = (—00, —m] U [m, o0). (3.6)
We write

H =H,, + agp1(M —m) Zaj

We have lim|;| o [|ag41 (M (x) —m)|| = 0. Moreover, ||a;A ( M < N1 Ej(2)]|. Hence lim ;o0 || —
Z?:1 a;A;(z)| = 0. Thus we can apply Lemma 3.1 to obtain (3.6). O
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3.2 Bounds on the number of discrete eigenvalues

In this section, in view of Theorem 3.2, we consider the number of eigenvalues of H in the
interval (—m,m) and establish upper bounds on it. This aspect has been considered in the CQS
model [4] as well as the GCQS model [2]. In this paper, we take another method, which is an
extension of the method used in [5] where the number of eigenvalues of the three-dimensional
Dirac operator H,, + W with a scalar potential W : R®> — R in (—m,m) is considered. This
extension is not difficult. But, for the sake of completeness, we present some details of it. One
easily notes that the problem under consideration can be studied in a more general frame work
as in Lemma 3.1. Hence we first discuss the general case.

3.2.1 A general case

Let V be as in Lemma 3.1 and
H(V):=H, +V. (3.7)
Then, by (3.1), an eigenvalue of H(V) in (—
with finite multiplicity. For each A € (0,m
in the interval (—vm?2 — X\, vV/m?2 — \).
We first note an elementary fact:

Theorem 3.4 Suppose that the assumption of Lemma 3.1 holds and that |V (z)|| < A/4m for
a.e.t € R Then N(\, V) =

Proof.
Suppose that N(\, V) > 1. Then, it follows from the definition of N := N(A, V) that there
exists an IN-dimensional subspace FE of H such that

[HWV)$|l < vm? = X[¢], v € E. (3.8)

m,m) (if it exists) is an isolated eigenvalue of H (V)

2), we denote by N(A, V) the number of eigenvalues

Hence

0l < L)+ Vol < (Vi =3 2 1ol < yfm = 1ol
Hence ||H,,9||? < (m? — 3) [|¢]|%, which is equivalent to H —A + 3)Y2p||2 < 0. This implies
that ¢ = 0. But this is a contradiction. O

In view of Theorem 3.4, we define, for each A > 0, V3 : R — B(CY¢ ® K) by

. A
n = | V@ V@l
0 otherwise
For each A > 0, the operator
A\ ~1/2
R)\ = <—A + 2)

is a bounded self-adjoint operator. Since V' is Hyp-bounded, where Hy is defined by (1.19), and
(Ho +1)Ry is bounded, it follows that V Ry and V) Ry are bounded operators on H. Also HoR)
is bounded with ||HoR»| < 1. Hence the following operators Ty; (j = 1,2,3,5) are in B(H):

Th1 := (HoRx)*VaR,, (3.9)
T2 := (VARA)"HoR), (3.10)
Ths := mag+1 RAVA R}, (3.11)
Thy = mRAVAR 41, (3.12)
Ths := (VAR))"VaAR,. (3.13)
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We set
v(z) == |[V(x)], wr(z):=|Valz)||, aexcR™ (3.14)

For a compact operator A on a Hilbert space, we denote the nonincreasing sequence of the
singular values of A (repeated with multiplicity) by u,(A4) (n € N). For f € LP(RY), we set
[ fllze = (Jga |f(2)[Pdz)'/P.

Lemma 3.5 Let d > 3 and suppose that the assumption of Lemma 3.1 holds and v € L(R?) N
Ld/Q(Rd). Then, for all j =1,2,3,4,5, T\; is compact. Moreover, there exists a constant C > 0
independent of V. and X\ > 0 such that, for all n € N,

pin(Tas) < Clloallan™4 (5 =1,2), (3.15)
pn(Tag) < Clloy? |20~ (5 = 3,4), (3.16)
1in(Tas) < Clloal|2an=2/4. (3.17)

Proof.

