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Abstract

The Hamiltonian of the Chiral Quark Soliton model (CQS) in nuclear physics is described
by the following Dirac type operator

HCQS := −i
3∑
j=1

αjDj ⊗ 12 +mβ ⊗ 12e
i
∑3
j=1 Fγ5⊗σjnj ,

on the Hilbert space L2(R3;C4)⊗ C2.
Let us compare it to the usual free Dirac operator with mass m

HUD := −i
3∑
j=1

αjDj +mβ,

on the Hilbert space L2(R3;C4).
Here i is the imaginary unit, α1, α2, α3 and β = α4 are 4× 4 Dirac matrices and 1n denotes

the n×n unit matrix, Dj (j = 1, 2, 3) is the generalized partial differential operator in the space
variable xj (x = (x1, x2, x3) ∈ R3), m > 0 denotes the mass of a quark,

γ5 := −iα1α2α3,

F : R3 → R is called a profile function, Borel measurable, finite for almost everywhere (a.e.)
x ∈ R3, σ1, σ2 and σ3 are the Pauli matrices and nj : R3 → R is a Borel measurable function
such that

3∑
j=1

nj(x)2 = 1

for a.e. x ∈ R3.
The main difference in the above operators are the mass term. The mass term of HCQS

is spatially variable in general. Hence, the CQS model may be regarded as a model of Dirac
particle with a variable mass.

This thesis is mainly based on the paper [3]. The main purpose of this work is to build a
model, which can be an abstract d-dimensional extension of the CQS model and under suitable
conditions to investigate its Hamiltonian’s self-adjoint property, supersymmetric aspects and
spectral properties. We will name the Hamiltonian of this extended model by ”d-dimensional
Dirac operator with a variable mass”. The Hamiltonian of a d-dimensional chiral quark soliton
model is defined as follows:

H := −i
d∑
j=1

αjDj + αd+1e
iΦM.

Here d ≥ 2 is natural number,

Nd :=

{
2d/2 for d even

2(d+1)/2 for d odd,
.

αj , j = 1, . . . , d+ 1 are Nd ×Nd Hermitian matrices satisfying

{αj , αk} = 2δjk1Nd , j, k = 1, · · · , d+ 1.



Let K be a finite dimensional Hilbert space. We denote by Fs.a. the set of self-adjoint operators Φ
on L2(Rd;CNd⊗K) such that the mapping :Rd 3 x→ (Φ(x)+i)−1 is measurable. Φ(·), M(·) ∈
Fs.a. Φ and M be the direct integrals of Φ(·), M(·) respectively over Rd.

The ”d-dimensional Dirac operator with a variable mass” acts on

H := L2(Rd;CNd)⊗K.

In this work we will give a simple condition for H to be self-adjoint and discuss supersym-
metric aspects and the spectrum of H. Also we give a condition for H to be a supercharge of a
supersymmetric quantum mechanical model. In that case, kerH, the kernel of H, describes the
supersymmetric states. Hence it is interesting and important to analyze kerH. We will prove
that, under some condition, kerH is trivial: kerH = {0}. In the case where H is a supercharge,
this means that there is no supersymmetric state, namely, the supersymmetry is spontaneously
broken. We are concerned with a unitary equivalence of H to a gauge theoretic Dirac operator.
This may be physically interesting. Using this structure, we find another condition for the kernel
of H to be trivial. We identify the essential spectrum of H under a suitable condition. In the
last, we will discuss the number of eigenvalues of H in the interval (−m,m) with m > 0 being
a constant.
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Chapter 1

Introduction

1.1 Dirac operator

In particle physics, the Dirac equation is a relativistic wave equation formulated by British
physicist Paul Dirac in 1928 (e.g., see [11], [18]). It describes fields corresponding to elementary
spin 1

2 particles as a vector of four complex numbers, in contrast to the Schrdinger equation
which describes a field of only one complex value. The Dirac equation is consistent with both
the principles of quantum mechanics and the theory of special relativity, and was the first theory
to account fully for relativity in the context of quantum mechanics. The equation also implied
the existence of a new form of matter, antimatter, hitherto unsuspected and unobserved, and
actually predicted its experimental discovery. It also provided a theoretical justification for the
introduction of several-component wave functions in Pauli’s phenomenological theory of spin.
Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation.

The equation to describe a relativistic wave equation of a free electron must be ( e.g., see
[11]) Lorentz invariant, first order in time derivative and energy E must be calculated by the
following formula

E = c
√
m2c2 + |p|2 (1.1)

Here c is the light speed, m is the mass of the particle and p = (p1, p2, p3) is the momentum.
From non-relativistic theory, for the energy E and momentum p we have the following sub-

stutions

E → i~
∂

∂t
, p→ −i~∇, (1.2)

here t ∈ R, x = (x1, x2, x3) is coordinate, ∇ = (
∂

∂x1
,
∂

∂x2
,
∂

∂x3
) and ~ is the Planck constant

divided by 2π. So Dirac reconsidered the energy-momentum relation (1.1) and before translating
it to quantum mechanics with the substitution (1.2), he linearized it and wrote:

E = c

3∑
j=1

αjpj +mc2β ≡ α · p +mc2β. (1.3)

Here α = (α1, α2, α3) and β have to be determined from (1.1). Indeed, (1.1) can be satisfied
αj (j = 1, 2, 3) and β anti commuting n×n matrices (Dirac matrices). Comparing E2 in (1.3)
with (1.1) we will find the following relations:

αjαk + αkαj = 2δjk1n (j, k = 1, 2, 3)

αjβ + βαj = 0n (j = 1, 2, 3)

β2 = 1n.

(1.4)
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Here we denote δjk is the Kronecker delta, 1n and 0n are n × n unit and zero matrices . The
αj (j = 1, 2, 3) and β should be Hermitian. For representation of αj (j = 1, 2, 3) and β
matrices we will use the following matrices, which are named the Paul matrices

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
(1.5)

The following representation was introduced by Dirac and named the standard representation:

β :=

(
1 0
0 −1

)
, αj :=

(
0 σj
σj 0

)
, j = 1, 2, 3. (1.6)

If one ”translates” the equation (1.3) to quantum mechanics, one obtains the Dirac equation

i~
∂

∂t
ψ(t,x) = HFD(m)ψ(t,x). (1.7)

The operator

HFD(m) := −i~c
(
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)
+mc2β = −i~cα · ∇+mc2β (1.8)

is named the free Dirac operator and it acts on C4-valued wavefunctions

ψ(t,x) :=

 ψ1(t,x)
...

ψ4(t,x)

 . (1.9)

The square of the free Dirac operator is

HFD(m)2 = −(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

) +m2 = −∆ +m2 (1.10)

the Laplacian operator with mass in R3.

1.2 d-dimensional free Dirac operator

In this section we will define a ”d-dimensional” free Dirac operator on Rd. From now we will
use the physical unit system where the light speed c and ~ are equal to 1.

Let σj be the Paul matrices and

γ0
1 := I2 γj1 := σj j = 1, 2, 3. (1.11)

Then by the following recursive formula

γ0
n := I2 ⊗ γ0

n−1

γjn := σ1 ⊗ γjn−1, j = 1, ...2n− 1

γ2n
n := σ2 ⊗ γ0

n−1, γ2n+1
n := (−i)nγ1

nγ
2
n · · · γ2n

n

we can build 2n×2n anticommuting Hermitian 2n+1 distinctive matrices {γjn}, j = 1, . . . , 2n+1
( e.g., [1]). For notational simplicity for fixed number n,we denote γkn by αk, k = 1, . . . , 2n+ 1
and name it 2n dimensional Dirac matrices.
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Let d ≥ 2 be a natural number,

Nd :=

{
2d/2 for d even

2(d+1)/2 for d odd
. (1.12)

and {αj}d+1
j=1 be Nd × Nd Dirac matrices. We denote by Dj the generalized partial differential

operator in the variable xj (x = (x1, · · · , xd) ∈ Rd), acting in L2(Rd). The d-dimensional
generalized Laplacian

∆ :=

d∑
j=1

D2
j (1.13)

on L2(Rd) is a non-positive self-adjoint operator.
The d dimensional free Dirac operator with mass m on L2(Rd;CNd) is defined by

Hm := −i
d∑
j=1

αjDj +mαd+1. (1.14)

The operator, square of Hm, is positive and

H2
m = −∆ +m2. (1.15)

Theorem 1.1 The d dimensional free Dirac operator Hm is essentially self-adjoint on the dense
domain C∞′ (Rd \ {0};CNd) and self-adjoint on the Sobelov space

D(Hm) = H1(Rd;CNd) =

d⋂
j=1

D(Dj).

