Amino acid residues involved in cold adaptation of isocitrate lyase from a psychrophilic bacterium, Colwellia maris

Seiya Watanabe† and Yasuhiro Takada

Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan

To investigate the mechanism of cold adaptation of isocitrate lyase (ICL; EC 4.1.3.1) from the psychrophilic bacterium Colwellia maris, Gln207 and Gln217 of this enzyme were substituted by His and Lys, respectively, by site-directed mutagenesis. His184 and Lys194 of ICL from Escherichia coli, corresponding to the two Gln residues of C. maris ICL, are highly conserved in the ICLs of many organisms and are known to be essential for catalytic function. The mutated ICLs (Cm-Q207H and Cm-Q217K, respectively) and wild-type enzymes of C. maris and E. coli (Cm-WT and Ec-WT) with His-tagged peptides were overexpressed in E. coli cells and purified to homogeneity. Thermolabile Cm-WT and mutated ICLs were susceptible to digestion with trypsin, while relatively thermostable Ec-WT was resistant to trypsin digestion, suggesting that the thermostability and resistance to tryptic digestion of the ICLs are related. Cm-Q207H and Cm-Q217K showed specific activities similar to Cm-WT at temperatures between 30 °C and 40 °C, but their activities between 10 °C and 25 °C were decreased, indicating that the two Gln residues of the C. maris ICL play important roles in its cold adaptation. Phylogenetic analysis of ICLs from various organisms revealed that the C. maris ICL can be categorized in a novel group, subfamily 3, together with several eubacterial ICLs.

INTRODUCTION

Enzymes capable of functioning efficiently at low temperature, termed cold-adapted enzymes, represent one of the strategies for environmental adaptation adopted by psychrophiles, bacteria adapted to cold habitats, because the catalytic rates of enzyme reactions are strongly dependent on temperature. The cold-adapted enzymes display higher specific activities at low temperature and pronounced thermolability compared to their mesophilic and thermophilic counterparts; these properties are probably accomplished by the enhanced conformational flexibility of the enzyme proteins, which is regarded as the main adaptive feature to low temperature (Gerday et al., 1997; Fields & Somero, 1998). The enhanced flexibility allows the cold-adapted enzymes to bring about rapid conformational changes without energy loss for the catalysis. Although some features of the cold-adapted enzymes have been proposed on the basis of comparisons between the primary structures of the corresponding enzymes from various organisms with different ranges of growth temperature, it is difficult to distinguish exactly whether they are attributable to cold adaptation or to phylogenetic differences between the organisms (Sheridan et al., 2000). On the other hand, analyses of the crystal structures of cold-adapted enzymes has revealed the diversity of their mechanisms for cold adaptation (Fields & Somero, 1998; Russell et al., 1998; Kim et al., 1999; Alvarez et al., 1998; Bentahir et al., 2000).

Directed modification of the enzyme proteins by random PCR mutagenesis is a useful approach to examine their adaptation mechanism. By comparing the amino acid sequences of mutated enzyme proteins that exhibit thermodynamic properties different from those of the wild-type enzyme, the cause of the alteration can be specified. Such studies for thermophilic (Suzuki et al., 2001; Lönn et al., 2002), mesophilic (Taguchi et al., 1999; Wintrode et al., 2000) and psychrophilic enzymes (Miyazaki et al., 2000) have been reported. Even among mutated enzymes with similar characteristics to each other, various patterns of amino acid substitution have been observed (Suzuki et al., 2001). Furthermore, the substituted amino acid residues in a cold-adapted mutant (P3C9) of mesophilic subtilisin SSII were not necessarily identical to the corresponding residues of the naturally cold-adapted subtilisin S41 (Wintrode et al., 2000), supporting the view that nature has not tested all possibilities for the adaptation of proteins to low temperature (Gerday et al., 1997).

