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CHAPTER 1
Introduction

Design verification is one of the oldest important problems in computer-aided
design of digital systems (CAD). Its computational cost grows exponentially
against the design complexity, as long as we stay using the same verification
methods. It would be no exaggeration to say that the limit of verification
dominates the limit of design. The industrial world has always been asking
researchers to improve the verification technology.

Binary decision diagrams (BDDs) and zero-suppressed BDDs (ZDDs)
are important data structures for representing Boolean functions and families
of sets on computers [Bry86, Min93, Knu11]. They have originally become
popular in LSI CAD problems, such as logic synthesis and verification. Their
range of applications is still expanding beyond LSI since Boolean functions
and families of sets are fundamental elements for manipulating discrete struc-
tures.

This study is focused on property verification, which is a problem of
checking if a given property holds on a verification target. In the early 1990s
which we began this study, basic technology of BDDs became matured and its
application to real LSI verification was attracting a great concern. A BDD-
based model checking technique, called symbolic model checking [BCM+92,
TBK95, HTKB93, McM93], brought a breakthrough in property verification.
Many researchers were trying to put model checking tools fit for practical use.
On the other hand, it was expected (and is still correct now) that entire logic
of a real LSI chip cannot be verified only using model checking. Therefore,
our research interests were both in simulation-based validation and model
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1. INTRODUCTION

checking.

First of all, we tackled simulation-based validation problems [INH92,
INH93, IKNH94a, IKNH94b]. One of the urgent requests from LSI designers
was improvement of functional test quality, which had been supported only by
human efforts. We introduced a problem formulation as input pattern genera-
tion on a finite state machine (FSM). One key to it is formulation of mapping
from test cases, which have been vague human intent to check something,
to sets of states on the FSM. Another key is scalability of the algorithm to
real-world problems. We have developed a functional test generation tool for
real microprocessor designs.

Secondly, we proposed forward model checking, which is intended to
be useful in the field of industrial LSI verification [INH96, IN97, IN99]. In
those days, most properties for symbolic model checking were written in
computation tree logic (CTL); because it can be evaluated efficiently using
BDD-based symbolic techniques as well as it has good expressive power of
properties. Evaluation of a CTL operator implies backward state traversal;
however, it is often observed in some situation that backward symbolic state
traversal costs much more than forward one. We developed a method to
avoid this inefficiency by converting CTL operators in a property into our new
forward traversal operators. The most essential idea is an efficient algorithm to
check existence of a state transition loop without using backward state traversal.
It was accepted by model checking community as a unique technique and was
imported into VIS [BHSV+96], which was a state-of-the-art academic tool at
that time. The method covers the many CTL properties that are actually used
in the field of LSI verification. We also developed the forward model checking
method that use ω-regular expression to describe properties. It is a natural
representation for the property class covered by forward model checking, and
was actually preferred by many engineers rather than CTL. Our algorithm
is often much faster than conventional ones and is especially fast to find a
counterexample.

In 2000s, LSI verification tools based on model checking and other formal
methods became matured. People who adopted them began to notice that they
were very useful but were just tools; they do not work very well without a
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large amount of know-how, called verification methodology. Many corporate
researchers of LSI verification shifted their works from tools to methodologies.
It just overlapped with “winter of BDD” [Min13], when many researchers
moved from BDD-related works to other areas.

Now, the winter period have ended and BDD-related works are active
again especially in non-LSI applications such as data mining and geographic
information systems, because memory size of a computer has become large
enough to handle such real-life problems. We have developed a new ZDD
manipulation framework optimized for huge ZDDs on a modern computer.
There are many open source and in-house BDD/ZDD packages which have
been used in such traditional applications as CAD problems. They are general-
purpose packages for manipulating a collection of BDDs/ZDDs [BRB90,
MIY90], allowing us to create primitive BDDs/ZDDs (variables and constants)
and to construct complex BDDs/ZDDs by applying operations repeatedly
to existing ones. They usually traverse given BDDs/ZDDs in a depth-first
manner and construct the resulting BDD/ZDD in a bottom-up way. Our
framework constructs a ZDD from top to bottom in a breadth-first manner,
which have been preferred in the situations where memory access locality is
a serious matter [OYY93, AC94, SRBSV96, CYB97]. Unlike the traditional
BDD/ZDD libraries, it constructs a complex ZDD directly from the root to
the terminal nodes based on frontier-based methods [Min13]. We have also
demonstrated the power of frontier-based methods by computing the number
of self-avoiding walks connecting opposite corners of a n×n square lattice up
to n = 26 [IKM12, INK+13a, INK+13b], which is the current world record
registered in the On-Line Encyclopedia of Integer Sequences [OEIa].

The rest of the thesis is organized as follows. Chapter 2 describes the
backgrounds that underlie this work. Chapter 3 deals with simulation-based
validation problems of functional LSI designs, in which processor pipelining
is taken up as a typical problem. Chapter 4 shows technical details of forward
CTL model checking and ω-regular language emptiness check on explicit
property graph. In the first half of Chapter 5, the new ZDD manipulation
framework for applications beyond LSI designs is developed. In the sec-
ond half, the case study for self-avoiding walk problems demonstrates the
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1. INTRODUCTION

possibilities of this work. Finally, the thesis is concluded in Chapter 6.
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CHAPTER 2
Preliminaries

2.1 Binary decision diagrams

2.1.1 BDDs and ZDDs

Binary decision diagrams (BDDs) [Ake78, Bry86] and zero-suppressed BDDs
(ZDDs) [Min93] are labeled directed acyclic graphs derived by reducing binary
decision tree graphs, which represent decision making processes through
binary input variables. As illustrated in Figure 2.1, there are two kinds of
terminal nodes, 0-terminal and 1-terminal, which represent the output binary
value. Every nonterminal node is labeled by an input variable and has two
outgoing edges, namely 0-edge and 1-edge, which are drawn as dotted and
solid arrows respectively. The 0-edge (1-edge) points to the node called 0-child

(a) Binary decision tree (b) BDD (c) ZDD

Figure 2.1: Diagrams for f (x1,x2,x3) = x1x2x3 + x1x3
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2. PRELIMINARIES

(a) Sharing (b) Deletion

Figure 2.2: BDD reduction rules

(a) Sharing (b) Deletion

Figure 2.3: ZDD reduction rules

(1-child), which represent a state after the decision that 0 (1) is assigned to the
variable. When the root node of a BDD/ZDD for Boolean function f is labeled
by variable x, its 0-child and 1-child represent fx=0 and fx=1 respectively; it
corresponds to the Shannon expansion: f = x fx=0 + x fx=1. We also write it
as f = (x ? fx=0 : fx=1), implying structure of the diagram.

We only deal with ordered BDDs/ZDDs in this thesis, where input vari-
ables are indexed as x1, . . . ,xn according to their total order. The index of the
input variable of a nonterminal node is just called the index of the node, and
the index of a terminal node is assumed to be n+1 for convenience. The index
of any node is properly smaller than that of its children.

Figure 2.2 and Figure 2.3 show the reduction rules of BDDs and ZDDs
respectively. Equivalent nodes, which have the same indices and the same
0- and 1-child nodes, can be shared both in BDDs and in ZDDs (Figure 2.2a

6



2.1. Binary decision diagrams

and Figure 2.3a). A node with edges to the same destination can be deleted
in BDDs (Figure 2.2b). In contrast, ZDDs have a different rule, called zero-
suppress rule, by which a node with a 1-edge directly pointing to the 0-terminal
is deleted (Figure 2.3b). If x has a smaller index than the top variable of f ,
fx=0 = fx=1 = f in BDDs while fx=0 = f and fx=1 = 0 in ZDDs. An entire
BDD/ZDD can be reduced completely by applying the reduction rules from
the bottom (index n) to the top (index 1) as follows:

REDUCE( f )
1: for i = n to 1 do
2: for all node p at index i in the diagram rooted by f do
3: for all b ∈ {0,1} do
4: apply reduction rules to the b-child of p;
5: end for
6: end for
7: end for
8: return reduced node for f .

BDDs and ZDDs are efficient data structures for representing not only
Boolean functions but also families of sets. A set of n items can be repre-
sented by input variables x1, . . . ,xn, where xi ∈ {0,1} indicates if the i-th item
is contained in the set. The diagrams in Figure 2.1 can be considered as
{{x1,x2},{x2,x3},{x3}} in that sense. Paths from the root to the 1-terminal
in BDDs and ZDDs, called 1-paths, correspond to item sets included in the
family. ZDDs have the interesting property that every 1-path represents an
individual set, while a 1-path may represent multiple sets in BDDs, because
of the difference of their node deletion rules. ZDDs are especially suitable
for representing families of sparse item sets. If the average appearance rate
of each item is 1%, ZDDs are possibly up to 100 times more compact than
BDDs. Such situations often appear in real-life problems.

2.1.2 Operations on BDDs/ZDDs

We can build up complex BDDs/ZDDs for various functions and sets by
combinations of their rich algebraic operations such as Boolean operations

7



2. PRELIMINARIES

and family algebra [Knu11]. They use divide-and-conquer scheme based on
the Shannon expansion, which is accelerated by the memo cache that avoids
recomputation of the same subproblems. The following algorithm outlines a
typical depth-first implementation of binary operations:

DF BINARYOPERATION(�, f ,g)
1: if f �g has a terminal value, return it;
2: if f �g = h is in the memo cache, return h;
3: x← the top variable of f and g;
4: h0← DF BINARYOPERATION(op, f |x=0,g|x=0);
5: h1← DF BINARYOPERATION(op, f |x=1,g|x=1);
6: h← (x ? h0 : h1);
7: apply reduction rules to h;
8: put f �g = h into the memo cache;
9: return h.

This algorithm constructs a reduced diagram recursively from the bottom to
the top.

Binary operations on BDDs/ZDDs can be implemented also in a breadth-
first manner. We create a new node immediately after dividing the problem;
the new node is incomplete as its descendants are not determined yet. The
algorithm is outlined as follows:

BF BINARYOPERATION(�, f ,g)
1: let i0 be the top index of f and g;
2: create a new node h and label it as 〈i0, f ,g〉 ;
3: for i = i0 to n do
4: for all node r labeled 〈i, p,q〉 do
5: for all b ∈ {0,1} do
6: p′← p|xi=b; q′← q|xi=b;
7: if p′ �q′ has a terminal value then
8: set it to the b-child of r;
9: else

10: i′← the top index of p′ and q′;
11: find or create node r′ labeled 〈i′, p′,q′〉;
12: set r′ to the b-child of r;

8



2.1. Binary decision diagrams

13: end if
14: end for
15: end for
16: end for
17: return REDUCE(h).

This algorithm constructs a diagram from the top to the bottom. Incomplete
nodes are labeled by its index and two operands of the subproblems, in order
to share nodes for the same subproblems. The operand information of each
node can be removed when its child nodes are fixed. Since the top-down phase
does not fully reduce the diagram, the reduction algorithm is applied as a
post-process.

2.1.3 Top-Down Construction

Single-pass BDD/ZDD construction from the root to the terminals, which we
call top-down construction, is another way to build a complex BDD/ZDD
structure. It is known that some important graph problems can be solved
efficiently using such methods [SIT95, SI97, Knu11, Min13].

Node sharing must be performed on the fly during top-down construction
in order to avoid explosion of the diagram. Multiple nonterminal nodes with
the same index can be shared if and only if they take the same output values for
all combinations of the rest of input values. Since this condition is not always
easy to be determined on the fly, it is checked in a false-negative way by
comparing the labels generated at some reasonable cost. They are so designed
that multiple nonterminal nodes are equivalent if their labels are equivalent;
the converse is not necessarily true because unshared nodes can be left for the
final reduction phase.

Knuth introduced an interesting algorithm in his book, named SIMPATH,
which constructs a ZDD representing a set of paths (ways to go from a point
to another point without visiting any point twice) in an undirected graph
[Knu11, Knu]. For example, a 3×3 grid graph (G3,3) in Figure 2.4a has 12
paths between v1 and v9 as shown in Figure 2.4b. The input to the algorithm
is an undirected graph G = (V,E) where V = {v1, . . . ,vm} is a set of vertices

9



2. PRELIMINARIES

(a) G3,3

(b) Paths between v1 and v9

Figure 2.4: Path enumeration on G3,3

and E = {e1, . . . ,en} is a set of edges. The output is a ZDD representing all
the set of edges that form paths between v1 and vm.

In the SIMPATH algorithm, edge selections from E = {e1, . . . ,en} are
decided one by one in the order of indices. At each step of the algorithm, a
set of selected edges represents path fragments and each vertex has one of the
three states:

• not included in any path fragment,

• an endpoint of a path fragment,

• an intermediate point of a path fragment.

The label for a nonterminal node is defined to be 〈i,mate〉 where 1 ≤ i ≤ n
and mate is a partial map from V to V ∪{0}:

mate[v] =


v if vertex v is untouched so far,

u if vertices u and v are endpoints,

0 if vertex v is an intermediate point.

For simplicity of the algorithm, mate is maintained as if there were a built-in
path between v1 and vm, and we were enumerating all the virtual cycles that
include it. The current set of selected edges is accepted when:

10



2.1. Binary decision diagrams

Figure 2.5: ZDD structure constructed by SIMPATH
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• a virtual cycle is formed and no other path fragment remains,

and it is rejected when:

• a virtual cycle is formed and some other path fragment remains, or

• an edge to an intermediate point is added, or

• the final chance to attach an edge to some endpoint is not taken.

In order to check the above conditions, we need mate entries only for frontier,
which is a set of vertices contiguous with both decided and undecided edges.
When vertex v is entering the frontier, a table entry mate[v] = v is created
except for mate[v1] = vm and mate[vm] = v1. The entry for mate[v] is deleted
after v has left the frontier.

Figure 2.5 illustrates the result of SIMPATH for G3,3, where the 0-terminal
node is omitted and mate is drawn graphically on each node. Circles and lines
represent vertices in the frontier and path fragments among them respectively.
An isolated open circle represents a vertex not included in any path fragments
(mate[v] = v). An isolated filled circle represents an intermediate point of
some path fragment (mate[v] = 0). Note that the ZDD node deletion rule is
only used at edges to the 1-terminal node.

2.2 Symbolic model checking

2.2.1 Finite state machines

Finite state machines (FSMs) are widely used for modeling finite state systems.
An FSM is a 6-tuple, (S, I,O,δ ,λ ,s0), where S is the set of states, I is the set
of input values, O is the set of output values, δ : S× I→ S is the next state
function, λ : S× I→O is the output function, and s0 ∈ S is the initial state. In
what follows, let B = {0,1}. We assume that functions δ and λ are completely
specified and the FSM is deterministic. Note that a non-deterministic FSM is
easily converted to an equivalent deterministic FSM by adding unconstrained
pseudo inputs.

12



2.2. Symbolic model checking

The transition relation of an FSM is the function T : S× I × S → B;
T (x, i,y) = 1 if and only if y = δ (x, i). In the basic symbolic technique, a
single BDD is built for representing the transition relation T . For a large FSM,
however, we often fail to construct the BDD for T because of a BDD size
explosion. Partitioned transition relations [BCL91] are popular representation
to reduce the BDD size. When the state is expressed by a vector of n Boolean
state variables (latches) and the transition function of the k-th latch is given by
δk(~x,~i), we can make a conjunctive partitioned transition relation as follows:

T (~x,~i,~y) = T1(~x,~i,y1)∧ . . .∧Tn(~x,~i,yn) ,

Tk(~x,~i,yk) =
(

yk ≡ δk(~x,~i)
)
.

Latch transition relations T1, . . . ,Tn are represented by n BDDs, which are
much smaller than the BDD for T in general.

2.2.2 Images and pre-images

Given an FSM (S, I,O,δ ,λ ,s0) and a set of states A ⊆ S, the image of A
is defined to be the set of states {y | ∃x ∈ A, ∃i ∈ I, y = δ (x, i)}, and the
pre-image of A is defined by the set of states {x | ∃y ∈ A, ∃i ∈ I, y = δ (x, i)}.

A set of states A ⊆ S can be represented by a characteristic function
χA : S→ B; χA(x) = 1 if and only if x ∈ A. Let L ( f ) express the set of
states represented by function f . The image and the pre-image of L ( f ) are
calculated by following symbolic operations:

Img( f )(~y)

= ∃~x.∃~i.
[
T (~x,~i,~y)∧ f (~x)

]
= ∃~x.∃~i.

[
T1(~x,~i,y1)∧ . . .∧Tn(~x,~i,yn)∧ f (~x)

]
,

Pre( f )(~x)

= ∃~i.∃~y.
[
T (~x,~i,~y)∧ f (~y)

]
= ∃~i.∃~y.

[
T1(~x,~i,y1)∧ . . .∧Tn(~x,~i,yn)∧ f (~y)

]
.

The image and the pre-image of L ( f ) are L (Img( f )) and L (Pre( f )) re-
spectively. Operations Img( f ) and Pre( f ) are similar if T is given by a single

13
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BDD. When we use conjunctive partitioned transition relations, early ex-
istential quantification can be done while calculating the conjunction of all
BDDs [TSL+90, BCL91]. Efficiency of the calculation strongly depends on
the order in which the BDDs are processed. Strategies to find effective orders
for Img( f ) and Pre( f ) seem to be different, because those expressions have
different forms.