Its spectrum is purely absolutely continuous and

σ(Hm) = (−∞;−m] ∪ [m;∞). (1.16)

Proof.
See [Theorem 1.1][18]. 2

1.3 Dirac type operator in Chiral Quark Soliton Model

Since in 1964 Murray Gell-Mann and George Zweig had predicted quark, physics have studied
many quark models. The QCS model is a relativistic quark model (e.g., [7]). The Hamiltonian
of CQS model is an abstract Dirac type operator with matrix-valued mass term (e.g., [16]).

HCQS := −i
3∑
j=1

αjDj ⊗ 12 +mβ ⊗ 12e
i
∑3
j=1 Fγ5⊗σjnj ,

on the Hilbert space L2(R3;C4)⊗ C2.
Here αj , j = 1, 2, 3 and β are 4 × 4 the Dirac matrices, γ5 := −iα1α2α3, σj , j = 1, 2, 3

are the Paul matrices, F : R3 → R measurable, a.e. (almost everymhere) finite, nj : R3 →

R j = 1, 2, 3, measureable with
3∑
j=1

|nj(x)|2 = 1 a.e x ∈ R3. The function F is called

profile function.
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HCQS is self-adjoint on D(HCQS) = D(H0) by Kato-Rellich theorem.
Let nj(x), j = 1, 2, 3 is continuously differentiable on R3 , (n1(x), n2(x)) 6= (0, 0),

ξ(x) :=
σ1n2(x)− σ2n1(x)√
n1(x)2 + n2(x)2

(1.17)

and Γ(x) := iγ5β⊗ ξ(x) acting on C4⊗C2. Then (Γφ)(x) := Γ(x)φ(x) is self-adjoint, Γ2 = 1 on
H and unitary.

Theorem 1.2 ([4, Prop 2.1]) If ξ is constant matrix then ∀ψ ∈ D(HCQS),Γψ ∈ D(HCQS) and

{Γ, HCQS}ψ = 0, ψ ∈ D(HCQS). (1.18)

From (1.2) implies HCQS = −ΓHCQSΓ∗ and in suitable condition HCQS can be a generator of
supersymmetry with grading operator Γ.

Theorem 1.3 Suppose that
lim
|x|→∞

F (x) = 0

then
σ(HCQS) = (−∞;−m] ∪ [m;∞).

1.4 d-dimensional version of Chiral Quark Soliton Model

Let d ≥ 2 be a natural number and H0 be free massless Dirac operator on L2(Rd;CNd),

H0 := −i
d∑
j=1

αjDj . (1.19)

then
H2

0 = −∆. (1.20)

Let K be a separable complex Hilbert space and

H := L2(Rd;CNd)⊗K ∼= L2(Rd;CNd ⊗K) ∼=
∫ ⊕
Rd

CNd ⊗Kdx, (1.21)

where each ∼= means the natural Hilbert space isomorphism and
∫ ⊕
Rd C

Nd ⊗ Kdx denotes the
constant fibre direct integral with fiber CNd ⊗ K (e.g., [15, §XIII.16]). Each linear operator A
on L2(Rd) is extended as the direct sum ⊕NdA on L2(Rd;CNd) = ⊕NdL2(Rd). For notational
simplicity, we denote it by A again.

Every densely defined closable linear operator T on L2(Rd;CNd) (resp. K) has a tensor
product extension T ⊗ I (resp. I ⊗ T ) to H (I denotes identity). But we write it T simply if
there is no danger of confusion.

We denote by Fs.a. the set of mappings Φ(·) from Rd to the set of self-adjoint operators on
CNd ⊗ K such that the mapping: Rd 3 x 7→ (Φ(x) + i)−1 is measurable. By a general theorem
(e.g., [15, Theorem XIII.85-(i)]), for each Φ(·) ∈ Fs.a., the direct integral

Φ :=

∫ ⊕
Rd

Φ(x)dx (1.22)

is self-adjoint.
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To introduce a mass operator, let M(·) ∈ Fs.a. such that, for a.e.x ∈ Rd M(x) is a bounded
operator on CNd ⊗K, and set

M :=

∫ ⊕
Rd
M(x)dx. (1.23)

We use this self-adjoint operator as an extended mass (variable in the space Rd) of the quan-
tum particle of our model (a Dirac particle). Note that M is not necessarily bounded. The
Hamiltonian H of our model, a d-dimensional version of the CQS model, is defined as follows:

H := H0 + V (1.24)

with
V := αd+1e

iΦM. (1.25)

Definition 1.4 Let A and B be self-adjoint operators on X .

(i) A and B are said to strongly commute if their spectral measures commute.

(ii) A and B are said to strongly anticommute [12, 19] if, for all t ∈ R, eitBA ⊂ Ae−itB .
(it is shown from e.g. [12] that this definition is in fact symmetric in A and B).

The next lemma summarizes some basic facts on strongly commuting (resp. anticommuting)
self-adjoint operators:

Lemma 1.5 Let A and B be self-adjoint operators on X .

(i) A and B strongly commute if and only if, for all t, s ∈ R, eitBeisA = eisAeitB.

(ii) A and B strongly commute if and only if, for all t ∈ R, eitBA = AeitB.

(iii) Let A be bounded. Then A and B strongly commute if and only if AB ⊂ BA.

(iv) Let A be bounded. Then A and B strongly anticommute if and only if AB ⊂ −BA.

Proof.

(i) well known (e.g., [13, Theorem VIII.13]).

(ii) ∀φ ∈ D(A) by [13, Theorem VIII.7(c)]

lim
s→0

eitBeisA − eitB

is
φ = eitBAφ. (1.26)

From (i)

eitBAφ = lim
s→0

eitA − I
is

eitBφ. (1.27)

Then by [13, Theorem VIII.7(d)] eitBφ ∈ D(A) and (ii) holds.

(iii) Using (ii) and same to proof of (ii).

(iv) Same to proof of (iii).

2

In the work, we assume the followings:

(A.1) αd+1Φ ⊂ −Φαd+1
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(A.2) αd+1M ⊂Mαd+1.

(A.3) Φ and M strongly commute.

(A.4) The operator M is (−∆)1/2-bounded:

‖Mψ‖2 ≤ a2‖(−∆)1/2ψ‖2 + b2‖ψ‖2, ∀ψ ∈ D((−∆)1/2)

with constants 0 ≤ a < 1 and b ≥ 0.

Remark 1.6 In the abstract CQS model [10], the strong commutativity of M and H0 as well
as the boundedness and the strict positivity of M is assumed. But, in our model, they are not
assumed.

Lemma 1.7

(i) Condition (A.1) holds if and only if αd+1 and Φ strongly anticommute.

(ii) Condition (A.1) is equivalent to the operator equality αd+1Φ = −Φαd+1.

(iii) Condition (A.2) holds if and only if αd+1 and M strongly commute.

(iv) Condition (A.2) is equivalent to the operator equality αd+1M = Mαd+1.

Proof.

(i) This follows from Lemma 1.5-(iv).

(ii) Assume (A.1). Let ψ ∈ D(Φαd+1). Then η := αd+1ψ ∈ D(Φ). Hence, by (A.1),
αd+1η ∈ D(Φ). But, since α2

d+1 = I, we have αd+1η = ψ. Hence ψ ∈ D(Φ). There-
fore D(Φαd+1) ⊂ D(αd+1Φ). Thus D(Φαd+1) = D(αd+1Φ). Hence the desired operator
equality holds.

(iii) This follows from Lemma 1.5-(iii).

(iv) Simliar to the proof of the part (ii).

2

1.5 Organization of the dissertation

This dissertation is based mainly on the joint work [3] of Arai Asao and the candidate. In
Chapter 2 is concerned self-adjointness and supersymmetric aspects of H. In 2.1 is given suitable
conditions for H is self-adjoint. In 2.2 is discussed supersymmetric aspect. In [3], was considered
only odd dimensions of Rd. In this dissertation is discussed ever d is even. For supersymmetric
operators, the kernel, i.e. supersymmetric states are very interesting and important. In 2.3 we
will show in our case the symmetry is spontaneously broken. In 2.4 we concern about unitary
equivalence of H to a gauge theoretic Dirac operator. This may be physically interesting.