Cold adaptation of enzymes in central metabolism should...
be essential for the survival of plants and for growth of psychrophilic bacteria at low temperatures. Isocitrate lyase (ICL; EC 4.1.3.1) catalyses the cleavage of isocitrate to glyoxylate and succinate, and plays important role in the metabolism of acetate and fatty acids in micro-organisms and higher plants as a key enzyme of the glyoxylate cycle (Kornberg, 1966; Vanni et al., 1990; Cozzone, 1998). We previously reported that the ICLs of two psychrophilic bacteria, *Colwellia maris* and *Colwellia psychrophylaxeae*, are homotetrameric, as are their counterparts in other organisms, including *Escherichia coli*, that they are typical cold-adapted enzymes, and that the expression of the genes encoding these enzymes is cold-inducible (Watanabe et al., 2001, 2002a, 2002b). Furthermore, the recently resolved crystal structures of ICLs and their complexes with ligands from several organisms can provide us with useful information to understand their catalytic function (Britton et al., 2000, 2001; Sharma et al., 2000). We previously found that about 20 amino acid residues among those strictly conserved in ICLs from various organisms are substituted in amino acid residues essential for the catalytic function of *E. coli* ICL (Ko & McFadden, 1990; Ko et al., 1991, 1992; Diehl & McFadden, 1993, 1994; Rehman & McFadden, 1996, 1999, b, c) or the adjacent residues. Similar substitutions of conserved amino acid residues have also been observed in other cold-adapted enzymes (Davail et al., 1994). In this study, to examine whether such substituted residues are related to the cold adaptation of *Cm* ICL, they were exchanged for amino acid residues homologous to mesophilic counterparts by site-directed mutagenesis, and the properties of the mutated ICLs were investigated.

METHODS

Construction of expression vectors for *C. maris* and *E. coli* ICLs. The genes encoding the ICLs of *C. maris* and *E. coli* (CmICL and EcICL, respectively) were amplified by PCR so as to introduce restriction sites for *Bam*HI and *Sac*I at the 5’ and 3’ terminals of the ORFs, respectively. Therefore, the following primers were synthesized: for *Cm* ICL, sense primer 5’-CGATAAGGATTCGCTTCACTATCTACAAGTCGAATAGAAGCAGTTAAAGC-3’ (48-mer) and antisense primer 5’-GATTCTTCAGTGGAGCCGGTCAGCGCGG-3’ (48-mer); for *Ec* ICL, they were exchanged for amino acid residues homologous to mesophilic counterparts by site-directed mutagenesis, and the properties of the mutated ICLs were investigated.

Site-directed mutagenesis. Site-directed mutagenesis was carried out by a standard PCR method. The following primers were used to introduce the mutations into *Cm* ICL: sense primer and antisense primer for the substitution of His for Gln207 and antisense primer for the substitution of Lys for Gln207 were 5’-GATTCTTCAGTGGAGCCGGTCAGCGCGG-3’ (48-mer) and sense primer and antisense primer for the substitution of Lys for Gln207 were 5’-GATTCTTCAGTGGAGCCGGTCAGCGCGG-3’ (48-mer), respectively; sense primer and antisense primer for the substitution of Lys for Gln207 were 5’-GATTCTTCAGTGGAGCCGGTCAGCGCGG-3’ (48-mer), respectively. The mutated regions are underlined. Except for the use of 100 pmol of each primer, the PCR was performed as described above. Both the PCR products were ligated into pTrcHisB to obtain plasmids pHis-CmWT (the Q207H mutation) and pHis-Cm217 (the Q217K mutation). A plasmid carrying both of the mutations (pHis-Cm207/217) was obtained by PCR with the plasmid pHis-Cm207 and a set of sense and antisense primers. The mutated plasmids were transformed into *E. coli* TOP10 and purified. To verify the introduced mutations, the relevant regions of the plasmids were sequenced in both directions, as described above.