2.2.3 State enumeration

State enumeration is the process to compute the set of reachable states from the
initial state of an FSM. It is a core procedure for various verification problems:
comparing two FSMs, checking reachability to some ‘bad’ state, and reducing
state traversal space in model checking. Given an FSM (S, I,O,δ ,λ ,s0), a
state enumeration procedure is the least fix-point computation:

Reached = lfpZ [s0∨ Img(Z)] .

2.2.4 CTL model checking

Model checking is the process of determining whether a model (FSM) satisfies
its requirements (properties). A temporal logic CTL [CES86] is commonly
used to express properties about an FSM. CTL formulas are composed of
atomic propositions with usual logical operators and following temporal oper-
ators:

• EX f (AX f ) which means that f holds at some (every) successor state
of the current state.

• EF f (AF f ) which means that for some (every) state transition path,
there exists a state on the path at which f holds.

• EG f (AG f ) which means that for some (every) state transition path,
f keeps holding forever on the path.

• E [gU f ] (A [gU f ]) which means that for some (every) state transition
path, there exists a state on the path at which f holds, and g holds at all
the preceding states.

14



2.2. Symbolic model checking

A CTL property is expressed by a notation like “M,s |= f .” It means that
the CTL formula f is true in state s of model M. It is also written simply as
“s |= f ” where the model is not ambiguous.

CTL formula f can be interpreted as a set of states L ( f ) = {s | s |= f }.
EX f is then the same operation as computing the pre-image of L ( f ):

EX f = Pre( f ) .

E [gU f ] and EG f can be characterized by the least and greatest fix-point
computation as follows:

E [gU f ] = lfpZ [ f ∨ (g∧EXZ)] ,

EG f = gfpZ [ f ∧EXZ] .

The remaining operators are given by following rules:

EF f = E [trueU f ] ,

AX f = ¬EX¬ f ,

AF f = ¬EG¬ f ,

AG f = ¬EF¬ f ,

A [gU f ] = ¬(E [¬ f U¬g∧¬ f ]∨EG¬ f ) .

A fairness constraint is a condition representing fair state transition paths
in which we are interested. CTL model checking under fairness constraints
is performed by restricting state transition paths along which each fairness
constraint holds infinitely often. Fairness constraints are given by a set of CTL
formulas C. CTL formula EG f under fairness constraints in C is computed
as follows [McM93]:

ECG f = gfpZ

[
f ∧EX

∧
c∈C

E [Z UZ∧ c]

]
.

The set of states that are the start of some fair path under fairness constraints in
C is given by L (ECG true). Once ECG true is evaluated, EX f and E [gU f ]
under fairness constraints in C can be computed simply as follows:

ECX f = EX( f ∧ECG true) ,

EC [gU f ] = E [gU( f ∧ECG true)] .
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2.2.5 ∗-regular and ω-regular expressions

In what follows, Σ stands for an alphabet, which is a finite set, and ω stands
for an infinite number (k < ω for all finite number k). Σ∗ is the set of all finite
sequences over Σ and Σω is the set of all infinite sequences over Σ. We write /0
for an empty set and ε for a set with the unique element that is a null sequence.

Let X ,Y ∈ Σ∗ and U,V ⊆ Σ∗. XY is the concatenation of X and Y , i.e.,
XY = x0 · · ·xm−1y0 · · ·yn−1 where X = x0 · · ·xm−1 (xk ∈ Σ) and Y = y0 · · ·yn−1

(yk ∈ Σ). The concatenation of U and V is defined as follows:

UV = {XY | X ∈U, Y ∈V}.

The star operation on V ⊆ Σ∗, denoted by V ∗, is a set of all sequences X ∈ Σ∗

which are composed of a finite concatenation of arbitrary sequences in V :

V 0 = ε,

V k = V k−1V (k ≥ 1),

V ∗ =
⋃

0≤k<ω

V k.

V ω is defined to be a set of all sequences X ∈ Σω which are composed of
an infinite concatenation of non-null sequences in V . Note that a null sequence
in V has no effect on V ω , e.g., (V ∪ε)ω = (V−ε)ω . In this thesis, we consider
only about the cases when V does not include a null sequence (V ∩ ε = /0),
without loss of the expressive power.

The syntax of ∗-regular expressions and ω-regular expressions are defined
inductively as follows:

• ε is a ∗-regular expression.

• If P⊆ Σ, then P is a ∗-regular expression.

• If U and V are ∗-regular expressions, then so are U ∪V , UV , and V ∗.

• If U and V are ∗-regular expressions and V ∩ ε = /0, then UV ω is an
ω-regular expression.

• If U and V are ω-regular expressions, then so is U ∪V .
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2.3. Pipelined processors

The sets of sequences that can be obtained from ∗-regular expressions and
ω-regular expressions are called ∗-regular sets and ω-regular sets respectively.

2.2.6 ω-automata

An ω-automaton is a 5-tuple (Σ,Q,q0,T,C), where Σ is the alphabet, Q is the
set of states, q0 ∈Q is the initial state, T ⊆Q×Σ×Q is the transition relation,
and C is the acceptance condition of infinite sequences. The set of infinite
sequences accepted by ω-automaton A is called the language of A, which is
denoted by L (A). The language of an ω-automaton is an ω-regular set.

2.2.7 Language containment check and language
emptiness check

Suppose that M is a design model represented as an ω-automaton and A is a
property also represented as an ω-automaton, where M and A have the same
alphabet. Language containment is a problem of checking L (M)⊆L (A),
which means that every sequence on M satisfies an acceptance condition of A.
A conventional way of solving this problem is to check L

(
M×A

)
= /0. A is

the complement automaton of A, which is the automaton that accepts every
infinite sequence that is not accepted by A. M×A is the product machine of M
and A. After this conversion, the problem is often called language emptiness
check. It can be also written as L (M)∩L

(
A
)
= /0.

2.3 Pipelined processors

Pipelined processors have some steps which can usually be executed in one
clock cycle. Each of these steps is called a pipe stage. During each clock cycle,
the hardware executes some parts of different instructions simultaneously. The
DLX processor [HP90] has five stages in its pipeline—IF, ID, EX, MEM, and
WB—and can potentially execute five overlapped instructions in each clock
cycle (Figure 2.6). In the following sections, DLX is used as an example
pipelining.
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Instruction fetch
Instruction decode and register fetch
Execution and effective address calculation
Memory access
Write back

IF:
ID:
EX:
MEM:
WB:

Clock cycle

1 2 3 4 5 6 7 8 9

ID EX MEM WBInstruction i 

Instruction i +1

Instruction i +2

Instruction i +3

Instruction i +4

IF

ID EX MEM WBIF

ID EX MEM WBIF

ID EX MEM WBIF

ID EX MEM WBIF

Figure 2.6: Basic DLX pipeline

Load instruction ID EX MEM WB

Instruction i +1

Instruction i +2

Instruction i +3

IF

ID EX MEM WBIF

ID EX MEM WBIF

ID EX MEM WBIF

Clock cycle

1 2 3 4 5 6 7 8 9

IF

Figure 2.7: Structural hazard

Situations that prevent the next instruction from being executed during its
designated clock cycle are called hazards. If a hazard occurs, one or more pipe
stages stop execution for some clock cycles. These are called stalls. Hazards
can be classified into three types: structural hazards, data hazards, and control
hazards [HP90].

2.3.1 Structural Hazards

Resource conflicts prevent two instructions at different stages from being
executed simultaneously. Figure 2.7 shows an example of a structural hazard
on a pipelined processor with only one memory port. An instruction fetch
cannot be initiated at the IF stage in the same cycle as a data fetch at the
MEM stage. In this case, no instruction is initiated when a load instruction is
executed in the MEM stage. It is assumed that instructions i+1, i+2, and
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i+3 do not have access to memory data and do not cause any other hazards.

2.3.2 Data Hazards

The read or write sequence for the same storage location may be changed with
the overlapping execution of instructions. Three types of hazards arise in this
situation:

RAW (read after write) An instruction attempts to read a result of the previ-
ous instruction before it is written.

WAR (write after read) An instruction attempts to write a new value when
the previous instruction needs the old value and has not yet read it.

WAW (write after write) An instruction attempts to write a new value before
the previous instruction has written one to the same location.

Figure 2.8 shows examples of RAW hazards between LW (load word) and
ADD instructions. It is assumed that hazards do not occur between instruction
fetches and data fetches. R0 to R3 denote registers. The LW instruction loads
contents of memory location 30+R0 at the MEM stage and then writes them
into R1 at the WB stage. The ADD instruction reads R1 and R2 at the ID
stage, executes the arithmetic operation at the EX stage, and writes the result
into R3 at the WB stage. Since the ADD instruction needs the result of the
LW instruction through R1, the ID stage of the ADD must stall until the WB
stage of the LW is over.

2.3.3 Control Hazards

An instruction that changes the program counter (PC) to something other
than the next instruction address, e.g., a jump or branch instruction, may also
causes hazards. Control hazards can be treated as special data hazards (RAW
hazards on the PC) in some simple pipeline models. Since control hazards
degrade performance more than data hazards for most RISC processors, several
methods that reduce pipeline branch penalties are widely used.
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LW R1,30(R0) ID EXIF

ID EX MEM WBIFADD R3,R1,R2

MEM WB

Clock cycle
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Clock cycle
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ID EX MEM WBIF
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Figure 2.8: Data hazard
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Assumption: the branch address is determined at the MEM stage
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Figure 2.9: Branch instruction with/without delayed execution
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Branch instruction ID EX MEM WB

Instruction i +1

Instruction j

IF

IF

ID EX MEM WBIF

Branch instruction ID EX MEM WB

Instruction i +1

Instruction i +2

IF

ID EX MEM WBIF

ID EX MEM WBIF

(a) When the branch is taken

(b) When the branch is not taken

Assumption: the branch condition is determined at the ID stage
and the branch address is determined at the MEM stage

Clock cycle

1 2 3 4 5 6 7 8 9

Clock cycle

1 2 3 4 5 6 7 8 9

IF

ID

Figure 2.10: Predict-not-taken scheme when the branch is taken or is not taken

Delayed-branch is a technique allowing hardware to execute a fixed num-
ber of instructions after a branch but before the actual branch operation is
done. Delayed-branch influences pipeline interlocks as some hazardous in-
struction sequences may no longer cause hazards. Figure 2.9 (a) shows normal
execution patterns for a branch instruction, and (b) for a delayed-branch.

Delayed-branch instructions in the SPARC-V9[SPA92] instruction set have
annul (a) bits, which are used to determine whether their delay instructions
are executed or flushed. For example, the delay instruction of a conditional
branch instruction with a = 1 is annulled (not executed) if the branch is taken.

Branch-prediction is a technique allowing hardware to continue execution
as if the branch were taken or not taken according to the prediction. When the
branch outcome is definitely known and it is not the same as predicted one,
we need to flush the pipeline and restart the instruction fetch. In the simple
branch-prediction scheme called predict-not-taken (Figure 2.10), the branch is
always predicted as not taken.

We treat the branch-prediction schemes in RISC processors as a delayed
instruction execution combined with an annulling operation. In Figure 2.10,
the instruction that follows the branch instruction is fetched, without stalling
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at cycle 2, as if it were the delay instruction (Figure 2.9(b)), and is annulled at
cycle 3 if the branch is taken.
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CHAPTER 3
Input Pattern Enumeration for

Comprehensive Functional Test

High-speed scalar and superscalar microprocessors use highly sophisticated
pipelining [HP90, Joh91]. Pipeline complexity increases the number of design
errors, and also makes design verification more difficult. Although formal
verification of microprocessors is receiving affection from academic research
[BD94b, BB94, BD94a], none of the methods proposed can handle entire de-
signs of today’s complex pipelined processors. Simulation-based verification
is therefore still indispensable.

Simulation-based verification applies instruction sequences to a logic sim-
ulator for a processor design and a reference machine, such as an instruction-
level simulator, and compares the results. Instruction sequences for simulation-
based verification are called test programs. Currently, most test programs
are coded by hand or generated randomly. Since processors are becoming
more complex, it is harder to write test programs manually. Also, the number
of simulation cycles for random instructions must be increased to maintain
verification reliability. A systematic way to generate an effective test program
is needed.

Some papers have presented test program generation methods for pipelined
processor verification [LS91, INH92, INH93]. These methods focus on
pipeline hazards [HP90] and can generate effective test programs for tar-
get cases automatically. Pipeline behavior when and after a hazard is detected
is not considered, so these methods cannot cover cases that are reachable only
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after hazards. Moreover, they cannot avoid unexpected hazards that prevent
satisfying target cases. We present a new approach to generate test programs
for any processor state that considers detailed pipeline movements.

3.1 Test programs for pipelined processors

It has not been possible to measure quality of test programs because test
program goals have not been formulated. We started by modeling processor
pipelines and defined a test program generation goal. This model demonstrates
the difficulty in hand-coding test programs. Also, efficiency of simulating
random instructions can be measured.

3.1.1 Processor pipeline model

In order to concentrate on pipeline control parts of processors, we only care
instruction flow in the processor pipeline, and do not care how operand data
and result data are processed in functional modules. Thus, we simplify pro-
cessor hardware to a set of pipeline units. A pipeline unit corresponds to a
hardware block which can hold an instruction for one clock cycle. A hardware
block that produces results in one cycle, such as an integer ALU, is modeled
as a pipeline unit, and a hardware block that produces results in n clock cycles,
such as a FPU, is divided into n sub-blocks and modeled as a series of n
pipeline units.

A pipeline unit that can hold k kinds of instructions has k+ 1 states; k
states when it holds an instruction, plus one state when it holds nothing. A
pipeline state of the processor is defined by the states of all pipeline units.
If the i-th unit can hold ki kinds of instructions, the processor has ∏(ki +1)
pipeline states.

Figure 3.1 shows an example of a simple processor pipeline model P1.
Pipeline units are FETCH, ALU, FPU, MEM, and WB. P1 has four types
of instructions: NOP, INT, LD, and FP. FETCH reads a new instruction
every clock cycle. NOP disappears immediately. INT moves to the ALU at
the second clock cycle, and then moves to the WB at the third clock cycle.
Similarly, LD moves to ALU, MEM, and then WB. FP moves to FPU and then
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Figure 3.1: Processor P1
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Figure 3.2: Processor P2
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FMUL :

→ ALU → MEM→ FWBIF → DF

→ FP1→ FP3→ FWBIF → DF

→ FP1→ FP2→ FP3IF → DF → FWB

Figure 3.3: Processor P3

to WB. FETCH can hold four kinds of instructions, ALU can hold two kinds,
FPU and MEM can each hold one kind, and WB can hold three kinds. Thus,
P1 has 5×3×2×2×4 = 240 pipeline states. Two more processor pipeline
model examples are shown in Figure 3.2 and Figure 3.3. P2 has an FPU with
a result latency of 2 (for FADD) or 3 (for FMUL), which is modeled as three
pipeline units — FP1, FP2, and FP3. P3 is a superscalar version of P2, which
issues two instructions per clock cycle.

3.1.2 Test case

A test case is defined by a set of pipeline states that activate the same class of
mechanism. Suppose we want to test all cases that cause structural hazards on
pipeline units, and all combinations of two or more of those cases that happen
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FETCH ALU

FPU

MEM

WB

INT

FP

Figure 3.4: Structural hazard on WB

simultaneously. A pipeline control mechanism is activated by instructions in
some pipeline units, and we do not have to care about instructions in the rest
of pipeline units. A test case can be written as a set of (unit, instruction) pairs.

Figure 3.4 shows a pipeline hazard in P1 when INT and FP instructions
attempt to move to WB simultaneously. This case is written as {(ALU, INT),
(FPU, FP)}, which includes 5×1×1×2×4 = 40 pipeline states. When a
structural hazard occurs between two instructions, the instruction with higher
priority is sent to the next pipeline unit and the other is stalled. If we assume a
static priority of LD> FP> INT in this example, INT in ALU stalls. It causes
another hazard on ALU if FETCH has INT or LD. We count them as individual
cases {(FETCH, INT), (ALU, INT), (FPU, FP)} and {(FETCH, LD), (ALU,
INT), (FPU, FP)} because different mechanisms may be activated for each
case. A combination of test cases {(ALU, INT), (FPU, FP)} and {(ALU,
INT), (MEM, LD)} also form another test case {(ALU, INT), (FPU, FP),
(MEM, LD)}.

The numbers of test cases for processors P1, P2, and P3 (Figures 3.1, 3.2,
3.3) are shown in Table 3.1. These numbers will include many unreachable
test cases. However, all cases must be considered to make a complete test
program because it is not known whether they are reachable or not before
analyzing all cases. The number of test cases grows rapidly as the processor
pipeline becomes more complex. It is difficult to cover all test cases for a
commercial processor by manual programming.
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Table 3.1: Number of test cases

Processor P1 : 12
Processor P2 : 61
Processor P3 : 497

3.1.3 Test sequence for a given test case

Suppose we want to make an instruction sequence that satisfies the test case
shown in Figure 3.4. INT reaches the ALU one cycle after it is fetched. Also,
FP reaches the FPU one cycle after it is fetched. Since two instructions cannot
be fetched at the same time, it seems that this test case cannot be satisfied.
However, another hazard can lead the pipeline to this case. One solution is
the sequence LD–INT–FP–NOP. LD and INT cause the primary hazard and
INT is stalled as shown in Figure 3.5(a). FP then overtakes INT causing the
secondary hazard shown in Figure 3.5(b).

