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AUTOMORPHISMS OF A NON-TYPE I C∗-ALGEBRA
（I型でないC*-環の自己同型）

AKIRA NOGUCHI

Abstract. Glimm’s theorem says that a UHF algebra is almost embedded in
a separable C∗-algebra not of type I. Applying his methods we obtain a covari-
ant version of his result; a UHF algebra with a product type automorphism is
covariantly embedded in such a C∗-algebra equipped with an automorphism
with full Connes spectrum.

1. Introduction

To examine the types of von Neumann algebras, either of type I, II or III, is one
of the fundamental and traditional ways to classify them, ever since Murray and
von Neumann build the research field of operator algebra. They defined the types
of factors with a real valued function, which they called ”dimension function” in
[10]. In [8], Kaplansky simplified and extended this notion to all von Neumann
algebras, which derives naturally the following definition of a C∗-algebra of type
I: A C∗-algebra A is of type I if each non-zero quotient of A contains a non-zero
positive element x such that xAx is commutative. A C∗-algebra is of type I
if and only if its enveloping von Neumann algebra is of type I. An elementary
example of a C∗-algebra (and also a von Neumann algebra) of type I is the full
matrix algebra Mn, which is the set of all n × n matrices. Unfortunately, many
algebras not of type I appear in mathematical physics, so we also have to treat
other classes of operator algebras.

A UHF (uniformly hyperfinite) algebra, which is sometimes called a ”Glimm
algebra” because it first appeared in his thesis ([5]), is a C∗-algebra which is the
inductive limit of a sequence of full matrix algebras (Min)n such that in divides
in+1 for each n with the embeddings

Min 3 x 7→


x 0 · · · 0

0 x
. . .

...
...

. . . . . . 0
0 · · · 0 x

 ∈ Min+1 .

A UHF algebra is not of type I — actually the von Neumann algebra generated
by the image of a UHF algebra by the GNS representation of its unique tracial
state is the hyperfinite factor of type II1 (which is unique up to isomorphism). Al-
though a UHF algebra is the simplest inductive limit of a sequence of C∗-algebras,
it is a very important C∗-algebra, which is also simple in the mathematical sense.
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Surprisingly, the σ-weak closure of a UHF algebra can be a von Neumann alge-
bra of various type; concretely, of type II1, II∞ and IIIλ, 0 ≤ λ ≤ 1. Such a
von Neumann algebra is called an AFD (approximately finite dimensional) von
Neumann algebra. Here is an example of construction of an AFD factor of type

IIIλ, 0 < λ < 1. Let φ(2) be the Ad

(
1 0
0 λit

)
-KMS-state on M2; i.e.

φ(2)(x) :=

Tr

((
1 0
0 λ

)
x

)
Tr

((
1 0
0 λ

))
for x ∈ M2, where Tr denotes the usual trace on M2, and set φ := ⊗∞

n=1φn, where
φn := φ(2) for each n. Then it follows that the σ-weak closure of πφ(⊗∞

n=1M2),
denoted by πφ(⊗∞

n=1M2)
′′, where πφ is the GNS representation of φ, is an AFD

factor of type IIIλ (see [13], Section 4 and [14], XVIII.1.1).
There are several equivalence conditions for C∗-algebras being of type I. In [7],

Kaplansky studied CCR algebras, which are C∗-algebras such that there images
by any irreducible representations consist of compact operators. A CCR alge-
bra is of course of type I, for a C∗-algebra of compact operators has a minimal
projection. But a C∗-algebra of type I is not necessarily a CCR algebra. Kaplan-
sky defined a larger class of C∗-algebras, called GCR algebras, and in [6] Glimm
proved that these two classes are equivalent.

Glimm also found other several conditions equivalent to being of type I in [6].
A part of his proof implies a celebrated theorem known as Glimm’s theorem:
For a separable C∗-algebra A which is not of type I and a UHF algebra D,
there is a C∗-subalgebra B of A and a closed projection q in the enveloping von
Neumann algebra of A such that q ∈ B′, qAq = Bq and Bq ' D, where B′ is the
commutant of B. Roughly speaking, this theorem says that any UHF algebra is
almost embedded in such a C∗-algebra. In fact, he proved this theorem only for
D = ⊗∞

n=1M2, known as the Fermion algebra, and Pedersen arranged his proof
and generalized to the case of an arbitrary UHF algebra in [11].

According to Glimm’s theorem, we are able to embed UHF algebras. How
about group actions? It is still an open problem whether or not general actions
of UHF algebras can be embedded. Bratteli, Kishimoto and Robinson first suc-
ceeded in embedding actions of compact groups of a special type in [2]. They
embedded an action of a compact group on a UHF algebra ⊗∞

n=1Mkn of the form
γt = ⊗∞

n=1Adunt, where t 7→ unt is a unitary representation on Mkn . They call an
action of this form ”a product type action.” Since any irreducible representation
of a compact group is finite dimensional, a product type action seems standard.
One decade and a half later, product type actions of R were embedded by Kishi-
moto in [9]. While R itself is easy to understand, non-compactness of R makes
this embedding problem much more delicate, and the action (called ”flow”) need
to be perturbed. In this paper, we treat the Z-action case, i.e. the automorphism
case. Since Z is not compact, a perturbation is also needed in this case. So the
result is as follows:
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Theorem 1.1. Let A be a separable prime C∗-algebra and α an automorphism
of A. Then the following are equivalent:

(1) The Connes spectrum Γ(α) of α is equal to T.
(2) For any UHF algebra D = ⊗∞

n=1Mkn, any automorphism γ of D of the
form γ = ⊗∞

n=1Adeihn, where Mkn is the kn × kn matrix algebra with
kn ≥ 2 and hn ∈ Mkn a self-adjoint matrix for each n, and any ε > 0,
there is a C∗-subalgebra B of A, a unitary v in A (in A + C1 if A is not
unital) and a closed projection q of the enveloping von Neumann algebra
of A which is in the commutant of B such that

‖v − 1‖ < ε, α(v)(B) = B,

(α(v))∗∗(q) = q, qAq = Bq,

(Bq, (α(v))∗∗|Bq) ' (D, γ)

and for x ∈ A, x = 0 if and only if xc(q) = 0, where α(v) := α ◦ Adv is a
perturbation of α and c(q) is the central cover of q and (α(v))∗∗|Bq is the
restriction of (α(v))∗∗ to Bq.

In the statement above, the σ-weakly extended automorphism of α(v) to the
enveloping von Neumann algebra of A is denoted by (α(v))∗∗, but we will later
omit the stars; the same applies to representations, etc.

The Connes spectrum appears in the condition . The definition of the Connes
spectrum is much complicated.

Definition 1.2. Let G be a locally compact abelian group, A a C∗-algebra, and
α an action of G on A.

(1) For a subset Λ of Γ = Ĝ, Mα(Λ) denotes a subset of A such that x ∈
Mα(Λ) if and only if

∫
G

f(t)αt(x)dt = 0 for any f ∈ L1(G) with supp f̂

is compact and supp f̂ ⊂ Γ\Λ, where f̂ is the Fourier transform of f and

supp f̂ the support of f̂ .
(2) We define sp(α), which is called the Arveson spectrum, as the smallest

closed subset Λ of Γ such that Mα(Λ) = A.
(3) The Connes spectrum Γ(α) is defined by Γ(α) :=

∩
sp(α|B), where B

runs over the set of G-invariant hereditary non-zero C∗-subalgebra of A.

We remark that σ ∈ sp(α) is equivalent to the next condition; for ε > 0 and
a compact subset K of G, there is an x ∈ A such that ‖αt(x) − 〈t, σ〉x‖ < ε for
any t ∈ K.

It seems natural that the condition (1) is necessary when the condition (2) is
true. If A was simple and Γ(α) 6= T, αn would be inner in the multiplier algebra
of A for some n (8.9.9 in [12]), so very few γ’s would satisfy Theorem 1.1.

In the hypothesis of the theorem above, if A has a faithful irreducible represen-
tation and Γ(α) = T, then A is automatically not of type I. This can be proved as
follows. Suppose that x is a positive element of A such that xAx is commutative.
The norm closure of xAx is a hereditary sub-C∗-algebra of A, whose image of
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an irreducible representation is an algebra of one-dimensional operators. This
contradicts Γ(α) = T (by the same argument as in the proof of Lemma 2.5).

We state a straightforward corollary and end the introduction.

