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Introduction

Mathematical investigations on continuous quantum measurements are pre-
sented.

In Chapter 1, we treat vector states only. This chapter include the follow-
ing aspect: (i) quantum Zeno effect (QZE) by frequent measurements made
by an arbitrary partition of a time interval [0, t] (t > 0); (ii) non-occurrence
of QZE for vector states which are not in the domain of the Hamiltonian
of the quantum system under consideration; (iii) asymptotic behavior of the
survival probability characterizing QZE in the number N of divisions of [0, t];
(iv) QZE along a curve in the Hilbert space of state vectors. Chapter 1 is a
joint work with Professor Asao Arai [1].

In Chapter 2, mixed states are mainly treated. By carrying out appropri-
ate continuous quantum measurements with a family of projection operators,
a unitary channel can be approximated in an arbitrary precision in the trace
norm sense. In particular, the quantum Zeno effect is described as an ap-
plication. In the case of an infinite dimension, although the von Neumann
entropy is not necessarily continuous, the difference of the entropies between
the states, as mentioned above, can be arbitrarily made small under some
conditions. Chapter 2 is based on [2].

Appendix includes fundamental facts which is related to Chapter 2.
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Chapter 1

Some Mathematical Aspects of
Quantum Zeno Effect

1.1 Introduction

The quantum phenomenon in which, by a series of measurements, transitions
to states different from the initial state (the state at time zero) are hindered
or inhibited, is called the quantum Zeno effect (QZE) [5]. It has been reported
that the QZE can be experimentally realized (e.g., [1, 2, 3]).

In this paper, we are interested in investigating general mathematical
aspects associated with the QZE. To explain new features in the present
work, we first review the QZE briefly. So let us consider a quantum system
S whose Hamiltonian is given by a self-adjoint operator H on a complex
Hilbert space H (so that H is a Hilbert space of state vectors of S). We
denote the inner product and the norm of H by ⟨ · , · ⟩ (anti-linear in the first
variable and linear in the second) and ∥ · ∥, respectively. The domain of H
is denoted as D(H). In what follows, we deal with vector states only. Hence
we call a non-zero vector in H a state simply. As is well-known, by an axiom
of quantum mechanics, for an initial state Ψ ∈ H with ∥Ψ∥ = 1, the state at
time t ∈ R is given by the vector e−itHΨ, provided that no measurement is
made in the time interval [0, t], where i is the imaginary unit and we use the
physical unit system such that ~ := h/2π (h is the Planck constant) is equal
to 1. Hence the probability of finding the initial state Ψ by a measurement
at time t is given by |

⟨
Ψ, e−itHΨ

⟩
|2. This quantity is called the survival

probability of the initial state Ψ at time t.

Now, consider a time interval [0, t] with t > 0 arbitrarily fixed and suppose
that N measurements, spaced equally in time by t/N , are made, where N
is an arbitrary natural number. If the state at time jt/N (j = 1, · · · , N) is

9



10 CHAPTER 1. SOME MATHEMATICAL ASPECTS OF QZE

Φ ∈ H, then the state at time (j+1)t/N is e−i{(j+1)t/N−jt/N}HΦ = e−itH/NΦ,
provided that no measurement is made in the time interval [jt/N, (j+1)t/N ].
Hence the probability that, for all j = 1, · · · , N , the measurement at time
jt/N finds the initial state Ψ is given by

PN(Ψ, t) :=
∣∣⟨Ψ, e−itH/NΨ

⟩∣∣2N . (1.1)

We call this quantity the multi-time survival probability of the initial state Ψ
in the time interval [0, t].

We say that the QZE occurs with respect to the pair (Ψ, [0, t]) consist-
ing of the initial state Ψ and the time interval [0, t] in the sense of equally
spaced measurement in time if limN→∞ PN(Ψ, t) = 1. The occurrence
of the QZE of this type physically means that, for all sufficiently large
N , the successive measurements for the quantum system S at the times
t/N, 2t/N, 3t/N, · · · , Nt/N tend to maintain the initial state Ψ with proba-
bility ≈ 1, in other words, they tend to hinder transitions to states different
from the initial state Ψ with probability ≈ 1.

Heuristically the occurrence of the QZE can be shown as follows (see,
e.g., [4]). Using the formal expansion

e−itH = I − itH − t2

2
H2 +O(t3) (t→ 0),

one infers that, for all Ψ ∈ ∩∞
n=1D(Hn),∣∣⟨Ψ, e−isHΨ

⟩∣∣2 = 1− (∆H)2Ψs
2 +O(s4) (s→ 0), (1.2)

where

(∆H)Ψ := ∥(H − ⟨Ψ, HΨ⟩)Ψ∥ =

√
∥HΨ∥2 − ⟨Ψ, HΨ⟩2

is the uncertainty of H in the state Ψ (formula (1.2) can be easily made
mathematically rigorous if Ψ is an analytic vector of H). Hence, for all
sufficiently large N ,

PN(Ψ, t) ≈

[
1− (∆H)2Ψ

(
t

N

)2
]N

≈ e−(∆H)2Ψt2/N ≈ 1.

In this way the occurrence of the QZE is inferred.
In the present paper, we begin with re-examining the QZE of the type

described above in a mathematically rigorous and non-perturbative way in
Section 2. We focus our attention on two aspects. One of them is to consider
the situation where the N measurements are made in a way not necessar-
ily spaced equally in time. This generalization is mathematically natural.
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It may be physically meaningful too, because any measurement of the time
inevitably has an error. We prove that, under such a situation too, a phe-
nomenon regarded as a generalization of the QZE occurs, provided that the
initial state is in D(H) (Theorem 1.2.1). The other aspect is the possibility
of non-occurrence of QZE for initial states not in D(H), as suggested by the
heuristic derivation of the QZE given above or the proof of Theorem 1.2.1
below. Indeed, there is an example in which the QZE does not occur for an
initial state not in D(H) (Example 1.2.4).

In the case of the QZE which occurs through frequent measurements
spaced equally in time, it may be interesting to investigate the asymptotic
expansion of the multi-time survival probability PN(Ψ, t) (see (1.1)) in the
powers of 1/N as N → ∞. This is done in Section 3. For all Ψ ∈ D(H) and
t > 0, we derive the asymptotic expansion of PN(Ψ, t) up to order 1/N .

In Section 4, we consider measurements of states along a curve Ψ(·) :
[0, t] → H, a strongly continuous mapping from [0, t] to H. This is a gen-
eralization of the situation considered in Section 2, because the constant
mapping : [0, t] ∋ λ 7→ Ψ(λ) := Ψ can be regarded as a special case of
the curve. We prove that, for every partition {t0, t1, · · · , tN} of [0, t] with
0 = t0 < t1 < · · · < tN = t, the probability of finding the state Ψ(tk)
at the time tk (k = 1, · · · , N) in the successive measurements at the times
t1, · · · , tN tends to 1 as N → ∞ (Theorem 1.4.2). Physically this means that
very frequent measurements made successively along a curve prescribed in
advance change the initial state Ψ(0) to the final state Ψ(t) with probability
≈ 1.

In the last section, as an application of Theorem 1.4.2, we show that, for
every pair (Ψ,Φ) of states in H with ∥Ψ∥ = ∥Φ∥ = 1, there exists a curve
in H connecting Ψ and Φ such that, through very frequent measurements at
successive times given by a partition of the curve, Ψ can be transformed to Φ
with probability ≈ 1. This is a refined version (in a sense) of von Neumann’s
discussion on a possible transformation, induced by frequent measurements,
between arbitrary two states [6, Chapter 5], although the present case is
restricted to vector states.

1.2 QZE for an Arbitrary Partition of Time

Interval

Let ∆ : t0, t1, · · · , tN (tj ∈ [0, t], j = 0, · · · , N) be an arbitrary partition of
the interval [0, t]:

0 = t0 < t1 < · · · < tN−1 < tN = t.
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We set

∆k := tk − tk−1, (k = 1, · · · , N), |∆| := max
1≤k≤N

∆k.

Let H be a self-adjoint operator on H. Then, for each unit vector Ψ ∈ H,
we define a number

P∆(Ψ, t) :=
N∏
k=1

∣∣⟨Ψ, e−i∆kHΨ
⟩∣∣2 .