This is an example of a complicated test sequence for a simple pipelined
processor. A complex pipelined processor requires a great number of more
complicated test sequences. It is difficult to find all sequences, and manual
programming is very expensive.

Conventional test program generation methods for pipelined processors
[LS91, INH92, INH93] consider only the target hazard. They cannot find com-
plicated test sequences like the one shown above, and cannot avoid unexpected
hazards that prevent satisfying test cases.

3.1.4 Efficiency of random tests

We made simulators for three processor pipeline models, P1 (Figure 3.1), P2
(Figure 3.2), and P3 (Figure 3.3), and applied random instruction sequences
to them. Figure 3.6 shows the number of test cases covered within each clock
cycle. Since P3 normally fetches two instructions per clock cycle, it needs
about twice as many instructions as clocks. The clocks include instruction
fetch stall cycles.

The random instruction sequence for P1 covered 8 test cases in 390 clock
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Figure 3.5: An instruction sequence that satisfies the test case
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Figure 3.7: Test program generation flow

cycles and reached no other test cases. For P2, the number of covered test
cases stabilized after about 3,000 clock cycles and increased slowly from there.
For P3, the number of test cases covered went on growing and a saturation
point was not reached.

Results show that the number of simulation cycles needed to achieve a
reliable test grows rapidly as the processor pipeline becomes more complex.
Commercial microprocessors with more pipeline units and more instructions
require far more simulation cycles for a random test. It will become impossible
for random instructions to cover all test cases if pipeline complexity continues
to increase and simulation speed does not greatly improve.

Random tests will always have some value. Random instructions search
the entire space equally, and often find unpredictable design errors. However,
most of design errors will be in hazardous pipeline states. We have to give a
top priority to those places.

3.2 Automatic generation

Our automatic test program generation system generates test programs from
processor specifications. Test program generation flow in our system is divided
into two steps, as shown in Figure 3.7.

A cycle-accurate processor model is needed to generate a test program.

29



3. INPUT PATTERN ENUMERATION FOR COMPREHENSIVE FUNCTIONAL TEST

Also, many test cases are needed to generate a good test program. On the
other hand, the specification must be simple enough to be written correctly.
From a simple specification, our system generates a processor model and
automatically enumerates test cases.

The second step in our system is generating instruction sequences to satisfy
the test cases. The difficulty of this problem was discussed in Section 3.1.3.
Our system generates instruction sequences to test processor states, even if they
can be reached only after pipeline hazards. Instruction sequences generated
by the system do not cause unexpected hazards and guarantee satisfying the
test cases.

3.2.1 Pipeline specification

Specification must contain the following information to derive all patterns
causing hazards and to generate VHDL descriptions:

• Declarations of a set of instruction groups, a set of pipe stages, and
input ports of the pipeline controller

• Hardware resources that are used in some pipe stages and may cause
hazards

• Actions in each pipe stage to a resource

• Status of a pipe stage when an action is performed

An instruction group is a set of instructions that all act the same from the
viewpoint of pipeline control. The ADD and SUB instructions, for example,
both belong to the ALU instruction group. In each input port declaration, a
pipe stage is specified from which input values are taken. These input values
become available after execution in the stage. Status of a pipe stage contains
an instruction group, signal value conditions, and an index signal name for the
resource. Signal value conditions consist of expressions comparing signals
with constants, which determine instruction attributes including addressing
modes and branch conditions. This allows internal signals to be used which
are generated in pipe stages. An index for the resource is something like a
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Branch

{

 EX(cond == 1):

 annul;

 MEM(cond == 1):

 occupy PC;

 write PC delay 1;

}

(b)

ALU

{

 ID:

 occupy GPR;

 read GPR[RS1];

 read GPR[RS2];

 WB(RD != 0):

 occupy GPR;

 write GPR[RD];

}

ALU

{

 ID.1:

 occupy GPR;

 read GPR[RS1];

 ID.1(imm == 0):

 read GPR[RS2];

 WB.0(RD != 0):

 occupy GPR;

 write GPR[RD];

}

(a) (a )´

Figure 3.8: Pipeline specifications for ALU and Branch instruction groups

register address or a memory address. Hazards occur only if two instructions
use the same resource with the same indices.

Figure 3.8 (a) shows a simple ALU instruction group specification. The
instruction belonging to the group reads from two general purpose registers
(GPRs) indexed by two operands (RS1 and RS2) at the ID stage, and writes
to a GPR indexed by RD at the WB stage unless the index equals zero. When
designers like to define a specification in detail, they can add more hardware
resources, such as a program counter, a memory, and/or an ALU.

Figure 3.8 (a′) shows a more sophisticated specification for the same group.
The suffix after stage indicates a substage. The specification asserts GPR is
written to at the first half of the WB stage, while it is read from at the second
half of the ID stage. This technique improves the processor performance since
GPRs can be read from or written to in the same clock cycle. This example
also covers two addressing modes. The actions specified at the ID stage are
divided into two. The former is for the common case, and the latter is for
a register-register addressing mode. These are distinguished by the control
signal imm. Typical processors have multiple addressing modes for most
instructions. Although multiple addressing modes can be modeled by making
different instruction groups for the different addressing modes, the increased

31



3. INPUT PATTERN ENUMERATION FOR COMPREHENSIVE FUNCTIONAL TEST

number of instruction groups causes processing time to increase rapidly.
Figure 3.8 (b) shows a specification for the branch instruction group with

a predict-not-taken scheme. The instruction belonging to the group annuls an
instruction that follows it at the EX stage and writes to the PC at the MEM
stage if cond is 1 (taken branch). The keyword delay is used to specify the
number of instructions to be fetched without waiting for the branch.

3.2.2 Hazard pattern enumeration

Hazards in a basic pipeline are caused when two instructions attempt to use
the same hardware resources. A structural hazard occurs if two pipe stages
attempt to occupy a common resource in the same clock cycle. A data hazard
occurs if they attempt to access a common resource in an illegal order. A
control hazard occurs if they attempt to access a program counter in an illegal
order. In a general pipeline model, structural hazards may be caused when
three or more instructions attempt to use the same kind of hardware resources
simultaneously if they exceed the physical number of the resources. We leave
this type of pipeline model for future work.

We define a set of hazard patterns H as

H =
{
(s1,q1,s2,q2)

∣∣∣ If stage s1 has status q1,
stage s2 cannot have status q2.

}
.

Status contains an instruction group, signal value conditions, and an index
signal name for the resource.

In the hazard pattern enumeration algorithm (Figure 3.9), C denotes the
set of common resources, s a stage, q status, d a number of delay slots, Xc

the set of (s,q) when s occupies common resource c, Rc the set of (s,q,d)
when s reads data from c, and Wc the set of (s,q,d) when s writes to c. The
case where s2 is a stage before stage s1 is s2 < s1. The case where s2 is
a stage before stage s1, or s2 and s1 are the same stage, is s2 ≤ s1. The
expression s+d denotes a stage that is d stages after s. The main procedure,
enumerate hazard patterns() makes the hazard pattern set H. It enumerates
structural hazards, RAW hazards, WAR hazards, and WAW hazards for each
common resource. Control hazards are enumerated as special cases of data
hazards. The procedure enumerate structural hazards(X) enumerates all
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enumerate hazard patterns() {
H← φ ;
foreach c (c ∈ C) {

enumerate structural hazards(Xc);
enumerate data hazards(Wc, Rc); /* RAW */
enumerate data hazards(Rc, Wc); /* WAR */
enumerate data hazards(Wc, Wc); /* WAW */
}
}

enumerate structural hazards(X) {
foreach s1,q1 ((s1,q1) ∈ X) {

foreach s2,q2 ((s2,q2) ∈ X, s2 < s1) {
H← H∪{(s1,q1,s2,q2)};

}
}
}

enumerate data hazards(A1, A2) {
foreach s1,q1,d1 ((s1,q1,d1) ∈ A1) {

foreach s2,q2,d2 ((s2,q2,d2) ∈ A2, s2 < s1) {
foreach s (s2 +d1 < s≤ s1) {

H← H∪{(s,q1,s2,q2)};
}
}
}
}

Figure 3.9: Hazard pattern enumeration algorithm
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Figure 3.10: Pipeline model

patterns when two pipe stages attempt to occupy the same resource. The
procedure enumerate data hazards(A1, A2) enumerates all patterns when the
order of data access is changed by the pipelined execution, excluding delayed
instructions. When an instruction in stage s has d1 delay slots, instructions in
stages (s−d1) . . .(s−1) are the delayed instructions.

The hazard patterns corresponding to the hazards shown in Figure 2.8 are
as follows:

(a) (EX, (Load; RD6=0; RD), ID, (ALU; – ; RS1))
(b) (MEM, (Load; RD6=0; RD), ID, (ALU; – ; RS1))
(c) (WB, (Load; RD6=0; RD), ID, (ALU; – ; RS1))

This means that a hazard occurs between the (a) EX, (b) MEM, or (c) WB
stage of the Load instruction and the ID stage of the ALU when the RD of
the Load and the RS1 of the ALU are the same and the RD of the Load is not
zero.

3.2.3 Pipeline model generation

The pipeline controller model (Figure 3.10) has status registers for each stage
that get input from the previous status register, send output to the next one,
and change status every clock cycle unless the corresponding pipe stage stalls.
Status includes an opcode, source and destination register addresses, and
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3.2. Automatic generation

a branch condition. An arbitration logic gets this information from status
registers, checks if a hazard will occur at the next clock cycle, and determines
control signals.

The behavioral description of the pipeline controller can be generated from
hazard patterns. Each hazard pattern (s1,q1,s2,q2) corresponds to a condition
that stalls stage s2, which must stall in the next clock cycle when

• The stage before s1 has status q1 and the stage before s2 has status q2.

• Stage s1 will run in the next clock cycle if the hazard pattern is for a
structural hazard.

stalli denotes a Boolean variable which is the logical OR of the conditions
above and indicates that the ith stage must stall to avoid using common
resources in the next clock cycle. validi denotes a Boolean variable which
shows that the ith stage is processing a valid instruction in the current clock
cycle, which is cleared by annulling operations. goi denotes a Boolean variable
showing that the ith stage will run in the next clock cycle. Variable goi is true
when

• Common resources can be used in the next clock cycle.

• The previous stage has a valid instruction.

• If it has a valid instruction, the next stage can get the data in the next
clock cycle.

As a result, the following equation is satisfied, where n denotes the number of
the stages:

go1 = stall1 · (valid1 +go2)

goi = stalli · validi−1 · (validi +goi+1) (2≤ i≤ n−1)

gon = stalln · validn−1

The pipeline controller consists of combinational logic and n state registers
controlled by go1 to gon. Signals from input ports are sent to corresponding
state registers, and these values flow through the pipeline. Control signals go1

to gon are calculated from these values and sent to output ports.
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Although the logic may be redundant, its major virtue is that it consists of
simple structures. If necessary, conventional logic optimizations and synthesis
could be applied.

3.2.4 Test program generation

We introduce a method to generate test sequences for a given processor
pipeline model and its test cases. We assume here that the pipeline model
is compiled as a state machine represented by Boolean state variables and
state transition functions. Each test case is given as a set of machine states
corresponding to a hazard pattern. We use reduced ordered binary decision
diagrams (BDDs) [Bry86] to represent functions and sets.

Pipeline states are encoded as n-dimensional Boolean vectors and instruc-
tions are encoded as m-dimensional Boolean vectors. Let B = {0,1} denote
a set of Boolean values, x ∈ Bn a current state, i ∈ Bm a current input value,
and x′ ∈ Bn a next state. The state transition function of the pipeline model is
translated to n BDDs representing a n-dimensional Boolean function δ :

x′ = δ (x, i)

A set of n-dimensional Boolean vectors A⊆ Bn is represented by a BDD
in the form of a characteristic function χA:

χA(x) = 1 iff x ∈ A

Union of sets, intersection of sets, and complement of a set can be calculated
by logical OR of the BDDs, logical AND of the BDDs, and logical NOT of
the BDD.

Basic procedure

A test case is a set of machine states represented by a function T (x). The aim
of test program generation is to find input sequences to satisfy that state. Let
x0 be a constant initial state and it an input value at clock cycle t. The state at
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cycle t can be computed by applying the transition function recursively:

if t = 1, x1 = δ (x0, i0)
def
= f1(i0)

if t ≥ 2, xt = δ (xt−1, it−1)

= δ ( ft−1(i0, . . . , it−2), it−1)
def
= ft(i0, . . . , it−1)

T (xt) indicates whether state xt is included in the test case, and T ◦
ft(i0, . . . , it−1) — i.e. a composite function T ( ft(i0, . . . , it−1)) — indicates
whether an instruction sequence i0, . . . , it−1 satisfies the test case. Thus,
T ◦ ft(i0, . . . , it−1) is the characteristic function that represents the set of test
sequences for case T . A test sequence can be generated by choosing one se-
quence from T ◦ ft . All test sequences that satisfy the case can be enumerated
in one pass of the BDD, if necessary.

If T ◦ ft is constant zero, there is no instruction sequence that satisfies
the test case at cycle t. We repeat computation for the next cycle until a test
sequence is found or the test case is proved to be unreachable.

To check whether the test case is reachable or not, we compute a set of
states reachable within each clock cycle. Let A be the input set, C a set of
states, and C′ the set of states that is reachable from C at the next cycle. C′ is
the image of the set C×A after the transition function δ :

C′ = {x′ ∈ Bn |x′ = δ (x, i), x ∈C, i ∈ A}

Efficient image computation algorithms have been proposed for formal verifi-
cation [TSL+90]. We begin the procedure with C = {x0}, and repeat image
computations until all reachable states have been enumerated.

Our basic procedure for generating test sequences for a test case T is shown
in Figure 3.11. The out put function generates test sequences by choosing the
input values that make T ◦ ft one, and the image function computes the image
of C×A using the transition function δ .
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C←{x0}; U ←C; t← 0; f0()← x0;
while (C 6= φ ) {

if (C∩T 6= φ ) {
out put(T ◦ ft(i0, . . . , it−1));

}
C′← image(δ ,C×A);
C←C′∩U ;
U ←U ∪C′;
t← t +1;
ft(i0, . . . , it−1)← δ ( ft−1, it−1);

}

Figure 3.11: Basic procedure

Hazard-free-first procedure

A good test program for a pipelined processor must not cause pipeline hazards
that are not related to the test case for two reasons.

• Pipeline hazards make processor behavior more complex and make it
more difficult to analyze the cause of the error found by the test.

• Specifications of processor behavior in hazard-free states is simple and
reliable, while that in hazard states is complex and prone to errors.
Unexpected behavior after a pipeline hazard may prevent the processor
from satisfying the test case.

We modified our basic procedure in Figure 3.11 to examine hazard-free
state transitions prior to hazardous ones to find hazard-free test sequences. We
named this the hazard-free-first procedure. The hazard-free-first procedure
removes hazard states from newly reached states and puts them in FIFO
storage. Image computations of hazard-free states are repeated until no new
hazard-free states are found. The hazard states are then taken from the FIFO
and image computations are repeated again (Figure 3.12).

A set of instruction sequences currently being examined, I, is also cal-
culated at each iteration. The procedure checks whether the set of states C
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Figure 3.12: Hazard-free-first state enumeration

includes the test case T and generates test sequences for T that are included
in I.

3.3 Experimental results

We implemented an experimental system to generate test sequences using the
two procedures described in Section 3.2.4. The system is written in Perl and
runs on a special Perl interpreter linked with a BDD package written in C.

Execution results of the two procedures for pipeline models P1, P2, and
P3 (Figures 3.1, 3.2, 3.3) are summarized in Table 3.2. We generated one test
sequence for each reachable test case to construct test programs. We measured
CPU times on a SPARCstation2.

The test program generator enumerated all reachable pipeline states and
distinguished reachable test cases from unreachable ones. It is difficult to
analyze test cases manually, and impossible for conventional test program
generation methods to distinguish them. The test programs covered the all
test cases that are reachable only after hazards, such as the case shown in
Figure 3.5. They are difficult cases to be handled manually, and cannot be
covered by conventional test program generation methods.

Results show that computations completed in reasonable CPU/memory
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3. INPUT PATTERN ENUMERATION FOR COMPREHENSIVE FUNCTIONAL TEST

Table 3.2: Execution summary of basic/hazard-free-first procedures

P1 P2 P3
Pipeline units 5 9 11
Instructions per cycle 1 1 2
FSM states 240 190512 9.335×106

Test cases 12 61 497
Reachable FSM states 125 16747 1.851×106

— only after hazards 28 7236 1.244×105

Reachable test cases 8 25 285
— only after hazards 3 9 0

Test program length 27/ 27 127/ 127 2289/2516
CPU time (seconds) 10/ 13 83/ 90 495/ 579
Max. BDD nodes 2K/599 37K/2658 117K/5797

requirements, and also show that the hazard-free-first procedure is comparable
to the basic procedure in CPU time, and superior in memory requirements.

Figure 3.13 shows the percentage of reachable test cases covered by the test
programs and random instructions within each clock cycle. The test programs
are generated by the hazard-free-first procedure. The random instruction data
is the same as that in Figure 3.6. Random instructions need a large number of
clock cycles to achieve high coverage, while our test programs can achieve
perfect coverage in a small number of clock cycles.

The system can also analyze reachability of test cases. The number of
test cases expected to be covered by random instructions in each clock cycle
is calculated by the system. Percentages of reachable test cases covered by
the test programs and random instructions are plotted in Figure 3.14. About
360 clock cycles of random simulation is needed for P1 to guarantee 99%
coverage, 9,600 cycles for P2, and 90,000 cycles for P3. Our test programs
are 13 to 76 times smaller than 99% coverage random instructions.