Corollary 1.3. Let A be a separable prime C∗-algebra and α an automorphism of
A with the Connes spectrum Γ(α) = T. Then, for any AFD factor M , there are
an α-covariant representation π of A and a projection Q of π(A)′′ with c(Q) = 1
such that Qπ(A)′′Q ' M .

Proof. Note that an AFD factor always has a σ-weakly dense UHF subalgebra
D ([4]). We use Theorem 1.1 for γ =identity and obtain B, v and q. We take a
faithful state on M and restrict it on D. This state gives one on qAq = Bq through
the isomorphism (Bq, α(v)|Bq) ' (D, γ), which is denoted by ψ0. Because of a
choice of γ, ψ0 is α(v)|Bq-invariant. We define a state ψ on A by ψ(x) := ψ0(qxq)
for x ∈ A. Let (πψ,Hψ, ξψ), (πψ0 ,Hψ0 , ξψ0) be the GNS-triples of ψ and ψ0,
respectively. Set Q := πψ(q). Then it follows that Qπψ(A)Q = πψ(qAq), which
implies Qπψ(A)′′Q = πψ(qAq)′′. We would like to assume that Hψ0 ⊂ Hψ and
πψ is an extension of πψ0 , but they are not evident by the definition of the GNS
representation. So we will check that there is a natural isomorphism between

πψ0(qAq)′′ξψ0

‖·‖
and πψ(qAq)′′ξψ

‖·‖
. Once it is proved, we have

Hψ0 = πψ0(qAq)′′ξψ0

‖·‖
' πψ(qAq)′′ξψ

‖·‖
⊂ πψ(A)′′ξψ

‖·‖
= Hψ,

and it works out. For any x, y ∈ A, there are z, w ∈ B such that qxq = zq and
qyq = wq. So we have

〈πψ(qxq)ξψ, πψ(qyq)ξψ〉 = 〈πψ(zq)ξψ, πψ(wq)ξψ〉
= 〈πψ(z)ξψ, πψ(w)ξψ〉
= ψ(w∗z) = ψ0(qw

∗zq)

= 〈πψ0(zq)ξψ0 , πψ0(wq)ξψ0〉
= 〈πψ0(qxq)ξψ0 , πψ0(qyq)ξψ0〉,

since ψ(q) = 1 implies πψ(q)ξψ = ξψ, where 〈·, ·〉 denotes the inner product. By
the construction of ψ0, it follows that πψ0(qAq)′′ ' M , whence Qπψ(A)′′Q ' M .
Finally, since

c(Q)Hψ = πψ(A)Qπψ(A)ξψ

‖·‖

⊃ πψ(A)Qξψ

‖·‖
= πψ(A)ξψ

‖·‖
= Hψ,

we have c(Q) = 1. ¤
Notations. For a Hilbert space H, 〈·, ·〉 denotes the inner product of H, B(H)
the set of bounded operators on H, and K(H) the set of compact operators on
H. For a C∗-algebra A, Asa denotes the set of self-adjoint elements in A, A+ the
set of positive elements in A, A1 the unit ball of A, and U(A) the set of unitary
elements in A (in A+C1 if A is not unital). We denote by A∗∗ the enveloping von
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Neumann algebra of A. When A is in some von Neumann algebra, A′ denotes
the commutant of A and A′′ the double commutant of A, which is equal to the
σ-weak closure of A. For a unitary U in B(H), EU denotes the spectral measure
(on T) of U . For a state φ of a C∗-algebra A, πφ denotes the GNS representation
of φ, and suppφ ∈ A∗∗ the support projection of φ. For a function f , suppf
denotes the support of f .

Acknowledgement. The author is grateful to Akitaka Kishimoto for improving
the contents and pointing out errors. The author is also indebted to Reiji Tomatsu
for some pieces of advice.

2. Proof of the main theorem

We can prove that (2) implies (1) easily, so we prove it first. (We put stars for
σ-weakly continuous extensions of automorphisms only in this proof.) Let D :=

⊗∞
n=1Mkn , where kn := 2 for each n. Set un :=

(
1 0
0 e2πiθ

)
for each n, where θ is

an arbitrary irrational number independent on n, and define an automorphism of
D by γ := ⊗Adun. We get an isomorphism (qAq, (α(v))∗∗|qAq) ' (D, γ), where
q and v are obtained by the condition (2). Let τ be the tracial state on qAq.
Then it follows that πτ (qAq)′′ is the hyperfinite II1-factor. Since

∑∞
n=1 |1− |(1 +

e2mπiθ)/2|| = ∞, the σ-weakly continuous extension of (α(v))m to πτ (qAq)′′ is
outer for any m ∈ Z\{0} ([3], 1.3.7). Define a state ψ on A by ψ(x) := τ(qxq)
for x ∈ A. We remark that we can regard πψ as an extension of πτ by the same
reason as in the proof of Corollary 1.3. Since ψ ◦ (α(v))∗∗ = ψ, we can extend
(α(v))∗∗ to πψ(A)′′. Since (α(v))∗∗(πψ(q)) = πψ(q), it follows that ((α(v))∗∗)m on
πψ(A)′′ is also outer for each m, whence Γ(α∗∗) = T since Z is discrete. Therefore
we have Γ(α) = T (see [12], 8.8.9).

We will show that (1) implies (2) from now.

Theorem 2.1 (Kadison’s transitivity). Let A be a C∗-algebra and π an irre-
ducible representation of A on a Hilbert space H. For T ∈ B(H), a finite dimen-
sional subspace K ⊂ H and ε > 0, There is an x ∈ A such that

π(x)|K = T |K and ‖x‖ ≤ ‖T‖ + ε.

If T = T ∗, then x can also be chosen so that x = x∗.

Kadison’s transitivity says that any bounded linear map coincides on a finite
dimensional subspace with an element in the σ-weakly dense C∗-algebra of the
von Neumann algebra of bounded linear maps. Before we begin the proof, we
present Kadison’s transitivity in the following form.

Lemma 2.2. For any ε > 0 and any natural number m, there is a δ > 0 such
that the following holds:

Let A be a C∗-algebra, π an irreducible representation on a Hilbert space H, and
V a unitary in B(H). Let (ξ1, · · · , ξm) be a finite family of mutually orthogonal
unit vectors in H. If ‖V ξj − ξj‖ < δ for j = 1, · · · , m, there is a v in U(A) such
that ‖v − 1‖ < ε and π(v)ξj = V ξj for j = 1, · · · ,m.
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To prove this, we prepare the following lemma.

Lemma 2.3. Let m,n be natural numbers and ε > 0. Let (ξ1, · · · , ξm) and
(η1, · · · , ηn) be two families of unit vectors such that ξj’s are mutually orthogonal
and |〈ηi, ξj〉| < ε, |〈ηi, ηk〉| < ε for any j = 1, · · ·m and i, k = 1, · · · , n, i 6=
k. Then there is a family (η′

1, · · · , η′
n) of unit vectors in the finite dimensional

subspace spanned by ξ1, · · · , ξm, η1, · · · , ηn such that (ξ1, · · · , ξm, η′
1, · · · , η′

n) is an
orthogonal family of unit vectors and ‖ηi − η′

i‖ < rmnε for i = 1, · · · , n, where
rmn is a positive real number dependent on m and n.

Proof. We recall the process of the Gram-Schmidt orthogonalization. Define
η′′

1 := η1 −
∑m

j=1〈η1, ξj〉ξj. Then we have 〈η′′
1 , ξj〉 = 0 for j = 1, · · · ,m and

‖η′′
1 − η1‖ ≤

m∑
j=1

|〈η1, ξj〉| < mε.

And define η′
1 := η′′

1/ ‖η′′
1‖. Since 1 − mε < ‖η′′

1‖ ≤ 1, we have

‖η′
1 − η1‖ ≤ ‖η′

1 − η′′
1‖ + ‖η′′

1 − η1‖
≤ (1 − ‖η′′

1‖) ‖η′
1‖ + ‖η′′

1 − η1‖
< mε + mε = 2mε.