By the weak Hausdorff-Young inequality (e.g., [14, p.32]) and the condition d > 3, one can
easily see that the Fourier transform gy of the function:R? 3 k — (k2 + X/2)~1/2 is in L? (R%)
(the weak LP" space on RY) with 1/p’ =1 —1/d and ||gx ]|, w < ca, where | - ||, w denotes the
“pseudo” norm of Lﬁ,’ (RY) and ¢, is a constant independent of A > 0. By Cwikel’s theorem
[6, §3] and the condition v € L4(R?), which implies that vy € LY(R?), vyR, is compact as an
operator on L?(R%) and

pn(VaR)) < Killoallpan™"%, neN,

where K7 > 0 is a constant independent of V, A > 0 and n € N. Since dim K < oo, it follows
that vy R is compact also as an operator on H. Let

By(z) = { Z((j)) if v(z) > A\/4m

0 otherewise

Then B, is bounded with ||Bx(z)|] < 1. We have VyR) = ByvxRx. Hence VyR) is compact.
This shows that all Ty; (j =1,2,3,4,5) are compact.
In general, for all compact operators A and bounded operators B on a Hilbert space

in(BA) < [[Bllin(A).
(e.g., see [17, Theorem 1.6].) Hence
pn(VARA) < [ Ballpn (vaR) < Kyoal|gan™"/".

Therefore
fin(Ta1) < [ HoRA|IK o] pan ™% < || Ky [Joa]| pan ™"/

Similarly one can show that Tho is compact and
pn(Th2) < || K [oxl[gan™ "4,

where we have use the fact that p,(A) = p,(A*) for all compact operators on a Hilbert space
[17, (1.3)].
As for Th3, we write
T/\S = mad+1R)\Ui\/2B)\Ui/2R)\.

By the condition v € L%2(R9), vi/z € LYR%). Hence, Cwikel’s theorem again, vi/zR,\ is
compact and
1/2 1/2 _
pn (03" Ra) < Koyl pam ™,
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where K1 > 0 is a constant independent of V' and A > 0. We have
tn(Thg) < mun(RAvimB)\vi/QR)\).
In general, for all compact operators A and bounded operators D on a Hilbert space,
p2n41(A*DA) < | Dllpns1(A)?, p2n(A*DA) < || Dl (A)?,
where we have used the fact that, for all compact operators A and B on a Hilbert space,

pntk+1(AB) < png1 (A)prs1(B), n,k > 0.

Hence

t2n+1(Thz) < mppi1(vARN)? < m(Ki)QHUim”id (n+ 1)72/d7
pon(Tas) < mpin (0 R)? < m(KD)? vy *||2an=2/4.

which imply that

pin(Thg) < Kby

where K} > 0 is a constant independent of V', A and n. Similarly we have

—2/d
)

2 an neN

pn(Taa) < K303/ [3an™29, i (Ths) < Kgflor[[3an=2, neN,

where K4 > 0 is a constant independent of V', A and n. Thus the desired results follw. O

Theorem 3.6 Let d > 3 and suppose that the assumption of Lemma 3.1 holds and ||V (-)| €
LYRY N LY2(RY). Let X € (0,m?). Then, there exists a constant Cy > 0 independent of V and
A such that

N V) SCO/

IV (@) |>2/4 (“V(x)||d/2 + ”V(x)”d) d. (3.18)

Proof.

We need only to consider the case where N := N (A, V) > 1. Then there exists an N-dimensional
subspace E of H such that (3.8) holds for all ¢ € E. It is easy to see that [|[(VA — V)¢| <
(A\/4m)||¢||,V¢ € H. Let v» € E. Then, as in the proof of Theorem 3.4, we have ||(H,,+V3)¥[]? <
(m? — %) l90||?, which is equivalent to the following inequality:

N2
(-a+g)
+m (g1, Vaw) +m (Vah, agr1b) + ||[Vay||* < 0. (3.19)

The subspace F := (—A + \/2)'/2E is also N-dimensional. Inequality (3.19) implies that, for
all p € F,

+ (Hoy), Vah) + (Vap, Hotb)

9l1” < (&, The) ,

where .
T)\ _— - ZT)\]'.
j=1

By Lemma 3.5, Ty is a compact self-adjoint operator on H. Hence, by the Hilbert—Schmidt
theorem, there exists a complete orthonormal system {¢, }5° ; of H and a real sequence {t,,}°2 ;

23



such that Th¢, = tp,¢, and lim, , ¢, = 0. Using this fact, one sees that the number of
eigenvalues ¢, of Ty with ¢, > 1 is more than or equal to dimF = N. Hence un(7y) > 1.
Let k be the largest natural number not exceeding (N + 4)/5. Then 5k — 4 < N. Hence
1 < pun(Ty) < psk—4(Ty). On the other hand, by a general fact on singular values of the sum of
two compact operators (e.g., [17, Theorem 1.7]), we have