3.4 Chapter summary

We have demonstrated the need for automatic test program generation and
shown how we realized it for pipelined processors. We have introduced an
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automatic test program generator, which is divided into two parts. The first
part generates an FSM of the pipeline and enumerates test cases from a simple
processor specification. When designers define the hardware resources used at
each pipe stage for each instruction group, the system enumerates all hazard
patterns and generates a cycle-accurate model of the pipeline.

The second part generates instruction sequences to satisfy the test cases for
the pipeline model. It is implemented by utilizing techniques developed for
formal verification. We also presented the hazard-free-first state enumeration
technique for pipelined processors, which reduces memory requirement. Our
method can generate the test programs that are difficult to code manually and
that are impossible to generate by conventional methods. Random instructions
need a large number of clock cycles to achieve high test coverage, while our
test programs can achieve perfect test coverage in a small number of clock
cycles.
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CHAPTER 4
Practicality-oriented Symbolic Model

Checking Methods

Model checking is one of the standard hardware verification methods in many
industrial fields. Traditionally, language containment check [HK90, TBK95,
HTKB93] and CTL model checking [CES86, McM93, CGMZ95] are two
major methods of model checking. Language containment is usually checked
after building a product machine, which is an interconnected system of design
and property automata. Standard CTL model checking algorithm is based
on backward state traversal over the design model, in contrast to the product
machine for language containment check.

Symbolic techniques using Binary Decision Diagrams (BDDs) [Bry86] are
the important keys of modern model checking algorithms [BCM+92, TBK95,
HTKB93, McM93]. Although they have potential power of verifying a finite
state system with several hundred Boolean state variables, actual performance
heavily depends on the system’s structure and state traversal heuristics of the
model checker. Even now, model checking of a complicated system cannot
be accomplished without human guidance based on their knowledge of both
the target system and the model checker. We need a flexible framework of
symbolic model checking in order to aid the human efforts and to automate
the total process.
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Monolithic TR Partitioned TR
Model #Nodes Image Pre-image #Nodes Image Pre-image
atm sw 1302K 8.9 21.8 1K 10.9 202.5
dh 1 3K 0.0 0.8 1K 0.3 1.3
dh 2 100K 13.8 75.4 35K 46.8 >10000
vpp N/A N/A N/A 60K 3.0 4135.1
pipe s 322K 10.7 14.8 3K 0.6 387.9
pipe d N/A N/A N/A 348K 200.4 >20000

Table 4.1: CPU seconds per image or pre-image computation

4.1 Forward versus backward traversal

Conventional CTL model checkers evaluate CTL formulas with repeated
pre-image computation, backward state traversal. Properties s0 |= EF f and
s0 |=AG f are also known to be verified by comparing L ( f ) and the reachable
states. Reachable states are enumerated with repeated image computation,
forward state traversal.

Performance of the computation is very sensitive to BDD variable ordering.
It is difficult to find a good variable order automatically, and ordinary users
cannot always find it manually. When we use conjunctive partitioned transition
relations, the performance is also sensitive to the order in which the BDDs
are processed. In our experience of industrial hardware verification, however,
image computation with partitioned transition relation works relatively fine
even if the FSM is very large and the ordering is not tuned so much.

Table 4.1 shows average CPU time per image or pre-image computation
during each model checking process. We used both a monolithic transition
relation represented by a single BDD and a conjunctive partitioned transition
relation represented by a set of BDDs for latch transition relations. Total
numbers of BDD nodes for monolithic/partitioned transition relations are
also shown in the table. Monolithic transition relations for models vpp and
pipe d could not be made because of BDD size explosions. Pre-image
computation with partitioned transition relation for models dh 2 and pipe d

exceeded the CPU time limit of 24 hours. We should not compare image
computation time and pre-image computation time directly, because they are
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solving different problems. The results, however, show that the time difference
of image computation and pre-image computation with a partitioned transition
relation is huge, while that with a monolithic transition relation is relatively
small.

4.2 Forward model checking of CTL
properties

As described in Section 4.1, we often find a large CPU time difference between
image computation and pre-image computation especially when a conjunctive
partitioned transition relation is used. We should traverse state space forward
in such cases. In the symbolic model checking paradigm, CTL formulas have
been evaluated with backward state traversal. We describe, in this section, an
algorithm to accomplish CTL model checking in the opposite direction. It is
effective in many situations where backward state traversal is more expensive
than forward state traversal.

4.2.1 Rewriting property notations

A CTL property is given as a notation like “s0 |= f .” Conventional model
checking procedure matches the notation: it evaluates CTL formula f with
backward state traversal, and then checks if it holds at state s0. We rewrite
the notation for the purpose of matching it with our method. We translate the
CTL property into a problem of comparing a formula with the constant false.
Let s0 be a state of the FSM, p0 the characteristic function of {s0}, and f an
arbitrary CTL formula. Formula p0 is true only at state s0, and formula f is
true at state s0 iff s0 |= f holds. Therefore, the “|=” notation can be rewritten
as follows:

s0 |= f ⇐⇒ p0∧ f 6= false , (4.1)

s0 |= f ⇐⇒ p0∧¬ f = false . (4.2)

Some model checkers support models with multiple initial states, while
“|=” represents relation between a single state and a CTL formula. Given a set
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of initial states S0, we believe that interpretation of some extended notation like
“S0 |= f ” is ambiguous. It should be written as “∃s ∈ S0, s |= f ” or “∀s ∈ S0,
s |= f ”. They can be rewritten as “p0 ∧ f 6= false” and “p0 ∧¬ f = false”
respectively where p0 is the characteristic function of S0.

4.2.2 Forward EX evaluation

Let p and f be formulas. We can replace an outermost EX evaluation with
image computation as follows:

p∧EX f 6= false ⇐⇒ Img(p)∧ f 6= false . (4.3)

Proof. Assume p∧EX f holds at state s. Then p holds at s and f holds at
some successor state of s, say t. Img(p) holds at t since Img(p) holds at any
successor state of s ∈L (p). Thus, Img(p)∧ f holds at t. Conversely, assume
Img(p)∧ f holds at state t. Then f holds at t and t is a successor state of some
state s ∈L (p). EX f holds at s since t ∈L ( f ) is a successor state of s. Thus,
p∧EX f holds at state s.

Notice that we have removed an operator EX from f . Using equation (4.3)
again or using one of the equations described later, it is possible to continue
conversion of a backward traversal operator in f into a forward traversal
operator.

4.2.3 Forward EU evaluation

We define a state enumeration procedure under constraints given by two
formulas p and q:

FwdUntil(p,q) = lfpZ [p∨ Img(Z∧q)] .

An element of L (FwdUntil(p,q)) is a state t such that there exists a path
through t from some state at which p holds, and q holds at all states before t
on the path.
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Using the FwdUntil() operator, we can replace an outermost EU evalua-
tion as follows:

p∧E [qU f ] 6= false

⇐⇒ FwdUntil(p,q)∧ f 6= false . (4.4)

Proof. Assume p∧E [qU f ] holds at state s. Then both p and E [qU f ] hold
at s. It means that there exists a path from s through some state t ∈L ( f ), and
q holds at all states before t. Thus, FwdUntil(p,q)∧ f holds at t. Conversely,
assume FwdUntil(p,q)∧ f holds at state t. Then both FwdUntil(p,q) and
f holds at t. There exists a path through t from some state s ∈L (p), and q
holds at all states before t. Thus, p∧E [qU f ] holds at s.

Now the operator EU have been removed from f . Thus, we have a chance
again to convert a backward traversal operator in f into a forward traversal
operator, as in equation (4.3).

4.2.4 Forward EG evaluation

We define an operator like EG, except that pre-image computation is replaced
by image computation:

EH(p) = gfpZ [p∧ Img(Z)] .

EH(p) is used to check whether there exists a state transition cycle in L (p).
L (EH(p)) is the subset of L (p) such that every state is reachable from a
cycle through states only in L (p). We also define simple composite operators:

Reachable(p,q) = FwdUntil(p,q)∧q ,

FwdGlobal(p,q) = EH(Reachable(p,q)) .

Reachable(p,q) computes the subset of L (q) whose elements can be reached
from L (p∧q) through states only in L (q). FwdGlobal(p,q) checks whether
there exists a state transition cycle in L (q) that is reachable from L (p∧q)
through states only in L (q).
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Using the FwdGlobal() operator, we can replace an outermost EG evalua-
tion as follows:

p∧EGq 6= false

⇐⇒ FwdGlobal(p,q) 6= false . (4.5)

Proof. Assume p∧EGq holds at state s. Then both p and EGq holds at s. It
means that for some path from s, q keeps holding forever on the path. In other
words, there exists a cycle in L (q) and it is reachable from s through states
only in L (q). L (Reachable(p,q)) includes the cycle, since it includes all
the states reachable from s ∈L (p∧ q) through states only in L (q). Thus,
EH(Reachable(p,q)) 6= false. Conversely, assume EH(Reachable(p,q)) 6=
false. There exists a cycle in L (Reachable(p,q)). It means that the cycle is
in L (q) and is reachable from some state s ∈L (p) through states only in
L (q). Thus, p∧EGq holds at s.

4.2.5 Forward fair EG evaluation

We also introduce fairness constraints into forward CTL evaluation. The key
is exactly like ordinary fair CTL evaluation, a procedure to find fair cycles.
The procedure that compute EH(p) under fairness constraints C is given as
follows:

FairEH(p) = gfpZ

[
p∧ Img

(∧
c∈C

Reachable(c,Z)

)]
.

We then modify the FwdGlobal() operator to handle fairness constraints using
FairEH():

FwdFairGlobal(p,q) = FairEH(Reachable(p,q)) .

Using the FwdFairGlobal() operator, we can replace an outermost EG evalu-
ation under fairness constraints as follows:

p∧ECGq 6= false

⇐⇒ FwdFairGlobal(p,q) 6= false . (4.6)

It is clear from the fact that both sides are the modified version of equation
(4.5) that restrict paths under the same constraints.
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4.2.6 The conversion procedure

Using conversion rules (4.3), (4.4), (4.5), and (4.6), we can replace EX, EU,
EG, and ECG with forward traversal operators. An original property notation
should be rewritten using either positive form (4.1) or negative form (4.2)
so that the formula matches one of the rules. The problem of comparing a
disjunctive expression with the constant false, such as “ f ∨g 6= false”, can be
divided into sub-problems, such as “ f 6= false” and “g 6= false”. We can check
each term separately, and if one or more terms are not the constant false, the
entire expression is not the constant false. We do not need to convert all CTL
temporal operators into forward traversal operators. Remaining operators can
be evaluated in usual manner, with backward state traversal. Hence, all CTL
formulas can be handled with our method. The conversion procedure is shown
below:

1. Rewrite the CTL formula only in temporal operators EX, EU, EG, and
ECG.

2. Translate “|=” notation into an expression comparing a formula with
the constant false, using equation (4.1) or (4.2).

3. Arrange outermost logical operations in disjunctive form, and divide
the problem into a set of sub-problems comparing each product term
with the constant false.

4. For each sub-problem, convert a backward operator to a forward operator
using one of equations (4.3), (4.4), (4.5), and (4.6), if applicable.

5. For each newly updated sub-problems, call the procedure recursively
from step 3.

Although steps 2 and 4 have choice, it is easy to find good conversion for actual
CTL properties. Many properties that we examined can be fully converted to
forward state traversal problems, as shown in the next section.

Example Here is an example of converting one of the most common proper-
ties, “whenever a request is made, acknowledgment will return in the future,”
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where req means the request, ack means the acknowledgment, s0 is the initial
state, and p0 is the characteristic function of {s0}:

s0 |= AG(req→ AFack)

⇐⇒ s0 |= ¬E [trueU(req∧EG¬ack)]

⇐⇒ p0∧E [trueU(req∧EG¬ack)] = false

⇐⇒ FwdUntil(p0, true)∧ (req∧EG¬ack) = false

⇐⇒ (FwdUntil(p0, true)∧ req)∧EG¬ack = false

⇐⇒ FwdGlobal((FwdUntil(p0, true)∧ req),¬ack) = false .

4.3 Forward model checking of ω-regular
properties

In this section, we present a model checking algorithm based on symbolic
forward state traversal over the design model, which can check if there is
a possibility that the design generates some trace matched by an ω-regular
expression. Some non-symbolic solutions to similar problems have already
been introduced [Hir89, HHY89]; however, they are based on explicit state
traversal, which is not realistic for large design models. This algorithm is a
generalization of forward model checking techniques [INH96, IN97, TSN98].

We also propose an efficient implementation of the algorithm, which makes
explicit data structure of a non-deterministic state transition graph for the ω-
regular property. State space of the design model is implicitly traversed along
the explicit graph. Each node on the graph is used as a working data storage
for the computation. This method should become a computational framework
with a large amount of flexibility. We can control the state traversal strategies
on this framework in order to get the maximum efficiency from BDD-based
symbolic techniques. Various improved techniques for reachability analysis
[RS95, CCQ96, NIJ+97] should also be applicable on this framework.
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V

Q
Suc(M, Q, V)

Figure 4.1: An illustration of Suc(M,Q,V )

4.3.1 Algorithm for ω-regular properties

Our goal is to check if there is a possibility that a given design may generate
one or more instances of a given set of error traces (illegal state transition
sequences). The design is modeled by an FSM, M = (S, I,O,δ ,λ ,S0). A set
of error traces of M is given as an ω-regular expression, considering that the
alphabet consists of the states (Σ = S). This is a kind of language emptiness
check.

The key function of the algorithm is Suc(M,Q,V ), where M is the FSM,
Q⊆ S is a set of start states, V is a ∗-regular expression for traces of M. The
result value is a set of all possible successor states to the traces from Q that
are matched by V (Figure 4.1). When M is an FSM, Q and P are sets of states,
U and V are ∗-regular expressions, and Img(M,Q) is the image computation
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function, the following equations hold:

Suc(M,Q,ε) = Q ,

Suc(M,Q,P) = Img(M,Q∩P) ,

Suc(M,Q,U ∪V ) = Suc(M,Q,U)∪Suc(M,Q,V ) ,

Suc(M,Q,UV ) = Suc(M,Suc(M,Q,U) ,V ) ,

Suc(M,Q,V ∗) =
⋃

0≤k<ω

Suc
(

M,Q,V k
)
.

Function Suc() for arbitrary ∗-regular expressions can be computed by recur-
sive application of the above equations.

In order to check if there is a possibility that M may generate one or more
instances of UV ω , we compute a sequence of state sets Q0, Q1, . . . as follows:

Qi =

{
Suc(M,S0,U) (i = 0),
Suc(M,Qi−1,V ) (i≥ 1).

The Qi computation is repeated until i = n where n satisfies either case listed
below:

Case 1: Qn = /0.

Case 2:

 ∃m, 0≤ m < n, Qm 6= /0,
Qm ⊆

⋃
m<k≤n

Qk.

No trace of M is matched by UV ω in the first case and one or more traces of
M are matched by UV ω in the second case. Assuming the first case, no trace
from some state in S0 has a prefix matched by UV n, therefore no trace from
some state in S0 is matched by UV ω . Assuming the second case, every state in
Qm is also included in at least one of Qm+1, . . . ,Qn. It means that every state
in Qm is a successor state of a trace from some state in Qm. We can repeat
retracing such paths and can visit Qm infinitely often. Since the state space
is finite, we eventually visit some state q in Qm twice. Thus, there is a cycle
from q to q along V , which is reachable from some state in S0 along U . It
causes an infinite trace matched by UV ω .
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Figure 4.2: Model and property examples

4.3.2 An efficient implementation of the algorithm

In this section, we show an efficient method to implement the forward model
checking algorithm. It can be a simple framework with a large amount
of flexibility for controlling state traversal on the property space. Breadth-
first traversal, depth-first traversal, subsetting, and mixture of them can be
characterized as variations in this framework.

Sets of states, functions, and relations of an FSM are represented symboli-
cally using BDDs, in the same way as conventional symbolic model checking
tools. A property given in ω-regular expression is translated literally into
data structure of a state transition graph, called property graph, with labeled
edges and an acceptance condition. State space of the FSM is traversed im-
plicitly along the explicit graph. Each node on the graph is used as a working
data storage for the computation. First we show an overview using simple
examples, then we show the model checking procedure in detail.

Overview of the method

In this section, we use the examples of design model M and property graph
G shown in Figure 4.2. M has six states (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’), and the
initial state of M is ‘0’. A condition p holds at states ‘1’, ‘3’, and ‘5’. G has
three nodes (‘A’, ‘B’, ‘C’), and the initial node of G is ‘A’. G represents a non-
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Figure 4.3: Breadth-first checking

deterministic finite automaton for an ω-regular expression [true]∗([p][¬p])ω ,
where notation [ f ] stands for a set of states on the design model that satisfies
formula f . An infinite sequence is accepted when node ‘C’ is visited infinitely
often.