When η′
1, · · · , η′

i−1 have already defined for 2 ≤ i ≤ n, set η′′
i := ηi −∑m

j=1〈ηi, ξj〉ξj −
∑i−1

`=1〈ηi, η
′
`〉η′

` and η′
i := η′′

i / ‖η′′
i ‖. As above, it follows that

〈η′
i, ξj〉 = 0 for j = 1, · · · ,m, 〈η′

i, η
′
`〉 = 0 for ` = 1, · · · , i − 1, and ‖η′

i − ηi‖ < riε
for all i, when we set r1 := 2m and ri := 2(m + i − 1 + r1 + r2 + · · · + ri−1)
for 2 ≤ i ≤ n. Since the sequence (ri)i is obviously increasing, we have
ri = 2(m + i − 1 + r1 + · · · + ri−1) ≤ 2nri−1, whence ri ≤ 2m(2n)n−1 for
1 ≤ i ≤ n. ¤

Proof of Lemma 2.2. We would like to use Kadison’s transitivity for self-adjoint
operators, but it makes this problem difficult that the initial space and the range
space of an operator are not the same in general. So we have to find a unitary
W which is equal to V on the subspace spanned by ξ1, · · · , ξm and whose initial
space is a finite dimensional subspace containing ξ1, · · · , ξm and coincides with
its range space. We may assume that ε < 1/2. Let F be the finite-dimensional
subspace of H spanned by ξ1, · · · , ξm and V ξ1, · · · , V ξm. Let η1, · · · , ηn be unit
vectors such that (ξ1, · · · , ξm, η1, · · · , ηn) is an orthonormal basis of F . Since

|〈ηi, V ξj〉| = |〈ηi, V ξj〉 − 〈ηi, ξj〉| ≤ ‖V ξj − ξj‖ < δ

for i = 1, · · · , n and j = 1, · · · ,m, it follows from Lemma 2.3 that there is a
family (η′

1, · · · , η′
n) of unit vectors in F such that (V ξ1, · · · , V ξm, η′

1, · · · , η′
n) is

an orthonormal basis of F and ‖ηi − η′
i‖ < rmnε for i = 1, · · · , n, where rmn is a

positive real number dependent on m and n. Let W be a unitary on F determined
by Wξj := V ξj for j = 1, · · · ,m and Wηi := η′

i for i = 1, · · · , n. When we set
δ := ε/(2

√
nrmn), it follows that ‖W − 1‖ < ε/2. Define T := −i log W =

i
∑∞

n=1(W − 1)n/n on F . Then we have ‖T‖ < − log(1 − ε/2). We extend T to
6



a self-adjoint operator on H by setting T = 0 on the orthogonal complement of
F . We also denote this extended operator by T and define W = eiT on H. Let P
be the projection onto F . By Kadison’s transitivity for a self-adjoint operator,
there is an a ∈ Asa such that TP = π(a)P and ‖a‖ < − log(1 − ε/2). By the
construction of T , we have TP = PTP = π(a)P = Pπ(a)P . Hence it follows
that

WP = PWP = P
∞∑

n=0

(iT )n

n!
P =

∞∑
n=0

(iPTP )n

n!

=
∞∑

n=0

(iPπ(a)P )n

n!
= P

∞∑
n=0

(iπ(a))n

n!
P

= Peiπ(a)P = eiπ(a)P

and ∥∥eia − 1
∥∥ ≤ e‖a‖ − 1 < e− log(1−ε/2) − 1 < ε.

Now v := eia is a desired unitary. ¤
From now on, Let π be a faithful α-covariant irreducible representation of A on

a Hilbert space H and U the implementing unitary of α. The existence of such
a π is proved in [1]. Note that every pair of a C∗-algebra and its automorphism
does not have a faithful covariant irreducible representation in the case where
Γ(α) 6= T. Here is an example. Let Aθ be the irrational rotation algebra for an
irrational number θ, i.e. Aθ is the universal C∗-algebra generated by two unitaries
u and v which satisfy the relation uv = e2πiθvu, and α the automorphism of Aθ

defined by

α(u) := −u, α(v) := eπiθv.

Suppose that Aθ has a faithful irreducible representation σ which satisfy AdU ◦
σ = σ ◦ α, where U is the implementing unitary. Since AdU2 ◦ σ(u) = σ ◦
α2(u) = σ(u) = (Adσ(u) ◦ σ)(u) and AdU2 ◦ σ(v) = σ ◦ α2(v) = σ(e2πiθv) =
σ(uvu∗) = (Adσ(u) ◦ σ)(v), it follows that AdU2 = Adσ(u). Thus U2σ(u)∗ is in
the commutant of σ(Aθ), which is equal to C since σ is irreducible. We take a
λ ∈ C so that U2 = λσ(u). Then we have

λσ(u) = U2 = UU2U∗ = Uλσ(u)U∗ = λ(σ ◦ α)(u) = −λσ(u),

which is absurd.
We recall crossed products and dual actions.

Definition 2.4.

(1) Let A be a C∗-algebra, G an action of G on A. Let Cc,α(G,A) denote the
set of continuous maps from G to A with compact supports. When we
define involution and convolution on Cc,α(G,A) by

x∗(t) := ∆(t)−1αt(x(t−1)∗)

(x ∗ y)(t) :=

∫
G

x(s)αs(y(s−1t))ds

7



for x, y ∈ Cc,α(G,A) and t ∈ G, Cc,α(G,A) becomes a ∗-algebra,
where ∆ : G → R is the modular function of G. With the norm
‖x‖1 :=

∫
‖x(t)‖ dt for x ∈ Cc,α(G,A), Cc,α(G,A) is a normed algebra

with an isometric involution. We denote its completion by L1
α(G,A). The

universal representation (πu,Hu) of L1
α(G,A) is the direct sum of all non-

degenerate representations of L1
α(G,A). We define A oα G as the norm

closure of πu(L
1
α(G,A)) in B(Hu). We call A oα G the crossed product of

the triple (A,G, α).
(2) Let A be a C∗-algebra, G a locally compact abelian group, and α an

action of G on A. For x ∈ Cc,α(G,A), σ ∈ Ĝ and t ∈ G, we define

(α̂σ(x))(t) := 〈t, σ〉x(t).

Then α̂σ extends to an automorphism of A oα G for each σ ∈ Ĝ and α̂
becomes an action of Ĝ on A oα G. We call α̂ the dual action of α.

Note that an α̂-invariant ideal of Aoα Z induces a non-trivial α-invariant ideal
of A by y 7→ I(y) :=

∫
T α̂t(y)dt for y in the α̂-invariant ideal, where this integral

converges in the norm topology since T is compact (see the proof of [12], 7.9.6).

Lemma 2.5. (π o U)(A oα Z) has no non-zero compact operators, where π o
U : Aoα Z → B(H) is a homomorphism defined by π oU(y) :=

∑
n∈Z π(y(n))Un

for y ∈ C0(Z, A).

Proof. At first, we show that π(A) has no non-zero compact operators. We may
identify A with π(A) and assume that A is an irreducible subalgebra of B(H).
Suppose that A has a non-zero compact operator. Since A is irreducible, A
contains K(H). It is obvious that α(K(H)) = K(H). But, since α|K(H) is inner
in B(H) (see the proof of [12], 8.7.4), the Connes spectrum of α|K(H) is equal to
{0} (see [12], 8.9.10; note that the multiplier algebra of K(H) is B(H)). This
contradicts Γ(α) = T.

Next we show that (π o U)(A oα Z) has no non-zero compact operators. If
(π o U)(A oα Z) has a non-zero compact operator K := (π o U)(K ′) ≥ 0,
then π(I(K ′)) is a non-zero compact operator in π(A), which contradicts the last
paragraph. ¤

For an element u in U(A), we define

U (u) := Uπ(u).

Then it follows that AdU (u) ◦ π = π ◦ α(u).
Note that since Γ(α) = T, it follows that sp(U) = T, where sp(U) is the

spectrum of U , and π o U is faithful.

Lemma 2.6. For any ε > 0, there are a u in U(A) and a unit vector ξ0 in H
such that ‖u − 1‖ < ε and U (u)ξ0 = ξ0.

Proof. Using the functional calculus, there is an H in B(H)sa such that U = eiH .
Let δ > 0. Applying Weyl’s theorem, there is a compact operator K in B(H)sa
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such that ‖K‖ < δ and H − K is diagonal. Since

d

ds
(e−isHeis(H−K)) = −e−isHiKeis(H−K),

we have

V := e−iHei(H−K) = −
∫ 1

0

e−isHiKeis(H−K)ds + 1.