Overexpression and purification of His-tagged ICLs. The *E. coli* TOP10 cells carrying one of the expression vectors pHis-CmWT, pHis-Cm207, pHis-Cm207/217 or pHis-EcWT were grown at 37 °C in Super broth medium (12 g tryptone, 24 g yeast extract, 5 ml glycerol, 3-81 g KH₂PO₄ and 12-5 g K₂HPO₄ per litre, pH 7-0) containing 50 mg ampicillin 1⁻¹ until OD₆₀₀ of the culture reached 0-6. The cultures were rapidly cooled on ice and were further incubated for 18-24 h at 15 °C after the addition of 0-1 M IPTG. Cells were then collected and resuspended in Buffer A (50 mM sodium phosphate, pH 6-85, containing 2 mM MgCl₂, 0-5 M NaCl, 10 mM 2-mercaptoethanol and 10 mM imidazole), employing 20 ml of buffer per litre of the original culture medium. Hen-egg lysozyme (2 mg ml⁻¹) was added to the cell suspension, and the mixture was gently shaken overnight at 4 °C. The cells were then disrupted by ultrasonic oscillation. After the centrifugation of the cell lysate at 39 120 0 for 30 min at 4 °C to remove cell debris, the supernatant was centrifuged at 65 600 0 for 6 h at 4 °C. The resultant supernatant was loaded onto a Ni-NTA column (25 ml; Qiagen) equilibrated with Buffer A. After thorough washing with the same buffer, the column was further washed with 50 ml Buffer B (Buffer A containing 10 %, vol/vol, glycerol and 20 mM imidazole instead of 10 mM imidazole) and next with 50 ml Buffer C (Buffer B containing 50 mM imidazole instead of 20 mM imidazole). In each case the enzyme was then eluted with 50 ml Buffer D (Buffer B containing 250 mM imidazole instead of 20 mM imidazole), and the eluant was concentrated with polyethylene glycol #20000 and dialysed against Buffer E (20 mM potassium phosphate, pH 6-85, containing 2 mM MgCl₂, 0-5 M NaCl, 1 mM DTT and 0-01 % NaN₃). All His-tagged recombinant ICLs were stored at 4 °C and used in further experiments within a week.

PAGE. SDS-PAGE was carried out by the method of Laemmli (1970) with a 10 % gel at 25 mV.

Western blot analysis. After SDS-PAGE of the purified ICLs and the sonicated extracts of the *E. coli* transformant cells, the
proteins on the gels were transferred onto a nitrocellulose membrane (Hybond-C; Amersham Pharmacia Biotech). Western blot analysis was carried out with the ECL Western blotting detection system (Amersham Pharmacia Biotech) and either rabbit antibody against the C. maris ICL (Watanabe et al., 2002a) or mouse antibody against the additional (His)_6–Gly sequence at the N-terminal of the over-expressed ICLs (Invitrogen). Native ICL of C. maris was purified as described previously (Watanabe et al., 2001).

Enzyme assay. Unless otherwise stated, the ICL activity was assayed at pH 6.85 as described previously (Watanabe et al., 2001). Optimum pH for activity was determined with the following buffers: potassium phosphate at pH 6-0-7-6 and Tris/HCl at pH 7-5-8-0. Protein was measured by the method of Lowry et al. (1951) with BSA as a standard.

Measurement of kinetic and thermodynamic parameters. The kinetic parameters, K_m and V_max of ICL were calculated by Lineweaver–Burk analysis. Molecular masses of the wild-type and the mutants of CmICL (Cm-Q207H and Cm-Q217K) and EdICL with the additional N-terminal His-tags were calculated as 246,641, 246,677, 246,641 and 204,124 Da, respectively, from the gene sequences. The activation energies (E_a) of the enzymes were calculated by Arrhenius plotting. The thermodynamic activation parameters were calculated according to the following equations.

\[
\Delta G^\circ = RT \times (23.76 + \ln T - \ln k_{cat})
\]

\[
\Delta H^\circ = E_a - RT
\]

\[
\Delta S^\circ = (\Delta H^\circ - \Delta G^\circ)/T
\]

Digestion with trypsin. The purified recombinant ICLs were dialysed overnight at 4°C against 0-1 M NaHCO_3 (pH 8-1). The ICL enzymes (100 μg) were then digested at 4°C with 0-1 μg trypsin in the same buffer. At appropriate times after the addition of trypsin into the reaction mixture, the mixture was withdrawn and immediately analysed by SDS-PAGE.