In the context of quantum mechanics where H represents the Hamiltonian
of a quantum system, P∆(Ψ, t) is interpreted as the probability that, in the
successive measurements at time t1, · · · , tN (measurements not necessarily
spaced equally in time), the initial state Ψ is found.

Theorem 1.2.1 For all Ψ ∈ D(H) with ∥Ψ∥ = 1,

lim
|∆|→0

P∆(Ψ, t) = 1. (1.3)

To prove this theorem, we need two lemmas.

Lemma 1.2.2

lim
|∆|→0

N∑
k=1

∆2
k = 0. (1.4)

Proof. By direct computations, we have

N∑
k=1

∆2
k = t2 − 2S∆

with
S∆ := t1(t2 − t1) + t2(t3 − t2) + · · ·+ tN−1(tN − tN−1).

Note that

lim
|∆|→0

S∆ =

∫ t

0

xdx =
t2

2
.

Hence (1.4) follows.

Lemma 1.2.3 For each s ∈ R and all Ψ ∈ D(H) with ∥Ψ∥ = 1,∣∣⟨Ψ, e−isHΨ
⟩∣∣2 ≥ 1− s2∥HΨ∥2. (1.5)
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Proof. Putting
α :=

⟨
Ψ, (e−isH − 1)Ψ

⟩
,

we have ⟨
Ψ, e−isHΨ

⟩
= 1 + α.

Hence ∣∣⟨Ψ, e−isHΨ
⟩∣∣2 ≥ 1 + α+ α∗

= 1 +
⟨
Ψ, (e−isH + eisH − 2)Ψ

⟩
= 1− 2β

with

β := ⟨Ψ, (1− cos(sH))Ψ⟩ =
∫
R
(1− cos(sλ))d∥EH(λ)Ψ∥2, (1.6)

where EH(·) is the spectral measure of H. One has

0 ≤ 1− cosx ≤ x2

2
, ∀x ∈ R. (1.7)

Hence

0 ≤ β ≤ s2

2

∫
R
λ2d∥EH(λ)Ψ∥2 = s2

2
∥HΨ∥2. (1.8)

Thus (1.5) follows.

Proof of Theorem 1.2.1

By the Schwarz inequality and the unitarity of e−isH (∀s ∈ R), we have∣∣⟨Ψ, e−i∆kHΨ
⟩∣∣ ≤ 1. Hence P∆(Ψ, t) ≤ 1, which implies that

lim sup
|∆|→0

P∆(Ψ, t) ≤ 1. (1.9)

By Lemma 1.2.3, we have∣∣⟨Ψ, e−i∆kHΨ
⟩∣∣2 ≥ 1−∆2

k∥HΨ∥2.

For each a > 1, we have

1− x ≥ e−ax, ∀x ∈
[
0,

log a

a

]
. (1.10)



14 CHAPTER 1. SOME MATHEMATICAL ASPECTS OF QZE

Hence, taking |∆| such that |∆|2∥HΨ∥2 ≤ log a/a, we have

P∆(Ψ, t) ≥ e−a
∑N

k=1 ∆
2
k∥HΨ∥2 .

By this estimate and Lemma 1.2.2, we obtain

lim inf
|∆|→0

P∆(Ψ, t) ≥ 1,

which, combined with (1.9), gives (1.3).

We remark that the condition Ψ ∈ D(H) in Theorem 1.2.1 is optimal. A
counter example is given as follows.

Example 1.2.4 We consider the case whereH = L2(R) and H is the Hamil-
tonian H0 of a free quantum particle with mass m > 0 moving in the one-
dimensional space R, i.e., H0 := p2/2m, p := −iDx with Dx being the
generalized differential operator on L2(R) (in the variable x ∈ R). Let c > 0
be a constant and ψ0 ∈ L2(R) be such that its L2-Fourier transform ψ̂0 takes
the form

ψ̂0(k) =

√
2c

π

√
|k|

k4 + c2
, k ∈ R.

It is easy to see that ∥ψ0∥ = 1 and ψ0 ̸∈ D(H0). Moreover, we have for all
s ∈ R ⟨

ψ0, e
−isH0ψ0

⟩
=

4c

π

∫ ∞

0

ke−isk2/2m

k4 + c2
dk = e−|s|c/2m.

Hence, for all t > 0

N∏
k=1

∣∣⟨ψ0, e
−i∆kH0ψ0

⟩∣∣2 = e−tc/m.

Therefore

lim
|∆|→0

N∏
k=1

∣∣⟨ψ0, e
−i∆kH0ψ0

⟩∣∣2 = e−tc/m < 1.

Thus, in this case, Theorem 1.2.1 does not hold, physically meaning that the
quantum Zeno effect does not occur. We also note that, for every ε > 0,

lim
|∆|→0

N∏
k=1

∣∣⟨ψ0, e
−i∆kH0ψ0

⟩∣∣2 < ε

if c > −(m/t) log ε.
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1.3 Asymptotics of the Multi-time Survival

Probability PN(Ψ, t) as N → ∞
In the case of the QZE caused by frequent measurements spaced equally in
time, the asymptotic behavior (in 1/N) of the multi-time survival probability
PN(Ψ, t) as N → ∞ is interesting. It may be natural to infer that the
asymptotic expansion of PN(Ψ, t) in 1/N has the following form:

PN(Ψ, t) = 1 + c1(Ψ, t)
1

N
+ c2(Ψ, t)

1

N2
+ · · · (N → ∞) (1.11)

with cn(Ψ, t) ∈ R (n = 1, 2, · · · ) being constants independent of N , expecting
that each cn(Ψ, t) may have a physical meaning. In this section, we are
concerned with this aspect and prove the following result:

Theorem 1.3.1 Let t > 0. Then, for all Ψ ∈ D(H) with ∥Ψ∥ = 1,

PN(Ψ, t) = 1− t2(∆H)2Ψ
1

N
+ o

(
1

N

)
, (N → ∞) . (1.12)

Remark 1.3.2 The asymptotic formula (1.12) is only up to the first order
1/N . But we conjecture that it is possible to find higher order asymptotics
in 1/N . We consider this aspect in a separate paper.

To prove Theorem 1.3.1, we need two lemmas:

Lemma 1.3.3 For all s ∈ R and Ψ ∈ D(H),

lim
N→∞

N2

⟨
Ψ,

(
1− cos

sH

N

)
Ψ

⟩
=

1

2
s2∥HΨ∥2, (1.13)

lim
N→∞

N

⟨
Ψ, sin

sH

N
Ψ

⟩
= s ⟨Ψ, HΨ⟩ . (1.14)

Proof. We have

N2

⟨
Ψ,

(
1− cos

sH

N

)
Ψ

⟩
=

∫
R
N2

(
1− cos

sλ

N

)
d ⟨Ψ, EH(λ)Ψ⟩ .

It is easy to see that

lim
N→∞

N2

(
1− cos

sλ

N

)
=

1

2
s2λ2.
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By (1.7), we have

0 ≤ N2

(
1− cos

sλ

N

)
≤ 1

2
s2λ2.

By functional calculus, we have∫
R

1

2
s2λ2d ⟨Ψ, EH(λ)Ψ⟩ = 1

2
s2∥HΨ∥2 <∞.

Hence, by the Lebesgue dominated convergence theorem, we obtain (1.13).
We next prove (1.14). We have

N

⟨
Ψ, sin

sH

N
Ψ

⟩
=

∫
R
N sin

sλ

N
d ⟨Ψ, EH(λ)Ψ⟩ .

By the elementary inequality | sin x| ≤ |x|, ∀x ∈ R, we obtain∣∣∣∣N sin
sλ

N

∣∣∣∣ ≤ |sλ|.

By the Schwarz inequality, we have∫
R
|λ|d ⟨Ψ, EH(λ)Ψ⟩ ≤ ∥Ψ∥

(∫
R
λ2d ⟨Ψ, EH(λ)Ψ⟩

) 1
2

= ∥Ψ∥ · ∥HΨ∥ <∞.

Moreover,

lim
n→∞

N sin
sλ

N
= sλ.