Figure 4.3 shows one execution trace of the algorithm. Ak, Bk, and Ck

are subsets of M’s states stored at ‘A’, ‘B’, and ‘C’ respectively, whose index
k stands for the number of times passed through the cycle node ‘C’ for the
current computation path on G. Initially, A0 = {0} and others are empty. At
step-1, image of state set A0 on the design model is computed symbolically
and we get {1,2,3}. It is propagated along the edges from node ‘A’. One is
the self-loop edge labeled true. The result set {1,2,3} is directly propagated
to node ‘A’ itself and it is merged into A0. The other is the edge to ‘B’ labeled
p. The result set is filtered by condition p and then {1,3} is merged into
B0. After step-1, we get A0 = {0,1,2,3} and B0 = {1,3}. Sets of underlined
state numbers in Figure 4.3, i.e. {1,2,3} in A0 and {1,3} in B0 after step-
1, represent pending event sets to be processed. Figure 4.3 shows the case
when we choose the event set {1,2,3} in A0 for step-2. Image of {1,2,3} is
propagated similarly to nodes ‘A’ and ‘B’. In general, the procedure terminates
either when all events are processed or when some acceptance condition
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Figure 4.4: Depth-first checking

is satisfied. The emptiness check passes on the former case and it fails on
the latter case. In this example, we find after step-6 that every element in
C0 appears again in C1. It means that node ‘C’ is visited infinitely often if
we repeat the computation steps infinitely. Thus the procedure terminates
after step-6 and we find that some sequence on M is accepted by G, i.e. the
emptiness check failed.

Figure 4.4 shows another execution trace of the algorithm. In this case,
priority is given over the event set on the deepest level. After step-6, we find
that every element in C0 appears again in C1 or C2 by checking C0 ⊆ (C1∪C2).
The procedure terminates after step-6 and we find that the emptiness check
failed. Priority of the event processing may affect computational cost of the
algorithm; however, it does not affect the result of the algorithm.

A property graph example for an invariant checking problem is shown
in Figure 4.5. We can find that there is no essential difference between our
method on this graph and the conventional invariant check algorithm based
on forward reachability analysis. Various improved techniques of reachability
analysis [RS95, CCQ96, NIJ+97] are also applicable to solve this problem. It
is not difficult to extend them against general property graphs.
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A C

true true

error

Figure 4.5: Property graph for invariant checking

CheckEmptiness(M,G) {
q0←M.initial condition;
n0← G.initial node;
if (Propagate(q0,G,n0,0)) return “fail”;
while (not QueueIsEmpty()) {

(n, i)← Dequeue();
q← Evaluate(M,n, i);
if (Propagate(q,G,n, i)) return “fail”;

}
return “pass”;

}

Figure 4.6: CheckEmptiness function

The detailed procedure

The main function CheckEmptiness(M,G) is shown in Figure 4.6. For de-
sign model M, M.initial condition is the symbolic representation of the initial
state set, i.e. the formula that is true only at the initial states of M. Func-
tion Img(M,q) is the only one basic operation on M required for the al-
gorithm, which computes image of p symbolically. For property graph G,
G.initial node is the initial node, G.cycle node is the cycle node representing
the acceptance condition, and G.edge set is the set of edges {(n, p,m) | There

is an edge from node n to node m labeled p.}. Data structure for node n has two lists
indexed by integer i, n.total[i] and n.event[i], where a set of propagated states
and a set of unprocessed states for each index i are stored respectively.

We use a priority queue of node/index pairs for event management. Func-
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Evaluate(M,n, i) {
q← n.event[i];
n.event[i]← false;
return Img(M,q);

}

Figure 4.7: Evaluate function

tion Enqueue(n, i) inserts a node/index pair into the queue, function Dequeue()
takes a node/index pair with the highest priority out of the queue, function
Queued(n, i) checks if the pair (n, i) is already inserted in the queue, and
function QueueIsEmpty() checks if the queue is empty.

Function Evaluate(M,n, i) processes the pending event on (n, i) and re-
turns a set of states to be propagated along the edges from node n (Figure 4.7).

Function Propagate(q,G,n, i) propagates state set q along the edges from
node n and inserts new events into the queue (Figure 4.8). Index i is incre-
mented if n is the cycle node. When the acceptance condition of G is satisfied,
the function terminates and returns 1.

Function CycleIsFound(n) checks if the acceptance condition of the cycle
node n is satisfied (Figure 4.9). This function corresponds to the second
terminal case of the basic algorithm described in Section 4.3.

In this algorithm, event priority can be modified without restriction. More-
over, an event can be partitioned into a set of sub-events, and they can be
processed on different schedules. Figure 4.10 gives more generic implementa-
tion of function Evaluate(M,n, i).

4.4 Experimental results

4.4.1 Applicability to actual CTL properties

Our method becomes effective when many temporal operators in a CTL
formula are converted into our forward traversal operators. We investigated
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Propagate(q,G,n, i) {
if (n = G.cycle node)

i← i+1;
foreach m s.t. (n, p,m) ∈ G.edge set {

r← q∧ p∧¬m.total[i];
if (r 6= false) {

m.total[i]← m.total[i]∨ r;
m.event[i]← m.event[i]∨ r;
if (m = G.cycle node and

CycleIsFound(m)) return 1;
if (not Queued(m, i))

Enqueue(m, i);
}

}
return 0;

}

Figure 4.8: Propagate function

examples in two existing symbolic model checkers SMV [McM93] and VIS
[BHSV+96], and also examined our own property examples.

We found that 90% of the properties can be rewritten using only the
forward traversal operators: 18 properties out of 20 in the SMV examples, 47
properties out of 55 in the VIS examples, and all of our 13 properties. The
rest of the properties are classified into three types:

s0 |= AGEFa

⇐⇒ FwdUntil(p0, true)∧¬EFa = false ,

s0 |= AG(a→ EGb)

⇐⇒ FwdUntil(p0, true)∧a∧¬EGb = false ,

s0 |= AG((a→ EXb)∧ (b→ EXa))

⇐⇒

{
FwdUntil(p0, true)∧a∧¬EXb = false
FwdUntil(p0, true)∧b∧¬EXa = false ,

where a and b are atomic propositions. Both forward and backward traversal
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CycleIsFound(n) {
if (n has a self-loop labeled true)

return 1;
r← false;
k← maximum index of n;
while (k ≥ 0) {

q← n.total[k];
if (q∧¬r = false) return 1;
r← r∨q;
k← k−1;

}
return 0;

}

Figure 4.9: CycleIsFound function

Evaluate(M,n, i) {
Choose some condition q such that

q∧¬n.total[i] = false
and q∧n.event[i] 6= false;

n.event[i]← n.event[i]∧¬q;
if (n.event[i] 6= false) Enqueue(n, i);
return Img(M,q);

}

Figure 4.10: Revised Evaluate function

are used to check these properties. They are, in fact, the same as conventional
methods that can unfold only outermost AG operators.

4.4.2 Performance of model checking

We have implemented a model checker, named BINGO, and applied it to
our industrial benchmark examples and the VIS [BHSV+96] examples. Ta-
ble 4.2 summarizes number of Boolean state variables, number of reachable
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Table 4.2: Benchmark examples

Model FFs States Depth Description

atm sw 54 2.0×105 126 ATM-switch [CYF94]
dh 1 46 4.0×103 21 bus protocol
dh 2 66 7.9×106 17 cache coherence
dh 3 96 3.7×108 40 cache coherence
vpp 101 2.4×1011 18 VLIW pipeline
pipe s1 35 4.4×107 11 superscalar pipeline
pipe s2 35 4.5×107 11 superscalar pipeline
pipe d1 73 5.7×1017 11 superscalar pipeline
pipe d2 73 5.7×1017 11 superscalar pipeline
elevator 32 6.7×105 27 VIS example
ether213 118 7.0×104 81 VIS example

states, and number of image computations to reach the fixed-point on reach-
ability analysis. We checked one property for each model except dh 2 and
ether213. For dh 2 and ether213, we checked one failing property and
one passing property. Models pipe s2 and pipe d2 are revised versions of
pipe s1 and pipe d1 respectively. The property passes on the later version,
while it fails on the earlier version. All properties are originally written in
CTL. We have rewritten it into a complement ω-regular expression by hand
for each benchmark. BINGO reads an ω-regular expression and builds the cor-
responding property graph. A typical CTL property is AG(p→ AFq), which
is rewritten to [true]∗[p∧¬q][¬q]ω . If the property has fairness constraints
C1, . . . ,Cn, which must be satisfied infinitely often, the regular expression is
modified to [true]∗[p∧¬q]([¬q∧¬C1]

∗[¬q∧C1] · · · [¬q∧¬Cn]
∗[¬q∧Cn])

ω .
Model elevator has such fairness constraints.

The results are shown in Table 4.3 and Table 4.4. Standard CTL
model checking (labeled ‘BW’), forward model checking with breadth-first
scheduling (labeled ‘FW-BF’), and forward model checking with depth-first
scheduling (labeled ‘FW-DF’) were tested on BINGO. Rows in each box
show the total number of image computations (including pre-image com-
putations in CTL model checking), CPU time, and the peak number of
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Table 4.3: Results for failing properties

VIS BINGO
Model BW BW FW-BF FW-DF

atm sw

213 img
5730 sec

26469k

192 img
287 sec

1359k

37 img
8 sec
249k

51 img
7 sec
220k

dh 1

50 img
1 sec

26k

36 img
3 sec

21k

29 img
1 sec

16k

20 img
1 sec

6k

dh 2

 118 img
28807 sec

11992k


 96 img

10400 sec
6753k

 78 img
139 sec

1277k

31 img
5 sec

99k

dh 3 (> 1000MB) (> 1000MB)
77 img

1647 sec
5818k

53 img
128 sec

1166k

vpp

45 img
330 sec
11263k

29 img
113 sec

559k

26 img
21 sec

371k

21 img
12 sec

225k

pipe s1

46 img
5 sec
360k

27 img
12 sec

223k

26 img
6 sec
383k

20 img
1 sec

54k

pipe d1 (> 1000MB) (> 1000MB)
24 img
179 sec

5079k

13 img
14 sec

865k

elevator

900 img
28 sec

441k

1018 img
184 sec

167k

173 img
20 sec

309k

17 img
6 sec
114k

ether213

135 img
2527 sec

16519k

98 img
152 sec

1328k

113 img
88 sec

941k

35 img
5 sec

93k
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Table 4.4: Results for passing properties

VIS BINGO
Model BW BW FW-BF FW-DF

dh 2

66 img
24915 sec

23451k

64 img
17193 sec

17837k

63 img
88 sec
1281k

176 img
175 sec

2261k

pipe s2

33 img
2 sec
111k

32 img
19 sec

287k

30 img
5 sec
224k

53 img
7 sec
144k

pipe d2 (> 1000MB)(> 1000MB)
25 img
100 sec

2409k

56 img
104 sec

2687k

ether213

114 img
88 sec
5469k

113 img
138 sec

873k

111 img
76 sec

910k

1114 img
413 sec

961k

BDD nodes. We also experimented with VIS version 1.3 for reference. Ex-
ecution parameters for VIS were set based on one of its standard script,
‘script model check.robust’. All benchmarks were run on 400MHz
Pentium II processors under a memory limit of 1000 megabytes. We provided
a good initial BDD variable order for each benchmark, and turned off dynamic
variable reordering of BINGO and VIS to measure basic performance of the
algorithms. For the benchmarks that could not be completed within the mem-
ory limit, we also experimented on it with dynamic reordering. Results with
dynamic reordering are shown in parenthesis.

Table 4.3 indicates that depth-first scheduling is very efficient in average
for failing properties. We obtained one-figure improvements in CPU time
and memory usage for large examples. Although the efficiency of depth-first
scheduling would depend on the design error, actual design errors have been
found effectively in our all examples.

Table 4.4 indicates that depth-first scheduling is not far inferior to the
ordinary breadth-first scheduling for passing properties. It means that we
can safely use depth-first scheduling even if we cannot expect whether the
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property fails. Model ether213 is the worst case for CPU time of depth-
first scheduling compared with breadth-first scheduling. It was caused by the
difference of the number of image computations.

It is generally recognized that design errors lead the model to unexpected
behavior and often make symbolic state traversal more expensive. The breadth-
first results of pipe d1 and pipe d2 show such a situation. pipe d1 has
a design error and it is more expensive to check than pipe d2. The problem
was avoided by depth-first scheduling because the error was found without
searching the entire space.

4.5 Chapter summary

We have presented an efficient symbolic model checking algorithm for CTL
properties and ω-regular properties. The algorithm is based mainly on forward
state traversal, which often gives better performance than backward traversal
for actual verification problems. It can be mixed with conventional backward
CTL evaluation techniques, and is applicable to arbitrary CTL properties.
An ω-regular property is manipulated explicitly as a non-deterministic state
transition graph. It separates the property from the implicit state space, in
contrast to the conventional algorithm that traverses an implicit state space
of the product automata. The explicit property graph enables us to navigate
state traversal to the buggy space in order to find bugs in small CPU time and
memory. It should become a good framework of incremental or approximate
verification, into which valuable ideas for reachability analysis are imported.
Strategy of scheduling and partitioning on property node evaluation is the key
points for utilizing this method.
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CHAPTER 5
Verification Techniques for

Applications beyond LSI Design

Graph enumeration and indexing problems are important applications of BDDs
and ZDDs, which include enumeration/indexing of paths, cycles, connected
components, trees, forests, cut sets, partitioning, cliques, colorings, tilings,
and matching. They are tightly related to various real-life verification prob-
lems, such as geographic information systems, dependency analysis, and
demarcation problems. Each problem is solved implicitly by construction of a
monolithic ZDD representing a family of all instances, where each instance
(path, cycle, etc.) is represented by a set of graph edges or vertices. Some of
them can be constructed efficiently by conventional bottom-up ZDD opera-
tions; others are covered by frontier-based methods, which construct result
ZDDs directly from the root to the terminal nodes [Min13].

Coudert introduced a ZDD based framework for solving graph and set
related optimization problems [Cou97]. It includes a bottom-up construc-
tion algorithm of the ZDD that represents all maximal cliques of a given
graph. Sekine et al. proposed top-down BDD construction algorithms for
computing Tutte polynomial and all spanning trees of a given graph [SIT95].
They also showed that the BDD for all spanning trees can be used to ob-
tain a BDD for all forests and a BDD for all paths between two vertices
[SI97]. Knuth’s introduced a frontier-based method to construct a ZDD
representing all paths between two vertices in a top-down way [Knu11, ex-
ercise 225 in 7.1.4]. His algorithm is so efficient that a ZDD represent-
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ing 227449714676812739631826459327989863387613323440 paths on a
15× 15 grid graph is constructed in a few minutes. Cycles, Hamiltonian
paths, and path matching of a given graph can also be computed by frontier-
based methods [Knu11, YSK+12].

In the first half of this chapter, we present new techniques toward an
efficient ZDD framework to deal with frontier-based methods. In the second
half, we demonstrate the power of frontier-based methods by computing
the number of self-avoiding walks connecting opposite corners of a 26×26
square lattice, which is the current world record registered in the On-Line
Encyclopedia of Integer Sequences [OEIa].

5.1 ZDD-based enumeration method using
recursive specifications

Our approach applies the ZDD node deletion rule on the fly, while conventional
methods do not take it into account. We also introduce top-down ZDD
construction algorithms for a combination of multiple properties. They do not
construct intermediate ZDDs for all the properties, which may blow up and
become bottleneck in conventional methods. Although we describe techniques
for ZDDs hereafter, many of them are also applicable to BDDs.

5.1.1 Recursive specifications

The basic idea is to define a common interface to ad hoc parts of the algorithms.
We define that a configuration is a node label used in a top-down construc-
tion algorithm, composed of a pair 〈i,s〉 of node index i (1 ≤ i ≤ n) and
other information s. We assume that 〈n+1,0〉 and 〈n+1,1〉 are pre-defined
configurations for the 0- and 1-terminals respectively.

A recursive specification of a ZDD is a definition of the following pair of
functions:

• ROOT() takes no argument and returns a root configuration, or a con-
figuration of the root node;
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• CHILD(〈i,s〉 ,b) takes configuration 〈i,s〉 of a node and branch b ∈
{0,1} as arguments, and returns a new configuration for the b-child of
the node.

A recursive specification can be viewed as a blueprint of a ZDD since it
implicitly represents a unique diagram structure in a compact form. Many
interesting top-down ZDD construction algorithms, including SIMPATH, can
be adapted in this framework.

For example, let us consider a ZDD representing a family of all combina-
tions of k items out of n items where node index i corresponds to the i-th item
for 1≤ i≤ n. We define a set of configurations for nonterminal nodes as

{ 〈i,s〉 | 1≤ i≤ n, 0≤ s≤ k }

where i is the item index for the next decision and s is the number of items
included before that node. The current item set is rejected immediately when
s > k, and accepted when s = k and no more undecided item remains. Its
recursive specification Combn,k is defined as follows:

Combn,k.ROOT()

1: return 〈1,0〉;

Combn,k.CHILD(〈i,s〉 ,b)
1: s← s+b;
2: if i = n and s = k, return 〈n+1,1〉; // 1
3: if i = n or s > k, return 〈n+1,0〉; // 0
4: return 〈i+1,s〉.

Figure 5.1 shows the ZDD specified by Comb5,2 before and after reduction.
In this case, it is not very difficult to define the recursive specification that
directly represents the reduced ZDD structure:

Comb′n,k.ROOT()

1: return 〈1,0〉;

Comb′n,k.CHILD(〈i,s〉 ,b)
1: s← s+b;
2: if s = k, return 〈n+1,1〉; // 1
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(a) Before reduction (b) After reduction

Figure 5.1: ZDD structure for Comb5,2

3: if s+n− i < k, return 〈n+1,0〉; // 0
4: return 〈i+1,s〉.