Circular dichroism (CD) spectra of recombinant ICLs. All purified recombinant ICLs were dialysed overnight at 4°C against 20 mM potassium phosphate buffer (pH 6-85) containing 2 mM MgCl_2 and 1 mM DTT. UV–CD of the ICLs was measured at 20°C with a J-725 spectropolarimeter (Jasco) by using a cuvette with a 0-1 cm path length. The protein concentrations were determined by the absorbance at 280 nm from the extinction coefficients 53056 of EcICL and 57306 of CmICL, respectively, which were calculated as reported previously (Wetlaufer, 1962). The contents of the secondary structures in the ICLs were estimated with program K2D (Andrade et al., 1993).

Phylogenetic analysis. Phylogenetic analysis was done with the CLUSTAL-W program with the unrooted neighbour-joining method. The phylogenetic tree was produced with the program TreeView 1.6.1 distributed by the Bioinformatics Center of Kyoto University, Japan (www.genome.ad.jp/Japanese/).

Molecular modelling of CmICL. The three-dimensional structural model of CmICL was built on the basis of its homology to EdICL (PDB No. 1IGW) with the program SWISS-PDB VIEWER.

RESULTS

Site-directed mutagenesis of CmICL

EdICL has been studied more extensively than its counterparts in other organisms with regard to the catalytic mechanism and crystal structure (Britton et al., 2001; Ko & McFadden, 1990; Ko et al., 1991, 1992; Diehl & McFadden, 1993, 1994; Rehman & McFadden, 1996, 1997a, b, c). We previously reported that, in the cold-adapted CmICL, several amino acid residues strictly conserved in the ICLs of many organisms, including E. coli, are substituted, and some unique insertions of 3–36 amino acid residues are present (Watanabe et al., 2002a). Among these substitutions, we noted Gln207 and Gln217 of CmICL (stars in Fig. 1a) for the following two reasons: (1) from studies on site-directed mutagenesis, His184 and Lys194 of EdICL, corresponding to the two Gln residues of CmICL, were reported to be essential for catalytic function of the enzyme (Diehl & McFadden, 1994; Rehman & McFadden, 1997b), and (2), in spite of low homology between the amino acid sequences of CmICL and EdICL (less than 30%), this region containing the two Gln residues is more highly conserved than other regions of the enzyme proteins, probably due to the existence of amino acid residues constituting the active site (asterisks in Fig. 1a). Thus, the Q207H and Q217K mutations were introduced into the CmICL by site-directed mutagenesis.

Expression of recombinant ICLs in E. coli

Wild-types of CmICL and EdICL (Cm-WT and Ec-WT) and three CmICL mutants (Cm-Q207H, Cm-Q217K and Cm-Q207H/Q217K) with the N-terminal His-tags were expressed at 15°C in E. coli cells because of the marked thermostability of CmICL (Watanabe et al., 2001). In spite of the induction by IPTG, all recombinants of CmICL were expressed at lower levels than Ec-WT (Fig. 2a). The yields of the purified Cm-WT, Cm-Q207H, Cm-Q217K and Ec-WT were estimated to be 3-60, 0-55, 3-64 and 17-0 mg protein per litre of culture, respectively (mean of three independent experiments). All recombinant ICLs, except for Cm-Q207H/Q217K, were purified to homogeneity by single chromatography on a Ni^{2+}-chelating affinity column (Fig. 2b). The purification of the Cm-Q207H/Q217K double mutant was unsuccessful since its expression in the E. coli cells was too poor (Fig. 2a). Mobilities on the gel of both wild-type and mutated CmICL recombinants were slightly lower than that of the native CmICL purified from C. maris cells (estimated as 63 and 65 kDa, respectively) due to the addition of 33 amino acid residues including His-tags at their N-terminals (Fig. 2b), Cm-WT, Cm-Q207H and Cm-Q217K cross-reacted with anti-CmICL antibody, whereas Ec-WT did not at all (Fig. 2c). These were consistent with the previous results for the native CmICL and EdICL (Watanabe et al., 2002a). Although Ec-WT as well as Cm-WT had the His-tag attached at the N-terminal, the molecular mass of the Ec-WT subunit (47 kDa) was much smaller than that of Cm-WT (Fig. 2b) because CmICL has several insertions of amino acid residues (Watanabe et al., 2002a). On the other hand, all recombinant ICLs cross-reacted at similar intensities with the anti-His-tag antibody (Fig. 2d).