Then it follows that ‖V − 1‖ ≤ ‖K‖ < δ. Since UV is diagonal and sp(U) = T,
there are a λ ∈ T and a unit vector ξ0 ∈ H such that ‖λ − 1‖ < δ and UV ξ0 = λξ0.
Thus we have

‖U∗ξ0 − ξ0‖ ≤ ‖U∗ξ0 − V ξ0‖ + ‖V ξ0 − ξ0‖ ≤ |λ − 1| + ‖V − 1‖ < 2δ.

Now we can find a desired unitary u by Lemma 2.2. ¤
According to this lemma, we may assume that there is a unit vector ξ0 in H

such that Uξ0 = ξ0 because U will be perturbed again later. Let ω be the pure
state defined by ω(x) := 〈π(x)ξ0, ξ0〉 for x in A.

We define

T := {e ∈ A|0 ≤ e ≤ 1, π(e)ξ0 = ξ0, and ∃a ∈ A : ea = a, π(a)ξ0 = ξ0}.
Note that we can always take an a from T in this definition. In fact, for e ∈ T

and a ∈ A such that ea = a and π(a)ξ0 = ξ0, it follows that ef(a) = f(a) and
π(f(a))ξ0 = ξ0, where f(t) := 2t (0 ≤ t ≤ 1/2), := 1 (1/2 ≤ t ≤ 1). It is obvious
that f(a) ∈ T .

Lemma 2.7. There is a decreasing sequence (eN)N in T such that eNeN+1 = eN+1

for any N = 1, 2, · · · and eN ↘ suppω, i.e. suppω = infN eN .

Proof. Since p := suppω is a closed projection (see [12], 3.13.6), there is a decreas-
ing sequence (yn)n in the unit ball of A+ such that yn ↘ p. Put y :=

∑∞
n=1 2−nyn,

which is in the unit ball of A+. Then, for any state ψ on A, it follows that ψ(y) = 1
if and only if ψ(p) = 1. This implies, by setting ψ := 〈π(·)η, η〉, that for η ∈ H,
it follows that π(y)η = η if and only if η ∈ Cξ0. Thus the spectral projection
of y (in A∗∗) corresponding to the eigenvalue 1 is p. We define a sequence of
continuous functions on [0, 1] by

fN(t) :=

 0 (0 ≤ t ≤ 1 − 1
2N )

2N+1t − 2N (1 − 1
2N ≤ t ≤ 1 − 1

2N+1 )
1 (1 − 1

2N+1 ≤ t ≤ 1)
.

and set eN := fN(y). Then (eN)N is a decreasing sequence whose infimum is
the spectral projection of y corresponding to the eigenvalue 1, which is p. Since
π(p)ξ0 = ξ0, y ≥ p and fN(1) = 1, we have π(eN)ξ0 = ξ0, whence eN ∈ T . ¤

Since ω(α(p)) = ω(p) = 1, it follows that α(p) ≥ p. Taking α−1 instead of α,
we have that α(p) = p.

Note that for an arbitrary positive element x in T such that x ≥ p, this
decreasing sequence can be taken so that x ≥ eN for each N . We will check
it. Since a state of a hereditary subalgebra extends uniquely to a state of the

9



whole algebra (see [12], 3.1.6), the restriction of ω to the hereditary subalgebra
B := {y ∈ A|xy = yx = y} of A is also pure. Thus we can take the sequence
(yn)n from B in the argument above. Then we have eN ≤ x.

Lemma 2.8. If f ∈ `1(Z) satisfies that f ≥ 0 and ‖f‖`1(Z) = 1, it follows that

lim
M→∞

‖αf (eN)eM − eM‖ = 0,

lim
M→∞

‖eNαf (eM) − αf (eM)‖ = 0

for each N , where we define αf (x) :=
∑∞

n=−∞ f(n)αn(x) for f ∈ `1(Z) and
x ∈ A.

Proof. Suppose that the first equality is not valid. Then there is a δ > 0 such
that there are infinitely many M ’s which satisfy∥∥(αf (eN) − 1)e2

M(αf (eN) − 1)
∥∥ > δ.

Since (e2
M)M is decreasing (because (eM)M is decreasing and eMeM+1 = eM+1 for

any M), this inequality holds for every M . We can take a state φM on A such
that

φM((αf (eN) − 1)e2
M(αf (eN) − 1)) > δ

for every M . Since (e2
M)M is decreasing because

e2
M = e

1/2
M eMe

1/2
M ≥ e

1/2
M eM+1e

1/2
M

= e
1/2
M+1eMe

1/2
M+1 ≥ e

1/2
M+1eM+1e

1/2
M+1 = e2

M+1,

we have

φM ′((αf (eN) − 1)e2
M(αf (eN) − 1)) > δ

for any M ′ > M . Taking a cluster point, we can find a state φ on A such that

φ((αf (eN) − 1)e2
M(αf (eN) − 1)) ≥ δ

for any M , whence

φ((αf (eN) − 1)p(αf (eN) − 1)) ≥ δ,

where p := suppω. On the other hand, since α(p) = p and eNp = p, we have

(αf (eN) − 1)p =
∞∑

n=−∞

f(n)(αn(eNp) − p) = 0,

which is a contradiction. The second equality follows similarly. ¤

Lemma 2.9. It follows that

‖π(eN)EU(q − ε, q + ε)‖ = 1

for any q in T, ε > 0 and N = 1, 2, · · · .
10



Proof. Let λ denote the canonical embedding of C∗(Z) into the multiplier algebra
M(A oα Z). For any g ∈ C∗(Z), since (‖eNλ(g)eN‖)N is a decreasing sequence,

ρ(g) := lim
N→∞

‖eNλ(g)eN‖

exists. We will show that ρ is a C∗-norm on C∗(Z), whence ρ(g) = ‖g‖ for
g ∈ C∗(Z) because a C∗-norm on a C∗-algebra is unique.

For any g ∈ C∗(Z) and any f ∈ `1(Z) such that f ≥ 0 and ‖f‖`1(Z) = 1, since,
for any N ,

lim
M

‖eMλ(g)eM‖ = lim
M

‖eMαf (eN)λ(g)αf (eN)eM‖

≤ ‖αf (eN)λ(g)αf (eN)‖

by Lemma 2.8, it follows that ρ(g) ≤ limN ‖αf (eN)λ(g)αf (eN)‖. We can prove
ρ(g) ≥ limN ‖αf (eN)λ(g)αf (eN)‖ similarly, so we have

ρ(g) = lim
N→∞

‖αf (eN)λ(g)αf (eN)‖

for g in C∗(Z) and f ∈ `1(Z) such that f ≥ 0 and
∑∞

n=−∞ f(n) = 1. For any g, h
in C∗(Z) and ε > 0, there is an f in `1(Z) such that f ≥ 0,

∑∞
n=−∞ f(n) = 1,

‖[λ(g), αf (eN)]‖ < ε and ‖[λ(h), αf (eN)]‖ < ε, where [x, y] := xy − yx. We will
check it. For g, h ∈ `1(Z), we take a natural number L such that

max{
−L−1∑
n=−∞

|g(n)| +
∞∑

n=L+1

|g(n)|,
−L−1∑
n=−∞

|h(n)| +
∞∑

n=L+1

|h(n)|} < ε/4.

Set R := max{|g(−L)|, |g(−L + 1)|, · · · , |g(L)|, |h(−L)|, · · · , |h(L)|} and choose
a natural number K such that K > max{1/ε, R}. We define

f(n) :=

{
1

4L(2L+1)K2 (1 ≤ n ≤ 4L(2L + 1)K2)

0 (otherwise)
.

Then we have

|g(n)|
∞∑

m=−∞

|f(m − n) − f(m)| = 2|n||g(n)| 1

4L(2L + 1)K2

≤ 2LR
1

4L(2L + 1)K2

<
ε

2(2L + 1)
(−L ≤ n ≤ L)

11



and
∑∞

m=−∞ |f(m − n) − f(m)| ≤ 2 for any n ∈ Z, whence

‖[λ(g), αf (eN)]‖ ≤
∞∑

n=−∞

|g(n)| ‖αn(αf (eN)) − αf (eN)‖

≤
∞∑

n=−∞

|g(n)|
∞∑

m=−∞

|f(m − n) − f(m)|

< (2L + 1) · ε

2(2L + 1)
+ 2 · ε

4
= ε.