The current item set is rejected as soon as we find that the remaining items are
too few to make the k-combination. It is accepted as soon as s = k is satisfied
without taking all the remaining items.

5.1.2 General top-down ZDD construction algorithm

Provided that the recursive specifications are given, the top-down ZDD con-
struction can be processed by a common algorithm shown below; let S be a
recursive specification and n be the number of its input variables:

CONSTRUCT(S)
1: 〈i0,s0〉 ← S.ROOT();
2: create a new node r and label it as 〈i0,s0〉;
3: for i = i0 to n do
4: for all node p labeled 〈i,s〉 for some s do
5: for all b ∈ {0,1} do
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6: 〈i′,s′〉 ← S.CHILD(〈i,s〉 ,b);
7: if 〈i′,s′〉 corresponds to a terminal node then
8: set it to the b-child of p;
9: else

10: find or create node p′ labeled 〈i′,s′〉;
11: set p′ to the b-child of p;
12: end if
13: end for
14: end for
15: end for
16: return REDUCE(r).

This algorithm searches all reachable configurations of S from the root to
the terminals in a breadth-first manner. Hash tables can be used to ensure
one-to-one correspondence between configurations and ZDD nodes. Their
entries should be disposed properly because memory size for a configuration
might be much larger than that for a ZDD node. Assuming that the hash table
operations and evaluations of the recursive specification are constant time
operations, this algorithm runs in linear time against the number of reachable
configurations.

5.1.3 Parallelizing the construction algorithm

We can parallelize the loop at lines 4–14 of CONSTRUCT based on the fact that
the tasks are independent except for the hash table operations at line 10. One
can use thread-safe hash table for this purpose; or can divide the hash table
into the multiple ones that manage disjoint subsets of possible configurations.
The following algorithm makes use of the latter idea:

PARCONSTRUCT(S)
1: 〈i0,s0〉 ← S.ROOT();
2: let d be a dummy node;
3: insert 〈s0,d,0〉 to bucket[i0][1];
4: for i = i0 to n do
5: for all k ∈ {1, . . . ,m} do // in parallel
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6: for all
〈
s, p̂, b̂

〉
∈ bucket[i][k] do

7: find or create node p labeled 〈i,s〉;
8: set p to the b̂-child of p̂;
9: if p is newly created then

10: for all b ∈ {0,1} do
11: 〈i′,s′〉 ← S.CHILD(〈i,s〉 ,b);
12: if 〈i′,s′〉 corresponds to a terminal node then
13: set it to the b-child of p;
14: else
15: k′← bucket number for 〈i′,s′〉;
16: insert 〈s′, p,b〉 to bucket[i′][k′];
17: end if
18: end for
19: end if
20: end for
21: end for
22: end for
23: let r be the 0-child of d;
24: return REDUCE(r).

In the above algorithm, configurations are grouped into m buckets; bucket[i][k]
works as a task queue for node index i ∈ {1, . . . ,n} and bucket number k ∈
{1, . . . ,m}. Since tasks for the same configurations are always stored in the
same bucket, different buckets can be processed in parallel without caring
about thread-safeness of the hash tables. The number of buckets m should be
larger enough than the number of parallel threads for better load balancing,
and should be smaller enough than the average number of nodes for each
index for less overhead costs. The reduction algorithm in 2.1.1 also can be
parallelized in similar ways.
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5.1.4 Operations on recursive specifications

Lookahead

In general, any reduced/unreduced ZDD can be represented by a recursive
specification; the index might be increased by more than one in the CHILD

function when we take the zero-suppress rule aggressively into account. It im-
proves the performance of ZDD construction, while it may worsen simplicity
of the recursive specification. It would be pleased if an optimized specification
can be generated automatically from an easy-to-understand description for
humans.

The lookahead operation wraps a given recursive specification and makes
the one that represents a smaller and logically equivalent ZDD. It skips redun-
dant configurations of the original specification in terms of the zero-suppress
rule.

LOOKAHEAD(S).ROOT()

1: return S.ROOT();

LOOKAHEAD(S).CHILD(〈i,s〉 ,b)
1: 〈i′,s′〉 ← S.CHILD(〈i,s〉 ,b);
2: while i′ ≤ n and S.CHILD(〈i′,s′〉 ,1) = 〈n+1,0〉 do
3: 〈i′,s′〉 ← S.CHILD(〈i′,s′〉 ,0);
4: end while
5: return 〈i′,s′〉.

Figure 5.2 shows the result of SIMPATH for G3,3 combined with the looka-
head. In comparison with the original result (Figure 2.5), the number of
nonterminal nodes is reduced from 52 to 29. This example also shows that the
lookahead operation do not always remove all redundant nodes, because they
do not care the node sharing and do not backtrack for the node deletion.

Composition

Let us suppose that there are two properties represented by recursive speci-
fications and we want to compute the ZDD that represents the intersection
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Figure 5.2: ZDD constructed by SIMPATH with the lookahead
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of the properties. It is achieved easily by constructing two ZDDs from the
specifications and by applying the intersection operation on ZDDs.

In this section, we present an alternative to this approach, in which we
first composite the two specifications and then construct a ZDD. It has the
advantage of robustness when an intermediate ZDD may blow up while the
final ZDD should be compact.

Let S and T be recursive specifications and “�” be some binary operator
such as “∨” or “∧”. Here we consider a binary operation on S and T , namely
S�T , such that

CONSTRUCT(S�T ) = CONSTRUCT(S) � CONSTRUCT(T ) .

It can be defined as follows:

(S�T ).ROOT()

1: 〈i,s〉 ← S.ROOT();
2: 〈 j, t〉 ← T.ROOT();

3: return

{
〈n+1,s� t〉 if i = j = n+1,
〈min(i, j),〈i,s, j, t〉〉 otherwise.

(S�T ).CHILD(〈k,〈i,s, j, t〉〉 ,b) // k = min(i, j)

1: 〈i,s〉 ←


〈i,s〉 if k < i and b = 0,
〈n+1,0〉 if k < i and b = 1,
S.CHILD(〈i,s〉 ,b) otherwise;

2: 〈 j, t〉 ←


〈 j, t〉 if k < j and b = 0,
〈n+1,0〉 if k < j and b = 1,
S.CHILD(〈 j, t〉 ,b) otherwise;

3: return

{
〈n+1,s� t〉 if i = j = n+1,
〈min(i, j),〈i,s, j, t〉〉 otherwise.

In case the operation is set intersection, or logical AND when the ZDDs are
interpreted as Boolean functions, we can optimize it by taking more advantage
of the zero-suppress rule:

(S∩T ).ROOT()

1: return (S∩T ).SYNC(S.ROOT(), T.ROOT()).

(S∩T ).CHILD(〈i,〈s, t〉〉 ,b)
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1: return
(S∩T ).SYNC(S.CHILD(〈i,s〉 ,b), T.CHILD(〈i, t〉 ,b)).

(S∩T ).SYNC(〈i,s〉 ,〈 j, t〉)
1: while i 6= j do
2: if i < j, 〈i,s〉 ← S.CHILD(〈i,s〉 ,0);
3: if j < i, 〈 j, t〉 ← T.CHILD(〈 j, t〉 ,0);
4: end while
5: if i = n+1, return 〈n+1,s∧ t〉;
6: return 〈i,〈s, t〉〉.

Lines 1–4 of the SYNC subroutine skips the nodes that would have 1-edges to
the 0-terminal. It can be decided easily by checking if configurations derived
from S and T have different index numbers. We can go down through 0-
edges until the indices are synchronized. It is an interesting property of the
combination of intersection operation and zero-suppress rule.

Wrapping and subsetting

We can wrap an existing ZDD structure in a recursive specification. The
wrapper of ZDD f is given as follows:

WRAP( f ).ROOT()

1: i← the top index of f ;
2: return 〈i, f 〉;

WRAP( f ).CHILD(〈i, f 〉 ,b)
1: f ′← the b-child of f ;
2: i′← the top index of f ′;
3: return 〈i′, f ′〉.

The same ZDD structure as f can be derived from WRAP( f ), that is:

CONSTRUCT(WRAP( f )) = f .

The wrapping technique extends the usefulness of the operations on recursive
specifications. Let us suppose the situation where we have some ZDD f
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and want to restrict it by a property represented by specification S. It can be
computed as usual by the intersection operation on ZDDs:

f ∩ CONSTRUCT(S) .

Using the wrapping technique, we can also compute it as the intersection on
specifications:

CONSTRUCT(WRAP( f ) ∩ S) .

We call it subsetting technique on top-down ZDD construction, which is an
alternative that is worth trying when Construct(S) becomes the bottleneck in
the usual method.

5.1.5 Experimental results

Our top-down ZDD construction framework is implemented in C++. We mea-
sured single-threaded performance of the algorithms on 2.67GHz Intel Xeon
E7-8837 CPU with 1.5TB memory running 64-bit SUSE Linux Enterprise
Server 11.

Path enumeration

First, we evaluated the efficiency of our framework in comparison with the orig-
inal SIMPATH implementation [Knu], and measured improvements achieved
by the lookahead and subsetting techniques.

We experimented with graph examples listed in Table 5.1, where m is the
number of vertices, n is the number of edges, and #path is the number of
paths to be enumerated (paths between v1 and vm). We used complete graphs
(Km), triangular grid graphs (Tα,β ), square grid graphs (Gα,β ), and hexagonal
grid graphs (Hα,β ) as benchmark examples. The grid graphs and their vertex
ordering rules are shown in Figure 5.3. The edge order (ZDD variable order)
is defined lexicographically with the vertex order: {vi,v j} ≤ {vi′,v j′} if and
only if vi < vi′ or (vi = vi′ and v j ≤ v j′) where vi ≤ v j and vi′ ≤ v j′. We have
tested some simple vertex ordering rules and have chosen the one that makes
final ZDDs compact.
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Table 5.1: Characteristics of graph examples

SIMPATH (sec.)
Graph m n #path Main Reduce

K17 17 136 3.55×1012 16.45 18.27
K18 18 153 5.69×1013 57.45 59.70
K19 19 171 9.67×1014 183.98 194.77
K20 20 190 1.74×1016 641.52 662.34
K21 21 210 3.31×1017 2106.68 2344.67
K22 22 231 6.61×1018 7201.05 7939.68

T11,11 121 320 4.35×1039 5.58 7.20
T12,12 144 385 6.81×1047 27.39 30.48
T13,13 169 456 6.33×1056 115.19 124.89
T14,14 196 533 3.50×1066 504.95 522.68
T15,15 225 616 1.15×1077 2168.47 2260.38
T16,16 256 705 2.24×1088 8868.41 9218.46
G13,13 169 312 6.45×1034 12.42 14.94
G14,14 196 364 6.95×1040 46.23 50.40
G15,15 225 420 2.27×1047 152.77 161.76
G16,16 256 480 2.27×1054 503.63 534.77
G17,17 289 544 6.87×1061 1644.86 1826.86
G18,18 324 612 6.34×1069 5598.11 5912.85
H22,23 506 726 2.20×1061 10.91 11.90
H24,25 600 864 4.90×1073 37.77 39.70
H26,27 702 1014 1.50×1087 136.18 129.32
H28,29 812 1176 6.28×10101 452.25 434.77
H30,31 930 1350 3.61×10117 1531.62 1486.30
H32,33 1056 1536 2.85×10134 4935.35 4864.38
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(a) Tα,β (b) Gα,β

(c) Hα,β

Figure 5.3: Grid graphs and their vertex order
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Figure 5.4: Sets of graph edges represented by Degree(G3,3,1,9)

Table 5.1 also includes CPU time for the original SIMPATH implementa-
tion,1 which is composed of the main program and the ZDD reduction program.
The columns “Main” and “Reduce” show their CPU time in seconds. Note
that they hand over an unreduced ZDD via text file, while our implementation
performs both ZDD construction and reduction on memory.

We wrote the recursive specification Path(G,v1,vm) that corresponds to
the SIMPATH algorithm. The parameter G = (V,E) is a target graph where
V = {v1, . . . ,vm} is a set of vertices and E = {e1, . . . ,en} is a set of edges.
We also wrote the recursive specification Degree(G,v1,vm) that represents
constraints on vertex degrees (number of edges incident to a vertex). If E ′ ⊆ E
forms a path between vertices v1 and vm, vertices in graph G′ = (V,E ′) must
have a degree of 0 or 2 except that v1 and vm must have a degree of 1. That
condition is necessary but not sufficient for the set of edges to form a path. For
example, Figure 5.4 shows the 14 instances represented by Degree(G3,3,1,9),
which include the 2 instances that do not actually form paths.

We compared a basic one-pass method (1P), that with lookahead (1P+L),
a two-pass subsetting method (2P), and that with lookahead (2P+L). The four
methods are defined as follows:

1P f ← CONSTRUCT(Path(G,v1,vm));

1P+L f ← CONSTRUCT(LOOKAHEAD(Path(G,v1,vm)));

2P g← CONSTRUCT(Degree(G,v1,vm));
f ← CONSTRUCT(WRAP(g) ∩ Path(G,v1,vm));

1We have slightly modified the programs in order to process larger input graphs on a 64-bit
machine.
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Table 5.2: CPU time for path enumeration (sec.)

Graph 1P 1P+L 2P 2P+L
K17 18.68 13.86 11.06 11.09
K18 62.50 47.69 33.10 33.93
K19 210.82 169.54 103.84 109.43
K20 776.18 586.84 318.73 322.96
K21 2573.39 2083.32 1096.70 1024.71
K22 9683.19 7068.47 3839.62 3856.21

T11,11 5.32 3.44 4.66 4.86
T12,12 26.78 17.11 21.04 21.27
T13,13 115.23 78.26 84.69 85.66
T14,14 555.83 340.44 372.78 334.79
T15,15 2121.35 1610.42 1355.35 1357.32
T16,16 11185.38 6587.02 5499.10 5644.78
G13,13 10.53 6.53 6.13 5.71
G14,14 41.09 25.31 20.08 18.76
G15,15 159.97 91.54 64.80 60.34
G16,16 501.28 320.46 211.42 193.67
G17,17 1693.46 1067.76 681.77 636.42
G18,18 6398.75 3664.18 2296.25 2274.09
H22,23 6.07 3.63 3.94 3.47
H24,25 32.98 18.29 16.37 14.34
H26,27 124.76 70.37 55.55 47.81
H28,29 454.18 268.33 183.16 165.88
H30,31 1542.16 953.21 610.25 571.67
H32,33 5680.29 3275.21 2078.65 1934.34

2P+L g← CONSTRUCT(LOOKAHEAD(Degree(G,v1,vm)));
f ←CONSTRUCT(WRAP(g)∩ LOOKAHEAD(Path(G,v1,vm))).

Table 5.2 shows CPU time of the four methods. In comparison with
the original SIMPATH implementation (Table 5.1), our implementation 1P
looks reasonably fast. It shows that there is no noticeable overhead in our
top-down construction framework. The lookahead and subsetting techniques
accelerated top-down ZDD construction by a factor of 1.1 to 2.9. Figure 5.5

79



5. VERIFICATION TECHNIQUES FOR APPLICATIONS BEYOND LSI DESIGN

Figure 5.5: Speed ratio for path enumeration

summarizes computation speed of methods 1P+L, 2P, and 2P+L relative to the
basic method 1P. While the fastest method is dependent on the example, we
can read that the subsetting technique is relatively effective in large examples.

Construction of ZDD g dominates CPU time in 2P and 2P+L because
g is much smaller than f . Table 5.3 compares ZDD size (the number of
nonterminal nodes) of g and f . The larger the graph is, the larger the size
difference between g and f becomes. “Peak size” is the ZDD size just before
the reduction phase, which indicates the number of iterations run in both
construction and reduction phases. The lookahead and subsetting techniques
have effect to reduce 40 to 50 percent of the peak size. It is interesting that
methods 1P+L and 2P does not show much difference in the peak size of f ,
even though the node deletion rule is not checked explicitly in 2P. It means
that the zero-suppress information was effectively inherited from g in the
subsetting method.