Chapter 3 is concerned spectrum of H. In 3.1 is considered essential spectrum. In 3.2 we
discuss the number of eigenvalues in the interval (−m,m).

Finally some remarks of typographical nature. Chapter, section and subsection are numbered
in arabic numerals. Equations are numbered sequentially within a chapter number. Also math-
ematica (i.e., lemmas, theorems,...) are numbered sequentially within a chapter number.We use
2 notation to signify the and of a proof.
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Chapter 2

Hamiltonian of d-dimensional
CQS Model

2.1 Self-adjointness

We define
HM := H0 + αd+1M. (2.1)

If M is a constant operator with m > 0, then Hm represents the free Dirac operator with a
constant mass m. Hm is self-adjoint with D(Hm) = D(H0) = ∩dj=1D(Dj) ( Theorem(1.1)) and

bijective with ‖H−1
m ‖ = 1/m.

Lemma 2.1 Assume (A.4). Let m > 0 be a constant. Then MH−1
m is bounded with

‖MH−1
m ‖ ≤ max

{
a,

b

m

}
. (2.2)

Proof.
It is well known or easy to see that, for all ψ ∈ D(Hm) = D(H0),

‖Hmψ‖2 = ‖(−∆)1/2ψ‖2 +m2‖ψ‖2

Hence, by (A.4), we have

‖Mψ‖2 ≤ a2‖Hmψ‖+ (b2 − a2m2)‖ψ‖.

This implies the following:
(i) if am ≤ b, then ‖MH−1

m ‖2 ≤ a2 + (b2 − a2m2)/m2 = b2/m2

(ii) if am ≥ b, then ‖MH−1
m ‖ ≤ a. Thus (2.2) follows. 2

Lemma 2.2 Assume (A.1)–(A.4). Then:

(i) V is self-adjoint with D(V ) = D(M).

(ii) H is self-adjoint with D(H) = D(H0) and the subspace

D0 := C∞0 (Rd;CNd)⊗̂K (2.3)

(⊗̂ means algebraic tensor product) is a core of H.

8



Proof.

(i) Since D(V ) = D(M) and D(M) is dense, V is densely defined. Since αd+1e
iΦ is

bounded, it follows that V ∗ = Me−iΦαd+1. By (A.1) and Lemma 1.5-(iv), we have

e−iΦαd+1 = αd+1e
iΦ. (2.4)

By (A.2), (A.3), Lemma 1.5-(ii) and Lemma 1.7-(iv), we have

V ∗ = Mαd+1e
iΦ = αd+1MeiΦ = αd+1e

iΦM = V. (2.5)

Hence V is self-adjoint.

(ii) By (A.4), we have for all ψ ∈ D((−∆)1/2)

‖V ψ‖ = ‖Mψ‖ ≤ a‖(−∆)1/2ψ‖+ b‖ψ‖.

Note that
‖(−∆)1/2ψ‖ = ‖H0ψ‖.

Hence ‖V ψ‖ ≤ a‖H0ψ‖+ b‖ψ‖. Here 0 ≤ a < 1. Thus, by the Kato-Rellich theorem (e.g.,
[14, Theorem X.12]), H is self-adjoint with D(H) = D(H0) and every core of H0 is a core
of H. It is well known that the subspace C∞0 (Rd;CNd) is a core of H0 as a linear operator
on L2(Rd;CNd). Hence the subspace D0 defined by (2.3) is a core of H0 as a linear operator
on H. Thus it is a core of H too.

2

Remark 2.3 One of the other sufficient conditions for H to be essentially self-adjoint is as
follows: Assume (A.1)–(A.3) and ess.sup|x|<R‖M(x)‖ <∞ for all R > 0. Then H is essentially
self-adjoint on D0. The proof is similar to that of [18, Theorem 4.3].

2.2 Supersymmetric aspects

As is well known, the standard free Dirac operator −i
∑3
j=1 αjDj +mβ on L2(R3;C4) with con-

stant mass m ≥ 0 and its suitably perturbed ones have supersymmetry, i.e., they are respectively
a supercharge with the grading operator iβγ5 [18, §5.5]. From this point of view, it would be
interesting to investigate if the Hamiltonian H of the present model has supersymmetry. Indeed,
it was shown that the Hamiltonian of the CQS model as well as that of the GCQS model has
supersymmetry [2, 4]. In this section we see that a supersymmetric structure similar to that of
the CQS (GCQS) model exists in our model.

Let

Td :=

{
2(d+1)/2 d−odd
2d/2+1 d−even

(2.6)

In this section, we will use Td × Td Dirac matrix representation. Then there are d + 2 distinct
Dirac matrices for odd number d, d+ 3 distinct Dirac matrices for even number d.

Let

γ
(d)
5 :=

{
id(d−1)/2α1 · · ·αd d−odd

id(d+1)/2α1 · · ·αdαd+2 d−even (2.7)

Then γd5 is self-adjoint with

(γ
(d)
5 )2 = 1Td . (2.8)

9



Then we have
αjγ

(d)
5 = γ

(d)
5 αj (j = 1, · · · , d), {αd+1, γ

(d)
5 } = 0. (2.9)

Let ξ : Rd → B(K) be Borel measurable such that, for a.e. x ∈ Rd, ξ(x) is self-adjoint with

ξ(x)2 = I. (2.10)

Then
‖ξ(x)‖ = 1, a.e.x ∈ Rd. (2.11)

Let Γ(·) : Rd → B(CTd ⊗K) be such that

Γ(x) := iγ
(d)
5 αd+1 ⊗ ξ(x), a.e.x ∈ Rd. (2.12)

Then

Γ :=

∫ ⊕
Rd

Γ(x)dx (2.13)

is self-adjoint with
Γ2 = I. (2.14)

Hence Γ is a grading operator onH. The following proposition shows that, under some additional
condition for ξ(x), H has supersymmetry with respect to Γ:

Proposition 2.4 Assume (A.1)–(A.4). Suppose that ξ is strongly differentiable on Rd with

Cj := sup
x∈Rd

‖Djξ(x)‖ <∞, j = 1, · · · , d. (2.15)

Then
ΓH ⊂ −HΓ (2.16)

if and only if

d∑
j=1

γ
(d)
5 αd+1αjDjξ(x) = i

(
γ

(d)
5 ⊗ ξ(x)eiΦ(x)M(x)−M(x)e−iΦ(x)γ

(d)
5 ⊗ ξ(x)

)
, a.e.x ∈ Rd.

(2.17)
In that case, the spectrum σ(H) and the point spectrum σp(H) of H are respectively symmetric
with respect to the origin 0 ∈ R.

Proof.
Since the subspace D0 given by (2.3) is a core of H by Lemma 2.2-(ii), (2.16) is equivalent to
that, for all ψ ∈ D0, Γψ ∈ D(H) and

ΓHψ = −HΓψ. (2.18)

Let ψ ∈ D0. Then

(Γψ)(x) = iγ
(d)
5 αd+1 ⊗ ξ(x)ψ(x), a.e.x ∈ Rd.

It follows that the CTd ⊗K-valued function: x 7→ (Γψ)(x) is strongly differentiable on Rd with

Dj(Γψ)(x) = iγ
(d)
5 αd+1 ⊗ (Djξ(x))ψ(x) + iγ

(d)
5 αd+1 ⊗ ξ(x)Djψ(x), j = 1, · · · , d.

Hence
‖Dj(Γψ)(x)‖2 ≤ 2(C2

j ‖ψ(x)‖2 + ‖Djψ(x)‖2),
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which implies that DjΓψ ∈ H and hence Γψ ∈ D(H0) = D(H). Moreover, we have

(H0Γψ)(x) = −γ(d)
5 αd+1

 d∑
j=1

αjDjξ(x)

ψ(x)− (ΓH0ψ)(x).

and

(V Γψ)(x) = −(ΓV ψ)(x) + i
(
γ

(d)
5 ⊗ ξ(x)eiΦ(x)M(x)−M(x)e−iΦ(x)γ

(d)
5 ⊗ ξ(x)

)
ψ(x).