Similarly it follows that ‖[λ(h), αf (eN)]‖ < ε. Thus, for g, h in C∗(Z), we have

ρ(gh) = lim
N→∞

∥∥αf (eN)2λ(g)λ(h)αf (eN)2
∥∥

≤ lim
N→∞

∥∥αf (eN)λ(g)αf (eN)2λ(h)αf (eN)
∥∥ + ε(‖g‖ + ‖h‖)

≤ ρ(g)ρ(h) + ε(‖g‖ + ‖h‖),

whence ρ(gh) ≤ ρ(g)ρ(h). It also follows that ρ(g∗g) = ρ(g)2 for g in C∗(Z) since∥∥αf (eN)2λ(g∗)λ(g)αf (eN)2
∥∥

≤
∥∥αf (eN)λ(g∗)αf (eN)2λ(g)αf (eN)

∥∥ + 2ε ‖g‖
= ‖αf (eN)λ(g)αf (eN)‖2 + 2ε ‖g‖
≤

∥∥αf (eN)2λ(g∗)λ(g)αf (eN)2
∥∥ + 4ε ‖g‖

for any ε > 0 and f in `1(Z) such that f ≥ 0,
∑∞

n=−∞ f(n) = 1 and
‖[λ(g), αf (eN)]‖ < ε. So we can conclude that ρ is a C∗-semi-norm.

We will check that ρ is non-degenerate. Note that g ∈ `1(Z)+ means that there
is a g0 ∈ `1(Z) such that g = g∗

0 ∗ g0, which implies that ĝ = ĝ0
∗ĝ0, where ĝ is the

Fourier transform of g. So it is easier to calculate ĝ ∈ C(T) than g ∈ `1(Z). At
first, since

ĝ(t) = 〈
∑

n

g(n)eintξ0, ξ0〉 = 〈
∑

n

g(n)eintUnπ(eN)ξ0, π(eN)ξ0〉

= 〈(π o U)(eN α̂t(λ(g))eN)ξ0, ξ0〉

for g ∈ `1(Z) and `1(Z) is dense in C∗(Z), the same equality holds for any
g ∈ C∗(Z). Suppose that ρ(g) = 0 for g ∈ C∗(Z). We may assume that g ≥ 0.
Since

ĝ(t) = 〈(π o U)(eN α̂t(λ(g))eN)ξ0, ξ0〉
≤ ‖(π o U)(eN α̂t(λ(g))eN)‖ = ‖eN α̂t(λ(g))eN‖
= ‖α̂t(eNλ(g)eN)‖ = ‖eNλ(g)eN‖
→ ρ(g) = 0

for any t ∈ R/2πZ, it follows that g = 0. Thus ρ is a C∗-norm.
12



Let h be an element of C∗(Z) such that ĥ ≥ 0,
∥∥∥ĥ

∥∥∥ = 1 and supp ĥ ⊂ (q −
ε, q + ε). Then we have

‖π(eN)EU(q − ε, q + ε)‖2 = ‖π(eN)EU(q − ε, q + ε)π(eN)‖

≥
∥∥∥π(eN)ĥ(U)π(eN)

∥∥∥
= ‖(π o U)(eNλ(h)eN)‖ = ‖eNλ(h)eN‖
→ ρ(λ(h)) = ‖h‖ = 1.

Now we reach the assertion. ¤
Lemma 2.10. For any ε > 0, there exists a δ > 0 such that whenever
‖Uξ − eiqξ‖ < δ for a unit vector ξ in H and a q in R/2πZ (' T), then

‖EU(q − ε, q + ε)ξ‖ > 1 − ε.

Proof. For a unit vector ξ in H and a q in R/2πZ, we define a probability measure
µ := µξ,q on R/2πZ by µ(S) = 〈EU(S + q)ξ, ξ〉. Since

〈Uξ, eiqξ〉 =

∫
R/2πZ

ei(p−q) d〈EU(p)ξ, ξ〉

=

∫
R/2πZ

eip d〈EU(p + q)ξ, ξ〉

=

∫
R/2πZ

eip dµ(p),

it follows that ∥∥Uξ − eiqξ
∥∥2

= 2

∫
R/2πZ

(1 − cos p) dµ(p).

Thus, if ‖Uξ − eiqξ‖ < δ, then

1 −
∫

cos p dµ(p) < δ2/2.

Suppose that the assertion is false. Then there are an ε > 0, a sequence (ξm)m

of unit vectors in H, and a sequence (qm)m in R/2πZ such that

lim
m→∞

∥∥Uξm − eiqmξm

∥∥ = 0,

‖EU(qm − ε, qm + ε)ξm‖ ≤ 1 − ε.

Then, by taking a weak cluster point of (µξm,qm)m (in the dual of C(R/2πZ)), we
can find a measure µ on R/2πZ such that

µ(R/2πZ) ≤ 1, µ(−ε, ε) ≤ (1 − ε)2,

∫
cos p dµ(p) = 1.

The first and third conditions imply that µ is the Dirac measure at p = 0, which
contradicts the second condition. Thus we have reached the assertion. ¤
Lemma 2.11. If x ∈ A satisfies xp = 0, where p is the support projection of
ω = 〈π(·)ξ0, ξ0〉, then it follows that ‖xeN‖ → 0 as N → ∞.
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Proof. For a state φ on A, we define fN(φ) := φ(xe2
Nx∗). Since (e2

N)N is also
decreasing, (fN(φ))N converges to φ(xpx∗) = 0. Since fN(φ) is continuous for
each N as a function on the state space of A with the weak* topology, which is
compact, it follows that (fN)N converges uniformly to 0. Thus we have ‖xe2

Nx∗‖ =
supφ fN(φ) → 0, whence ‖xeN‖ → 0 as N → ∞. ¤

Lemma 2.12. Let x be an element of T and β an automorphism of A and V a
unitary such that V ξ0 = ξ0 and AdV ◦ π = π ◦ β. Then for any ε > 0 there exists
a b ∈ T such that xb = b and ‖β(b) − b‖ < ε.

Proof. At first, note that since V ξ0 = ξ0 implies ω(β(p)) = 1, we have β(p) = p,
where p := suppω. Let (eN)N be a decreasing sequence for ξ0 as before. Let f be
a function on Z such that f ≥ 0,

∑
n∈Z f(n) = 1, and

∑
n∈Z |f(n− 1)− f(n)| < ε

(for example, f(n) = 1/(2N + 1) for − N ≤ n ≤ N, = 0 otherwise), and let
bN = βf (eN). Then we have

π(bN)ξ0 = ξ0,

‖β(bN) − bN‖ < ε.

Take an element c ∈ T such that cx = c. Then it follows that (c − 1)p = 0 since
π(p) is the one-dimensional projection onto Cξ0 (here 1 is in the unitization of A
when A is non-unital). By Lemma 2.11, we have

‖ceN − eN‖ → 0.

By Lemma 2.8, it follows that

‖cbN − bN‖ → 0.

Let

gN(t) :=

{
N

N−1
t (0 ≤ t ≤ 1 − 1/N)

1 (1 − 1/N ≤ t ≤ 1)
.

Then it follows that sup0≤t≤1 |gN(t)−t| → 0. Now b := gN(cbNc) for a sufficiently
large N satisfies all of the conditions of the lemma. ¤

Next we have the key lemma for proving the main theorem. Before that, we
have important definitions.

Definition 2.13 ([12], 6.6.1). Let A be a C∗-algebra.

(1) A sequence (xnj)n=1,2,··· ,0≤j<kn in A is a quasi-matrix system if (xnj)n,j

satisfies for any n,

xn0 ≥ 0, ‖xnj‖ = 1 for 0 ≤ j < kn,

x∗
nixnj = 0 for i 6= j,

xnixnj = 0 for j 6= 0,

x∗
njxnjxn0 = xn0 for 1 ≤ j < kn,

xn0xn+1,j = xn+1,jxn0 = xn+1,j for 0 ≤ j < kn+1.
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(2) A sequence (xnj)n=1,2,··· ,0≤j<kn in A is a matrix system if (xnj)n,j is a
quasi-matrix system and satisfies for any n,

x∗
jxj = x0 if j 6= 0

xn+1,0 +

kn+1−1∑
i=1

xn+1,ix
∗
n+1,i = xn0.