Thus, by the Lebesgue dominated convergence theorem, we obtain (1.14).

Lemma 1.3.4 For all n ∈ N,

(1− x)n ≥ 1− nx, 0 ≤ ∀x ≤ 1, (1.15)

(1− x)n ≤ 1− nx+ (nx)2enx, ∀x ≥ 0. (1.16)

Proof. Inequality (1.15) is elementary. As for (1.16), we proceed as
follows: For all x ≥ 0 and n ≥ 2,

(1− x)n = 1− nx+
n∑

k=2

n(n− 1) · · · (n− k + 1)

k!
(−1)kxk

≤ 1− nx+
n∑

k=2

nk

k!
xk ≤ 1− nx+ (nx)2

n−2∑
k=0

(nx)k

k!

≤ 1− nx+ (nx)2enx.

Thus (1.16) holds.
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Proof of Theorem 1.3.1

Let

aN :=

⟨
Ψ,

(
1− cos

tH

N

)
Ψ

⟩
, bN :=

⟨
Ψ, sin

tH

N
Ψ

⟩
.

Then aN , bN ∈ R and
⟨
Ψ, e−i t

N
HΨ

⟩
= 1− aN − ibN . Hence∣∣∣⟨Ψ, e−i t

N
HΨ

⟩∣∣∣2 = (1− aN)
2 + b2N = 1− qN

N2
,

where

qN := 2N2aN − (NbN)
2 − (N2aN)

2

N2
.

Therefore we have

PN(Ψ, t) =
(
1− qN

N2

)N

.

By Lemma 1.3.3, we have

lim
N→∞

N2aN =
1

2
t2∥HΨ∥2, lim

N→∞
NbN = t ⟨Ψ, HΨ⟩ .

Hence
lim

N→∞
qN = t2∥HΨ∥2 − t2| ⟨Ψ, HΨ⟩ |2 = t2(∆H)2Ψ.

Moreover, it follows from Lemma 1.3.4 that, if qN ≤ N , then

1− qN
N

≤
(
1− qN

N2

)N

≤ 1− qN
N

+
(qN
N

)2

e
qN
N ,

which implies that

qN − q2N
N
e

qN
N ≤ N (1− PN(Ψ, t)) ≤ qN .

Hence
lim

N→∞
N (1− PN(Ψ, t)) = lim

N→∞
qN = t2(∆H)2Ψ. (1.17)

Putting

cN := t2(∆H)2Ψ
1

N
− (1− PN(Ψ, t)) ,

we have

PN(Ψ, t) = 1− t2(∆H)2Ψ
1

N
+ cN .

By (1.17), we have limN→∞NcN = 0, which means that cN = o(1/N) (N →
∞). Thus (1.12) holds.
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1.4 General Mathematical Structure Behind

QZE

In this section, as a generalization of the QZE considered in Section 1.2,
we consider the physical situation where measurements for states are made
along a curve in the Hilbert space H.

Let Ψ(·) : [0, t] → H (a mapping from [0, t] to H) such that ∥Ψ(λ)∥ =
1, ∀λ ∈ [0, t] and consider

P∆(Ψ(·), t) :=
N∏
k=1

∣∣⟨Ψ(tk), e
−i∆kHΨ(tk−1)

⟩∣∣2 . (1.18)

This quantity is physically interpreted as the probability that, in the suc-
cessive measurement at time t1, · · · , tN , the state Ψ(tk) is found at time tk
(k = 1, · · · , N).

Remark 1.4.1 For a unit vector Ψ ∈ H, one can consider a constant map-
ping Ψconst(·) : [0, t] → H defined by Ψconst(λ) := Ψ, ∀λ ∈ [0, t]. In this case,
we have P∆(Ψconst(·), t) = P∆(Ψ, t), i.e., the case considered in Section 1.2.
Thus P∆(Ψ(·), t) is a generalization of P∆(Ψ, t).

Theorem 1.4.2 Let Ψ(·) : [0, t] → H such that, for all λ ∈ [0, t], Ψ(λ) ∈
D(H) and ∥Ψ(λ)∥ = 1. Assume the following:

ξ := sup
0≤λ≤t

∥HΨ(λ)∥ <∞, (1.19)

η := sup
λ,ν∈[0,t]

λ̸=ν

∥Ψ(λ)−Ψ(ν)∥
|λ− ν|

<∞, (1.20)

lim
|∆|→0

N∑
k=1

Re ⟨Ψ(tk)−Ψ(tk−1),Ψ(tk−1)⟩ = 0, (1.21)

where, for a complex number z, Re z denotes its real part. Then

lim
|∆|→0

P∆(Ψ(·), t) = 1 (1.22)

Remark 1.4.3 Condition (1.20) implies that ∥Ψ(λ)−Ψ(ν)∥ ≤ η|λ−µ|,∀λ, µ ∈
[0, t] (Lipschitz continuity). In particular, Ψ(·) is strongly continuous, so that
the mapping Ψ(·) : [0, t] → H is a curve in H.
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Proof. By the Schwarz inequality and the unitarity of e−isH (∀s ∈ R), we
have

|
⟨
Ψ(tk), e

−i∆kHΨ(tk−1)
⟩
|2 ≤ 1. (1.23)

Hence
P∆(Ψ(·), t) ≤ 1. (1.24)

For k = 1, · · · , N , we set

ak :=
⟨
Ψ(tk−1), (e

−i∆kH − 1)Ψ(tk−1)
⟩
,

bk :=
⟨
Ψ(tk)−Ψ(tk−1), (e

−i∆kH − 1)Ψ(tk−1)
⟩
,

ck := ⟨Ψ(tk)−Ψ(tk−1),Ψ(tk−1)⟩ .

Then we have

|
⟨
Ψ(tk), e

−i∆kHΨ(tk−1)
⟩
|2 = |1 + ak + bk + ck|2

≥ 1 + 2Re ak + 2Re bk + 2Re ck. (1.25)

By (1.6), (1.8) and (1.19), we have

1 + 2Re ak ≥ 1−∆2
k∥HΨ(tk−1)∥2 ≥ 1−∆2

kξ
2 (1.26)

By the Schwarz inequality, we have

|Re bk| ≤ |bk| ≤ ∥Ψ(tk)−Ψ(tk−1)∥ · ∥(e−i∆kH − 1)Ψ(tk−1)∥.

Assumption (1.20) implies that

∥Ψ(tk)−Ψ(tk−1)∥ ≤ ∆kη.

On the other hand, we have

∥(e−i∆kH − 1)Ψ(tk−1)∥2 =
∫
R
|e−i∆kλ − 1|2d∥EH(λ)Ψ(tk−1)∥2.

Using the elementary inequality

|e−ix − 1|2 ≤ x2, ∀x ∈ R,

we obtain∫
R
|e−i∆kλ − 1|2d∥EH(λ)Ψ(tk−1)∥2 ≤

∫
R
∆2

kλ
2d∥EH(λ)Ψ(tk−1)∥2

= ∆2
k∥HΨ(tk−1)∥2.
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Hence
∥(e−i∆kH − 1)Ψ(tk−1)∥ ≤ ∆k∥HΨ(tk−1)∥ ≤ ∆kξ

Therefore
|Re bk| ≤ ξη∆2

k.

Thus we obtain
2Re bk ≥ −2ξη∆2

k (1.27)

By estimates (1.26) and (1.27), we have

1 + 2Re ak + 2Re bk + 2Re ck ≥ 1−
{
(ξ2 + 2ξη)∆2

k − 2Re ck
}
.

Note that, by (1.23) and (1.25), 1 ≥ 1 + 2Re ak + 2Re bk + 2Re ck. Hence
(ξ2 + 2ξη)∆2

k − 2Re ck ≥ 0. We also have

|Re ck| ≤ |ck| ≤ ∥Ψ(tk)−Ψ(tk−1)∥ ≤ η∆k

Hence

0 ≤ (ξ2 +2ξη)∆2
k − 2Re ck ≤ (ξ2 +2ξη)∆2

k +2η∆k ≤ (ξ2 +2ξη)|∆|2 +2η|∆|.
(1.28)

Let a > 1 be a constant and take |∆| such that

(ξ2 + 2ξη)|∆|2 + 2η|∆| ≤ log a

a
.