Hence

(HΓψ)(x) = −(ΓHψ)(x)−
d∑
j=1

γ
(d)
5 αd+1αj ⊗ (Djξ(x))ψ(x)

+i
(
γ

(d)
5 ⊗ ξ(x)eiΦ(x)M(x)−M(x)e−iΦ(x)γ

(d)
5 ⊗ ξ(x)

)
ψ(x).

Therefore, HΓψ = −ΓHψ for all ψ ∈ D0 if and only if

d∑
j=1

γ
(d)
5 αd+1αj ⊗ (Djξ(x))ψ(x)

= i
(
γ

(d)
5 ⊗ ξ(x)eiΦ(x)M(x)−M(x)e−iΦ(x)γ

(d)
5 ⊗ ξ(x)

)
ψ(x),∀ψ ∈ D0. (2.19)

By the original assumption for M(·), M(x) ∈ B(CTd ⊗ K) for a.e.x ∈ Rd. Thereore (2.19) is
equivalent to (2.17).

By (2.14) and Γ∗ = Γ, one easily sees that (2.16) is in fact equivalent to operator equality
Γ∗HΓ = −H. Hence H is unitarily equivalent to −H. This implies the symmetry of σ(H) and
σp(H) with respect to the origin. 2

Remark 2.5 Proposition 2.4 gives a generalization of [2, Theorem 1] and clarifies a condition
for H to have supersymmetry.

It may be difficult in general to show the existence of self-adjoint, unitary solutions ξ(x) to
operator equation (2.17). Here we only note the following fact:

Lemma 2.6 Assume (A.1)–(A.3). Suppose that

γ
(d)
5 Φ(x) ⊂ Φ(x)γ

(d)
5 , a.e.x ∈ Rd, j = 1, · · · , d, (2.20)

ξ = ξ(x) is independent of x ∈ Rd and

(I ⊗ ξ)Φ(x) ⊂ −Φ(x)(I ⊗ ξ), (2.21)

(γ
(d)
5 ⊗ ξ)M(x) ⊂M(x)(γ

(d)
5 ⊗ ξ), a.e.x ∈ Rd. (2.22)

Then ξ is a solution to (2.17).

Proof.
Since ξ is a constant operator, Djξ = 0. By Lemma 1.5-(iii), (2.20) implies the strong commuta-

tivity of γ
(d)
5 and Φ. Hence γ

(d)
5 eiΦ(x) = eiΦ(x)γ

(d)
5 for a.e.x ∈ Rd. By (2.21) and Lemma 1.5-(iv),

(I ⊗ ξ)eiΦ(x) = e−iΦ(x)(I ⊗ ξ). We also have (2.22) and the strong commutativity of Φ and M .
Hence

(γ
(d)
5 ⊗ ξ)eiΦ(x)M(x) = M(x)(γ

(d)
5 ⊗ ξ)eiΦ(x) = M(x)e−iΦ(γ

(d)
5 ⊗ ξ). (2.23)
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Thus (2.17) holds with the both sides being zero. 2

Additionally we make a remark on the converse of Lemma 2.6. For this purpose, we need a
lemma:

Lemma 2.7 Let Tj (j = 1, · · · , d) be a densely defined closed linear operator on K. Suppose
that

d∑
j=1

αj ⊗ Tj = 0 on ∩dj=1D(αj ⊗ Tj). (2.24)

Then, for all j = 1, . . . , d, Tj = 0 on ∩dj=1D(Tj).

Proof.
Eq.(2.24) implies that, for all u ∈ ∩dj=1D(Tj) and v ∈ K,

∑d
j=1 〈v, Tju〉αj = 0. Since {αj}dj=1 is

linearly independent, it follows that 〈v, Tju〉 = 0, j = 1, · · · , d. Hence Tju = 0, j = 1, · · · , d. 2

The following lemma gives a sufficient condition for a solution to (2.17) to be a constant operator:

Lemma 2.8 Assume (A.1)–(A.3). Let ξ(x) be strongly differentiable on Rd with (2.15) and be
a solution to (2.17). Suppose that (2.20)–(2.22) hold. Then ξ is independent of x ∈ Rd.

Proof.
As in the proof of Lemma 2.6, (2.20)–(2.22) imply (2.23). Hence the right hand side of (2.17)

vanishes, so that
∑d
j=1 γ

(d)
5 αd+1αj ⊗Djξ(x) = 0, which implies that

∑d
j=1 αj ⊗Djξ(x) = 0. By

Lemma 2.7, Djξ(x) = 0, j = 1, · · · , d, which implies that ξ is independent of x. 2

We have from Proposition 2.4 and Lemma 2.6 the following result:

Corollary 2.9 Assume (A.1)–(A.4). Suppose that ξ = ξ(x) is independent of x ∈ Rd and that
(2.20)–(2.22) hold. Then H has supersymmetry with respect to Γ.

2.3 Vanishing theorems of the kernel of H

In supersymmetric quantum mechanics with a supercharge Q, a non-zero vector in kerQ is called
a supersymmetric state. If the kernel of Q vanishes, i.e., kerQ = {0}, then the supersymmetry
is said to be spontaneously broken. It turns out that, in supersymmetric quantum mechanics,
it is importnat to investigate kerQ. Thus we are led to consider kerH in view of Proposition
2.4. This would be interesting even if H does not have supersymmetry (note that H does not
necessarily have supersymmetry).

To investigate kerH, we also need an additional condition:

(A.5) (i) For each f ∈ CNd ⊗K, the function: x 7→M(x)f is strongly differentiable on Rd
and, for all x ∈ Rd, M(x) commutes with αj (j = 1, · · · , d).

(ii) There exists a constant µ0 > 0 such that

M(x)2 − i
d∑
j=1

αjαd+1DjM(x) ≥ µ2
0, ∀x ∈ Rd (2.25)

as an operator inequality on CNd ⊗K (note that, by the principle of uniform boundedness,
the strong partial derivative DjM(x) is a bounded operator on CNd⊗K for each x ∈ Rd and

hence, under (A.2) and condition (A.5)-(i), the opeartor M(x)2 − i
∑d
j=1 αjαd+1DjM(x)

on CNd ⊗K is a bounded self-adjoint operator).
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For a linear operator L on a Hilbert space, we denote the resolvent set of L by ρ(L).

Lemma 2.10 Assume (A.2), (A.4) and (A.5). Then HM defined by (2.1) is self-adjoint with
D(HM ) = D(H0) and

‖H0ψ‖2 + µ2
0‖ψ‖2 ≤ ‖HMψ‖2, ψ ∈ D(H0). (2.26)

In particular, 0 ∈ ρ(HM ) with operator-norm bound

‖H−1
M ‖ ≤

1

µ0
(2.27)

and H0H
−1
M is bounded with

‖H0H
−1
M ‖ ≤ 1. (2.28)

Moreover, MH−1
M is bounded with

‖MH−1
M ‖ ≤ a+

b

µ0
. (2.29)

Proof.
The self-adjointness of HM follows from that of H with Φ = 0. For all ψ ∈ D0, using the
anticommutativity of αj with αd+1 and the commutativity of M(x) with αd+1 and αj (j =
1, · · · , d), we have

‖HMψ‖2 = ‖H0ψ‖2 + ‖Mψ‖2 +

d∑
j=1

〈ψ, (−iDjM)αjαd+1ψ〉

≥ ‖H0ψ|2 +

∫
Rd

〈
ψ(x),

M(x)2 − i
d∑
j=1

αjαd+1DjM(x)

ψ(x)

〉
dx

≥ ‖H0ψ‖2 + µ2
0‖ψ‖2.

Hence (2.26) holds for all ψ ∈ D0. Since D0 is a core of HM , this inequality extends to all
ψ ∈ D(H0). In particular, we have

µ0‖ψ‖ ≤ ‖HMψ‖, ψ ∈ D(H0). (2.30)

This implies that the self-adjoint operator HM is bijective with (2.27).
Inequality (2.26) implies also that, for all ψ ∈ D(H0), ‖H0ψ‖ ≤ ‖HMψ‖. Hence H0H

−1
M is

bounded with (2.28).
By (A.4) and ‖(−∆)1/2ψ‖ = ‖H0ψ‖ for all ψ ∈ D((−∆)1/2) = D(H0), we have ‖Mψ‖ ≤

a‖H0ψ‖+ b‖ψ‖. Hence, for all φ ∈ H,

‖MH−1
M φ‖ ≤ a‖H0H

−1
M φ‖+ b‖H−1

M φ‖ ≤ (a‖H0H
−1
M ‖+ b‖H−1

M ‖)‖φ‖

≤
(
a+

b

µ0

)
‖φ‖.