When (xnj)n=1,2,··· ,0≤j<kn is a matrix system in a C∗-algebra A, the C∗-
subalgebra of A generated by (xnj)n,j is isomorphic to the UHF algebra D =
⊗∞

n=1Mkn by

x1i1x2i2 · · · xninx∗
n`n

x∗
n−1,`n−1

· · · x∗
1`1

7→ Ei1`1 ⊗ · · · ⊗Ein`n ∈ Mk1 ⊗ · · · ⊗Mkn ⊂ D

for 0 ≤ im, `m < kn, where Ei` denotes the (i, `)-matrix unit of Mkn . Here xnj

expresses the (j, 0)-matrix unit

j>


0 · · · 0
...

...
1 0 · · · 0
...

...
0 · · · 0


of Mkn . (To avoid mistaking indexes, we call the top of a matrix ”the 0-th row”
and the left end of one ”the 0-th column”.) Note that xn0xn+1,j = xn+1,jxn0 =
xn+1,j for 0 ≤ j < kn+1 implies that xn0 is a unit for Mkn+1 ⊂ D.

Lemma 2.14. Let A be a separable C∗-algebra, α an automorphism on A, π
a faithful α-covariant irreducible representation of A on a Hilbert space H, U
the implementing unitary for α, and ξ0 a unit vector such that Uξ0 = ξ0. Let
(p1, p2, · · · , pm) be a sequence in R/2πZ and (x0, x1, · · · , xm) a sequence in A1

with x0 ∈ T such that

Uπ(xk)ξ0 = eipkπ(xk)ξ0,

x∗
jxk = 0 if j 6= k,

xjxk = 0 if k 6= 0,

x∗
jxjx0 = x0 if j 6= 0

for j, k = 0, 1, · · · ,m, where p0 = 0. Let (q1, q2, · · · , qn) be a sequence in R/2πZ
and ε > 0.

Then there exist a sequence (y0, y1, · · · , yn) in A with y0 ∈ T and ‖y`‖ = 1 for
` = 0, 1, · · · , n, and v in U(A) such that ‖v − 1‖ < ε,

x0y` = y`x0 = y`,

y∗
j y` = 0 if j 6= `,

yjy` = 0 if ` 6= 0,

y∗
j yjy0 = y0 if j 6= 0
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for j, ` = 0, 1, · · · , n and

U (v)π(xky`)ξ0 = ei(pk+q`)π(xky`)ξ0,∥∥(α(v)(xky`) − ei(pk+q`)xky`)y0

∥∥ < ε,

for k = 0, 1, · · · ,m and ` = 0, 1, · · · , n with q0 = 0.

Using this lemma inductively, we get a quasi-matrix system (xnj)n,j in A. In
this lemma, xj and y` correspond to xnj and xn+1,` of a quasi-matrix system,
respectively. In the proof of Theorem 1.1 below, we find a projection q ∈ A∗∗

such that (xnjq)n,j is a matrix system, which implies that the UHF algebra D =
⊗∞

n=1Mkn is almost embedded in A.

Proof of Lemma 2.14. We may assume that (q` − ε, q` + ε), ` = 1, · · · , n are
identical or mutually disjoint. Let (eN)N be a decreasing sequence in T associated
with ξ0 as before. We may suppose that e1 = x0. By Lemma 2.11, we can take a
sufficiently large number N such that∥∥(α(xk) − eipkxk)eN

∥∥ < ε

for k = 0, 1, · · · ,m. Let P be the spectral projection of π(eN) corresponding
to the eigenvalue 1. Then we have π(eN)P = P and π(eN+1)P = π(eN+1). By
Lemma 2.9, it follows for ` = 1, · · · , n that ‖π(eN+1)EU(q` − ε, q` + ε)π(eN+1)‖ =
1. Since π(eN+1)P = π(eN+1), we have ‖PEU(q` − ε, q` + ε)P‖ = 1 for ` =
1, · · · , n. So there is a unit vector η` in PH for each ` = 1, · · · , n such that
1 − 〈EU(q` − ε, q` + ε)η`, η`〉 < ε2, which is equivalent to

‖EU(q` − ε, q` + ε)η` − η`‖ < ε.

Since EU(q`−ε, q`+ε)EU(qk−ε, qk+ε) = 0 for q` 6= qk, we have |〈η`, ηk〉| < 2ε. For
q`1 = · · · = q`r(= q`), we want to take a mutually orthogonal family (η`1 , · · · , η`r)
such that η`j

∈ PH and 1 − 〈EU(q` − ε, q` + ε)η`j
, η`j

〉 < ε2 for j = 1, · · · , r. We
show that ‖(PEU(q` − ε, q` + ε)P )|H′‖ = 1 for ` = 1, · · · , n and any subspace
H′ of H whose orthogonal complement is finite-dimensional. By Lemma 2.9, it
follows that ∥∥∥π(eN+1)EU(q` −

ε

2
, q` +

ε

2
)π(eN+1)

∥∥∥
= ‖π(eN+1)EU(q` − ε, q` + ε)π(eN+1)‖ = 1.

Let h : R/2πZ → [0, 1] be a continuous function such that h = 1 on (q`−ε/2, q` +
ε/2) and h = 0 on the complement of (q` − ε, q` + ε). Then it follows that

π(eN+1)EU(q` − ε, q` + ε)π(eN+1)

≥ π(eN+1)h(U)π(eN+1)

≥ π(eN+1)EU(q` − ε/2, q` + ε/2)π(eN+1),

which implies that ‖π(eN+1)h(U)π(eN+1)‖ = 1. By Lemma 2.5, we have

‖Q(π(eN+1)h(U)π(eN+1))‖ = 1,
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where Q : B(H) → B(H)/K(H) is the quotient map. Hence it follows that

‖PEU(q` − ε, q` + ε)P + K‖ ≥ ‖Q(PEU(q` − ε, q` + ε)P )‖
≥ ‖Q(π(eN+1)EU(q` − ε, q` + ε)π(eN+1))‖
≥ ‖Q(π(eN+1)h(U)π(eN+1))‖
= 1

for any K ∈ K(H). For a finite rank projection F such that F ≤ P , let

K := −(FEU(q` − ε, q` + ε)P + PEU(q` − ε, q` + ε)F − FEU(q` − ε, q` + ε)F ).

Then it follows that K is a finite rank operator, and hence

‖(P − F )EU(q` − ε, q` + ε)(P − F )‖
= ‖PEU(q` − ε, q` + ε)P + K‖ = 1.

Thus we can take a desired family (η`1 , · · · , η`r) inductively. We use the
Gram-Schmidt orthogonalization for all η`’s. By Lemma 2.3, we have
‖EU(q` − ε, q` + ε)η` − η`‖ < rnε after this process, where rn is a positive real
number dependent on n.

By Kadison’s transitivity, there exists a y` in A such that ‖y`‖ = 1 and

π(y`)ξ0 = η`

for ` = 1, 2, · · · , n. There also exists a b in A+ such that

π(b)η` = (` + 1)η`

for ` = 0, 1, · · · , n, where η0 = ξ0. Since π(eN)P = P , we may replace b by
eNbeN , and hence we may assume that x0b = b. Let (f0, f1, · · · , fn) be a sequence
of non-negative functions in C0(0,∞) with norm 1 such that f`(` + 1) = 1 and
supp(f`) ⊂ (` + 1/2, ` + 3/2) for ` = 0, 1, · · · , n. Then, since

π(f`(b)y`f0(b))η0 = η`,

we may replace y` by f`(b)y`f0(b) for ` = 0, 1, · · · , n. Then it follows that x0y` =
y`x0 = y`, y∗

j y` = 0 for j 6= `, and yjy` = 0 for j, ` = 1, 2, · · · , n besides the
original conditions π(y`)ξ0 = η` and ‖y`‖ = 1.

Since 〈π(y∗
1y1)ξ0, ξ0〉 = ‖η1‖ = 1 and ‖π(y∗

1y1)ξ0‖ ≤ 1 (because ‖y1‖ = ‖ξ0‖ =
1), it follows that π(y∗

1y1)ξ0 = ξ0. Let f be a non-negative function in C0(0,∞)
such that f(t) = t−1/2 around t = 1 and tf(t)2 ≤ 1 for all t > 0. Then we have
π(f(y∗

1y1))ξ0 = ξ0, and so

π(y1f(y∗
1y1))ξ0 = η1.