Then, by (1.28), we have for k = 1, · · · , N

0 ≤ (ξ2 + 2ξη)∆2
k − 2Re ck ≤

log a

a

Hence, by (1.10), we obtain

1−
{
(ξ2 + 2ξη)∆2

k − 2Re ck
}
≥ exp[−a

{
(ξ2 + 2ξη)∆2

k − 2Re ck
}
].

Therefore

P∆(Ψ(·), t) ≥
N∏
k=1

exp[−a
{
(ξ2 + 2ξη)∆2

k − 2Re ck
}
]

= exp

[
−a

{
(ξ2 + 2ξη)

N∑
k=1

∆2
k − 2

N∑
k=1

Re ck

}]
By Lemma 1.2.2 and (1.21),

lim
|∆|→0

{
(ξ2 + 2ξη)

N∑
k=1

∆2
k − 2

N∑
k=1

Re ck

}
= 0

Thus lim inf |∆|→0 P∆(Ψ(·), t) ≥ 1, which, combined with (1.24), yields (1.22).
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Corollary 1.4.4 Let Ψ(·) : [0, t] → H be a strongly differentiable mapping
from [0, t] to H such that the following conditions hold:

(i) For all λ ∈ [0, t], Ψ(λ) ∈ D(H) and ∥Ψ(λ)∥ = 1.

(ii) (1.19) holds and

δ := sup
0≤λ≤t

∥Ψ′(λ)∥ <∞, (1.29)

where Ψ′(·) denotes the strong derivative of Ψ(·).

Then (1.22) holds.

Proof. By Theorem 1.4.2, it is sufficient to prove that (1.20) and (1.21)
hold. By the strong differentiability, we have for all λ, ν ∈ [0, t]

Ψ(λ)−Ψ(ν) =

∫ λ

ν

Ψ′(s)ds, (1.30)

where the integral is taken in the sense of Bochner integral. Hence

∥Ψ(λ)−Ψ(ν)∥ ≤
∣∣∣∣∫ λ

ν

∥Ψ′(s)∥ds
∣∣∣∣ ≤ δ|λ− ν|.

Thus (1.20) holds.
By (1.30), we have

Ψ(tk)−Ψ(tk−1) =

∫ tk

tk−1

Ψ′(λ)dλ, k = 1, · · · , N.

Let χ(tk−1,tk] be the characteristic function of the interval (tk−1, tk]. Then

N∑
k=1

Re ⟨Ψ(tk)−Ψ(tk−1),Ψ(tk−1)⟩ = Re
N∑
k=1

⟨∫ tk

tk−1

Ψ′(λ)dλ,Ψ(tk−1)

⟩

= Re
N∑
k=1

∫ tk

tk−1

⟨Ψ′(λ),Ψ(tk−1)⟩ dλ

= Re
N∑
k=1

∫ t

0

χ(tk−1,tk](λ) ⟨Ψ
′(λ),Ψ(tk−1)⟩ dλ

= Re

∫ t

0

⟨
Ψ′(λ),

N∑
k=1

χ(tk−1,tk](λ)Ψ(tk−1)

⟩
dλ
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For all λ ∈ (0, t], we have∣∣∣∣∣
⟨
Ψ′(λ),

N∑
k=1

χ(tk−1,tk](λ)Ψ(tk−1)

⟩∣∣∣∣∣ ≤ δ
N∑
k=1

χ(tk−1,tk](λ) = δ,

lim
|∆|→0

⟨
Ψ′(λ),

N∑
k=1

χ(tk−1,tk](λ)Ψ(tk−1)

⟩
= ⟨Ψ′(λ),Ψ(λ)⟩ .

Hence, by the Lebesgue dominated convergence theorem, we obtain

lim
|∆|→0

Re

∫ t

0

⟨
Ψ′(λ),

N∑
k=1

χ(tk−1,tk](λ)Ψ(tk−1)

⟩
dλ

= Re

∫ t

0

⟨Ψ′(λ),Ψ(λ)⟩ dλ =
1

2

∫ t

0

d

dλ
∥Ψ(λ)∥2dλ

=
1

2
(∥Ψ(t)∥2 − ∥Ψ(0)∥2) = 0.

Thus (1.21) holds.

Example 1.4.5 Let A be a self-adjoint operator on H and Ψ0 be a vector
in H satisfying the following conditions:

Ψ0 ∈ D(A) ∩
∩

0≤λ≤t

D(He−iλA), sup
0≤λ≤t

∥He−iλAΨ0∥ <∞, ∥Ψ0∥ = 1.

Then one can define a mapping Ψ(·) : [0, t] → H by

Ψ(λ) := e−iλAΨ0, λ ∈ [0, t].

It is obvious that the mapping Ψ(·) satisfies condition (i) in Corollary 1.4.4.
Moreover, Ψ(·) is strongly differentiable on [0, t] and

∥Ψ′(λ)∥2 = ∥Ae−iλAΨ0∥2 = ∥AΨ0∥2,

so that Ψ(·) satisfies condition (ii) in Corollary 1.4.4 too. Thus, for this Ψ(·),
(1.22) holds.

1.5 Transition Between Arbitrary Two States

by Measurements

We fix two unit vectors Ψ and Φ in D(H) arbitrarily. Then one can define
a strongly differentiable mapping Ψ(·) : [0, t] → H connecting Ψ and Φ as
follows.
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(1) The case where Ψ and Φ are linearly dependent

In this case, there exists a constant α ∈ [0, 2π) such that Φ = eiαΨ. Then,
defining Ψ(·) : [0, t] → H by

Ψ(λ) := ei
αλ
t Ψ, λ ∈ [0, t], (1.31)

we see that Ψ(·) is strongly differentiable on [0, t] with Ψ(0) = Ψ and Ψ(t) =
Φ.

(2) The case where Ψ and Φ are linearly independent

In this case, let

Ξ :=
Φ− ⟨Φ,Ψ⟩Ψ

∥Φ− ⟨Φ,Ψ⟩Ψ∥
. (1.32)

Then {Ψ,Ξ} is an orthonormal system in H. It follows that there exist
constants α, β, γ ∈ [0, 2π) such that

Φ = (cosα)eiβΨ+ (sinα)eiγΞ.

Using this fact, we define Ψ(·) : [0, t] → H by

Ψ(λ) :=

(
cos

αλ

t

)
ei

βλ
t Ψ+

(
sin

αλ

t

)
ei

γλ
t Ξ, λ ∈ [0, t]. (1.33)

It is easy to see that the mapping Ψ(·) is strongly differentiable on [0, t] with
Ψ(0) = Ψ and Ψ(t) = Φ.

Proposition 1.5.1 Let Ψ(·) be defined by (1.31) or (1.33). Then Ψ(·) sat-
isfies all the assumptions of Corollary 1.4.4 with Ψ(0) = Ψ and Ψ(t) = Φ.

Proof. We see from the definition of Ψ(·) that, for all λ ∈ [0, t], Ψ(λ) ∈
D(H) and ∥Ψ(λ)∥ = 1, and Ψ(·) is strongly differentiable on [0, t] with
Ψ(0) = Ψ and Ψ(t) = Φ.

We first consider the case where Ψ and Φ are linearly dependent. In this
case, we have

∥HΨ(λ)∥ = ∥HΨ∥,
∥Ψ′(λ)∥ =

α

t
.

Hence condition (ii) in Corollary 1.4.4 are satisfied.
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Next, let Ψ and Φ be linearly independent. Then

∥HΨ(λ)∥ ≤ ∥HΨ∥+ ∥HΞ∥,

∥Ψ′(λ)∥ =

∥∥∥∥(−αt sin αλt + i
β

t
cos

αλ

t

)
ei

βλ
t Ψ+

(
α

t
cos

αλ

t
+ i

γ

t
sin

αλ

t

)
ei

γλ
t Ξ

∥∥∥∥
≤ 2α+ β + γ

t
.

Hence condition (ii) in Corollary 1.4.4 are satisfied.