Temperature dependence of ICL activity

The activities of recombinant CmICLs and Ec-WT at various temperatures are shown in Fig. 3(a). The optimum
pH values for the recombinant CmICLs and Ec-WT were 6.85, almost the same as that of the native CmICL (pH 6.8; Watanabe et al., 2001). Specific activities of the ICLs at optimum temperature are summarized in Table 1. The optimum temperature for activity (20–25 °C) and specific activity at the optimum temperature (14 ± 3 ± 3 s⁻¹; two independent experiments) of Cm-WT were similar to those of the native CmICL (20 °C and 18 ± 3 s⁻¹) (Watanabe et al., 2001). In addition, rapid reduction of the activity above 30 °C was found in Cm-WT as well as the native CmICL. These results suggest that the additional His-tag at the N-terminal did not affect the activity and thermal characteristics of the enzyme. Cm-Q207H and Cm-Q217K possessed specific activities comparable to that of Cm-WT, but their optimum temperatures increased by about 5 °C and 7.5 °C, respectively, from that of Cm-WT (Fig. 3a and Table 1). Specific activity of the mesophilic Ec-WT increased markedly with the elevation of assay temperature at least up to 40 °C and, above 30 °C, was much higher than the maximum activity of Cm-WT. On the other hand, the specific activity of Cm-WT between 10 °C and 20 °C was 1.3–1.6-fold higher than that of Ec-WT. Interestingly, the activity of both Cm-Q207H and Cm-Q217K between 10 °C and 25 °C was clearly lower than that of Cm-WT. Relative
activities of \textit{Cm}-Q207H and \textit{Cm}-Q217K at 10 °C were 8.1 ± 1.3 and 9.1 ± 0.4 % (two independent experiments), respectively, and these values were almost the same as that of \textit{Ec}-WT (8.2 ± 1.1 %; two independent experiments) (Fig. 3b). This result suggests the possibility that Gln207 and Gln217 of \textit{Cm} ICL are responsible for cold adaptation.

Thermostability of the recombinant \textit{Cm} ICLs and \textit{Ec} ICL

To estimate whether the mutations of \textit{Cm} ICLs affect the thermostability of its activity, residual activities were assayed after heat treatment for various times at 30 °C for \textit{Cm} ICLs and 40 °C for \textit{Ec}-WT (Fig. 3c and Table 1). Similarly to the native \textit{Cm} ICL, irreversible inactivation of recombinant \textit{Cm} ICLs proceeded during incubation at this temperature. The half time of inactivation of \textit{Cm}-Q217K was greater than that of \textit{Cm}-WT. On the other hand, the half time of \textit{Cm}-Q207H was shorter than that of \textit{Cm}-WT, in spite of its higher optimum temperature for activity. Although \textit{Ec}-WT was incubated at 40 °C, the half time of inactivation of this enzyme was longer than that of all the \textit{Cm} ICLs, and it was hardly inactivated even after incubation for 1 h at 30 °C (data not shown).

Kinetic and thermodynamic parameters of the ICLs

The effects of temperature on the kinetic parameters of recombinant \textit{Cm} ICLs and \textit{Ec}-WT were examined (Fig. 4). \textit{Km} values for isocitrate ($K_m^{\text{isocitrate}}$) of all ICL enzymes tested were increased by elevating temperature. Whereas the $K_m^{\text{isocitrate}}$ values of \textit{Cm}-Q207H were 2-2–3-5-fold larger than those of \textit{Cm}-WT, the values of \textit{Cm}-Q217K were...
0.6–0.8 times those of Cm-WT, and were almost the same as those of Ec-WT. On the other hand, catalytic efficiencies (k_{cat}/K_m) of these ICLs were maximal near the optimum temperature for activity of each enzyme (Fig. 4b). The catalytic efficiency of Cm-WT at 10°C was 1.2-fold that of Ec-WT and was 41.3% of its maximum value at 20°C, while the relative efficiency values of Cm-Q207H, Cm-Q217K and Ec-WT at the same temperature were only 13.5, 23.3 and 15%, respectively. These results indicate that the catalytic function of both Cm-Q207H and Cm-Q217K was impaired at low temperature.