Replacing y1 by y1f(y∗
1y1), it follows that y∗

1y1 ∈ T , since tf(t)2 ≡ 1 around t = 1.
Take a z1 ∈ T such that y∗

1y1z1 = z1. Replacing y2 by y2z1f(z1y
∗
2y2z1), it follows

that y2y
∗
1y1 = y2 and y∗

2y2 ∈ T . Take a z2 ∈ T such that y∗
2y2z2 = z2. Inductively,

we replace yi by yizi−1f(zi−1y
∗
i yizi−1) and obtain a zi ∈ T . Set y0 := zn. Then

we have y0y
∗
` y` = y0 and y0y` = 0 for ` = 1, 2, · · · , n. Thus (y0, · · · , yn) satisfies

the first four conditions.
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Since∥∥Uη` − eiq`η`

∥∥ ≤ 2 ‖EU(q` − ε, q` + ε)η` − η`‖
+

∥∥UEU(q` − ε, q` + ε)η` − eiq`EU(q` − ε, q` + ε)η`

∥∥
< 2rnε +

∥∥∥∥∫ q`+ε

q`−ε

(eit − eiq`)dEU(t)η`

∥∥∥∥
≤ (2rn + 2)ε,

it follows that∥∥Uπ(xky`)ξ0 − ei(pk+q`)π(xky`)ξ0

∥∥
≤

∥∥π(α(xk))Uη` − eiq`π(α(xk))η`

∥∥ +
∥∥π(α(xk))η` − eipkπ(xk)η`

∥∥
≤

∥∥Uη` − eiq`η`

∥∥ +
∥∥(α(xk) − eipkxk)eN

∥∥
< (2rn + 3)ε.

Since the (m + 1)(n + 1) unit vectors π(xky`)ξ0, k = 0, · · · ,m, ` = 0, · · · , n are
mutually orthogonal, and

Uπ(xky0)ξ0 = eipkπ(xky0)ξ0

for k = 0, · · · ,m and∥∥Uπ(xky`)ξ0 − ei(pk+q`)π(xky`)ξ0

∥∥ < (2rn + 3)ε

for k = 0, · · · ,m, ` = 1, · · · , n, we can use Lemma 2.2 for a unitary V such that
V π(xkyl)ξ0 := ei(pk+ql)U∗π(xkyl)ξ0 and π(xky`)ξ0, k = 0, · · · ,m and ` = 0, · · · , n
to obtain a v ∈ U(A) as required except for the last condition. Since y0 ≥ p,
there is another decreasing sequence (e′N)N such that e′1 = y0 and e′N ↘ p. By
Lemma 2.11, there is a sufficiently large number N0 such that∥∥(α(v)(xky`) − ei(pk+q`)xky`)e

′
N0

∥∥ < ε.

We replace y0 by e′N0
and end the proof. ¤

Proof of Theorem 1.1. Since a unitary matrix can be diagonalized by some uni-
tary matrix, we may assume, up to conjugacy, that γ is of the form

γ =
∞⊗

n=1

Ad diag(1, eipn1 , · · · , eipn,kn−1)

on D = ⊗∞
n=1Mkn , where diag(λ1, · · · , λk) means the diagonal matrix whose (i, i)

component is λi. We define pn0 := 0 for n = 0, 1, · · · .
We have fixed a unit vector ξ0 ∈ H such that Uξ0 = ξ0. We choose an e ∈ T .

Let (µn) be a strictly decreasing sequence of positive numbers such that

nk1k2 · · · knµn < 1

and let εn := µn − µn+1.
Using Lemma 2.14 inductively, we will find suitable elements vm ∈ U(A) for

m = 0, 1, · · · , and xmj ∈ A for m = 0, 1, · · · and 0 ≤ j < km. When m = 0 (note
that we can set k0 := 1), we define v0 := 1 and x00 := e.

18



Suppose vn ∈ U(A) and xnj ∈ A for 0 ≤ j < kn are already defined for n ≤ m
so that xn0 ∈ T , ‖xnj‖ = 1, ‖vn − 1‖ < εn, and

U (vm)π(w
(m)
i )ξ0 = eip

(m)
i π(w

(m)
i )ξ0,

w
(m)∗
j w

(m)
k = 0 if j 6= k,

w
(m)
j w

(m)
k = 0 if k 6= 0,

w
(m)∗
j w

(m)
j w

(m)
0 = w

(m)
0 if j 6= 0,

for all i, j, k ∈ Xm and 0 = (0, 0, · · · , 0) ∈ Xm, where

vm := v1v2 · · · vm,

Xm := {i = (i1, i2, · · · , im)|0 ≤ in < kn},

w
(m)
i := x1i1x2i2 · · · xmim for i = (i1, i2, · · · , im) ∈ Xm,

p
(m)
i := p1i1 + p2i2 + · · · + pmim for i = (i1, i2, · · · , im) ∈ Xm,

and v0 := 1, X0 := {0}, w
(0)
0 := e and p

(0)
0 := 0 for m = 0. Then, there

exist xm+1,` ∈ A for 0 ≤ ` < km+1 and vm+1 ∈ U(A) such that xm+1,0 ∈ T ,
‖xm+1,j‖ = 1, ‖vm+1 − 1‖ < εm+1, and

w
(m)
0 xm+1,` = xm+1,`w

(m)
0 = xm+1,`,

x∗
m+1,jxm+1,` = 0 if j 6= `,

xm+1,jxm+1,` = 0 if ` 6= 0,

x∗
m+1,jxm+1,jxm+1,0 = xm+1,0 if j 6= 0

for all j, ` = 0, 1, · · · , km+1 − 1 and

U (vm+1)π(w
(m)
k xm+1,`)ξ0 = ei(p

(m)
k +pm+1,`)π(w

(m)
k xm+1,`)ξ0,∥∥∥(α(vm+1)(w

(m)
k xm+1,`) − ei(p

(m)
k +pm+1,`)w

(m)
k xm+1,`)xm+1,0

∥∥∥ < εm+1

for k ∈ Xm and ` = 0, 1, · · · , km+1 − 1. Since w
(m)
k xm+1,` = w

(m+1)
(k,`) , where

(k, `) ∈ Xm+1, it follows that

w
(m+1)∗
j w

(m+1)
k = 0 if j 6= k,

w
(m+1)
j w

(m+1)
k = 0 if k 6= 0,

w
(m+1)∗
j w

(m+1)
j w

(m+1)
0 = w

(m+1)
0 if j 6= 0,

U (vm+1)π(w
(m+1)
i )ξ0 = eip

(m+1)
i π(w

(m+1)
i )ξ0,∥∥∥(α(vm+1)(w

(m+1)
k ) − eip

(m+1)
k w

(m+1)
k )w

(m+1)
0

∥∥∥ < εm+1,

for i, j, k ∈ Xm+1, where we used w
(m)
0 xm+1,` = xm+1,`w

(m)
0 = xm+1,`. Since

w
(n−1)
0 xn0 = xn0w

(n−1)
0 = xn0 for any n implies w

(n)
0 = xn0, we have

(xnj)n=1,2,··· ,0≤j<kn is a quasi-matrix system.
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We define

v := lim
m

vm = v1v2 · · · .

Then it follows that ‖v − 1‖ < µ1, and∥∥∥(α(v)(w
(m)
i ) − eip

(m)
i w

(m)
i )w

(m)
0

∥∥∥
<

∥∥∥(α(vm)(w
(m)
i ) − eip

(m)
i w

(m)
i )w

(m)
0

∥∥∥ + 2µm+1

< 2µm

for i ∈ Xm. Note that since U (vm+1)ξ0 = ξ0, it follows that U (v)ξ0 = ξ0, which
implies α(v)(p) = p.

By using the separability of A, we will impose another condition on the choice

of w
(m)
0 = xm0 for each m. (We only have to replace them for sufficiently large

m’s.) Fix a dense sequence (an)n of Asa. Let (eN)N and (fN)N be as in Lemma 2.7

and choose a ∈ T such that w
(m)
0 a = a. Set y′ :=

∑
2−NaeNa and zN := fN(y′).

Then we have w
(m)
0 zN = zN for all N . Let b be an element in A. Since zN ↘ p,

(zN(b − ω(b))zN) converges σ-weakly to p(b − ω(b))p, which is equal to 0 since
π(p) is the 1-dimensional projection supporting ω. So the norm closure of the
convex hull of {zN(b − ω(b))zN} contains 0. Thus for each δ > 0 there are
positive numbers (ti)i with

∑
ti = 1 such that ‖

∑
tizNi

(b − ω(b))zNi
‖ < δ. Hence

whenever N ≥ Ni for all i, it follows that

‖zN(b − ω(b))zN‖ ≤ ‖zN‖
∥∥∥∑

tizNi
(b − ω(b))zNi

∥∥∥ ‖zN‖ < δ.