Thus (2.29) holds. 2

Lemma 2.11 Let A be a self-adjoint operator on a complex Hilbert space X . Then

‖eiA − 1‖ = 2

∥∥∥∥sin
A

2

∥∥∥∥ . (2.31)
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Proof.
By the functional calculus, one has eiA−1 = 2ieiA/2 sin(A/2). Hence ‖eiA−1‖ = 2‖eiA/2 sin(A/2)‖.
Since eiA/2 is unitary, one has ‖eiA/2 sin(A/2)‖ = ‖ sin(A/2)‖. Thus (2.31) holds. 2

Theorem 2.12 Assume (A.1)–(A.5) and

ess.supx∈Rd

∥∥∥∥sin
Φ(x)

2

∥∥∥∥ < 1

2(a+ bµ−1
0 )

. (2.32)

Then kerH = {0} and 0 ∈ ρ(H).
Moreover, the constant

γ(H) := inf
ψ∈D(H),‖ψ‖=1

‖Hψ‖ (2.33)

is strictly positive, γ(H) ∈ σ(H) or −γ(H) ∈ σ(H), and

σ(H) ⊂ (−∞,−γ(H)] ∪ [γ(H),∞). (2.34)

Proof.
The operator H is written as

H = HM + αd+1(eiΦ − 1)M = KHM

with
K := I + αd+1(eiΦ − 1)MH−1

M .

By applying Lemma 2.11 with A = Φ(x), we have

‖eiΦ(x) − 1‖ = 2

∥∥∥∥sin
Φ(x)

2

∥∥∥∥ . (2.35)

Therefore, for all ψ ∈ H,

‖αd+1(eiΦ − 1)MH−1
M ψ‖ ≤ 2 ess.supx∈Rd‖ sin(Φ(x)/2)‖‖MH−1

M ‖‖ψ‖.

By this estimate and (2.29), we obtain

‖αd+1(eiΦ − 1)MH−1
M ‖ ≤ 2(ess.supx∈Rd‖ sin(Φ(x)/2)‖)(a+ bµ−1

0 ).

Hence, by (2.32), we obtain ‖αd+1(eiΦ − 1)MH−1
M ‖ < 1. This implies that K is bijective

with bounded inverse K−1. Thus H is bijective with H−1 = H−1
M K−1 being bounded. Hence

kerH = {0} and 0 ∈ ρ(H).
We set bH := ‖H−1‖. If |λ| < 1/bH , then λ is in ρ(H). Therefore

σ(H) ⊂ (−∞,−b−1
H ] ∪ [b−1

H ,∞).

It is obvious that, for all ψ ∈ D(H) with ‖ψ‖ = 1, 1 ≤ bH‖Hψ‖. This implies that bHγ(H) ≥ 1.
On the other hand, we have from (2.33) ‖ψ‖ ≥ γ(H)‖H−1ψ‖,∀ψ ∈ H. Hence bHγ(H) ≤ 1.
Therefore b−1

H = γ(H). Thus (2.34) holds and γ(H) > 0. Since bH ∈ σ(H−1) or −bH ∈ σ(H−1),
it follows that γ(H) = b−1

H ∈ σ(H) or −γ(H) ∈ σ(H). 2

Remark 2.13 Under the same assumption as in Theorem 2.12, H is Fredholm (the proof is
easy).

14



We next consider a perturbation of Φ(·). Let η(·) ∈ Fs.a. such that, for a.e. x ∈ Rd, η(x) is
bounded and strongly commutes with Φ(x) and M(x). Then, for a.e.x ∈ Rd,

Φη(x) := Φ(x) + η(x) (2.36)

is self-adjoint on CNd ⊗K and

Φη :=

∫ ⊕
Rd

Φη(x)dx (2.37)

is a self-adjoint operator on H.
The quantity

κ(H) := sup
ψ∈D(H),‖ψ‖=1

‖Mψ‖
‖Hψ‖

, (2.38)

may be infinite. But we have:

Lemma 2.14 Under the assumption of Theorem 2.12, 0 < κ(H) <∞.

Proof.
Since H is closed with D(H) = D(H0) ∩ D(V )(= D(H0)) and ‖V ψ‖ = ‖Mψ‖, ψ ∈ D(H), it
follows from the closed graph theorem that there exists a constant c > 0 such that

‖Mψ‖ ≤ c(‖Hψ‖+ ‖ψ‖), ψ ∈ D(H).

Let ψ ∈ D(H) with ‖ψ‖ = 1. Then, by Theorem 2.12, we have ‖Hψ‖ ≥ γ(H) > 0. Hence

‖Mψ‖
‖Hψ‖

≤ c+
c

γ(H)
.

Thereore κ(H) ≤ c + c/γ(H) < ∞. If κ(H) = 0, then ‖Mψ‖ = 0 for all ψ ∈ D(M) = D(H0).
Hence M = 0. But this contradicts condition (A.5). 2

Theorem 2.15 Assume (A.1)–(A.5) and (2.32). Suppose that

ess.supx∈Rd

∥∥∥∥sin
η(x)

2

∥∥∥∥ < 1

2κ(H)
(2.39)

Let
Hη := H0 + αd+1e

iΦηM. (2.40)

Then kerHη = {0} and 0 ∈ ρ(Hη). Moreover, the last statement on γ(H) and σ(H) in Theorem
2.12 holds with H replaced by Hη.

Proof.
We write

Hη = H +W, W := αd+1(eiΦη − eiΦ)M.

By the strong commutativity of Φ(x) and η(x), we have for a.e.x ∈ Rd

eiΦη(x) − eiΦ(x) = eiΦ(x)(eiη(x) − 1) = 2ieiΦ(x)eiη(x)/2 sin(η(x)/2).

Hence, for all ψ ∈ D(H0)

‖Wψ‖ ≤ 2ess.supx∈Rd

∥∥∥∥sin
η(x)

2

∥∥∥∥ ‖Mψ‖.
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We have ‖Mψ‖ ≤ κ(H)‖Hψ‖. Hence

‖Wψ‖ ≤ Cη‖Hψ‖

with

Cη := 2κ(H)ess.supx∈Rd

∥∥∥∥sin
η(x)

2

∥∥∥∥ .
Hence W is H-bounded. By Remark 2.13, H is Fredholm. Condition (2.39) is equivalent to
Cη < 1. Hence, by a stability theorem (e.g., [9, Chapter IV,Theorem 5.22]), Hη is Fredholm
and dim kerHη ≤ dim kerH = 0. Therefore kerHη = {0}. It follows from this fact and the
self-adjointness of Hη that Ran(Hη) = H. Hence 0 ∈ ρ(Hη). Then the last statement of the
present theorem can be proved in the same way as in the proof of the corresponding part in
Theorem 2.12. 2

2.4 Unitary equivalence to a gauge theoretic Dirac opera-
tor and a vanishing theorem for kerH

In the papers [2, 4], it was shown that, under a suitable condition, the Hamiltonian of the CQS
(GCQS) model is unitarily transformed to a Dirac operator which is simpler in a sense. In this
section, we show that those structures are unified into a simple general structure.

We introduce a class of Φ(·):

F := {Φ(·) ∈ Fs.a. | e±iΦ(·)/2 is strongly differentiable and

supx∈Rd ‖Ej(x)‖ <∞, j = 1, · · · , d}, (2.41)

where
Ej(x) := Dje

−iΦ(x)/2 (2.42)

denotes the strong partial derivative of e−iΦ(x)/2 in xj . For Φ(·) ∈ F , one can define a bounded
linear operator

Aj := i

∫ ⊕
Rd
eiΦ(x)/2Ej(x)dx (2.43)

on H.

Remark 2.16 If Φ(·) ∈ F sucht that Φ(x) and Φ(x′) commute for a.e.x, x′ ∈ Rd, then Ej(x) =
−ie−iΦ(x)/2DjΦ(x)/2 and hence

Aj =
1

2

∫ ⊕
Rd
DjΦ(x)dx.