Corollary 1.4.4 and Proposition 1.5.1 immediately lead one to the follow-
ing fact:

Corollary 1.5.2 For the mapping Ψ(·) defined by (1.31) or (1.33), lim|∆|→0 P∆(Ψ(·), t) =
1.

Corollary 1.5.2 may be interpreted as follows: For every pair (Ψ,Φ) of
states in H with ∥Ψ∥ = ∥Φ∥ = 1, there exists a curve in H connecting Ψ
and Φ such that, through very frequent measurements at successive times
given by a partition of this curve, the state Ψ can be transformed to Φ with
probability ≈ 1.
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Chapter 2

Convergence Conditions of
Mixed States and their von
Neumann Entropy in
Continuous Quantum
Measurements

2.1 Introduction

The quantum Zeno effect (QZE) is a quantum effect which was shown by
Misra and Sudarshan in [5]. This effect demonstrates that, in quantum me-
chanics, continuous measurements can freeze a state. Of course, this effect
is peculiar to quantum mechanics. Such an effect is not observed in classical
mechanics. The QZE has been extensively investigated by many researchers
since its discovery.

Recently, some general mathematical aspects of quantum Zeno effect were
investigated in [2]. In particular, continuous measurements of a state along
a certain curve in a Hilbert space were considered. Roughly speaking, con-
tinuous measurements made along a curve prescribed in advance change the
initial state to the final state with probability 1. This fact includes the QZE
as a special case. However, in the paper [2], it is assumed that states under
consideration are vector states.

In this paper, we show that a result similar to one in [2] holds with respect
to mixed states too. By considering a mixed state, its von Neumann entropy
can also be considered. In the case where the Hilbert space under consid-
eration is infinite dimensional, the von Neumann entropy is not necessarily

27
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continuous with respect to the trace norm. Hence, by continuous measure-
ments, even if the initial state converges to the final state in the trace norm
sense, it does not always mean that the von Neumann entropy converges too.
Moreover, the set of density operators with finite entropy is a first category
[10]. Hence, it is meaningful to investigate convergence conditions of the von
Neumann entropy in our continuous measurements.

In Section 2, we begin with defining the “continuous quantum measure-
ments” as a certain type of quantum channel. We use two types of quantum
channels and a combination of them. By doing so, a concept of “contin-
uous quantum measurements” are defined clearly. We consider conditions
for pointwise convergence and trace norm convergence. We apply obtained
results to the QZE.

In Section 3, we consider the von Neumann entropy in infinite dimen-
sion. We show that the convergence conditions of the von Neumann entropy
in continuous quantum measurement which considered in Section 2. Here,
Simon’s convergence theorem [4] plays a central role.

2.2 Continuous measurements for mixed states

2.2.1 Preliminaries

Let H be a separable Hilbert space of state vectors of a quantum system
S. We denote the inner product and the norm of H by ⟨ · , · ⟩ (anti-linear
in the first variable and linear in the second) and ∥ · ∥, respectively. Let
d(≤ ∞) be the dimension of H. We denote all bounded linear operators,
all compact operators, all trace-class operators, all density operators, and all
unitary operators onH byB(H),C(H),T(H),S(H), and U(H), respectively.
A mixed state of S is represented as an element of S(H). We denote the
trace norm by ∥ · ∥1 := Tr| · |. The Hamiltonian of the quantum system S is
given by a self-adjoint operator H which is time independent. The domain
of H is denoted as D(H).

Let us consider the following two maps on S(H):

(1) (Unitary channel)

Let U be a unitary operator on H and EU be a map on S(H) which is
given by

EUρ := UρU∗, ∀ρ ∈ S(H).

In particular, in the case U = e−itH (t ∈ R), we denote Ee−itH by Et.

(2) (Projection channel)
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Let P := {Pn}n be a family of projection operators on H with Pm ⊥
Pn (m ̸= n), I =

∑
n Pn, and EP be a map on S(H) which is given by

EPρ :=
∑
n

PnρPn, ∀ρ ∈ S(H).

Now, consider a state ρ ∈ S(H) fixed and suppose that one of the Schat-
ten decompositions is given by

ρ =
d∑

n=1

λn|Ψn⟩⟨Ψn|, (2.1)

where, for all Ψ,Φ ∈ H, we denote the operator ⟨Ψ, · ⟩Φ by |Φ⟩⟨Ψ|. In (2.1),
we allow λn = 0 to take Ψn such that {Ψn}dn=1 is a complete orthonormal
system (CONS). We remark that it is not necessarily λn ≥ λn+1 in this
representation.

Let us consider a time interval [0, τ ] with τ > 0. For the decomposition
(2.1), consider a CONS of H denoted by {Ψn(t)}dn=1 which is parametrized
by t ∈ [0, τ ] with Ψn(0) = Ψn (1 ≤ ∀n ≤ d). If n ∈ N is fixed, then Ψn(·) is
a map from [0, τ ] to H.

We define

P(t) := {|Ψn(t)⟩⟨Ψn(t)|}dn=1, (t ∈ [0, τ ]). (2.2)

Let ∆ : t0, t1, · · · , tN (tj ∈ [0, τ ], j = 0, · · · , N) be an arbitrary partition
of the interval [0, τ ]:

0 = t0 < t1 < · · · < tN−1 < tN = τ.

We set

∆k := tk − tk−1, (k = 1, · · · , N), |∆| := max
1≤k≤N

∆k,

and define

ρ∆(τ) := EP(tN ) ◦ E∆N
◦ EP(tN−1) ◦ E∆N−1

◦ · · · ◦ EP(t1) ◦ E∆1ρ. (2.3)

In the context of quantum mechanics where ρ∆(τ) is interpreted as the pos-
terior state that, in the successive measurements at time t1, · · · , tN by using
the family of projection operatorsP(t1), · · · ,P(tN), respectively. We remark
that ρ∆(τ) is dependent on the form of decomposition (2.1).

If ρ∆(τ) converges with respect to |∆| → 0 in a certain sense, we call such
a measurements of a series “continuous quantum measurements”.
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By direct computations, we have

ρ∆(τ) =
∑
k

λ∆,k |Ψk(τ)⟩⟨Ψk(τ)| (2.4)

with

λ∆,k :=
∑

k0,··· ,kN−1

λk0

N∏
j=1

∣∣⟨Ψkj(tj), e
−i∆jHΨkj−1

(tj−1)⟩
∣∣2 , (kN = k). (2.5)

2.2.2 Pointwise convergence

Let us consider a convergence condition of λ∆,k in the case |∆| → 0.
Let

γ∆,k :=
N∏
j=1

∣∣⟨Ψk(tj), e
−i∆jHΨk(tj−1)⟩

∣∣2 , (2.6)

ϵ∆,k :=
∑

k0,··· ,kN−1

∃l∈{0,··· ,N−1},kl ̸=k

λk0

N∏
j=1

∣∣⟨Ψkj(tj), e
−i∆jHΨkj−1

(tj−1)⟩
∣∣2 , (2.7)

so that

λ∆,k = λkγ∆,k + ϵ∆,k. (2.8)

Theorem 2.2.1 Assume that there exists k ∈ N such that the following
conditions hold:

∀λ ∈ [0, τ ], Ψk(λ) ∈ D(H), (2.9)

ξk := sup
0≤λ≤τ

∥HΨk(λ)∥ <∞, (2.10)

ηk := sup
λ,ν∈[0,τ ]

λ̸=ν

∥Ψk(λ)−Ψk(ν)∥
|λ− ν|

<∞, (2.11)

lim
|∆|→0

N∑
j=1

Re ⟨Ψk(tj)−Ψk(tj−1),Ψk(tj−1)⟩ = 0. (2.12)

Then we have

lim
|∆|→0

λ∆,k = λk. (2.13)
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Remark 2.2.2 Condition (2.11) implies that ∥Ψk(λ) − Ψk(ν)∥ ≤ ηk|λ −
µ|,∀λ, µ ∈ [0, τ ] (Lipschitz continuity). In particular, Ψk(·) is strongly con-
tinuous, so that the mapping Ψk(·) : [0, t] → H is a curve in H.