The total memory usage in megabytes is shown in Table 5.4. It is confirmed
that the lookahead and subsetting techniques are also effective to reduce
memory usage.
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Table 5.3: ZDD size in path enumeration
g f

Peak size Final size Peak size Final size
Graph 2P 2P+L 1P 1P+L 2P 2P+L

K17 3,383,182 1,446,371 1,415,798 31,687,586 16,776,941 17,913,664 16,685,440 15,469,186
K18 7,803,921 3,331,561 3,266,139 98,595,128 52,894,116 56,302,697 52,644,447 48,935,273
K19 17,916,021 7,638,950 7,498,891 309,329,033 168,011,957 178,326,054 167,320,943 155,922,881
K20 40,960,634 17,445,357 17,144,913 978,702,177 537,803,391 569,319,129 535,863,645 500,559,700
K21 93,303,788 39,699,692 39,055,059 3,122,714,316 1,734,809,580 1,832,020,786 1,729,287,871 1,619,050,484
K22 211,843,795 90,058,256 88,674,234 10,047,097,379 5,639,089,096 5,941,791,248 5,623,154,813 5,276,150,643

T11,11 3,454,359 1,678,273 1,534,383 13,365,043 6,909,231 7,648,691 6,909,231 6,432,417
T12,12 11,445,656 5,558,016 5,075,298 53,816,252 27,977,245 30,916,232 27,977,245 26,076,799
T13,13 37,584,679 18,243,715 16,642,341 215,875,876 112,786,898 124,439,778 112,786,898 105,238,888
T14,14 122,497,140 59,440,240 54,176,364 863,508,297 453,159,395 499,288,002 453,159,395 423,254,393
T15,15 396,720,695 192,448,119 175,277,115 3,446,706,536 1,816,007,604 1,998,415,097 1,816,007,604 1,697,726,218
T16,16 1,277,849,872 619,726,690 564,075,414 13,735,340,349 7,262,868,868 7,983,662,545 7,262,868,868 6,795,583,172
G13,13 1,952,762 983,037 971,773 26,894,640 15,032,057 16,178,631 15,032,057 13,803,430
G14,14 4,599,802 2,314,237 2,289,661 86,698,791 48,641,299 52,307,691 48,641,299 44,871,856
G15,15 10,702,842 5,382,141 5,328,893 277,581,568 156,253,978 167,908,407 156,253,978 144,759,636
G16,16 24,641,530 12,386,301 12,271,613 883,640,711 498,888,415 535,749,877 498,888,415 464,004,180
G17,17 56,213,498 28,246,013 28,000,253 2,799,256,918 1,584,605,112 1,700,699,101 1,584,605,112 1,479,128,501
G18,18 127,205,370 63,897,597 63,373,309 8,830,604,856 5,010,748,938 5,375,051,545 5,010,748,938 4,692,765,814
H22,23 1,895,414 1,004,539 897,019 20,985,221 12,431,317 13,117,268 12,431,317 10,686,910
H24,25 4,548,598 2,410,491 2,151,419 68,690,969 40,853,448 43,081,787 40,853,448 35,229,328
H26,27 10,751,990 5,697,531 5,083,131 222,730,862 132,929,717 140,105,957 132,929,717 114,956,610
H28,29 25,092,086 13,295,611 11,857,915 716,615,275 429,006,718 451,953,721 429,006,718 371,973,561
H30,31 57,917,430 30,687,227 27,361,275 2,290,741,210 1,375,126,756 1,448,070,796 1,375,126,756 1,195,179,926
H32,33 132,415,478 70,156,283 62,537,723 7,282,606,658 4,382,454,784 4,613,178,936 4,382,454,784 3,817,373,513

Figure 5.6: Numberlink problem and its solution

Numberlink and Slitherlink puzzles

Secondly, we have improved the ZDD-based solvers of Numberlink and Slith-
erlink introduced in [YSK+12] using the lookahead and subsetting techniques.
Examples of Numberlink and Slitherlink are shown in Figure 5.6 and Fig-

ure 5.7 respectively. They are logic puzzles that involve finding the paths or the
cycle that satisfy given local and global properties [Nikc]. These experiments
show case studies of designing efficient ZDD construction procedures on our
framework.
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Table 5.4: Memory usage for path enumeration (MB)

Graph 1P 1P+L 2P 2P+L
K17 891 806 986 951
K18 2,701 2,717 3,447 3,187
K19 8,204 8,293 10,831 10,250
K20 26,173 26,275 33,392 32,031
K21 82,395 84,297 112,346 108,139
K22 254,359 272,999 367,226 357,666

T11,11 327 194 249 231
T12,12 1,273 713 905 820
T13,13 5,059 2,770 3,616 3,121
T14,14 20,075 10,855 13,202 12,086
T15,15 79,987 43,862 53,101 49,570
T16,16 318,664 184,504 224,682 205,607
G13,13 786 402 412 388
G14,14 2,277 1,212 1,287 1,202
G15,15 6,532 3,758 4,079 3,802
G16,16 20,721 11,927 13,017 12,125
G17,17 65,952 37,686 41,235 38,419
G18,18 206,430 118,760 129,699 120,904
H22,23 505 322 333 319
H24,25 1,652 990 1,045 986
H26,27 5,464 3,155 3,318 3,151
H28,29 16,639 10,422 10,640 10,081
H30,31 53,028 32,016 33,912 32,215
H32,33 168,351 101,819 107,812 102,273

Figure 5.7: Slitherlink problem and its solution
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Table 5.5: Characteristics of Numberlink problems

Name Graph m n Description
BN64 G10,10 100 180 64th problem in [Nik89]
BN79 G10,10 100 180 79th problem in [Nik89]
BN85 G20,15 300 565 85th problem in [Nik89]
BN99 G20,15 300 565 99th problem in [Nik89]
C108 G36,20 720 1384 Vol. 108 in [Nika]

Numberlink solver Numberlink is played on a grid with the following rules.

1. Connect pairs of the same hint numbers with a continuous line.

2. Lines go through the center of the cells, horizontally, vertically, or
changing direction, and never twice through the same cell.

3. Lines cannot cross, branch off, or go through the cells with hint numbers.

4. Lines must cover all the cells.

It can be viewed as a problem of finding a path matching on grid graph G
under hint h where each cell corresponds to a vertex of G. It can be solved by
an algorithm derived from SIMPATH [YSK+12]. The output is the ZDD that
represents the set of all solutions, which must be a singleton if the problem is
designed correctly.

We have experimented on Numberlink problems listed in Table 5.5. In the
same way as experiments in the previous section, we wrote the main algorithm
as recursive specification Numlin(G,h), which gives the exact solutions, and
also wrote the constraints on vertex degrees (1 for vertices with hint numbers
and 2 for others) as another recursive specification Degree(G,h), which gives
a superset of the solutions. We compared a basic one-pass method (1P), that
with lookahead (1P+L), a two-pass subsetting method (2P), and that with
lookahead (2P+L). The four methods are defined as follows:

1P f ← CONSTRUCT(Numlin(G,h));

1P+L f ← CONSTRUCT(LOOKAHEAD(Numlin(G,h)));
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Table 5.6: CPU time for solving Numberlink puzzles (sec.)

Name 1P 1P+L 2P 2P+L
BN64 0.02 0.01 0.02 0.02
BN79 0.03 0.02 0.03 0.03
BN85 72.69 42.19 32.93 27.14
BN99 79.95 42.47 38.72 28.97
C108 10092.48 5546.26 4653.71 3309.26

Table 5.7: Memory usage for solving Numberlink puzzles (MB)

Name 1P 1P+L 2P 2P+L
BN64 4 3 10 9
BN79 9 6 20 14
BN85 8,010 4,741 6,118 4,561
BN99 8,907 5,073 6,965 5,013
C108 817,969 467,968 644,967 474,646

2P g← CONSTRUCT(Degree(G,h));
f ← CONSTRUCT(WRAP(g) ∩ Numlin(G,h));

2P+L g← CONSTRUCT(LOOKAHEAD(Degree(G,h)));
f ← CONSTRUCT(WRAP(g) ∩ LOOKAHEAD(Numlin(G,h))).

In the methods 2P and 2P+L, g is used as a search space for the solutions.
Table 5.6 and Table 5.7 show CPU time in seconds and memory usage

in megabytes respectively. The lookahead and subsetting techniques were
effective for the Numberlink solvers to reduce CPU time and memory usage.
Method 2P+L was the fastest and was about three times as fast as the basic
method 1L.

Slitherlink solver Slitherlink is played on a grid of dots with the following
rules.

1. Connect adjacent dots with vertical or horizontal lines.

2. A single loop is formed with no crossing or branch.
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Table 5.8: Characteristics of Slitherlink problems

Name Graph m n Description
BS68 G25,15 375 710 68th problem in [Nik92]
BS77 G25,15 375 710 77th problem in [Nik92]
BS89 G37,21 777 1496 89th problem in [Nik92]
BS96 G37,21 777 1496 96th problem in [Nik92]
S10 G37,21 777 1496 10th problem in [Nikb]
C95 G46,32 1472 2866 Vol. 95 in [Nika]
C103 G46,32 1472 2866 Vol. 103 in [Nika]
C113 G46,32 1472 2866 Vol. 113 in [Nika]

3. Each hint cell indicates the number of lines surrounding it, while empty
cells may be surrounded by any number of lines.

It can be viewed as a problem of finding a cycle on grid graph G under hint h
where each dot corresponds to a vertex of G. It can be solved by an algorithm
also derived from SIMPATH [YSK+12]. The output is the ZDD that represents
the set of all solutions, which must be a singleton if the problem is designed
correctly.

We have experimented on Slitherlink problems listed in Table 5.8. We
made three recursive specifications: Cycle(G) for enumerating all cycles in
G, Hint(G,h) for the constraints defined by the hints, and Degree(G) for the
constraints on vertex degrees (0 or 2 for all vertices). Intersection of Cycle(G)

and Hint(G,h) gives the solution, while Degree(G) is expected to be an extra
guide to get the solution. ZDD for ACycle(G) could not be constructed because
G is fairly large in the Slitherlink problems. We compared a basic one-pass
method (1P), that with lookahead (1P+L), a two-pass subsetting method (2P),
that with lookahead (2P+L), a three-pass subsetting method (3P), and that
with lookahead (3P+L), using Hint(G,h) as the start points of the subsetting
methods. The six methods are defined as follows:

1P f ← CONSTRUCT(Hint(G,h) ∩ Cycle(G));

1P+L f ← CONSTRUCT(LOOKAHEAD(Hint(G,h) ∩ Cycle(G)));
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Table 5.9: CPU time for solving Slitherlink puzzles (sec.)

Name 1P 1P+L 2P 2P+L 3P 3P+L
BS68 0.02 0.02 0.02 0.02 0.02 0.02
BS77 0.04 0.04 0.02 0.02 0.02 0.01
BS89 1.92 1.11 0.85 0.52 1.79 1.16
BS96 6.60 3.43 2.34 1.43 12.21 7.59
S10 25.92 12.75 7.94 4.19 10.15 6.06
C95 12095.40 5209.64 2394.51 1284.40 1304.61 740.11

C103 6456.14 2400.81 1434.15 808.77 7830.46 4385.51
C113 713.80 341.19 285.49 155.98 393.05 243.67

Table 5.10: Memory usage for solving Slitherlink puzzles (MB)

Name 1P 1P+L 2P 2P+L 3P 3P+L
BS68 7 7 17 12 19 14
BS77 12 8 24 17 18 13
BS89 340 173 430 301 689 540
BS96 817 426 761 552 2,517 1,570
S10 2,247 1,113 1,382 936 2,025 1,273
C95 624,616 318,325 211,630 124,468 149,335 89,381
C103 364,887 178,929 139,410 84,036 739,841 441,777
C113 44,478 21,776 32,714 19,231 56,104 33,072

2P g← CONSTRUCT(Hint(G,h));
f ← CONSTRUCT(WRAP(g) ∩ Cycle(G));

2P+L g← CONSTRUCT(LOOKAHEAD(Hint(G,h)));
f ← CONSTRUCT(WRAP(g) ∩ LOOKAHEAD(Cycle(G)));

3P g← CONSTRUCT(Hint(G,h));
g′← CONSTRUCT(WRAP(g) ∩ Degree(G));
f ← CONSTRUCT(WRAP(g′) ∩ Cycle(G));

3P+L g← CONSTRUCT(LOOKAHEAD(Hint(G,h)));
g′← CONSTRUCT(WRAP(g) ∩ LOOKAHEAD(Degree(G)));
f ← CONSTRUCT(WRAP(g′) ∩ LOOKAHEAD(Cycle(G)));
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Table 5.9 and Table 5.10 describe CPU time in seconds and memory usage
in megabytes respectively. Method 2P+L was the fastest for most examples,
while 3P+L was very efficient for C95. The results show that the lookahead
and subsetting techniques were effective also in Slitherlink solvers and that it
is not easy to find the best subsetting strategy before trial.

5.2 Fast computation of self-avoiding
walks crossing a square lattice

A path in a graph is a way to go from a vertex to another vertex without
visiting any vertex twice. It is also referred to as a self-avoiding walk (SAW),
which is known to be introduced by the chemist Flory as a model of polymer
chains [Flo49]. In spite of its simple definition, many difficult mathematical
problems are hidden behind SAWs [MS93, Wei]. They include a problem
of counting the number of SAWs from (0,0) to (n,n) in a grid graph, which
has become popular in Japan through a YouTube-animation demonstrating
importance of algorithms against combinatorial explosion [Dea]. The answer
is known to grow as λ n2+o(n2) and λ ' 1.7 [BMGJ05]. When n = 10, it is
about 1024 and cannot be counted one by one in a realistic time even if we
could find trillions of paths in a second.

According to the On-Line Encyclopedia of Integer Sequences (OEIS)
A007764 [OEIa], Rosendale computed the answers up to n = 11 in 1981
and Knuth computed the answer to n = 12 in 1995. Bousquet-Mélou et al.
presented the answers up to n = 19 in their paper [BMGJ05] in 2005, using
an algorithm based on the transfer-matrix method of Conway et al. [CEG93],
which makes good use of the fact that the target is a grid graph. On the other
hand, Knuth introduced a new algorithm for general graphs called SIMPATH in
2008 [Knu][Knu11, exercise 225 in 7.1.4], which constructs a zero-suppressed
binary decision diagram (ZDD) [Min93] representing a set of all paths between
two vertices in a graph. We have extended the answers up to n = 21 in 2012
by reimplementing SIMPATH to directly count the number of paths instead
of building a diagram. The record has been extended recently to n = 24 by
Spaans, using an efficient and parallel implementation of the transfer-matrix

87



5. VERIFICATION TECHNIQUES FOR APPLICATIONS BEYOND LSI DESIGN

Algorithm 1 Computation of the number of paths in a graph
1: let count be an empty hash table and mater represent an empty mapping;
2: count[mater]← 1;
3: for i = 1 to n do
4: let tmp be an empty hash table;
5: for all keys mate in count do
6: if exclusion of ei makes no unwanted endpoint then
7: mate0← the next state of mate when ei is excluded;
8: tmp[mate0]← tmp[mate0]+ count[mate];
9: end if

10: if inclusion of ei makes no unwanted endpoint, cycle, or branch then
11: mate1← the next state of mate when ei is included;
12: tmp[mate1]← tmp[mate1]+ count[mate];
13: end if
14: end for
15: count← tmp;
16: end for
17: let matet be a mapping with a single entry matet [vm] = v1;
18: return count[matet ].

method.
We introduce a SIMPATH-based algorithm optimized for grid graphs. On

the premise that the graph is a square grid, we can use a simple array with a
minimal perfect hash function instead of an ordinary hash table. We improve
the performance still more by various techniques such as in-place update and
parallel processing.

5.2.1 Algorithm for general graphs

Knuth’s SIMPATH algorithm introduced in 2.1.3 constructs a ZDD structure
for a set of paths in a graph. If we just want to know the number of paths, it can
be computed without constructing the ZDD structure as shown in Algorithm 1.
We use two hash tables from mates to integers, named count and tmp. Each
entry count[mate] represents the number of cases reaching mate. In lines 8 and
12 of Algorithm 1, we assume tmp[mate] = 0 when mate is not defined as a key
of tmp. At the end of the algorithm, count will have a single entry, which maps
the terminal state to the answer. Memory usage of this algorithm is dominated
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by the size of hash tables. It depends on the number of unique mates appearing
at each level, which cannot be foretold unless we know characteristics of the
input graph.

5.2.2 Basic idea for grid graphs

Let v(i, j) be the vertex at row i and column j of an n×n grid graph (1≤ i≤
n, 1≤ j ≤ n) and we compute the number of paths between v(1,1) and v(n,n).
We visit the vertices in the order of v(1,1), . . . ,v(1,n), v(2,1), . . . ,v(2,n), . . . and
make decisions on vertical line {v(i−1, j),v(i, j)} and horizontal line {v(i, j−1),v(i, j)}.
The frontier at the step visiting v(i, j) is {v(i,1), . . . ,v(i, j), v(i−1, j+1), . . . ,v(i−1,n)}.

The algorithm for general graphs keeps vertex identifiers of path endpoints
in a mate while we can compress the information efficiently on the premise
that the graph is embedded in a plane. Pairs of path endpoints always form
nested structure on the frontier because no path fragment can intersect. We
do not need to record all vertex identifiers of endpoint pairs but record only
whether they are left or right endpoints. Let s = c1c2 · · ·cn be a string, called
frontier state, at a step visiting v(i, j) where Σ = { , , , } and ck ∈ Σ is a
character representing a state of the k-th vertex in the frontier:

ck =


if the k-th vertex is a left endpoint;

if the k-th vertex is a right endpoint;

if k = j and the k-th vertex is an intermediate point;

otherwise.