Lemma 2.17 For each j = 1, · · · , d, Aj is a bounded self-adjoint operator on H.

Proof.
Since ess.supx∈Rd‖eiΦ(x)/2Ej(x)‖ = ess.supx∈Rd‖Ej(x)‖ <∞, Aj is bounded. We have

A∗j =
(−i)

2

∫ ⊕
Rd

(Dje
iΦ(x)/2)e−iΦ(x)/2dx.

Differentiating the identity eiΦ(x)/2e−iΦ(x)/2 = I in xj , we have

eiΦ(x)/2Ej(x) = −(Dje
Φ(x)/2)e−iΦ(x)/2. (2.44)
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Hence A∗j = Aj . 2

For Φ(·) ∈ F , we define an operator:

H ′ :=

d∑
j=1

αj(−iDj −Aj) + αd+1M = HM −
d∑
j=1

αjAj . (2.45)

Lemma 2.18 Assume (A.4). Let Φ(·) ∈ F . Suppose that

αjΦ ⊂ Φαj , j = 1, · · · , d. (2.46)

Then H ′ is self-adjoint and every core of H0 is a core of H ′.

Proof.
Under condition (A.4), HM is self-adjoint. By (2.46), we have αjAj = Ajαj (j = 1, · · · , d).

Hence, by Lemma 2.17, −
∑d
j=1 αjAj is a bounded self-adjoint operator. Hence the Kato-Rellich

theorem yields the desired result. 2

We note that, if one regards A := (A1, · · · , Ad) as a (non-commutative) gauge potential,
then H ′ is a gauge theoretic Dirac operator with gauge potential A.

Let
U := eiΦ/2, (2.47)

which is unitary. The following theorem shows that, under a suitable condition, H is unitarily
equivalent to a gauge theoretic Dirac operator H ′:

Theorem 2.19 Assume (A.1)–(A.4) and (2.46). Let Φ(·) ∈ F . Then

UHU−1 = H ′. (2.48)

Proof.
We have

UHU−1 = −i
d∑
j=1

(UαjU
−1)UDjU

−1 + Uαd+1e
iΦU−1(UMU−1).

By (2.46) and Lemma 1.5, UαjU
−1 = αj . By (A.3) and Lemma 1.5, UMU−1 = M . By (A.1)

and Lemma 1.5-(iv), Uαd+1e
iΦU−1 = αd+1e

−iΦ/2eiΦeiΦ/2 = αd+1. Moreover

UDjU
−1 = Dj − iAj .

Hence (2.48) holds. 2

The following theorem gives another sufficient condition for kerH to be trivial:

Theorem 2.20 Assume (A.1)–(A.4) and (2.46). Let Φ(·) ∈ F and

d∑
j=1

ess.supx∈Rd‖Ej(x)‖ < µ0. (2.49)

Then kerH = {0} and 0 ∈ ρ(H).
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Proof.
We write H ′ = HM +X with X := −

∑d
j=1 αjAj . Then

‖X‖ ≤
d∑
j=1

‖αjAj‖ ≤
d∑
j=1

ess.supx∈Rd‖Ej(x)‖.

By this estimate and (2.49), ‖XH−1
M ‖ < 1. Hence H ′ is bijective and 0 ∈ ρ(H ′). In particular,

kerH ′ = {0}. On the other hand, (2.48) implies that ρ(H ′) = ρ(H) and kerH = U−1 kerH ′.
Thus 0 ∈ ρ(H) and kerH = {0}. 2
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Chapter 3

Spectrum of d-dimensional Dirac
operator with variable mass

3.1 Essential spectrum of H

We recall that In this section, we consider the essential spectrum of H. For a self-adjoint operator
S on a Hilbert space, we denote by σess(S) the essential spectrum of S.

Lemma 3.1 Let dimK < ∞ and m > 0 be a constant. Let V (·) : Rd → B(CNd ⊗ K) be Borel
measurable satisfying the following conditions:

(i) The operator V :=
∫ ⊕
Rd V (x)dx is relatively bounded with respect to H0.

(ii)
lim
|x|→∞

‖V (x)‖ = 0.

(iii) The operator Hm + V on H is self-adjoint.

Then
σess(Hm + V ) = (−∞,−m] ∪ [m,∞). (3.1)

Proof.
For each R > 0, we denote by χR the characteristic function of the set {x ∈ Rd| |x| < R}. As
in the case of the 3-dimensional free Dirac operator (cf. [18, Lemma 4.6]), one can show that
|Hm|−kχR is compact for all k > 0 as an operator on L2(Rd;CNd). Since dimK <∞, it follows
that |Hm|−kχR is compact as an operator on H. Hence, for all z ∈ C \ R, (Hm − z)−1χR =
((Hm − z)−1|Hm|)|Hm|−1χR is compact. Since Hm + V is self-adjoint with D(Hm + V ) =
D(Hm) = D(H0) and hence closed, there exists a constant c > 0 such that ‖V ψ‖ ≤ c(‖(Hm +
V )ψ‖+ |ψ‖),∀ψ ∈ D(Hm). Hence V (Hm + V − z)−1 is bounded. Therefore we have

(Hm + V − z)−1 − (Hm − z)−1 = −(Hm − z)−1V (Hm + V − z)−1 = −WR −XR,

where WR := (Hm − z)−1χR[V (Hm + V − z)−1], XR = (Hm − z)−1(1− χR)V (Hm + V − z)−1.
By the fact mentioned above, WR is compact. We have

‖XR‖ ≤
1

|Im z|2
‖(1− χR)V ‖.

By condition (ii), for every ε > 0, there exists a constant R > 0 such that, for all a.e.x ∈ Rd
with |x| ≥ R, ‖V (x)‖ < ε, i.e., ess.sup|x|≥R‖V (x)‖ ≤ ε, which implies that ‖(1 − χR)V ‖ ≤ ε.
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Hence limR→∞ ‖XR‖ = 0. Therefore (Hm + V − z)−1 − (Hm − z)−1 is compact. Hence, by
Weyl’s essential spectrum theorem (e.g., [15, Theorem XIII.14]), σess(Hm + V ) = σess(Hm). On
the other hand, as in the case of the 3-dimensional free Dirac operator [18, Theorem 1.1], one
can show that σ(Hm) = (−∞,−m] ∪ [m,∞). Thus (3.1) holds. 2

Theorem 3.2 Let dimK < ∞. Assume (A.1)–(A.4). Suppose that there exists a constant
m ∈ R satisfying

lim
|x|→∞

‖M(x)−m‖ = 0 (3.2)

and

lim
|x|→∞

∥∥∥∥sin
Φ(x)

2

∥∥∥∥ = 0. (3.3)

Then
σess(H) = (−∞,−m] ∪ [m,∞). (3.4)

Proof.
We write

H = Hm + V1 + V2

with
V1 := αd+1(M −m), V2 := αd+1(eiΦ − 1)M.

It is obvious that V1 and V2 are relatively bounded with respect to H0 and

lim
|x|→∞

‖V1(x)‖ = lim
|x|→∞

‖M(x)−m‖ = 0.

As for V2, we have

‖V2(x)‖ ≤ ‖M(x)‖‖eiΦ(x) − 1‖ ≤ 2‖M(x)‖
∥∥∥∥sin

Φ(x)

2

∥∥∥∥ .
Hence, by (3.2) and (3.3), we have lim|x|→∞ ‖V2(X)‖ = 0. Therefore lim|x|→∞ ‖V1(x)+V2(x)‖ =
0. Thus we can apply Lemma 3.1 to obtain (3.4). 2

If Φ(·) is in the class F introduced in Section 2.4, then we can obtain a sufficient condition
for (3.4) hold:

Theorem 3.3 Let dimK <∞. Assume (A.1)–(A.4), (2.46) and (3.2). Let Φ(·) ∈ F . Suppose
that

lim
|x|→∞

‖Ej(x)‖ = 0. (3.5)

Then (3.4) holds.

Proof.
By (2.48), we have σess(H) = σess(H

′). Hence we need only to prove

σess(H
′) = (−∞,−m] ∪ [m,∞). (3.6)

We write

H ′ = Hm + αd+1(M −m)−
d∑
j=1

αjAj .