Proof. By using [2, THEOREM 4.2], the assumptions (2.9)–(2.12) imply
that

lim
|∆|→0

γ∆,k = 1. (2.14)

On the other hand, we can estimate ϵ∆,k as follows.

ϵ∆,k =
N−1∑
l=0

∑
k0,··· ,kN−1

∀i>l,ki=k,kl ̸=k

λk0

N∏
j=1

∣∣⟨Ψkj(tj), e
−i∆jHΨkj−1

(tj−1)⟩
∣∣2 (2.15)

=
N−1∑
l=0

ϵ∆,k(l) (2.16)

where ϵ∆,k(l) is given by

ϵ∆,k(0) =
N∏
j=2

∣∣⟨Ψk(tj), e
−i∆jHΨk(tj−1)⟩

∣∣2
×

∑
k0

k0 ̸=k

∣∣⟨Ψk1(t1), e
−i∆1HΨk0(t0)⟩

∣∣2 λk0 , (2.17)

ϵ∆,k(l) =
N∏

j=l+2

∣∣⟨Ψk(tj), e
−i∆jHΨk(tj−1)⟩

∣∣2
×

∑
kl

kl ̸=k

∣∣⟨Ψk(tl+1), e
−i∆l+1HΨkl(tl)⟩

∣∣2
×

∑
kl−1

∣∣⟨Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)⟩
∣∣2

...

×
∑
k0

∣∣⟨Ψk1(t1), e
−i∆1HΨk0(t0)⟩

∣∣2 λk0 , (2.18)

(1 ≤ l ≤ N − 2)
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ϵ∆,k(N − 1) =
∑
kN−1

kN−1 ̸=k

∣∣⟨Ψk(tl+1), e
−i∆l+1HΨkl(tl)⟩

∣∣2
×

∑
kN−2

∣∣⟨ΨkN−1
(tN−1), e

−i∆N−1HΨkl−2
(tl−2)⟩

∣∣2
...

×
∑
k0

∣∣⟨Ψk1(t1), e
−i∆1HΨk0(t0)⟩

∣∣2 λk0 , (2.19)

respectively.

By the Schwarz inequality, we have

N∏
j=l+2

∣∣⟨Ψk(tj), e
−i∆jHΨk(tj−1)⟩

∣∣2 ≤
N∏

j=l+2

∥Ψk(tj)∥2 · ∥e−i∆jHΨk(tj−1)∥2

≤ 1, ∀l ∈ {0, · · · , N − 2}.

For all l ≥ 1,

∑
kl−1

∣∣⟨Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)⟩
∣∣2 · · ·∑

k0

∣∣⟨Ψk1(t1), e
−i∆1HΨk0(t0)⟩

∣∣2 λk0
≤

∑
kl−1

∣∣⟨Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)⟩
∣∣2 · · ·∑

k0

∣∣⟨ei∆1HΨk1(t1),Ψk0(t0)⟩
∣∣2

≤
∑
kl−1

∣∣⟨Ψkl(tl), e
−i∆lHΨkl−1

(tl−1)⟩
∣∣2 · · · ∥ei∆1HΨk1(t1)∥2

≤ · · · ≤ 1.

Thus (2.16) implies that

ϵ∆,k ≤
N−1∑
l=0

∑
kl,kl ̸=k

∣∣⟨Ψk(tl+1), e
−i∆l+1HΨkl(tl)⟩

∣∣2 . (2.20)
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In the case where kl ̸= k, we have ⟨Ψk(tl),Ψkl(tl)⟩ = 0. Hence∑
kl

kl ̸=k

∣∣⟨Ψk(tl+1), e
−i∆l+1HΨkl(tl)⟩

∣∣2
=

∑
kl

kl ̸=k

∣∣⟨Ψk(tl+1), (e
−i∆l+1H − 1)Ψkl(tl)⟩+ ⟨Ψk(tl+1)−Ψk(tl),Ψkl(tl)⟩

∣∣2
≤ 2

∑
kl

kl ̸=k

{∣∣⟨(ei∆l+1H − 1)Ψk(tl+1),Ψkl(tl)⟩
∣∣2

+ |⟨Ψk(tl+1)−Ψk(tl),Ψkl(tl)⟩|
2}

≤ 2
{
∥(ei∆l+1H − 1)Ψk(tl+1)∥2 + ∥Ψk(tl+1)−Ψk(tl)∥2

}
. (2.21)

Let EH(·) be the spectral measure of Hamiltonian H. By the spectral theo-
rem, we have

∥(ei∆l+1H − 1)Ψk(tl+1)∥2 =

∫
R
|ei∆l+1x − 1|2d∥EH(x)Ψk(tl+1)∥2

≤
∫
R
∆2

l+1x
2d∥EH(x)Ψk(tl+1)∥2

≤ ∆2
l+1∥HΨk(tl+1)∥2. (2.22)

The assumptions (2.9)–(2.11) imply that

∥HΨk(tl+1)∥2 ≤ ξ2k, ∥Ψk(tl+1)−Ψk(tl)∥2 ≤ ∆2
l+1η

2
k. (2.23)

Therefore, (2.20), (2.21), (2.22) and (2.23) implies that

ϵ∆,k ≤ 2
N−1∑
l=0

{
∥(ei∆l+1H − 1)Ψk(tl+1)∥2 + ∥Ψk(tl+1)−Ψk(tl)∥2

}
≤ 2

N−1∑
l=0

{
∆2

l+1∥HΨk(tl+1)∥2 + ∥Ψk(tl+1)−Ψk(tl)∥2
}

≤ 2(ξ2k + η2k)
N∑
l=1

∆2
l . (2.24)

By [2, LEMMA 2.2],

lim
|∆|→0

N∑
l=1

∆2
l = 0.



34 CHAPTER 2. CONVERGENCE CONDITIONS OF MIXED STATES

Thus (2.24) implies that lim|∆|→0 ϵ∆,k = 0. Hence, by (2.8) and (2.14), we
obtain (2.13)

Remark 2.2.3 Assume that the conditions of Theorem 2.2.1 hold. Let a > 1
be a constant and take |∆| such that

(ξ2k + 2ξkηk)|∆|2 + 2ηk|∆| ≤ log a

a
. (2.25)

By the proof of [2, THEOREM 4.2],

exp

[
−a

{
(ξ2k + 2ξkηk)

N∑
l=1

∆2
l − 2

N∑
l=1

Re ⟨Ψk(tl)−Ψk(tl−1),Ψk(tl−1)⟩

}]
≤ γ∆,k ≤ 1. (2.26)

Then, by (2.24) and (2.26), we have

|λ∆,k − λk| = |λk(γ∆,k − 1) + ϵ∆,k| ≤ λk(1− γ∆,k) + ϵ∆,k

≤ 2(ξ2k + η2k)
N∑
l=1

∆2
l + λk

− λk exp

[
−a

{
(ξ2k + 2ξkηk)

N∑
l=1

∆2
l − 2

N∑
l=1

Re ⟨Ψk(tl)−Ψk(tl−1),Ψk(tl−1)⟩

}]
.

The following corollary can be easily proven by using [2, COROLLARY
4.4].

Corollary 2.2.4 Assume that there exists k ∈ N such that the following
conditions hold:

Ψk(·) : [0, τ ] → H is a strongly differentiable mapping, (2.27)

∀λ ∈ [0, τ ], Ψk(λ) ∈ D(H), (2.28)

ξk <∞, (2.29)

sup
0≤λ≤τ

∥Ψ′
k(λ)∥ <∞, (2.30)

where Ψ′
k(·) denotes the strong derivative of Ψk(·).

Then (2.9)–(2.12) hold. Therefore, by Theorem 2.2.1, (2.13) holds.
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Example 2.2.5 Let A be a self-adjoint operator on H. Assume that there
exists k ∈ N such that the following conditions hold:

Ψk ∈ D(A) ∩
∩

0≤λ≤τ

D(He−iλA), (2.31)

sup
0≤λ≤τ

∥He−iλAΨk∥ <∞, (2.32)

∀λ ∈ [o, τ ], Ψk(λ) = e−iλAΨk. (2.33)

In this case, by [2, EXAMPLE 4.5], (2.27)–(2.30) hold. Then by using Corol-
lary 2.2.4, (2.9)–(2.13) hold.