Sensitivities of recombinant ICLs to trypsin

Partial digestion with proteases has been utilized to detect structural changes in proteins and identify their exposed and flexible regions (Aghajanian et al., 2003). Therefore, the susceptibility of the recombinant CmICLs and Ec-WT to tryptic digestion was examined (Fig. 5). All CmICL recombinants were more sensitive to trypsin than Ec-WT. These results indicate that thermolabile CmICLs are more susceptible to tryptic digestion than Ec-WT.

CD spectrometric analysis of the ICLs

CD spectra of the ICLs were measured at 20°C both to estimate the effect of these mutations on the secondary structure of the enzyme proteins and to compare the secondary structures of recombinant CmICLs and Ec-WT with each other (Fig. 6). The contents of α-helix and β-sheet calculated from the CD spectra were 42 and 17% in Cm-WT and 61 and 7% in Ec-WT, respectively, and the latter enzyme contained more secondary structure than the former. Little difference in the CD spectra between Cm-WT and Cm-Q217K resembled Ec-WT rather than Cm-WT. For all ICLs, the CD spectra measured at 10°C were almost the same as those at 20°C (data not shown).

Phylogenetic relationship of ICLs from various organisms

Serrano & Bonete (2001) have reported that ICLs from various organisms can be classified into two groups: eubacterial and eukaryotic (termed subfamilies 1 and 2, respectively, in Fig. 1b), although some archaeal ICLs belong to neither subfamily. On the other hand, phylogenetic analysis with the CLUSTAL-W program of ICL amino acid sequences from 29 species of eubacteria, 24 eukaryotes, 3 Archaea and several putative eubacterial ICLs revealed that CmICL is different from these three groups and, together with the ICL of Hyphomicrobium methylivorum and five putative eubacterial ICLs from Pseudomonas...
aeruginosa, Ralstonia metallidurans, Novosphingobium aromaticivorans, Rhodopseudomonas palustris and Caulobacter crescentus, can be categorized to a novel group, termed subfamily 3 in Fig. 1(b). Partial sequences of typical ICLs of these subfamilies are shown in Fig. 1(a). Gln207 of CmICL was conserved in subfamily 3 ICLs, but the corresponding residue in all other ICL subfamilies was His. Furthermore, Gln217 of CmICL was substituted by different amino acid residues in ICLs other than subfamily 3: Arg in Archaea and Lys in other ICLs, respectively. Although no ICL gene has been cloned from psychrophilic and psychrotrophic bacteria except CmICL, putative ICL genes belonging to subfamily 1 could be found in the genome sequences of several psychrophilic and psychrotrophic bacteria (organisms in grey type in Fig. 1a).

DISCUSSION

The wild-type and mutants of CmICL together with EcICL were expressed as recombinant forms in E. coli cells, but the expression levels of the CmICLs were much less than that of EcICL (Fig. 2a). A similar result has been found when elongation factor 2 of an Antarctic methanogenic archaeon, Methanococcoides burtonii, is expressed in E. coli cells, and is attributed to the existence of many Arg codons (AGA and AGG) which are used rarely in E. coli in the aef2 gene