We have lim|x|→∞ ‖αd+1(M(x)−m)‖ = 0. Moreover, ‖αjAj(x)‖ ≤ ‖Ej(x)‖. Hence lim|x|→∞ ‖−∑d
j=1 αjAj(x)‖ = 0. Thus we can apply Lemma 3.1 to obtain (3.6). 2
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3.2 Bounds on the number of discrete eigenvalues

In this section, in view of Theorem 3.2, we consider the number of eigenvalues of H in the
interval (−m,m) and establish upper bounds on it. This aspect has been considered in the CQS
model [4] as well as the GCQS model [2]. In this paper, we take another method, which is an
extension of the method used in [5] where the number of eigenvalues of the three-dimensional
Dirac operator Hm + W with a scalar potential W : R3 → R in (−m,m) is considered. This
extension is not difficult. But, for the sake of completeness, we present some details of it. One
easily notes that the problem under consideration can be studied in a more general frame work
as in Lemma 3.1. Hence we first discuss the general case.

3.2.1 A general case

Let V be as in Lemma 3.1 and
H(V ) := Hm + V. (3.7)

Then, by (3.1), an eigenvalue of H(V ) in (−m,m) (if it exists) is an isolated eigenvalue of H(V )
with finite multiplicity. For each λ ∈ (0,m2), we denote by N(λ, V ) the number of eigenvalues
in the interval (−

√
m2 − λ,

√
m2 − λ).

We first note an elementary fact:

Theorem 3.4 Suppose that the assumption of Lemma 3.1 holds and that ‖V (x)‖ ≤ λ/4m for
a.e.x ∈ Rd. Then N(λ, V ) = 0.

Proof.
Suppose that N(λ, V ) ≥ 1. Then, it follows from the definition of N := N(λ, V ) that there
exists an N -dimensional subspace E of H such that

‖H(V )ψ‖ ≤
√
m2 − λ‖ψ‖,∀ψ ∈ E. (3.8)

Hence

‖Hmψ‖ ≤ ‖H(V )ψ‖+ ‖V ψ‖ ≤
(√

m2 − λ+
λ

4m

)
‖ψ‖ ≤

√
m2 − λ

2
‖ψ‖.

Hence ‖Hmψ‖2 ≤
(
m2 − λ

2

)
‖ψ‖2, which is equivalent to ‖(−∆ + λ

2 )1/2ψ‖2 ≤ 0. This implies
that ψ = 0. But this is a contradiction. 2

In view of Theorem 3.4, we define, for each λ > 0, Vλ : Rd → B(CNd ⊗K) by

Vλ(x) :=

{
V (x) if ‖V (x)‖ > λ

4m
0 otherwise

.

For each λ > 0, the operator

Rλ :=

(
−∆ +

λ

2

)−1/2

is a bounded self-adjoint operator. Since V is H0-bounded, where H0 is defined by (1.19), and
(H0 + i)Rλ is bounded, it follows that V Rλ and VλRλ are bounded operators on H. Also H0Rλ
is bounded with ‖H0Rλ‖ ≤ 1. Hence the following operators Tλj (j = 1, 2, 3, 5) are in B(H):

Tλ1 := (H0Rλ)∗VλRλ, (3.9)

Tλ2 := (VλRλ)∗H0Rλ, (3.10)

Tλ3 := mαd+1RλVλRλ, (3.11)

Tλ4 := mRλVλRλαd+1, (3.12)

Tλ3 := (VλRλ)∗VλRλ. (3.13)
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We set
v(x) := ‖V (x)‖, vλ(x) := ‖Vλ(x)‖, a.ex ∈ Rd. (3.14)

For a compact operator A on a Hilbert space, we denote the nonincreasing sequence of the
singular values of A (repeated with multiplicity) by µn(A) (n ∈ N). For f ∈ Lp(Rd), we set
‖f‖Lp := (

∫
Rd |f(x)|pdx)1/p.

Lemma 3.5 Let d ≥ 3 and suppose that the assumption of Lemma 3.1 holds and v ∈ Ld(Rd) ∩
Ld/2(Rd). Then, for all j = 1, 2, 3, 4, 5, Tλj is compact. Moreover, there exists a constant C > 0
independent of V and λ > 0 such that, for all n ∈ N,

µn(Tλj) ≤ C‖vλ‖Ldn−1/d (j = 1, 2), (3.15)

µn(Tλj) ≤ C‖v1/2
λ ‖

2
Ldn

−2/d (j = 3, 4), (3.16)

µn(Tλ5) ≤ C‖vλ‖2Ldn
−2/d. (3.17)

Proof.
By the weak Hausdorff–Young inequality (e.g., [14, p.32]) and the condition d ≥ 3, one can
easily see that the Fourier transform gλ of the function:Rd 3 k 7→ (k2 + λ/2)−1/2 is in Lp

′

w (Rd)
(the weak Lp

′
space on Rd) with 1/p′ = 1 − 1/d and ‖gλ‖p′,w ≤ cd, where ‖ · ‖p′,w denotes the

“pseudo” norm of Lp
′

w (Rd) and cd is a constant independent of λ > 0. By Cwikel’s theorem
[6, §3] and the condition v ∈ Ld(Rd), which implies that vλ ∈ Ld(Rd), vλRλ is compact as an
operator on L2(Rd) and

µn(vλRλ) ≤ K1‖vλ‖Ldn−1/d, n ∈ N,

where K1 > 0 is a constant independent of V , λ > 0 and n ∈ N. Since dimK < ∞, it follows
that vλRλ is compact also as an operator on H. Let

Bλ(x) :=

{
V (x)
v(x) if v(x) > λ/4m

0 otherewise
.

Then Bλ is bounded with ‖Bλ(x)‖ ≤ 1. We have VλRλ = BλvλRλ. Hence VλRλ is compact.
This shows that all Tλj (j = 1, 2, 3, 4, 5) are compact.

In general, for all compact operators A and bounded operators B on a Hilbert space

µn(BA) ≤ ‖B‖µn(A).

(e.g., see [17, Theorem 1.6].) Hence

µn(VλRλ) ≤ ‖Bλ‖µn(vλRλ) ≤ K1‖vλ‖Ldn−1/d.

Therefore
µn(Tλ1) ≤ ‖H0Rλ‖K1‖v‖Ldn−1/d ≤ ‖K1‖vλ‖Ldn−1/d.

Similarly one can show that Tλ2 is compact and

µn(Tλ2) ≤ ‖K1‖vλ‖Ldn−1/d,

where we have use the fact that µn(A) = µn(A∗) for all compact operators on a Hilbert space
[17, (1.3)].

As for Tλ3, we write

Tλ3 = mαd+1Rλv
1/2
λ Bλv

1/2
λ Rλ.

By the condition v ∈ Ld/2(Rd), v1/2
λ ∈ Ld(Rd). Hence, Cwikel’s theorem again, v

1/2
λ Rλ is

compact and

µn(v
1/2
λ Rλ) ≤ K ′1‖v

1/2
λ ‖Ldn

−1/d,
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where K ′1 > 0 is a constant independent of V and λ > 0. We have

µn(Tλ3) ≤ mµn(Rλv
1/2
λ Bλv

1/2
λ Rλ).

In general, for all compact operators A and bounded operators D on a Hilbert space,

µ2n+1(A∗DA) ≤ ‖D‖µn+1(A)2, µ2n(A∗DA) ≤ ‖D‖µn(A)2,

where we have used the fact that, for all compact operators A and B on a Hilbert space,

µn+k+1(AB) ≤ µn+1(A)µk+1(B), n, k ≥ 0.