2.2.3 Trace norm convergence

For the decomposition (2.1), we define

ρ(t) :=
∑
n

λn|Ψn(t)⟩⟨Ψn(t)|, ∀t ∈ [0, τ ]. (2.34)

Let us consider conditions of convergence from ρ∆(τ) to ρ(τ) in the trace
norm sense.

Theorem 2.2.6 Assume that the conditions (2.9)–(2.12) hold for all k ∈ N
satisfying λk > 0.

Then we have

lim
|∆|→0

∥ρ∆(τ)− ρ(τ)∥1 = 0. (2.35)

Proof. By definition of ρ∆(τ), ρ(τ), and equation (2.8), we have

∥ρ∆(τ)− ρ(τ)∥1 =
∑
k

⟨Ψk(τ), |ρ∆(τ)− ρ(τ)|Ψk(τ)⟩

=
∑
k

|λ∆,k − λk|

=
∑
k

|λk(γ∆,k − 1) + ϵ∆,k|

≤
∑
k

λk(1− γ∆,k) +
∑
k

ϵ∆,k

=
∑
k

λk(1− γ∆,k) +
∑
k

(λ∆,k − λkγ∆,k)

= 2− 2
∑
k

λkγ∆,k. (2.36)
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Note that
|λkγ∆,k| ≤ λk (∀k ∈ N),

∑
k

λk = 1.

The assumptions (2.9)–(2.12) imply that

lim
|∆|→0

λkγ∆,k = λk (∀k ∈ N).

Hence, by using Lebesgue’s dominated convergence theorem, we have

lim
|∆|→0

∑
k

λkγ∆,k = 1.

Therefore, by (2.36), we obtain (2.35).

Remark 2.2.7 Assume that the conditions of Theorem 2.2.6 hold and that
supk,λk ̸=0 ξk < ∞ and supk,λk ̸=0 ηk < ∞ hold. Then, for a > 1, we can take
|∆| such that (2.25) holds for all k with λk ̸= 0. Then we have (2.26) for all
k ∈ N with λk ̸= 0. Hence, by (2.36), for all k ∈ N, we obtain the following
estimation:

|λ∆,k − λk| ≤ ∥ρ∆(τ)− ρ(τ)∥1

≤ 2− 2
∑
k

λk exp

[
−a

{
(ξ2k + 2ξkηk)

N∑
l=1

∆2
l − 2

N∑
l=1

Re ⟨Ψk(tl)−Ψk(tl−1),Ψk(tl−1)⟩

}]
.

The following corollary and example can be easily proven by using Corol-
lary 2.2.4, Example 2.2.5, and Theorem 2.2.6.

Corollary 2.2.8 Assume that the conditions (2.27)–(2.30) hold for all k ∈
N with λk > 0. Then we have (2.35).

Example 2.2.9 Let A be a self-adjoint operator on H. Assume that the
conditions (2.31)–(2.33) hold for all k ∈ N with λk > 0. Then we have
(2.35).

In Example 2.2.9, let us consider the case of d <∞. It is easy to see that
the assumptions (2.31)–(2.32) are satisfied. On the other hand, by Stone’s
theorem, for all U ∈ U(H), there exists a self-adjoint operator A such that
U = e−iτA. Since ρ(τ) = UρU∗, we have lim|∆|→0 ∥ρ∆(τ) − UρU∗∥1 = 0.
This fact shows that, in the case d < ∞, an arbitrary state in {UρU∗ | U ∈
U(H)} can be approximated (in the trace norm sense) by states obtained
after an appropriate continuous measurements. In other words, in this case,
we can approximate an arbitrary unitary channel by continuous quantum
measurements.
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2.2.4 Application to quantum Zeno effect for mixed
states

Let Ψk ∈ D(H) and Ψk(λ) = Ψk (∀λ ∈ [0, τ ]) holds for all k ∈ N with λk > 0.
This is the case where A = 0 in Example 2.2.9. Then (2.9)–(2.12) hold

for all k ∈ N with λk > 0. Hence, we have (2.35).
This means that, by the series of measurement with respect to the family

of the projection operators {|Ψk⟩⟨Ψk|}k, transitions to states different from
the initial state are hindered. This can be interpreted as a quantum Zeno
effect for mixed states.

2.3 Convergence condition of the von Neu-

mann entropy

Let φ : [0,∞) ∋ λ 7→ −λ log λ ∈ [0,∞), where φ(0) := 0. Then φ is
continuous, concave, and subadditive. Let S(ρ) be the von Neumann entropy
of ρ ∈ S(H). i.e.

S(ρ) := Trφ(ρ).

In the case d <∞, by Fannes’ inequality, we have for all ρ1, ρ2 ∈ S(H)

∥ρ1 − ρ2∥1 ≤ 1/e =⇒ |S(ρ1)− S(ρ2)| ≤ ∥ρ1 − ρ2∥1 log d+ φ(∥ρ1 − ρ2∥1).
Therefore the von Neumann entropy is continuous with respect to the trace
norm.

On the other hand，in the case d = ∞，although the von Neumann
entropy is lower semi-continuous with respect to the trace norm, i.e.

lim
n→∞

∥ρn − ρ∥1 = 0 ⇒ S(ρ) ≤ lim inf
n→∞

S(ρn),

it is not necessarily continuous. Moreover, it is known that the set {ρ ∈
S(H) | S(ρ) <∞} is of the first category [10].

In what follows, we deal with the case where d = ∞ only.
For ρ∆(τ) and ρ considered in the section 2, conditions of the convergence

S(ρ∆(τ)) → S(ρ) are given by the following theorem.

Theorem 2.3.1 Assume that the conditions (2.9)–(2.11) hold for all k ∈ N,
and that the condition (2.12) holds for all k ∈ N with λk > 0. Suppose that
the following conditions hold:

ξk → 0, ηk → 0 (k → ∞), (2.37)

S(ρ) <∞, (2.38)∑
k

φ(ξ2k) <∞,
∑
k

φ(η2k) <∞. (2.39)
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Then

lim
|∆|→0

S(ρ∆(τ)) = S(ρ(τ)) = S(ρ). (2.40)

Remark 2.3.2 The function φ is monotone increasing on [0, 1/e] and

ξ2k = sup
0≤λ≤τ

∥HΨk(λ)∥2 = sup
0≤λ≤τ

∫
R
x2d∥EH(x)Ψk(λ)∥2.

Hence, ξk → 0 (k → ∞) implies that there exists N0 ∈ N such that, for all
k > N0,

φ(ξ2k) ≥ sup
0≤λ≤τ

φ

(∫
R
x2d∥EH(x)Ψk(λ)∥2

)
.

By Jensen’s inequality, we have

φ

(∫
R
x2d∥EH(x)Ψk(λ)∥2

)
≥

∫
R
φ(x2)d∥EH(x)Ψk(λ)∥2.

Hence, for all k > N0,

φ(ξ2k) ≥ sup
0≤λ≤τ

∫
R
φ(x2)d∥EH(x)Ψk(λ)∥2.

Then, we have

∀k > N0, ∀λ ∈ [0, τ ], Ψk(λ) ∈ D(
√
φ(H2)), φ(ξ2k) ≥ sup

0≤λ≤τ
∥
√
φ(H2)Ψk(λ)∥2.

Moreover, using the estimate that

∑
k

φ(ξ2k) =

N0∑
k=1

φ(ξ2k) +
∞∑

k=N0+1

φ(ξ2k)

≥
N0∑
k=1

φ(ξ2k) +
∞∑

k=N0+1

sup
0≤λ≤τ

∥
√
φ(H2)Ψk(λ)∥2

≥
N0∑
k=1

φ(ξ2k) + sup
0≤λ≤τ

∞∑
k=N0+1

∥
√
φ(H2)Ψk(λ)∥2,

we obtain

ξk → 0 (k → ∞),
∑
k

φ(ξ2k) <∞

=⇒ ∃N0 ∈ N, sup
0≤λ≤τ

∞∑
k=N0+1

∥
√
φ(H2)Ψk(λ)∥2 <∞. (2.41)
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Particularly, in the case H ∈ B(H), we have, for all Φ ∈ H,∫
R
φ(x2)d∥EH(x)Φ∥2 ≤ sup

x∈σ(H)

φ(x2)

∫
R
d∥EH(x)Φ∥2

= sup
x∈σ(H)

φ(x2) · ∥Φ∥ <∞.