<table>
<thead>
<tr>
<th>Property</th>
<th>Cm-WT</th>
<th>Cm-Q207H</th>
<th>Cm-Q217K</th>
<th>Ec-WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimum temperature (°C)</td>
<td>20–25</td>
<td>27.5–30</td>
<td>30–32.5</td>
<td>Above 40</td>
</tr>
<tr>
<td>Specific activity (s⁻¹)</td>
<td>14-6</td>
<td>14-5</td>
<td>10-5</td>
<td>54-0</td>
</tr>
<tr>
<td>Half time of thermal inactivation (s)†</td>
<td>88-2</td>
<td>58-4</td>
<td>120-3</td>
<td>161-8</td>
</tr>
<tr>
<td>Assay temperature</td>
<td>10°C</td>
<td>20°C‡</td>
<td>10°C</td>
<td>30°C‡</td>
</tr>
<tr>
<td>$K_{m}^{\text{isocitrate}}$ (mM)</td>
<td>0.33</td>
<td>0.47</td>
<td>0.76</td>
<td>2.07</td>
</tr>
<tr>
<td>$V_{\text{max}}^{\text{isocitrate}}$ (s⁻¹)</td>
<td>5.76</td>
<td>13.9</td>
<td>0.62</td>
<td>14.3</td>
</tr>
<tr>
<td>k_{cat}/K_{m} (s⁻¹ M⁻¹)</td>
<td>1.77</td>
<td>2.65</td>
<td>0.08</td>
<td>0.54</td>
</tr>
<tr>
<td>E_{a} (kJ mol⁻¹)§</td>
<td>46.8</td>
<td>107.8</td>
<td>89.2</td>
<td>63.5</td>
</tr>
<tr>
<td>ΔG (kJ mol⁻¹)‖</td>
<td>64.5</td>
<td>68.8</td>
<td>69.3</td>
<td>65.7</td>
</tr>
<tr>
<td>ΔH (kJ mol⁻¹)‖</td>
<td>44.4</td>
<td>105.5</td>
<td>86.9</td>
<td>61.1</td>
</tr>
<tr>
<td>T^Δ (kJ mol⁻¹)‖</td>
<td>−20.1</td>
<td>36.7</td>
<td>17.6</td>
<td>−4.52</td>
</tr>
</tbody>
</table>

*Activities were assayed at each optimum temperature as described in Methods, except that activity of Cm-Q207H was assayed by using 17 mM isocitrate.
†The three CmICLs and Ec-WT were incubated at 30 and 40°C, respectively.
‡Optimum temperature for activity.
§E_{a} values were calculated by Arrhenius plotting.
‖Values at 10°C.
encoding this protein (Thomas & Cavicchioli, 2000). However, this is not the case for the C. maris icl gene. Since the recombinants of CmICL were more sensitive to tryptic digestion than EcICL (Fig. 5), the poor expression of CmICLs might be ascribed to their post-translational proteolysis in E. coli cells. On the other hand, Cm-WT showed an obviously lower optimum temperature for activity and thermostability than the mesophilic Ec-WT (Fig. 3), indicating that the sensitivities of Cm-WT, Cm-Q207H and Cm-Q217K to trypsin are related to their thermolability. Therefore, the more flexible structures of cold-adapted enzymes, compared to those of their mesophilic counterparts, which are known to be responsible for their thermolability (Gerday et al., 1997; Fields & Somero, 1998), may bring about their marked sensitivity to trypsin. It has been proposed that the low stability of cold-adapted enzyme proteins could contribute to the regulation of metabolic flux at low temperature by the maintenance of an adequate level of proteolytic degradation, in spite of the diminished rate of intracellular proteolysis under such conditions (Wintrode et al., 2000; Somero, 1995; Feller & Gerday, 1997). The susceptibility of CmICL to trypsin supports this possibility.

Two amino acid residues, His184 and Lys194, of EcICL are known to be conserved in many prokaryotic and eukaryotic ICLs, but both of the corresponding residues in CmICL are Gln (Fig. 1a). Lys194 of EcICL should be essential for the catalytic function, because an ‘active-site loop’ including this residue moves flexibly when the enzyme binds to the substrate and releases the reaction products (Britton et al., 2000, 2001; Sharma et al., 2000; cf. Fig. 7). Between 30 °C and 40 °C, Cm-Q207H has a specific activity similar to that of Cm-WT (Fig. 3a, b) and the K_m value of the former was lower than that of the latter (Table 1 and Fig. 4a). These results suggest that, in this temperature range, this mutation strengthens the affinity for isocitrate.
without diminishing the catalytic function. As reported for EcICL (Rehman & McFadden, 1997b), the substitution of the cationic Lys residue for Gln should facilitate the binding to the Mg$^{2+}$-isocitrate complex as substrate. On the other hand, the catalytic rates of Cm-Q217K between 10 °C and 25 °C were obviously decreased (Figs 3a and 4b), indicating that the Gln residue is important for cold adaptation of CmICL. This may be due to a decrease in the structural flexibility of the mutated enzyme, revealed as an increase in thermostability and a change in the CD spectrum (Figs 3c and 6, Table 1). The high flexibility enhances the accommodation of enzyme with substrate at low temperature, but is also responsible for poor binding to ligand. It has been reported that the K_m values of cold-adapted enzymes are often higher than those of mesophilic and/or thermophilic counterparts (Fields & Somero, 1998). In fact, between 10 °C and 30 °C, the K_m of Cm-WT was larger than those of Ec-WT and Cm-Q217K (Fig. 4a).