5
psk—a(Th) < Z pk ()
=1

Using this fact and Lemma 3.5, we obtain
1< 2C oall gk ™4 + 200y * [k~ 4+ Clloal|3 k>,
We have k > N/5. Hence
1< C/([oall o N9 4 ([0} %17 N7/ 4 [Jon[ |7 N2/,
where C’ > 0 is a constant independent of V', A and N. This implies that N < C’o(Hvi/zH‘zd +
luall2,) with a constant Cy independent of V and A. Thus (3.18) holds. O

As in Corollaries 1.2 and 1.3 in [5], we have from Theorem 3.6 the following results:

Corollary 3.7 Under the same assumption as in Theorem 3.6, the number N (V') of eigenvalues
of H(V) in (—m,m) is finite and

N(V) < Co /Rd(IIV(fv)Hd/2 + V()] de. (3.20)

Corollary 3.8 Suppose that the assumption of Theorem 3.6 holds. Let \; (j =1,...,N(V)) be
the eigenvalues of H(V') in (—m,m), counted with multiplicity and -y > 0 be such that

[ (V)= /Rd V@IV @)[1¥2 + [V (@) F)dz < cc.

Then, there exists a constant C, > 0 such that

N(V)
> A=) < (V). (3.21)
j=1

3.2.2 Applications

Now we apply the results in the preceeding section to the Dirac operator H. For A € (0,m?),
we denote by N () the number of eigenvalues of H in (—v/m?2 — X\, v/m?2 — \).

Theorem 3.9 Let d > 3 and X\ € (0,m?). Suppose that the assumption of Theorem 8.2 holds.

Let
P(z)

Fyo(x) = ||M(x) — m|| + 2m sinT

‘ . aex € RY

(i) If Fare(x) < A/4m, ae.x € R, then N()\) = 0.
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(ii) Suppose that Fyro € LY2(RY) N LYR?). Then there exists a positive constant C' > 0
independent of M, ® and A such that

N <C (FM@(x)d/ 2 4 FM,q,(x)d) dz < oo. (3.22)

Fqu,(x)>A/4m

Moreover, the number Ny of eigenvalues of H in (—m,m) obeys

No<C (FM@(Z')d/z + FM@(m)d) dz < oo. (3.23)
R4
Proof.
(i) We can write H = H(V) with V = ag41(Me!® —m). Hence
V(@) = M (2)e"® —ml| < [[M(z) —m|| + m]le’™™ — 1| = Fas,0(2). (3.24)
Hence, the present assumption implies that ||V (z)|| < A\/4m a.e.x € R%. Hence, by Theorem 3.4,
N(\) =0.
(ii) By (3.24) and the present assumption, ||V (-)|| € L4(R%) N L%2(R%). Thus we can apply
Theorem 3.6 to obtain (3.22). Inequality (3.23) follows from (3.22) or Corollary 3.7. O

We have from Corollary 3.8 the following fact:

Corollary 3.10 Letd > 3. Suppose that the assumption of Theorem 3.2 and Fy ¢ € Ld/? (RHN
LYRY). Let \; (j = 1,...,Np) be the eigenvalues of H in (—m,m), counted with multiplicity
and v > 0 be such that

£y (M, ®) := / Frro(z)Y (Fara(x)Y? + Fao(z)d)dz < co.
Rd
Then, there exists a constant C, > 0 such that

No

> (1= X3 < Cyfy (M, ). (3.25)

j=1

We can also use Theorems 2.19 and 3.3 to obtain another upper bound for N(\). Let

d
Gum,o(z) == ||M(z) —m — Z agp10;e®@2E (@), aex e R (3.26)
j=1

Theorem 3.11 Let d >3 and X\ € (0,m?). Suppose that the assumption of Theorem 3.8 holds.
Then:

(1) If Garg(z) < N/4m for a.e.x € RY, then N(X) = 0.
(ii) Suppose that Gpre € LY?(R?) N LYRY). Then (3.22) and (3.23) with Fare replaced
by GM’cp hold.

Proof.

By Theorem 2.19, N()) is equal to the number of eigenvalues of H’' in (—vm?2 — X, vVm2 — \).
One can write H = Hy,, + V with V := ag1 (M — m — Z;l:l ag1a;A;5). We have |V (z)|| =
G0 (z). Thus, in the same way as in the proof of Theorem 3.6, we obtain the desired results. O

Theorem 3.11 implies the following result as in Corollary 3.10:
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Corollary 3.12 Let d > 3. Suppose that the assumption of Theorem 3.8 holds and Gy €
LY2(RY) N LYRY). Then (3.25) with Fare replaced by Gare holds for all X > 0 such that
Jpa Gri,0(2)(Gara(2)Y? + Guo(z)?)da < oo.
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