We take such an N and set w̃0
(m) := zN . Applying Lemma 2.12, we may assume

that ∥∥α(v)(w̃0
(m)) − w̃0

(m)
∥∥ < µm.

Set ãm :=
∑

i,j∈Xm
ω(w

(m)∗
j amw

(m)
i )w

(m)
j (w̃

(m)
0 )2w

(m)∗
i ∈ B. Then, by setting b =

w
(m)∗
i amw

(m)
j and δ = µm/(k1k2 · · · km) in the argument above, we have∥∥∥∥∥(

∑
i

w
(m)
i (w̃

(m)
0 )2w

(m)∗
i )(am − ãm)(

∑
j

w
(m)
j (w̃

(m)
0 )2w

(m)∗
j )

∥∥∥∥∥
=

∥∥∥∥∥∑
i,j

w
(m)
i (w̃

(m)
0 )2(w

(m)∗
i amw

(m)
j − ω(w

(m)∗
i amw

(m)
j ))(w̃

(m)
0 )2w

(m)∗
j

∥∥∥∥∥
< 1/m.

From now on we just write w
(m)
0 instead of w̃0

(m).

Let pm be the spectral projection of w
(m)
0 = xm0 corresponding to the eigenvalue

1. We define

qm :=
∑
i∈Xm

w
(m)
i pmw

(m)∗
i
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and for 1 ≤ n ≤ m,

qmn :=
∑

i∈Xn,m

w
(m)
i pmw

(m)∗
i

where Xn,m := {i ∈ Xm|i1 = 0, i2 = 0, · · · , in = 0}. Then it follows that qm, qmn

with 1 ≤ n ≤ m are projections in A∗∗ satisfying

xniqm = xniqmn = qmxni,

x∗
nixniqm = xn0qm = qmn,

xn+1,0qm′ +

kn+1−1∑
i=1

xn+1,ix
∗
n+1,iqm′ = xn0qm′

for each 1 ≤ n ≤ m, 0 ≤ i < kn and m′ > n+1. We will prove these claims. Note

that if i ∈ Xn,m, then w
(m)
i = x10x20 · · · xn0xn+1,in+1 · · · xmim = xn+1,in+1 · · · xmim .

It can be easily shown that qm, qmn with 1 ≤ n ≤ m are projections by xn′ixn′′j = 0
if n′ ≥ n′′ and j 6= 0, and x∗

n′ixn′′j = 0 unless n′ = n′′ and i = j. The first and
second line of the three can also be shown immediately by xn′ixn′′j = 0 if n′ ≥ n′′

and j 6= 0, and x∗
n′ixn′ixn′0 = xn′0 for each n′ and i 6= 0. We will check the last

equality. Since xn0qn+1 = qn+1xn0 = xn0qn+1,n = qn+1,nxn0 = qn+1,n, it follows
that pnqn+1 = qn+1,n for each n. Hence we have

xn0qn+2 = xn0qn+1qn+2 = qn+1,nqn+2

=

kn+1−1∑
j=0

xn+1,jpn+1x
∗
n+1,jqn+2 =

kn+1−1∑
j=0

xn+1,jpn+1qn+2x
∗
n+1,j

=

kn+1−1∑
j=0

xn+1,jqn+2,n+1x
∗
n+1,j =

kn+1−1∑
j=0

xn+1,jqn+2x
∗
n+1,j

= xn+1,0qn+2 +

kn+1−1∑
i=1

xn+1,ix
∗
n+1,iqn+2.

Multiplying qm′ (m′ > n + 1) by the right side, we get the desired equality.
We define

rm :=
∑
i∈Xm

w
(m)
i w

(m)2

0 w
(m)∗
i ∈ A.

Then it follows that qm ≤ rm ≤ qm−1. Let q :=weak*-lim qm. Since (qm)m is a
decreasing sequence, q is a closed projection in A∗∗.

For i ∈ Xm, we have that∥∥∥α(v)(w
(m)
i w

(m)2

0 w
(m)∗
i ) − w

(m)
i w

(m)2

0 w
(m)∗
i

∥∥∥
≤

∥∥∥α(v)(w
(m)
i )w

(m)2

0 α(v)(w
(m)∗
i ) − w

(m)
i w

(m)2

0 w
(m)∗
i

∥∥∥ + 2µm

≤ 2
∥∥∥(α(v)(w

(m)
i ) − eip

(m)
i w

(m)
i )w

(m)
0

∥∥∥ + 2µm

≤ 6µm,

21



which implies that ∥∥α(v)(rm) − rm

∥∥ < 6k1k2 · · · kmµm < 6/m.

Therefore we have α(v)(q) = q.
For n ≤ m, 0 ≤ i < kn and j ∈ Xm, note that if j /∈ Xn,m, it follows

that xniw
(m)
j = 0, otherwise we can write w

(m)
` = xniw

(m)
j for some ` ∈ Xm

(because w
(m)
i = x10x20 · · · xn0xn+1,in+1 · · ·xmim = xn+1,in+1 · · · xmim for i ∈ Xn,m

and xnixn′j = 0 if n ≥ n′, j 6= 0). So we have∥∥∥(α(v)(xni) − eipnixni)w
(m)
j w

(m)
0

∥∥∥
<

∥∥∥(e−ip
(m)
j α(v)(xniw

(m)
j ) − eipnixniw

(m)
j )w

(m)
0

∥∥∥ + 2µm

=
∥∥∥(α(v)(w

(m)
` ) − eip

(m)
` w

(m)
` )w

(m)
0

∥∥∥ + 2µm

< 4µm,

whenever w
(m)
` = xniw

(m)
j 6= 0. (This inequality also holds when xniw

(m)
j = 0.)

Thus it follows that∥∥(α(v)(xni) − eipnixni)qm

∥∥ ≤
∑

j∈Xm

∥∥∥(α(v)(xni) − eipnixni)w
(m)
j pm

∥∥∥
< 4k1k2 · · · kmµm < 4/m,

and hence α(v)(xni)q = eipnixniq.
Let B be the C∗-subalgebra of A generated by {α(v)m

(xni)|m ∈ Z, n =
1, 2, · · · , 0 ≤ i < kn}. Then it is evident that B is invariant under α(v). Since
qxni = xniq and q is α(v)-invariant, we have qα(v)(xni) = α(v)(xni)q, which implies
that q ∈ B′. Since (xnj)n=1,2,··· ,0≤j<kn is a quasi-matrix system and

x∗
nixniq = xn0q,

xn+1,0q +

kn+1−1∑
i=1

xn+1,ix
∗
n+1,iq = xn0q,

it follows that (xnjq)n=1,2,··· ,0≤j<kn is a matrix system and generates a UHF algebra
which is isomorphic to D. Since α(v)(xni)q = eipnixniq, it follows that {xnjq}n,j

generates Bq and (Bq, (α(v))∗∗|Bq) ' (D, γ). And since ‖rm(am − ãm)rm‖ < 1/m
and rmq = q (because q = qq ≥ qrmq ≥ qqq = q and qrm = rmq), it follows that
qAq = Bq.

Finally we show that xc(q) = 0 implies x = 0 for x ∈ A. Since w
(n)∗
i xn0 = 0

for i ∈ Xn unless i = 0, it follows that

qnxn0 =
∑
i∈Xn

w
(n)
i pnw

(n)∗
i xn0

= xn0pnx
∗
n0xn0 = pn.

Thus we have
π(qn)ξ0 = π(qnxn0)ξ0 = π(pn)ξ0 = ξ0,
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which implies ω(qn) = 1 for each n. Hence it follows that ω(q) = 1, which is
equivalent to q ≥ p. So it suffices to show that xc(p) = 0 implies x = 0 for x ∈ A.
Since π(p)ξ0 = ξ0 and c(p) ≥ p, we have π(c(p))ξ0 = ξ0. Thus, for any x, y ∈ A,
it follows that

π(x)(π(y)ξ0) = π(x)π(y)π(c(p))ξ0 = π(xc(p))π(y)ξ0 = 0.

Note that since π is irreducible, we have ξ0 is a cyclic vector. Hence it follows
that π(x) = 0, which implies x = 0. ¤
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