Hence, we obtain
√
φ(H2) ∈ B(H). Therefore, by (2.41), we have

ξk → 0 (k → ∞),
∑
k

φ(ξ2k) <∞ =⇒ φ(H2) ∈ T(H). (2.42)

We remark that, in this case, if Hamiltonian H is represented as a density
operator, then φ(H2) ∈ T(H) means S(H2) <∞.

Proof. The assumption of this theorem and Theorem 2.2.6 imply that
lim|∆|→0 ∥ρ∆(τ)−ρ(τ)∥1 = 0. Hence we have w- lim|∆|→0 ρ∆(τ) = ρ(τ), where
w- lim means weak limit.

By (2.8), (2.24) and γ∆,k ≤ 1, we have

λ∆,k ≤ λk + 2(ξ2k + η2k)
N∑
l=1

∆2
l .

By lim|∆|→0

∑N
l=1 ∆

2
l = 0, there exists δ > 0 such that,

|∆| < δ =⇒
N∑
l=1

∆2
l < 1/2.

Thus
λ∆,k ≤ λk + ξ2k + η2k (|∆| < δ). (2.43)

We set

σ :=
∑
k

(λk + ξ2k + η2k)|Ψk(τ)⟩⟨Ψk(τ)|. (2.44)

By the assumption of this theorem, σ ∈ C(H). On the other hand, (2.43)
implies that

ρ∆(τ) ≤ σ (|∆| < δ). (2.45)

Moreover, by the assumption of this theorem and subadditivity of φ, we have

S(σ) =
∑
k

φ(λk + ξ2k + η2k) (2.46)

≤ S(ρ) +
∑
k

φ(ξ2k) +
∑
k

φ(η2k) <∞. (2.47)
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Hence, by Simon’s dominated convergence theorem for entropy [4, THEO-
REM A.3], we have

lim
|∆|→0

S(ρ∆(τ)) = S(ρ(τ)).

It is obvious that S(ρ(τ)) = S(ρ) holds.

Remark 2.3.3 In the proof of Theorem 2.3.1, we used that

S(ρ),
∑
k

φ(ξ2k),
∑
k

φ(η2k) <∞ =⇒
∑
k

φ(λk + ξ2k + η2k) <∞. (2.48)

Conversely, we can show that, under condition (2.37),∑
k

φ(λk + ξ2k + η2k) <∞ =⇒ S(ρ),
∑
k

φ(ξ2k),
∑
k

φ(η2k) <∞ (2.49)

as follows. By λk + ξ2k + η2k → 0 (k → ∞), we have

∃N0 ∈ N, ∀k > N0,max{λk, ξ2k, η2k} ≤ λk + ξ2k + η2k < 1/e.

Hence, by the fact that φ is a monotone increasing function on [0, 1/e], we
obtain

max

{
∞∑

k=N0+1

φ(λk),
∞∑

k=N0+1

φ(ξ2k),
∞∑

k=N0+1

φ(η2k)

}
≤

∞∑
k=N0+1

φ(λk + ξ2k + η2k).

Therefore, we have (2.49). Thus, in Theorem 2.3.1, we can replace the con-
dition (2.38) and (2.39) with

∑
k φ(λk + ξ2k + η2k) <∞.

Example 2.3.4 Let A be a self-adjoint operator on H. Assume that A,H ∈
C(H), and that A and H are strongly commuting. Moreover, we assume that

∀k ∈ N, ∀λ ∈ [0, τ ], Ψk(λ) = e−iλAΨk, (2.50)

S(ρ) <∞,
∑
k

φ(∥HΨk∥2) <∞,
∑
k

φ(∥AΨk∥2) <∞. (2.51)

Then, the compactness, the strong commutativity of A and H, and (2.50) im-
ply that ξk = ∥HΨk∥ → 0, ηk = ∥AΨk∥ → 0 (k → ∞). Hence, the assump-
tion of Theorem 2.3.1 is satisfied. Hence, we have S(ρ∆(τ)) → S(ρ) (|∆| →
0).
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In Example 2.3.4, let us consider the case of A = 0. The following fact
can be easily seen:

H ∈ C(H), Ψk(λ) = Ψk (∀k ∈ N, ∀λ ∈ [0, τ ]),

S(ρ) <∞,
∑
k

φ(∥HΨk∥2) <∞

=⇒ lim
|∆|→0

S(ρ∆(τ)) = S(ρ). (2.52)

This is the case of QZE.We remark that, if {Ψk}k is a sequence of eigenvectors
of H, we have

∑
k φ(∥HΨk∥2) = Trφ(H2) < ∞. Then, in (2.52), we can

replace the condition
∑

k φ(∥HΨk∥2) <∞ with φ(H2) ∈ T(H).
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Chapter 3

Appendix

In this chapter, we record some properties of compact operators and the von
Neumann entropy which is related to Chapter 2. We presuppose that the
symbols in this Chapter are the same as Chapter 2.

3.1 Compact operators on Hilbert space

We denote all finite-rank operators on H by F(H).

Theorem 3.1.1 For all A ∈ B(H), the following conditions are equivalent:

(1) The set {AΨ | Ψ ∈ H, ∥Ψ∥ ≤ 1} is relatively compact.

(2) If w- limn→∞Ψn = Ψ, then limn→∞ ∥AΨn − AΨ∥ = 0.

(3) If {Ψn}∞n=1 ⊂ H is orthonormal system (ONS), then limn→∞ ∥AΨn∥ =
0.

(4) There exists {An}∞n=1 ⊂ F(H) such that limn→∞ ∥An − A∥ = 0.

A bounded operator A is called compact if and only if any of Theorem
3.1.1 (1)–(4) is true.

3.2 Some properties of the von Neumann en-

tropy

Theorem 3.2.1 (Fannes’s inequality) Suppose d(= dimH) < ∞ and
ρ, σ ∈ S(H). Then the following holds:

∥ρ− σ∥1 ≤
1

e
=⇒ |S(ρ)− S(σ)| ≤ ∥ρ− σ∥1 log d+ φ(∥ρ− σ∥1). (3.1)
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Theorem 3.2.2 Let ρ, ρn ∈ S(H) (∀n ∈ N), U ∈ U(H), λ ∈ (0, 1). Then we
have

(1) (Positivity) S(ρ) ≥ 0.

(2) (Unitary invariance) S(UρU∗) = S(ρ).

(3) (Concavity) S(λρ1 + (1− λ)ρ2) ≥ λS(ρ1) + (1− λ)S(ρ2).

(4) (Lower semi-continuity ) If limn→∞ ∥ρn − ρ∥1 = 0, then we have

S(ρ) ≤ lim inf
n→∞

S(ρn).

Definition 3.2.3 Let X be a topological space, and A a subset of X.

(1) A is called nowhere dense if (Ā)◦ = ∅.

(2) A is called first category if there exists {An}∞n=1 such that, for all
n ∈ N, An is nowhere dense and A =

∪∞
n=1An.

(3) A is called second category if A is not first category.

Example 3.2.4 Q is of first category and R\Q is of second category in R.

Theorem 3.2.5 (Wehrl 1976 [9]) {ρ ∈ S(H) | S(ρ) < ∞} is of first
category in S(H) with respect to the topology which induced by trace norm.

Theorem 3.2.6 (Dominated convergence theorem for entropy, Simon 1973 [4])
Let An, A,B ∈ C(H) (∀n ∈ N) and An, A,B ≥ 0 (∀n ∈ N). Suppose that

(1) S(B) <∞,

(2) w- limn→∞An = A,

(3) An ≤ B, (∀n ∈ N).

Then we have
lim
n→∞

S(An) = S(A).

Theorem 3.2.7 Let EP be a projection channel on S(H). Then, for all
ρ ∈ S(H),

S(ρ) ≤ S(EPρ).

We have S(ρ) = S(EPρ) if and only if ρ = EPρ.
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