Eubacterial and eukaryotic ICLs contain the triose phosphate isomerase (TIM) barrel fold consisting of (β/α)$_7$β. The molecular modelling of CmICL revealed that the Gln207 of CmICL is present in the barrel fold, and its side chain is directed toward the inner space of the barrel (Fig. 7), in the same way as the His184 of EcICL (Britton et al., 2000, 2001; Sharma et al., 2000). It has been reported that four EcICL mutants, in which His184 was replaced by Leu, Lys, Arg or Gln, are not able to form the tertiary structure, and that only the H184Q mutant shows activity (0-28 % of the wild-type EcICL activity; Diehl & McFadden, 1994). On the other hand, Cm-Q207H showed significant enzyme activity at moderate temperatures between 20 °C and 30 °C, while its activities at low temperatures were diminished (Fig. 3a, b), indicating that Gln207 of CmICL is also involved in the cold adaptation of the enzyme. Although this mutation resulted in only a small conformational change of the enzyme protein (Fig. 6), the thermostability and affinity for isocitrate as a substrate were lower than those of Cm-WT (Figs 3c and 4a). These results suggest that Gln207 of CmICL contributes to cold adaptation by a different mechanism from that of the Gln217 residue.

A decrease of $\Delta H^\#$ (or E_a) is one of the common strategies for psychrophilic enzymes to weaken the temperature dependence of k_{cat} (Lonhienne et al., 2000). Furthermore, as seen in the comparison of Cm-WT and Ec-WT, the $\Delta S^\#$ values of psychrophilic enzymes are also generally known to be smaller than those of their mesophilic counterparts, because the enhanced flexibility of psychrophilic enzyme proteins allows them to diversify the transition states of intermediate enzyme–substrate complexes during the reaction more than mesophilic ones (Fields & Somero, 1998; Lonhienne et al., 2000). Conversely, such a relationship was not observed in the comparison of Cm-Q207H and Cm-Q217H with Ec-WT (Table 1). Therefore, with regard to their thermodynamic parameters also, both the mutated CmICLs are judged to be inferior to Cm-WT as a cold-adapted enzyme, although they still exhibit a lower optimum temperature for activity and higher thermolability than Ec-WT.

Fig. 7. Molecular model of CmICL. A loop region containing the active site is indicated by orange. The side chains of Gln207 and Gln217 are indicated by red.
The phylogenetic analysis revealed that, among the subfamily 3 ICLs from a limited number of eubacteria including *C. marris*, Gln207 and Gln217 of *CmICL* are conserved, while the putative ICLs of other psychrophilic and psychrotrophic bacteria are classified into subfamily 1, separate from *CmICL*, and possess His and Lys, identical to *EcICL*, at the corresponding positions (Fig. 1). This implies that the importance of the two Gln residues to cold adaptation is specific to *CmICL*, and agrees with the finding that more than one pattern of amino acid substitution contributes to the cold and/or thermal adaptation of proteins (Fields & Somero, 1998; Sheridan et al., 2000; Suzuki et al., 2001; Lönn et al., 2002; Gerike et al., 2001). On the other hand, the possibility remains that additional amino acid residue(s), interacting and/or cooperating with the two Gln residues, are involved in the cold adaptation of *CmICL*. Therefore, further study is in progress to confirm this possibility.

ACKNOWLEDGEMENTS

The authors thank Professor Katsutoshi Nitta, Division of Biological Sciences, Graduate School of Science, Hokkaido University, for his advice on CD measurement and for kindly lending the spectropolarimeter.

REFERENCES

