Title
Differentiation in architecture and demographic properties across forest types and species in tropical lowland Kalimantan [an abstract of dissertation and a summary of dissertation review]

Author(s)
Atikah, Tika Dewi

Issue Date
2014-03-25

Doc URL
http://hdl.handle.net/2115/55479

Rights(URL)
http://creativecommons.org/licenses/by-nc-sa/2.1/jp/

Type
theses (doctoral - abstract and summary of review)

Additional Information
There are other files related to this item in HUSCAP. Check the above URL.

File Information
- Tika_Dewi_Atikah_abstract.pdf (論文内容の要旨)

Note: The table contains information in Japanese and English.
Differentiation in architecture and demographic properties across forest types and species in tropical lowland Kalimantan

Lowland forest in Kalimantan is the extreme on earth in huge biomass and tree species diversity. Three forest types are recognized on different soil conditions namely heath forest, peat swamp forest, and mixed dipterocarp forests. These forests are unique in terms of physiognomy, canopy architecture, and the composition of tree species. Heath and peat swamps forests occurring on flat topography are on nutrient-poor, acidic soils, whereas, mixed dipterocarp forest on hilly topography occurs on relatively nutrient-rich alluvial roam soil. These forests experience progressive conversion to palm oil and rubber plantation, and it is essential to evaluate these endangered ecosystems. This thesis examined architectural, and functional traits of tree saplings that contribute to regeneration, and demographic properties of tree populations and their consequences in tree size structure across three forest types in lowland Kalimantan.

Saplings (150-310 cm tall) of species, which represent each forest type, were selected under the canopy of developed forest stands. Among these, there was one species found in all forest types and two species in heath and peat swamp forests. Significant differences in crown allometries were found across forest types and species. Sapling in mixed dipterocarp forest had thicker trunk and wider crown at the same sapling height compared to other forests and they had higher specific leaf area, higher mass-based leaf nitrogen content and lower wood density. Heath forest saplings showed the lowest leaf nitrogen content and the highest wood density. Species with cross-forest-type distribution showed plastic change in sapling traits, and which was similar to the difference among forest types. Result suggested that saplings show morphological response to nutritional and water conditions that characterize forest types.
To characterize the dynamics of peat swamp forest, five forest plots of 50 m x 50 m of selective-logged peat swamp forest in Sebangau basin in Central Kalimantan were monitored over 12 years. Based on the estimated growth, mortality, and recruitment rates, observed tree size distribution was compared with demographically projected stable size distributions at the levels of plots and species. The deviation between observed and projected size distribution suggested that the forest is still on recovery process. Large-statured species tended to have low size growth rate, low mortality and recruitment rate, and short species showed the opposite demographic properties.

Demographic projection of stable tree size distribution was also carried out across three forest types, based on the censuses of five 1-ha plots in West and Central Kalimantan. Tree-size dependent growth rate and mortality were varied across forest types. Heath forest characterized by dense understory of small trees showed high growth rate and low mortality for small sized trees, and high recruitment rate. By contrast, high growth rate and low mortality for large sized trees, and low recruitment rate characterized mixed dipterocarp forest with tall and dense canopy layer. Peat swamp forest showed intermediate demographic properties between other two.

This thesis quantified the differentiation in architectural and demographic properties across forest types in lowland Kalimantan, and which helps prediction of forest dynamics for better conservation and management.