We consider the endpoint connected to v(1,1) is always , a right endpoint .
is a special character only for c j, meaning that it is different from as we

cannot include the next horizontal line {v(i, j),v(i, j+1)}.
Examples of state transitions are shown in Figure 5.8. We have no alter-

natives of vertical line selections in every step, because {v(i−1, j),v(i, j)} must
be excluded if v(i−1, j) is not an endpoint and it must be included if v(i−1, j) is
an endpoint. Branches are always made for horizontal lines; a frontier state
changes only when {v(i, j−1),v(i, j)} is included except for to changes.
The state transition is summarized in Figure 5.9.
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Figure 5.8: Examples of state transitions on a 6×6 grid graph

Current state Next state
Line excluded Line included

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · N/A (cycle)

· · · · · · · · · · · · N/A (branch)

· · · · · · · · · · · · N/A (branch)

· · · · · · · · · · · · N/A (branch)

Figure 5.9: State transition table
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(a) Main states: M(0,1)→(6,0) (b) Blocked states: M(0,1)→(5,0)

Figure 5.10: Possible frontier states for a 6×6 grid graph

Since pairs are nested, the number of valid frontier states is closely
related to Motzkin numbers [DS77]. The n-th Motzkin number is given by
Mn =

∣∣∣M(0,0)→(n,0)

∣∣∣ where M(x1,y1)→(x2,y2) represents a set of routes from
coordinates (x1,y1) to coordinates (x2,y2) on x2− x1 steps of moves (1,1),
(1,−1), or (1,0) without visiting negative y-coordinates. They are given by
recurrence relation:

M0 = M1 = 1 ; Mn =
3(n−1)Mn−2 +(2n+1)Mn−1

n+2
. (5.1)

We divide frontier states into two classes: main states and blocked states.
A main state does not have and a blocked state has at the j-th position.
Let Σ′ = { , , }and S′ ⊂ Σ′n be a set of main states. S′ corresponds to
M(0,1)→(n,0) (Figure 5.10a) where characters , , and are associated
with moves (1,1), (1,−1), and (1,0) respectively. The number of main states
is given by:

Nn =
∣∣∣M(0,1)→(n,0)

∣∣∣ = Mn+1−Mn . (5.2)

Let S′′j ⊂ Σ′ j−1×{ }×Σ′n− j be a set of blocked states after visiting j-th
column. As all blocked states have at the j-th position, it can be ignored in
enumerating S′′j . That corresponds to M(0,1)→(n−1,0) (Figure 5.10b) and the
number of blocked states is given by Nn−1. Therefore, the total number of
frontier states is:

Nn +Nn−1 = Mn+1−Mn−1 . (5.3)

Since the domain of frontier states has become clear, we can define a
minimal perfect hash function ϕ j : S j→{1, . . . ,Nn +Nn−1} for each column
position 1≤ j ≤ n. It allows us to use a simple array instead of an ordinary
hash table to keep intermediate results. A simple implementation of ϕ j would
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Algorithm 2 Computation of the number of paths in a grid graph
1: count[k]← 0 for all 1≤ k ≤ Nn +Nn−1;

2: count[ϕ1(

n︷ ︸︸ ︷
· · · )]← 1;

3: for i = 1 to n do
4: for j = 1 to n−1 do
5: tmp[k]← 0 for all 1≤ k ≤ Nn +Nn−1;
6: for all s ∈ S j do
7: t← the next state of s when {v(i, j),v(i, j+1)} is excluded;
8: tmp[ϕ j+1(t)]← tmp[ϕ j+1(t)]+ count[ϕ j(s)];
9: u← the next state of s when {v(i, j),v(i, j+1)} is included;

10: if u is defined then
11: tmp[ϕ j+1(u)]← tmp[ϕ j+1(u)]+ count[ϕ j(s)];
12: end if
13: end for
14: count[k]← tmp[k] for all 1≤ k ≤ Nn +Nn−1;
15: end for
16: tmp[k]← 0 for all 1≤ k ≤ Nn +Nn−1;
17: for all s ∈ Sn do
18: t← the string made from s by replacing its with ;
19: tmp[ϕ1(t)]← tmp[ϕ1(t)]+ count[ϕn(s)];
20: end for
21: count[k]← tmp[k] for all 1≤ k ≤ Nn +Nn−1;
22: end for

23: return count[ϕ1(

n︷ ︸︸ ︷
· · · )];

scan characters in a given state string one by one and would calculate the serial
number using some function or lookup table. Our improved implementation
is described later in 5.2.3.

Algorithm 2 shows the basic method for computing the number of paths
in a grid graph. The count array keeps the integers that represent the numbers
of cases for all frontier states at the current step. For example, if we apply
this algorithm to a 24×24 grid graph using 56-byte integers, count requires
(M25−M23)× 56 bytes = 413 gigabytes of memory. The tmp array is a
temporary storage, which must be the same size as count.

It is not difficult to modify Algorithm 2 for computing the number of
cycles. The numbers of main and blocked states for cycle enumeration are
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Figure 5.11: Data dependency

Mn and Mn−1 respectively; count array is initialized to be 1 for · · · ; the
answer is the total number of cycles found during the algorithm.

5.2.3 Techniques to improve the efficiency

In-place update of the array

If we eliminate the tmp array, the memory usage of Algorithm 2 can be
reduced by half. We achieve it by finding a good access order to the count
array elements. Let 1 ≤ j ≤ n−1, α ∈ Σ′ j−1, β ∈ Σ′n− j−1, and c ∈ Σ′. We
choose the minimal perfect hash functions that satisfy the following relations:

ϕ j(s) = ϕ j+1(s) for all s ∈ S′;
ϕ j(α cβ ) = ϕ j+1(αc β ) for all α cβ ∈ S′′j .

(5.4)

Hereafter, we write as count(s) to denote count[ϕ j(s)] because position j is
not important anymore.

Data dependency in the count array is illustrated in Figure 5.11. For
instance, represents a set of the frontier states that have at posi-
tion j and at position j + 1 when we are processing a horizontal line
between columns j and j+1. An arrow from to shows that a value
read from count(α β ) is added into count(α β ) for all α β ∈ S′.
Since count(α β ) is used to calculate the new value of count(α β ),
we update count(α β ) before adding the value of count(α β ) into
count(α β ). We update count(α β ) and count(α β ) simultane-
ously because they depend on each other.
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Fast mapping from frontier states to serial numbers

Hash functions are evaluated frequently and have a large impact to the total
speedup. In this section, we describe a minimal perfect hash function for main
states. One for blocked states can be made in the same way by ignoring
and considering that the string size is n−1.

The minimal perfect hash function for main states ϕ ′ : S′→{1, . . . , |S′|}
is implemented as a sum of two subfunctions:

ϕ
′(s) = ϕ

′
L(l)+ϕ

′
R(r) (5.5)

where l is the left half of string s and r is the right half of s. The sizes of s,
l, and r are n, m = bn/2c, and n−m, respectively. This composition works
because the main states correspond to M(0,1)→(n,0). The left half must be
in M(0,1)→(m,h) and the right half must be in M(m,h)→(n,0) where 0≤ h≤ m.
Let baseh + i denote the i-th serial number of the main states passing through
(m,h). They are given by:

base0 = 0 ; baseh+1 = baseh +
∣∣∣M(0,1)→(m,h)

∣∣∣ · ∣∣∣M(m,h)→(n,0)

∣∣∣ . (5.6)

When 1 ≤ il ≤
∣∣∣M(0,1)→(m,h)

∣∣∣ is a serial number of string l in M(0,1)→(m,h)

and 1≤ ir ≤
∣∣∣M(m,h)→(n,0)

∣∣∣ is a serial number of string r in M(m,h)→(n,0), the
subfunctions can be defined as:

ϕ
′
L(l) = baseh +(il−1) ·

∣∣∣M(m,h)→(n,0)

∣∣∣ ; ϕ
′
R(r) = ir . (5.7)

Main states are implemented as 2n-bit codes under such 2-bit code assign-
ments as = 00, = 01, and = 10. We divide a 2n-bit code into the left
2m-bit subcode and the right 2(n−m)-bit subcode. The two subfunctions
can be implemented by the simple arrays that are indexed directly by the
subcodes. The total size of the two arrays is about 2n+1 and is small enough
in comparison with the size of the count array.

Fast enumeration of all main states

As shown in 5.2.3, we want to enumerate all main states in some specific
order for in-place update of count entries. A simple implementation would
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be a single array of states sorted in the desired order. Although it is very fast
and accepts any state order, it consumes memory as much as the count array.
We introduce a method with much better memory efficiency for visiting main
states in lexicographic order.

We divide main states again into the left and right halves. A left state array
lstate has ordered collection of 〈l,h〉 values where l is a left state subcode
and l corresponds to M(0,1)→(m,h). A right state array rstateh (0≤ h≤ m) has
ordered collection of right state subcodes in M(m,h)→(n,0). For each 〈l,h〉 in
lstate and for each r in rstateh, main state lr is visited. Running time of this
double loop would be almost the same as the single array implementation
because most of the time is consumed in the inner loop and it is just scanning
rstateh in the same way as the single array implementation.

Shared memory parallel processing

Let s = c1c2 · · ·cn be a state string and the current step is for the horizontal
line connecting columns j and j+1. As shown in Figure 5.9, the transition
patterns of state strings have much locality. Except for modification of c j and
c j+1, at most one position can be changed from to or from to .

We can partition the states into 2n−2 groups across which no transition oc-
curs, based on an (n−2)-bit binary code “g(c1) · · · g(c j−1)g(c j+2) · · · g(cn)”
where g(c) = 1 if c ∈ { , }, otherwise g(c) = 0. It is suitable for parallel
processing since data update within a group is independent of other groups.
We use the leftmost m-bit of the binary code for task allocation, where m is
decided to make enough number of tasks and not to make each task too small;
actually, m' n/2 would not be a bad choice.

5.2.4 Experimental results

We have compared the original program for general graphs and three new
programs specialized for grid graphs:

Original a SIMPATH-based sequential program described in 5.2.1;
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Table 5.11: Memory usage (MB)

n Original Grid-BS Grid-FS Grid-FP
11 7 2 3 3
12 18 6 6 6
13 44 15 15 15
14 145 40 41 41
15 432 110 111 111
16 1290 304 306 306
17 3676 847 849 849
18 9993 2367 2376 2376
19 34298 6641 6663 6663
20 95329 18688 18729 18729
21 297260 52723 52791 52791
22 ∼700000 149108 149254 149254
23 >1.5TB 422634 422861 422861

Grid-BS a basic sequential program for grid graphs based on the techniques
in 5.2.2 and 5.2.3 with count array of 56-byte integers;

Grid-FS a faster version of Grid-BS using the techniques in 5.2.3 and 5.2.3;

Grid-FP a parallelized version of Grid-FS using the technique in 5.2.3.

All those programs are written in C++. CPU time was measured on a machine
with four Xeon E7-8837 (2.67GHz, 8 cores) processors and 1.5TB of memory,
running 64-bit SUSE Linux Enterprise Server 11. We have assigned 12 CPU
cores for Grid-FP. Results for (n+ 1)× (n+ 1) grid graphs are shown in
Table 5.11 and Table 5.12. The original program could not finish n = 22
within a week and could not compute n = 23 because of insufficient memory.
In comparison with the original program, space and time efficiency has been
improved five times and ten times respectively in the sequential processing
(Grid-FS), and time improvement of another digit is achieved by the parallel
processing on 12 CPU cores (Grid-FP). Grid-FS used slightly more memory
than Grid-BS, while it achieved three times speedup.
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Table 5.12: Computation time (sec.)

n Original Grid-BS Grid-FS Grid-FP
11 0.7 0.5 0.1 0.0
12 2.4 1.6 0.3 0.1
13 8.6 5.1 1.0 0.2
14 38.0 16.7 4.7 0.5
15 140.1 53.7 14.0 1.9
16 508.1 172.5 45.8 7.9
17 1763.7 554.1 146.4 20.9
18 6003.0 1755.0 459.3 67.6
19 17961.9 5687.2 1759.6 212.4
20 61570.0 18121.4 4616.1 652.0
21 208001.7 56263.6 17917.2 3244.3
22 >1 week 178439.6 53671.1 5695.0
23 N/A 554159.8 170475.7 21313.0
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5. VERIFICATION TECHNIQUES FOR APPLICATIONS BEYOND LSI DESIGN

As the parallel program runs fast enough, it is worth exchanging space
costs for time costs using the Chinese Remainder Theorem in the same way
as [BMGJ05]. Using a 64-bit modular arithmetic version of Grid-FP, we
have succeeded in discovering the answers to n = 25 and n = 26, which are
151-digit and 164-digit numbers respectively, as well as confirming the all
past answers (n≤ 24) in OEIS A007764 [OEIa]. The numbers are listed in
Table 5.13. We performed 10 runs with different moduli for n = 26; each run
took 2 days on 40 CPU cores and used 1400 gigabytes of memory. For the
number of cycles, our program also have confirmed the all past answers to
n≤ 19 in OEIS A140517 [OEIb] and newly found the answers to 20≤ n≤ 26
as listed in Table 5.14.

5.2.5 Additional techniques

Using line symmetry

The problem is line symmetrical with respect to a line passing through v(1,1)
and v(n,n); the number of paths starting from {v(1,1),v(1,2)} is exactly the same
as the number of paths starting from {v(1,1),v(2,1)}. It means that the final
answer can be computed by doubling either answer. This method, however,
would not contribute much computational reduction because both cases can
reach soon onto the entire set of frontier states.

One could make some algorithm utilizing line symmetry by introducing
diagonal frontiers instead of horizontal frontiers. That approach seems difficult
because it have to overcome faster growth of the number of frontier states than
using horizontal frontiers. Figure 5.12 compares the peak numbers of frontier
states measured in the program for general graphs.

Using point symmetry

When we use the point symmetry of the problem, Algorithm 2 can be stopped
at the middle of computation. We can compute the answer by enumerating
every pair of main states that matches. Figure 5.13 shows that paths are
completed by A = and B = (C = )
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5.2. Fast computation of self-avoiding walks crossing a square lattice

Figure 5.12: The number of frontier states against n

Figure 5.13: Example of matching

where B (C) is turned over and they are combined. The total number of paths
found here is count(A)× (count(B)+ count(C)).

Numbers stored in count grows exponentially against the number of loop
iterations in the algorithm. This technique reduces the memory usage by half
because integer size can be halved when we only compute numbers for the
upper half of the graph. As for the time cost, however, this technique might be
at a disadvantage. Time growth of the matching process against n was larger
than that of the basic algorithm in our preliminary experiments.
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5. VERIFICATION TECHNIQUES FOR APPLICATIONS BEYOND LSI DESIGN

5.3 Chapter summary

First, we proposed an efficient top-down ZDD construction framework for
solving graph enumeration and indexing problems, in which the property is
specified as a recursive specification.

The lookahead technique applies the zero-suppress rule on the fly, while
conventional methods do not take it into account during the top-down con-
struction phase. Binary operations on recursive specifications, which allow us
to combine multiple properties without constructing ZDD structure for each
property, can be a strong alternative to the conventional procedures that use
operations on ZDDs. An improved algorithm for set intersection on recursive
specifications also reduces CPU time and memory usage for constructing
ZDDs by skipping redundant states in the top-down construction phase. The
subsetting technique enables us to use an existing ZDD for restricting search
space of top-down ZDD construction.

The experimental results confirmed that our techniques actually improve
time and space for the top-down ZDD construction algorithms. The lookahead
technique easily fits for any application and produces good results in most
cases. We can improve it further by adding the subsetting technique especially
for large examples, though it is not always easy to find the best strategy of
subsetting.

Secondly, we have maximized space and time efficiency of the path enu-
meration algorithm by focusing on grid graphs. We have succeeded in clari-
fying the exact domain of state codes and analyzing their transition patterns.
They allowed us to use simple arrays instead of ordinary hash tables and to
integrate various techniques into the algorithm, namely, in-place update, fast
hash functions, fast state enumeration, and parallel processing.

The new algorithm for grid graphs have achieved double-digit performance
improvement over the original algorithm for general graphs. It have extended
the numbers recorded in OEIS [OEIa, OEIb] and have verified all those past
results correctly.
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CHAPTER 6
Conclusions

We saw in previous chapters that binary decision diagram representation is a
core technology against property verification problems. It is very useful and
effective in enumerating all possible cases for the property. We also learned
that the applications are supported with two layers of BDD-related technolo-
gies: the lower layer manipulates BDDs under such mathematical abstraction
as Boolean functions and families of sets; the higher layer models individual
problems mathematically and solves them using BDD operations provided
by the lower layer. As they have clean boundary, excellent implementations
of the lower layer have been reused as BDD packages. Researchers of both
layers have been able to focus on their own area, which greatly accelerated
the spread of BDD applications.

Chapters 3 and 4 belong to the higher layer; we used matured BDD
packages as they were and built our own algorithms on them. The most
important task in the simulation-based validation problem was the formulation.
Initially, a target of verification is often ambiguous; for instance, people
just want to make their system bug-free. We first have to “design” input
and output of the problem so that all information can be extracted from the
human input and computers can make the output at a reasonable cost. In
the model checking problem, we somewhat changed input and output from
the conventional method in those days. We focused on ω-regular language
emptiness check, which does not cover all traditional CTL properties. It is,
however, practical in terms of human input and computational cost; it is easy
to understand for humans and is covered by the efficient model checking
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6. CONCLUSIONS

algorithms.
Chapter 5 described recent work of extending the lower layer aiming for

novel applications using frontier-based methods. We have seen possibility of
the frontier-based methods through world records of computing the numbers
of self-avoiding walks. Our framework encapsulates the ad hoc part of the
frontier-based methods using a recursive specification and leaves it as an object
to be implemented in the higher layer. In the same way as the success story of
traditional BDD packages, improvement of the lower layer benefits any higher
layer application. This framework is realized as a top-down ZDD construction
library in C++, which includes our new techniques, such as lookahead and
subsetting.

Wide variety of techniques for property verification have been developed
through this work. The next step should be more studies of the new higher
layer; applications based on frontier-based methods. They would be built
on our top-down ZDD construction library. As already mentioned above, a
key to practical application is problem formulation; extensive techniques and
know-hows will be required for it. I am hopeful that the experiences in this
work can contribute to plenty of future applications.
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