Hence

µ2n+1(Tλ3) ≤ mµn+1(vλRλ)2 ≤ m(K ′1)2‖v1/2
λ ‖

2
Ld(n+ 1)−2/d,

µ2n(Tλ3) ≤ mµn(vλRλ)2 ≤ m(K ′1)2‖v1/2
λ ‖

2
Ldn

−2/d.

which imply that

µn(Tλ3) ≤ K ′2‖v
1/2
λ ‖

2
Ldn

−2/d, n ∈ N

where K ′2 > 0 is a constant independent of V , λ and n. Similarly we have

µn(Tλ4) ≤ K ′2‖v
1/2
λ ‖

2
Ldn

−2/d, µn(Tλ5) ≤ K ′3‖vλ‖2Ldn
−2/d, n ∈ N,

where K ′3 > 0 is a constant independent of V , λ and n. Thus the desired results follw. 2

Theorem 3.6 Let d ≥ 3 and suppose that the assumption of Lemma 3.1 holds and ‖V (·)‖ ∈
Ld(Rd)∩Ld/2(Rd). Let λ ∈ (0,m2). Then, there exists a constant C0 > 0 independent of V and
λ such that

N(λ, V ) ≤ C0

∫
‖V (x)‖>λ/4m

(
‖V (x)‖d/2 + ‖V (x)‖d

)
dx. (3.18)

Proof.
We need only to consider the case where N := N(λ, V ) ≥ 1. Then there exists an N -dimensional
subspace E of H such that (3.8) holds for all ψ ∈ E. It is easy to see that ‖(Vλ − V )φ‖ ≤
(λ/4m)‖φ‖,∀φ ∈ H. Let ψ ∈ E. Then, as in the proof of Theorem 3.4, we have ‖(Hm+Vλ)ψ‖2 ≤(
m2 − λ

2

)
‖ψ‖2, which is equivalent to the following inequality:∥∥∥∥∥

(
−∆ +

λ

2

)1/2

ψ

∥∥∥∥∥
2

+ 〈H0ψ, Vλψ〉+ 〈Vλψ,H0ψ〉

+m 〈αd+1ψ, Vλψ〉+m 〈Vλψ, αd+1ψ〉+ ‖Vλψ‖2 ≤ 0. (3.19)

The subspace F := (−∆ + λ/2)1/2E is also N -dimensional. Inequality (3.19) implies that, for
all φ ∈ F ,

‖φ‖2 ≤ 〈φ, Tλφ〉 ,

where

Tλ := −
5∑
j=1

Tλj .

By Lemma 3.5, Tλ is a compact self-adjoint operator on H. Hence, by the Hilbert–Schmidt
theorem, there exists a complete orthonormal system {φn}∞n=1 of H and a real sequence {tn}∞n=1
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such that Tλφn = tnφn and limn→∞ tn = 0. Using this fact, one sees that the number of
eigenvalues tn of Tλ with tn ≥ 1 is more than or equal to dimF = N . Hence µN (Tλ) ≥ 1.
Let k be the largest natural number not exceeding (N + 4)/5. Then 5k − 4 ≤ N . Hence
1 ≤ µN (Tλ) ≤ µ5k−4(Tλ). On the other hand, by a general fact on singular values of the sum of
two compact operators (e.g., [17, Theorem 1.7]), we have

µ5k−4(Tλ) ≤
5∑
j=1

µk(Tλj).

Using this fact and Lemma 3.5, we obtain

1 ≤ 2C‖vλ‖Ldk−1/d + 2C‖v1/2
λ ‖

2
Ldk
−2/d + C‖vλ‖2Ldk

−2/d.

We have k ≥ N/5. Hence

1 ≤ C ′(‖vλ‖LdN−1/d + ‖v1/2
λ ‖

2
LdN

−2/d + ‖vλ‖2LdN
−2/d),

where C ′ > 0 is a constant independent of V , λ and N . This implies that N ≤ C0(‖v1/2
λ ‖dLd +

‖vλ‖dLd) with a constant C0 independent of V and λ. Thus (3.18) holds. 2

As in Corollaries 1.2 and 1.3 in [5], we have from Theorem 3.6 the following results:

Corollary 3.7 Under the same assumption as in Theorem 3.6, the number N(V ) of eigenvalues
of H(V ) in (−m,m) is finite and

N(V ) ≤ C0

∫
Rd

(‖V (x)‖d/2 + ‖V (x)‖d)dx. (3.20)

Corollary 3.8 Suppose that the assumption of Theorem 3.6 holds. Let λj (j = 1, . . . , N(V )) be
the eigenvalues of H(V ) in (−m,m), counted with multiplicity and γ > 0 be such that

fγ(V ) :=

∫
Rd
‖V (x)‖γ(‖V (x)‖d/2 + ‖V (x)‖d)dx <∞.

Then, there exists a constant Cγ > 0 such that

N(V )∑
j=1

(1− λ2
j )
γ ≤ Cγfγ(V ). (3.21)

3.2.2 Applications

Now we apply the results in the preceeding section to the Dirac operator H. For λ ∈ (0,m2),
we denote by N(λ) the number of eigenvalues of H in (−

√
m2 − λ,

√
m2 − λ).

Theorem 3.9 Let d ≥ 3 and λ ∈ (0,m2). Suppose that the assumption of Theorem 3.2 holds.
Let

FM,Φ(x) := ‖M(x)−m‖+ 2m

∥∥∥∥sin
Φ(x)

2

∥∥∥∥ , a.e.x ∈ Rd.

(i) If FM,Φ(x) ≤ λ/4m, a.e.x ∈ Rd, then N(λ) = 0.
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(ii) Suppose that FM,Φ ∈ Ld/2(Rd) ∩ Ld(Rd). Then there exists a positive constant C > 0
independent of M,Φ and λ such that

N(λ) ≤ C
∫
FM,Φ(x)>λ/4m

(
FM,Φ(x)d/2 + FM,Φ(x)d

)
dx <∞. (3.22)

Moreover, the number N0 of eigenvalues of H in (−m,m) obeys

N0 ≤ C
∫
Rd

(
FM,Φ(x)d/2 + FM,Φ(x)d

)
dx <∞. (3.23)

Proof.
(i) We can write H = H(V ) with V = αd+1(MeiΦ −m). Hence

‖V (x)‖ = ‖M(x)eiΦ(x) −m‖ ≤ ‖M(x)−m‖+m‖eiΦ(x) − 1‖ = FM,Φ(x). (3.24)

Hence, the present assumption implies that ‖V (x)‖ ≤ λ/4m a.e.x ∈ Rd. Hence, by Theorem 3.4,
N(λ) = 0.

(ii) By (3.24) and the present assumption, ‖V (·)‖ ∈ Ld(Rd) ∩ Ld/2(Rd). Thus we can apply
Theorem 3.6 to obtain (3.22). Inequality (3.23) follows from (3.22) or Corollary 3.7. 2

We have from Corollary 3.8 the following fact:

Corollary 3.10 Let d ≥ 3. Suppose that the assumption of Theorem 3.2 and FM,Φ ∈ Ld/2(Rd)∩
Ld(Rd). Let λj (j = 1, . . . , N0) be the eigenvalues of H in (−m,m), counted with multiplicity
and γ > 0 be such that

fγ(M,Φ) :=

∫
Rd
FM,Φ(x)γ(FM,Φ(x)d/2 + FM,Φ(x)d)dx <∞.

Then, there exists a constant Cγ > 0 such that

N0∑
j=1

(1− λ2
j )
γ ≤ Cγfγ(M,Φ). (3.25)

We can also use Theorems 2.19 and 3.3 to obtain another upper bound for N(λ). Let

GM,Φ(x) :=

∥∥∥∥∥∥M(x)−m−
d∑
j=1

αd+1αje
iΦ(x)/2Ej(x)

∥∥∥∥∥∥ , a.e.x ∈ Rd. (3.26)

Theorem 3.11 Let d ≥ 3 and λ ∈ (0,m2). Suppose that the assumption of Theorem 3.3 holds.
Then:

(i) If GM,φ(x) ≤ λ/4m for a.e.x ∈ Rd, then N(λ) = 0.

(ii) Suppose that GM,Φ ∈ Ld/2(Rd) ∩ Ld(Rd). Then (3.22) and (3.23) with FM,Φ replaced
by GM,Φ hold.

Proof.
By Theorem 2.19, N(λ) is equal to the number of eigenvalues of H ′ in (−

√
m2 − λ,

√
m2 − λ).

One can write H ′ = Hm + V with V := αd+1(M −m −
∑d
j=1 αd+1αjAj). We have ‖V (x)‖ =

GM,Φ(x). Thus, in the same way as in the proof of Theorem 3.6, we obtain the desired results. 2

Theorem 3.11 implies the following result as in Corollary 3.10:
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Corollary 3.12 Let d ≥ 3. Suppose that the assumption of Theorem 3.3 holds and GM,Φ ∈
Ld/2(Rd) ∩ Ld(Rd). Then (3.25) with FM,Φ replaced by GM,Φ holds for all λ > 0 such that∫
Rd GM,Φ(x)γ(GM,Φ(x)d/2 +GM,Φ(x)d)dx <∞.
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